1
|
Rudt E, Faist C, Schwantes V, Wiedmaier-Czerny N, Lehnert K, Topman-Rakover S, Brill A, Burdman S, Hayouka Z, Vetter W, Hayen H. In-depth phospholipid profiling of plant-pathogenic bacteria after treatment with antimicrobial random peptide mixtures. Anal Chim Acta 2025; 1342:343680. [PMID: 39919861 DOI: 10.1016/j.aca.2025.343680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/04/2024] [Accepted: 01/15/2025] [Indexed: 02/09/2025]
Abstract
BACKGROUND The ability of plant-pathogenic bacteria to develop antimicrobial resistance against crop protection products represents a significant challenge. An alternative to conventional crop protecting products could be random peptide mixtures (RPMs), which potentially target the phospholipid-containing cell membrane. The randomized arrangement of the peptides minimizes the risk of bacterial resistance developing against the RPMs. However, not all plant-pathogenic bacteria exhibited growth inhibition after RPM treatment. Our prior studies revealed correlations between bacterial growth inhibition and changes in the fatty acid pattern following treatment. However, additional data on the intact phospholipid composition are essential to further understand and improve novel RPMs. RESULTS Accordingly, we developed an analytical setup for in-depth bacterial lipid membrane characterization based on two complementary methods in conjunction with chemometric data evaluation to study the impact of RPM treatment on phospholipid class and species level. An efficient phospholipid class quantitation using hydrophilic interaction liquid chromatography (HILIC)-based lipid class separation with uniform charged aerosol detection (CAD) revealed distinct differences in the class composition of six plant-pathogenic bacteria. Moreover, branched-chain fatty acid (BCFA)-comprising phospholipid profiling via liquid chromatography-tandem mass spectrometry (LC-MS/MS) provided additional lipid species information to classify the investigated bacteria based on the number of bound BCFA. The combination of these techniques served for a comprehensive characterization of the bacterial membrane adaptation to the RPM treatment, which showed some correlations with the inhibitory effects of the RPMs. SIGNIFICANCE In this proof-of-concept study, HILIC-CAD phospholipid quantitation and BCFA-comprising phospholipid profiling were introduced as complementary techniques for in-depth characterization of bacterial cell membranes as well as membrane adaptations at both phospholipid class and species level. Our developed analytical setup may facilitate future studies targeting in-depth characterization of bacterial lipid membranes.
Collapse
Affiliation(s)
- Edward Rudt
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, D-48149, Münster, Germany
| | - Christian Faist
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, D-48149, Münster, Germany
| | - Vera Schwantes
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, D-48149, Münster, Germany
| | - Nina Wiedmaier-Czerny
- Institute of Food Chemistry (170b), University of Hohenheim, Garbenstraße 28, D-70593, Stuttgart, Germany
| | - Katja Lehnert
- Institute of Food Chemistry (170b), University of Hohenheim, Garbenstraße 28, D-70593, Stuttgart, Germany
| | - Shiri Topman-Rakover
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel; Department of Plant Pathology and Microbiology, Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Aya Brill
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel; Department of Plant Pathology and Microbiology, Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Saul Burdman
- Department of Plant Pathology and Microbiology, Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Zvi Hayouka
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Walter Vetter
- Institute of Food Chemistry (170b), University of Hohenheim, Garbenstraße 28, D-70593, Stuttgart, Germany
| | - Heiko Hayen
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, D-48149, Münster, Germany.
| |
Collapse
|
2
|
Alípio AF, Bárria C, Pobre V, Matos AR, Prata SC, Amblar M, Arraiano CM, Domingues S. RNase R Affects the Level of Fatty Acid Biosynthesis Transcripts Leading to Changes in membrane Fluidity. J Mol Biol 2024; 436:168711. [PMID: 39019106 DOI: 10.1016/j.jmb.2024.168711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
Previous studies on RNase R have highlighted significant effects of this ribonuclease in several processes of Streptococcus pneumoniae biology. In this work we show that elimination of RNase R results in overexpression of most of genes encoding the components of type II fatty acid biosynthesis (FASII) cluster. We demonstrate that RNase R is implicated in the turnover of most of transcripts from this pathway, affecting the outcome of the whole FASII cluster, and ultimately leading to changes in the membrane fatty acid composition. Our results show that the membrane of the deleted strain contains higher proportion of unsaturated and long-chained fatty acids than the membrane of the wild type strain. These alterations render the RNase R mutant more prone to membrane lipid peroxidation and are likely the reason for the increased sensitivity of this strain to detergent lysis and to the action of the bacteriocin nisin. Reprogramming of membrane fluidity is an adaptative cell response crucial for bacterial survival in constantly changing environmental conditions. The data presented here is suggestive of a role for RNase R in the composition of S. pneumoniae membrane, with strong impact on pneumococci adaptation to different stress situations.
Collapse
Affiliation(s)
- André Filipe Alípio
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Cátia Bárria
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| | - Vânia Pobre
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana Rita Matos
- BioISI - Biosystems and Integrative Sciences Institute, Environmental and Molecular Plant Physiology Laboratory, Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Sara Carrera Prata
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Mónica Amblar
- Unidad de Patología Molecular del Neumococo, Centro Nacional de Microbiología, Instituto de Salud Carlos III. Majadahonda, Madrid 28220, Spain
| | - Cecília Maria Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Susana Domingues
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
3
|
Iram D, Sansi MS, Puniya AK, Gandhi K, Meena S, Vij S. Phenotypic and molecular characterization of clinically isolated antibiotics-resistant S. aureus (MRSA), E. coli (ESBL) and Acinetobacter 1379 bacterial strains. Braz J Microbiol 2024; 55:2293-2312. [PMID: 38773046 PMCID: PMC11405748 DOI: 10.1007/s42770-024-01347-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 04/15/2024] [Indexed: 05/23/2024] Open
Abstract
Antibiotic-resistant bacteria causing nosocomial infections pose a significant global health concern. This study focused on examining the lipid profiles of both non-resistant and clinically resistant strains of Staphylococcus aureus (MRSA 1418), E. coli (ESBL 1384), and Acinetobacter 1379. The main aim was to investigate the relationship between lipid profiles, hydrophobicity, and antibiotic resistance so as to identify the pathogenic potential and resistance factors of strains isolated from patients with sepsis and urinary tract infections (UTIs). The research included various tests, such as antimicrobial susceptibility assays following CLSI guidelines, biochemical tests, biofilm assays, and hydrophobicity assays. Additionally, gas chromatography mass spectrometry (GC-MS) and GC-Flame Ionization Detector (GC-FID) analysis were used for lipid profiling and composition. The clinically isolated resistant strains (MRSA-1418, ESBL-1384, and Acinetobacter 1379) demonstrated resistance phenotypes of 81.80%, 27.6%, and 63.6%, respectively, with a multiple antibiotic resistance index of 0.81, 0.27, and 0.63. Notably, the MRSA-1418 strain, which exhibited resistance, showed significantly higher levels of hemolysin, cell surface hydrophobicity, biofilm index, and a self-aggregative phenotype compared to the non-resistant strains. Gene expression analysis using quantitative real-time PCR (qPCR). Indicated elevated expression levels of intercellular adhesion biofilm-related genes (icaA, icaC, and icaD) in MRSA-1418 (pgaA, pgaC, and pgaB) and Acinetobacter 1379 after 24 h compared to non-resistant strains. Scanning electron microscopy (SEM) was employed for structural investigation. These findings provide valuable insights into the role of biofilms in antibiotic resistance and suggest potential target pathways for combating antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Daraksha Iram
- Antimicrobial Peptides, Biofunctional Probiotics and Peptidomics Laboratory, Dairy Microbiology Division, National Dairy Research Institute, Karnal, India
| | - Manish Singh Sansi
- Biofunctional Peptidomics and Metabolic Syndrome Laboratory, Animal Biochemistry Division, National Dairy Research Institute, Karnal, India
| | - Anil Kumar Puniya
- Anaerobic Microbial Fermentation Laboratory, Dairy Microbiology Division, National Dairy Research Institute, Karnal, India
| | - Kamal Gandhi
- Dairy Chemistry Division, National Dairy Research Institute, Karnal, India
| | - Sunita Meena
- Biofunctional Peptidomics and Metabolic Syndrome Laboratory, Animal Biochemistry Division, National Dairy Research Institute, Karnal, India
| | - Shilpa Vij
- Antimicrobial Peptides, Biofunctional Probiotics and Peptidomics Laboratory, Dairy Microbiology Division, National Dairy Research Institute, Karnal, India.
| |
Collapse
|
4
|
Lee TH, Charchar P, Separovic F, Reid GE, Yarovsky I, Aguilar MI. The intricate link between membrane lipid structure and composition and membrane structural properties in bacterial membranes. Chem Sci 2024; 15:3408-3427. [PMID: 38455013 PMCID: PMC10915831 DOI: 10.1039/d3sc04523d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/26/2024] [Indexed: 03/09/2024] Open
Abstract
It is now evident that the cell manipulates lipid composition to regulate different processes such as membrane protein insertion, assembly and function. Moreover, changes in membrane structure and properties, lipid homeostasis during growth and differentiation with associated changes in cell size and shape, and responses to external stress have been related to drug resistance across mammalian species and a range of microorganisms. While it is well known that the biomembrane is a fluid self-assembled nanostructure, the link between the lipid components and the structural properties of the lipid bilayer are not well understood. This perspective aims to address this topic with a view to a more detailed understanding of the factors that regulate bilayer structure and flexibility. We describe a selection of recent studies that address the dynamic nature of bacterial lipid diversity and membrane properties in response to stress conditions. This emerging area has important implications for a broad range of cellular processes and may open new avenues of drug design for selective cell targeting.
Collapse
Affiliation(s)
- Tzong-Hsien Lee
- Department of Biochemistry and Molecular Biology, Monash University Clayton VIC 3800 Australia
| | - Patrick Charchar
- School of Engineering, RMIT University Melbourne Victoria 3001 Australia
| | - Frances Separovic
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne VIC 3010 Australia
| | - Gavin E Reid
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne VIC 3010 Australia
- Department of Biochemistry and Pharmacology, University of Melbourne Parkville VIC 3010 Australia
| | - Irene Yarovsky
- School of Engineering, RMIT University Melbourne Victoria 3001 Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology, Monash University Clayton VIC 3800 Australia
| |
Collapse
|
5
|
Siderakou D, Zilelidou E, Tempelaars M, Abee T, Skandamis P, den Besten HMW. Impact of preculture temperature on peracetic acid-induced inactivation and sublethal injury of L. monocytogenes and subsequent growth potential of single cells. Int J Food Microbiol 2023; 406:110335. [PMID: 37625263 DOI: 10.1016/j.ijfoodmicro.2023.110335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/14/2023] [Accepted: 07/20/2023] [Indexed: 08/27/2023]
Abstract
The disinfectant peracetic acid (PAA) that is used in the food industry can cause sublethal injury in L. monocytogenes. The effect of preculture temperature on the inactivation and sublethal injury of L. monocytogenes cells due to PAA was evaluated by plating on non-selective and selective agar medium supplemented with 5 % (w/v) NaCl. L. monocytogenes cells were precultured at 30 °C, 20 °C or 4 °C, and the former was used as reference temperature. Preculture of cells at 20 °C or 4 °C and subsequent exposure to PAA at the respective growth temperatures caused higher injury compared to cells grown at 30 °C and exposed to PAA 20 °C and PAA 4 °C, respectively. Survival was also affected by the preculture temperature; 20 °C-grown cultures resulted in lower survival at PAA 20 °C. Nevertheless, preculture at 4 °C resulted in a similar number of surviving cells when exposed to PAA 4 °C compared to cells precultured at 30 °C and exposed to PAA at 4 °C. Flow cytometry was subsequently used to quantify outgrowth capacity of stressed and sublethal damaged populations following sorting of single cells in nutrient rich medium (Tryptone soy broth supplemented with yeast extract [TSBY]). PAA treatment affected the outgrowth of L. monocytogenes at single-cell level resulting in increased outgrowth-times reflecting higher single cell heterogeneity. To conclude, the response of L. monocytogenes when exposed to PAA depended on the preculture conditions, and the highly heterogeneous outgrowth potential of PAA-injured cells may affect their detection accuracy and pose a food safety risk.
Collapse
Affiliation(s)
- Danae Siderakou
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Evangelia Zilelidou
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Marcel Tempelaars
- Food Microbiology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Tjakko Abee
- Food Microbiology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Panagiotis Skandamis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Heidy M W den Besten
- Food Microbiology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands.
| |
Collapse
|
6
|
Wang Y, Wu Y, Niu H, Liu Y, Ma Y, Wang X, Li Z, Dong Q. Different cellular fatty acid pattern and gene expression of planktonic and biofilm state Listeria monocytogenes under nutritional stress. Food Res Int 2023; 167:112698. [PMID: 37087265 DOI: 10.1016/j.foodres.2023.112698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/05/2023] [Accepted: 03/14/2023] [Indexed: 03/28/2023]
Abstract
Listeria monocytogenes is a Gram-positive bacterium frequently involved in food-borne disease outbreaks and is widely distributed in the food-processing environment. This work aims to depict the impact of nutrition deficiency on the survival strategy of L. monocytogenes both in planktonic and biofilm states. In the present study, cell characteristics (autoaggression, hydrophobicity and motility), membrane fatty acid composition of MRL300083 (Lm83) in the forms of planktonic and biofilm-associated cells cultured in TSB-YE and 10-fold dilutions of TSB-YE (DTSB-YE) were investigated. Additionally, the relative expression of related genes were also determined by RT-qPCR. It was observed that cell growth in different bacterial life modes under nutritional stress rendered the cells a distinct phenotype. The higher autoaggression (AAG) and motility of the planktonic cells in DTSB-YE is associated with better biofilm formation. An increased proportion of unsaturated fatty acid/saturated fatty acid (USFA/SFA) indicates more fluidic biophysical properties for cell membranes of L. monocytogenes in planktonic and biofilm cells in DTSB-YE. Biofilm cells produced a higher percentage of USFA and straight fatty acids than the corresponding planktonic cells. An appropriate degree of membrane fluidity is crucial for survival, and alteration of membrane lipids is an essential adaptive response. The adaptation of bacteria to stress is a multifactorial cellular process, the expression of flagella-related genes fliG, fliP, flgE and the two-component chemotactic system cheA/Y genes of planktonic cells in DTSB-YE significantly increased compared to that in TSB-YE (p < 0.05). This study provides new information on the role of the physiological adaptation and gene expression of L. monocytogenes for planktonic and biofilm growth under nutritional stress.
Collapse
Affiliation(s)
- Yuan Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; School of Food and Drugs, Shanghai Zhongqiao Vocational and Technical University, Shanghai 201514, China
| | - Youzhi Wu
- School of Food and Drugs, Shanghai Zhongqiao Vocational and Technical University, Shanghai 201514, China
| | - Hongmei Niu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yangtai Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yue Ma
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiang Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhuosi Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
7
|
A review of potential antibacterial activities of nisin against Listeria monocytogenes: the combined use of nisin shows more advantages than single use. Food Res Int 2023; 164:112363. [PMID: 36737951 DOI: 10.1016/j.foodres.2022.112363] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/10/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
Listeria monocytogenes is a foodborne pathogen causing serious public health problems. Nisin is a natural antimicrobial agent produced by Lactococcus lactis and widely used in the food industry. However, the anti-L. monocytogenes efficiency of nisin might be decreased due to natural or acquired resistance of L. monocytogenes to nisin, or complexity of the food environment. The limitation of nisin as a bacteriostatic agent in food could be improved using a combination of methods. In this review, the physiochemical characteristics, species, bioengineered mutants, and antimicrobial mechanism of nisin are reviewed. Strategies of nisin combined with other antibacterial methods, including physical, chemical, and natural substances, and nanotechnology to enhance antibacterial effect are highlighted and discussed. Additionally, the antibacterial efficiency of nisin applied in real meat, dairy, and aquatic products is evaluated and analyzed. Among the various binding treatments, the combination with natural substances is more effective than the combination with physical and chemical methods. However, the combination of nisin and nanotechnology has more potential in terms of the impact on food quality.
Collapse
|
8
|
Chen R, Skeens JW, Wiedmann M, Guariglia-Oropeza V. The efficacy of nisin against Listeria monocytogenes on cold-smoked salmon at natural contamination levels is concentration-dependent and varies by serotype. Front Microbiol 2022; 13:930400. [PMID: 36147859 PMCID: PMC9486479 DOI: 10.3389/fmicb.2022.930400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022] Open
Abstract
Cold-smoked salmon is a ready-to-eat food product capable of supporting Listeria monocytogenes growth at refrigeration temperatures. While the FDA-approved antimicrobial nisin can be used to mitigate L. monocytogenes contamination, stresses associated with cold-smoked salmon and the associated processing environments may reduce nisin efficacy. A previous study in our laboratory showed that, at high inoculation levels, pre-exposure of L. monocytogenes to sublethal concentrations of quaternary ammonium compounds had an overall detrimental effect on nisin efficacy. The objective of this study was to investigate the impact of nisin concentration and storage temperature on nisin efficacy against L. monocytogenes inoculated on salmon at natural contamination levels. Three L. monocytogenes strains were pre-grown in the presence of sublethal levels of benzalkonium chloride prior to inoculation at ~102 CFU/g on salmon slices that were pre-treated with either 0, 25, or 250 ppm nisin, followed by vacuum-packing and incubation at 4 or 7°C for up to 30 days. L. monocytogenes was enumerated on days 1, 15, and 30 using direct plating and/or most probable number methods. A hurdle model was constructed to describe the odds of complete elimination of L. monocytogenes on salmon and the level of L. monocytogenes when complete elimination was not achieved. Our data showed that (i) nisin efficacy (defined as L. monocytogenes reduction relative to the untreated control) was concentration-dependent with increased efficacy at 250 ppm nisin, and that (ii) 250 ppm nisin treatments led to a reduction in L. monocytogenes prevalence, independent of storage temperature and serotype; this effect of nisin could only be identified since low inoculation levels were used. While lower storage temperatures (i.e., 4°C) yielded lowered absolute L. monocytogenes counts on days 15 and 30 (as compared to 7°C), nisin efficacy did not differ between these two temperatures. Finally, the serotype 1/2b strain was found to be more susceptible to nisin compared with serotype 1/2a and 4b strains on samples incubated at 7°C or treated with 25 ppm nisin. This variation of nisin susceptibility across serotypes, which is affected by both the storage temperature and nisin concentration, needs to be considered while evaluating the efficacy of nisin.
Collapse
|
9
|
Stable isotope analysis confirms substantial changes in the fatty acid composition of bacteria treated with antimicrobial random peptide mixtures (RPMs). Sci Rep 2022; 12:11230. [PMID: 35789165 PMCID: PMC9252987 DOI: 10.1038/s41598-022-13134-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 05/20/2022] [Indexed: 11/08/2022] Open
Abstract
Resistance of plant-pathogenic bacteria to classic antibiotics has prompted the search for suitable alternative antimicrobial substances. One promising strategy could be the use of purposely synthesized random peptide mixtures (RPMs). Six plant-pathogenic bacteria were cultivated and treated with two RPMs previously found to show antimicrobial activity mainly by bacterial membrane disruption. Here, we show that bacteria treated with RPMs showed partly remarkable changes in the fatty acid pattern while those unaffected did not. Quantitative changes could be verified by compound specific isotope analysis of δ13C values (‰). This technique was employed due to the characteristic feature of stronger bonds between heavier isotopes in (bio)chemical reactions. As a proof of concept, the increase in abundance of a fatty acid group after RPM treatment was accompanied with a decrease in the 13C content and vice versa. We propose that our findings will help designing and synthesizing more selective antimicrobial peptides.
Collapse
|
10
|
Liu G, Nie R, Liu Y, Mehmood A. Combined antimicrobial effect of bacteriocins with other hurdles of physicochemic and microbiome to prolong shelf life of food: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:154058. [PMID: 35217045 DOI: 10.1016/j.scitotenv.2022.154058] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/24/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Bacteriocins are ribosomally synthesized peptides to inhibit food spoilage bacteria, which are widely used as a kind of food biopreservation. The role of bacteriocins in therapeutics and food industries has received increasing attention across a number of disciplines in recent years. Despite their advantages as alternative therapeutics over existing strategies, the application of bacteriocins suffers from shortcomings such as the high isolation and purification cost, narrow spectrum of activity, low stability and solubility and easy enzymatic degradation. Previous studies have studied the synergistic or additive effects of bacteriocins when used in combination with other hurdles including physics, chemicals, and microbes. These combined treatments reduce the adverse effects of chemical additives, extending the shelf life of food products while guaranteeing food quality. This review highlights the advantages and disadvantages of bacteriocins in food preservation. It then reviews the combined effect and mechanism of different hurdles and bacteriocins in enhancing food preservation in detail. The combination of bacterioncins and other hurdles provide potential approaches for maintaining food quality and food safety.
Collapse
Affiliation(s)
- Guorong Liu
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Laboratory of Food Quality and Safety, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Rong Nie
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Laboratory of Food Quality and Safety, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Yangshuo Liu
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Laboratory of Food Quality and Safety, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Arshad Mehmood
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Laboratory of Food Quality and Safety, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| |
Collapse
|
11
|
Anselmo S, Sancataldo G, Mørck Nielsen H, Foderà V, Vetri V. Peptide-Membrane Interactions Monitored by Fluorescence Lifetime Imaging: A Study Case of Transportan 10. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13148-13159. [PMID: 34714654 PMCID: PMC8582253 DOI: 10.1021/acs.langmuir.1c02392] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/19/2021] [Indexed: 06/13/2023]
Abstract
The interest on detailed analysis of peptide-membrane interactions is of great interest in both fundamental and applied sciences as these may relate to both functional and pathogenic events. Such interactions are highly dynamic and spatially heterogeneous, making the investigation of the associated phenomena highly complex. The specific properties of membranes and peptide structural details, together with environmental conditions, may determine different events at the membrane interface, which will drive the fate of the peptide-membrane system. Here, we use an experimental approach based on the combination of spectroscopy and fluorescence microscopy methods to characterize the interactions of the multifunctional amphiphilic peptide transportan 10 with model membranes. Our approach, based on the use of suitable fluorescence reporters, exploits the advantages of phasor plot analysis of fluorescence lifetime imaging microscopy measurements to highlight the molecular details of occurring membrane alterations in terms of rigidity and hydration. Simultaneously, it allows following dynamic events in real time without sample manipulation distinguishing, with high spatial resolution, whether the peptide is adsorbed to or inserted in the membrane.
Collapse
Affiliation(s)
- Sara Anselmo
- Dipartimento
di Fisica e Chimica−Emilio Segré, Università degli Studi di Palermo, Viale delle Scienze ed. 18 90128, Palermo, Italy
| | - Giuseppe Sancataldo
- Dipartimento
di Fisica e Chimica−Emilio Segré, Università degli Studi di Palermo, Viale delle Scienze ed. 18 90128, Palermo, Italy
| | - Hanne Mørck Nielsen
- Department
of Pharmacy, University of Copenhagen, Universitetsparken 2 2100, Copenhagen, Denmark
| | - Vito Foderà
- Department
of Pharmacy, University of Copenhagen, Universitetsparken 2 2100, Copenhagen, Denmark
| | - Valeria Vetri
- Dipartimento
di Fisica e Chimica−Emilio Segré, Università degli Studi di Palermo, Viale delle Scienze ed. 18 90128, Palermo, Italy
| |
Collapse
|
12
|
Xie C, Bittenbinder MA, Slagboom J, Arrahman A, Bruijns S, Somsen GW, Vonk FJ, Casewell NR, García-Vallejo JJ, Kool J. Erythrocyte haemotoxicity profiling of snake venom toxins after nanofractionation. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1176:122586. [PMID: 33839052 PMCID: PMC7613003 DOI: 10.1016/j.jchromb.2021.122586] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 10/22/2022]
Abstract
Snakebite is classified as a priority Neglected Tropical Disease by the World Health Organization. Understanding the pathology of individual snake venom toxins is of great importance when developing more effective snakebite therapies. Snake venoms may induce a range of pathologies, including haemolytic activity. Although snake venom-induced erythrocyte lysis is not the primary cause of mortality, haemolytic activity can greatly debilitate victims and contributes to systemic haemotoxicity. Current assays designed for studying haemolytic activity are not suitable for rapid screening of large numbers of toxic compounds. Consequently, in this study, a high-throughput haemolytic assay was developed that allows profiling of erythrocyte lysis, and was validated using venom from a number of medically important snake species (Calloselasma rhodostoma, Daboia russelii, Naja mossambica, Naja nigricollis and Naja pallida). The assay was developed in a format enabling direct integration into nanofractionation analytics, which involves liquid chromatographic separation of venom followed by high-resolution fractionation and subsequent bioassaying (and optional proteomics analysis), and parallel mass spectrometric detection. Analysis of the five snake venoms via this nanofractionation approach involving haemolytic assaying provided venom-cytotoxicity profiles and enabled identification of the toxins responsible for haemolytic activity. Our results show that the elapid snake venoms (Naja spp.) contained both direct and indirect lytic toxins, while the viperid venoms (C. rhodostoma and D. russelii) only showed indirect lytic activities, which required the addition of phospholipids to exert cytotoxicity on erythrocytes. The haemolytic venom toxins identified were mainly phospholipase A2s and cytotoxic three finger toxins. Finally, the applicability of this new analytical method was demonstrated using a conventional snakebite antivenom treatment and a small-molecule drug candidate to assess neutralisation of venom cytotoxins.
Collapse
Affiliation(s)
- Chunfang Xie
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam (CASA), 1098 XH Amsterdam, the Netherlands
| | - Matyas A Bittenbinder
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam (CASA), 1098 XH Amsterdam, the Netherlands; Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, the Netherlands
| | - Julien Slagboom
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam (CASA), 1098 XH Amsterdam, the Netherlands
| | - Arif Arrahman
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam (CASA), 1098 XH Amsterdam, the Netherlands
| | - Sven Bruijns
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, the Netherlands
| | - Govert W Somsen
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam (CASA), 1098 XH Amsterdam, the Netherlands
| | - Freek J Vonk
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam (CASA), 1098 XH Amsterdam, the Netherlands; Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, the Netherlands
| | - Nicholas R Casewell
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Juan J García-Vallejo
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, the Netherlands
| | - Jeroen Kool
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam (CASA), 1098 XH Amsterdam, the Netherlands.
| |
Collapse
|
13
|
Material, antibacterial and anticancer properties of natural polyphenols incorporated soy protein isolate: A review. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110494] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Falardeau J, Trmčić A, Wang S. The occurrence, growth, and biocontrol of Listeria monocytogenes in fresh and surface-ripened soft and semisoft cheeses. Compr Rev Food Sci Food Saf 2021; 20:4019-4048. [PMID: 34057273 DOI: 10.1111/1541-4337.12768] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 01/05/2023]
Abstract
Listeria monocytogenes continues to pose a food safety risk in ready-to-eat foods, including fresh and soft/semisoft cheeses. Despite L. monocytogenes being detected regularly along the cheese production continuum, variations in cheese style and intrinsic/extrinsic factors throughout the production process (e.g., pH, water activity, and temperature) affect the potential for L. monocytogenes survival and growth. As novel preservation strategies against the growth of L. monocytogenes in susceptible cheeses, researchers have investigated the use of various biocontrol strategies, including bacteriocins and bacteriocin-producing cultures, bacteriophages, and competition with native microbiota. Bacteriocins produced by lactic acid bacteria (LAB) are of particular interest to the dairy industry since they are often effective against Gram-positive organisms such as L. monocytogenes, and because many LAB are granted Generally Regarded as Safe (GRAS) status by global food safety authorities. Similarly, bacteriophages are also considered a safe form of biocontrol since they have high specificity for their target bacterium. Both bacteriocins and bacteriophages have shown success in reducing L. monocytogenes populations in cheeses in the short term, but regrowth of surviving cells can commonly occur in the finished cheeses. Competition with native microbiota, not mediated by bacteriocin production, has also shown potential to inhibit the growth of L. monocytogenes in cheeses, but the mechanisms are still unclear. Here, we have reviewed the current knowledge on the growth of L. monocytogenes in fresh and surface-ripened soft and semisoft cheeses, as well as the various methods used for biocontrol of this common foodborne pathogen.
Collapse
Affiliation(s)
- Justin Falardeau
- Department of Food, Nutrition, and Health, University of British Columbia, British Columbia, Vancouver, Canada
| | - Aljoša Trmčić
- Milk Quality Improvement Program, Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Siyun Wang
- Department of Food, Nutrition, and Health, University of British Columbia, British Columbia, Vancouver, Canada
| |
Collapse
|
15
|
Henderson LO, Erazo Flores BJ, Skeens J, Kent D, Murphy SI, Wiedmann M, Guariglia-Oropeza V. Nevertheless, She Resisted - Role of the Environment on Listeria monocytogenes Sensitivity to Nisin Treatment in a Laboratory Cheese Model. Front Microbiol 2020; 11:635. [PMID: 32328054 PMCID: PMC7160321 DOI: 10.3389/fmicb.2020.00635] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/20/2020] [Indexed: 01/24/2023] Open
Abstract
The growth of Listeria monocytogenes on refrigerated, ready-to-eat food products is a major health and economic concern. The natural antimicrobial nisin targets the bacterial cell wall and can be used to inhibit L. monocytogenes growth on cheese. Cell wall composition and structure, and therefore the efficacy of cell wall acting control strategies, can be severely affected by environmental and stress conditions. The goal of this study was to determine the effect of a range of pH and temperatures on the efficacy of nisin against several strains of L. monocytogenes in a lab-scale, cheese model. Cheese was made with or without the addition of nisin at different pH and then inoculated with L. monocytogenes; L. monocytogenes numbers were quantified after 1, 7, and 14 days of incubation at 6, 14, or 22°C. While our data show that nisin treatment is able to reduce L. monocytogenes numbers, at least initially, growth of this pathogen can occur even in the presence of nisin, especially when cheese is stored at higher temperatures. Several environmental factors were found to affect nisin efficacy against L. monocytogenes. For example, nisin is more effective when cheese is stored at lower temperatures. Nisin is also more effective when cheese is made at higher pH (6 and 6.5), compared to cheese made at pH 5.5, and this effect is at least partially due to the activity of cell envelope modification genes dltA and mprF. Serotype was also found to affect nisin efficacy against L. monocytogenes; serotype 4b strains showed lower susceptibility to nisin treatment compared to serotype 1/2 strains. Overall, our results highlight the importance of considering environmental conditions specific to a food matrix when developing and applying nisin-based intervention strategies against L. monocytogenes.
Collapse
Affiliation(s)
- L. O. Henderson
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - B. J. Erazo Flores
- Department of Food Science, Cornell University, Ithaca, NY, United States
- Universidad de Puerto Rico, Mayagüez, Puerto Rico
| | - J. Skeens
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - D. Kent
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - S. I. Murphy
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - M. Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | | |
Collapse
|
16
|
Lara-Aguilar S, Alcaine SD. Short communication: Screening inhibition of dairy-relevant pathogens and spoilage microorganisms by lactose oxidase. J Dairy Sci 2019; 102:7807-7812. [DOI: 10.3168/jds.2019-16757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/24/2019] [Indexed: 01/26/2023]
|
17
|
Ma Y, Li Y, Huang C, Tian Y, Hao Z. RETRACTED ARTICLE: Rhamnolipid biosurfactants: functional properties and potential contributions for bioremediation. Biodegradation 2019; 30:363. [PMID: 30357536 DOI: 10.1007/s10532-018-9862-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/17/2018] [Indexed: 10/28/2022]
Affiliation(s)
- Yanling Ma
- Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, 229 Taibai North Rd, Xi'an, 710069, Shaanxi, China.
| | - Yanpeng Li
- Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, 229 Taibai North Rd, Xi'an, 710069, Shaanxi, China
| | - Chao Huang
- Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, 229 Taibai North Rd, Xi'an, 710069, Shaanxi, China
| | - Yuexin Tian
- Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, 229 Taibai North Rd, Xi'an, 710069, Shaanxi, China
| | - Zhidan Hao
- Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, 229 Taibai North Rd, Xi'an, 710069, Shaanxi, China
| |
Collapse
|
18
|
Nikmaram N, Budaraju S, Barba FJ, Lorenzo JM, Cox RB, Mallikarjunan K, Roohinejad S. Application of plant extracts to improve the shelf-life, nutritional and health-related properties of ready-to-eat meat products. Meat Sci 2018; 145:245-255. [DOI: 10.1016/j.meatsci.2018.06.031] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/21/2018] [Accepted: 06/25/2018] [Indexed: 10/28/2022]
|
19
|
Shao B, Liu Z, Zhong H, Zeng G, Liu G, Yu M, Liu Y, Yang X, Li Z, Fang Z, Zhang J, Zhao C. Effects of rhamnolipids on microorganism characteristics and applications in composting: A review. Microbiol Res 2017; 200:33-44. [PMID: 28527762 DOI: 10.1016/j.micres.2017.04.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/01/2017] [Accepted: 04/08/2017] [Indexed: 01/15/2023]
Abstract
Biosurfactant rhmnolipids have been applied in many fields, especially in environmental bioremediation. According to previous researches, many research groups have studied the influence of rhamnolipids on microorganism characteristics and/or its application in composting. In this review, the effects of rhamnolipids on the cell surface properties of microorganisms was discussed firstly, such as cell surface hydrophobicity (CSH), electrical, surface compounds, etc. Moreover, the deeper mechanisms were also discussed, such as the effects of rhamnolipids on the structural characteristics and functional characteristics of the cell membrane, and the effects of rhamnolipids on the related enzymes and genes. Additionally, the application of rhamnolipids in composting was discussed, which is an important way for pollutant biodegradation and resource reutilization. It is believed that rhamnolipids will play more and more important role in composting.
Collapse
Affiliation(s)
- Binbin Shao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhifeng Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Hua Zhong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China; State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, Hubei 430072, PR China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guansheng Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Mingda Yu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yang Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xin Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhigang Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhendong Fang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Juntao Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Chenghao Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
20
|
Rogiers G, Kebede BT, Van Loey A, Michiels CW. Membrane fatty acid composition as a determinant of Listeria monocytogenes sensitivity to trans-cinnamaldehyde. Res Microbiol 2017; 168:536-546. [PMID: 28342836 DOI: 10.1016/j.resmic.2017.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 03/07/2017] [Accepted: 03/07/2017] [Indexed: 11/19/2022]
Abstract
trans-Cinnamaldehyde, the major compound of cinnamon essential oil, is a potentially interesting natural antimicrobial food preservative. Although a number of studies have addressed its mode of action, the factors that determine bacterial sensitivity or tolerance to trans-cinnamaldehyde are poorly understood. We report the detailed characterization of a Listeria monocytogenes Scott A trans-cinnamaldehyde hypersensitive mutant defective in IlvE, which catalyzes the reversible transamination of branched-chain amino acids to the corresponding short-chain α-ketoacids. This mutant showed an 8.4 fold extended lag phase during growth in sublethal concentrations (4 mM), and faster inactivation in lethal concentrations of trans-cinnamaldehyde (6 mM). trans-Cinnamaldehyde hypersensitivity could be corrected by genetic complementation with the ilvE gene and supplementation with branched-chain α-ketoacids. Whole-cell fatty acid analyses revealed an almost complete loss of anteiso branched-chain fatty acids (BCFAs), which was compensated by elevated levels of unbranched saturated fatty acids and iso-BCFAs. Sub-inhibitory concentrations of trans-cinnamaldehyde induced membrane fatty acid adaptations predicted to reduce membrane fluidity, possibly as a response to counteract the membrane fluidizing effect of trans-cinnamaldehyde. These results demonstrate the role of IlvE in BCFA production and the role of membrane composition as an important determinant of trans-cinnamaldehyde sensitivity in L. monocytogenes.
Collapse
Affiliation(s)
- Gil Rogiers
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Leuven Food Science and Nutrition Research Center (LFoRCe), Laboratory of Food Microbiology, Kasteelpark Arenberg 22, 3001 Leuven, Belgium.
| | - Biniam T Kebede
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Leuven Food Science and Nutrition Research Center (LFoRCe), Laboratory of Food Technology, Kasteelpark Arenberg 22, 3001 Leuven, Belgium
| | - Ann Van Loey
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Leuven Food Science and Nutrition Research Center (LFoRCe), Laboratory of Food Technology, Kasteelpark Arenberg 22, 3001 Leuven, Belgium
| | - Chris W Michiels
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Leuven Food Science and Nutrition Research Center (LFoRCe), Laboratory of Food Microbiology, Kasteelpark Arenberg 22, 3001 Leuven, Belgium.
| |
Collapse
|
21
|
The Acid Tolerance Response Alters Membrane Fluidity and Induces Nisin Resistance in Listeria monocytogenes. Probiotics Antimicrob Proteins 2016; 1:130-5. [PMID: 26783167 DOI: 10.1007/s12602-009-9025-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The ability of L. monocytogenes cells to adapt to a variety of stressors contributes to its growth in a wide range of foods. The present study examines the effect of acid and of the acid tolerance response (ATR) on membrane fluidity and on the organism's resistance to acid and to the bacteriocin nisin. When ATR was induced in wild-type cells, these cells also became resistant to nisin. ATR(+) cells also had lower membrane rigidities than control ATR(-) cells that had not been subjected to the acid tolerance response. However, cells that were genetically resistant to nisin did not show any significant (P < 0.05) change in rigidity when grown in the presence of nisin. These studies suggest that the use of acid and nisin for L. monocytogenes control in ready-to-eat foods may be compromised if cross-resistance emerges.
Collapse
|
22
|
Kang J, Wiedmann M, Boor KJ, Bergholz TM. VirR-Mediated Resistance of Listeria monocytogenes against Food Antimicrobials and Cross-Protection Induced by Exposure to Organic Acid Salts. Appl Environ Microbiol 2015; 81:4553-62. [PMID: 25911485 PMCID: PMC4475887 DOI: 10.1128/aem.00648-15] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/21/2015] [Indexed: 12/17/2022] Open
Abstract
Formulations of ready-to-eat (RTE) foods with antimicrobial compounds constitute an important safety measure against foodborne pathogens such as Listeria monocytogenes. While the efficacy of many commercially available antimicrobial compounds has been demonstrated in a variety of foods, the current understanding of the resistance mechanisms employed by L. monocytogenes to counteract these stresses is limited. In this study, we screened in-frame deletion mutants of two-component system response regulators associated with the cell envelope stress response for increased sensitivity to commercially available antimicrobial compounds (nisin, lauric arginate, ε-polylysine, and chitosan). A virR deletion mutant showed increased sensitivity to all antimicrobials and significantly greater loss of membrane integrity when exposed to nisin, lauric arginate, or ε-polylysine (P < 0.05). The VirR-regulated operon, dltABCD, was shown to be the key contributor to resistance against these antimicrobial compounds, whereas another VirR-regulated gene, mprF, displayed an antimicrobial-specific contribution to resistance. An experiment with a β-glucuronidase (GUS) reporter fusion with the dlt promoter indicated that nisin does not specifically induce VirR-dependent upregulation of dltABCD. Lastly, prior exposure of L. monocytogenes parent strain H7858 and the ΔvirR mutant to 2% potassium lactate enhanced subsequent resistance against nisin and ε-polylysine (P < 0.05). These data demonstrate that VirRS-mediated regulation of dltABCD is the major resistance mechanism used by L. monocytogenes against cell envelope-damaging food antimicrobials. Further, the potential for cross-protection induced by other food-related stresses (e.g., organic acids) needs to be considered when applying these novel food antimicrobials as a hurdle strategy for RTE foods.
Collapse
Affiliation(s)
- Jihun Kang
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Kathryn J Boor
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Teresa M Bergholz
- Department of Food Science, Cornell University, Ithaca, New York, USA Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, North Dakota, USA
| |
Collapse
|
23
|
Membrane fluidity-related adaptive response mechanisms of foodborne bacterial pathogens under environmental stresses. Food Res Int 2015. [DOI: 10.1016/j.foodres.2015.03.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Cálix-Lara TF, Kirsch KR, Hardin MD, Castillo A, Smith SB, Taylor TM. Investigation into Formation of Lipid Hydroperoxides from Membrane Lipids in Escherichia coli O157:H7 following Exposure to Hot Water. J Food Prot 2015; 78:1197-202. [PMID: 26038913 DOI: 10.4315/0362-028x.jfp-14-394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Although studies have shown antimicrobial treatments consisting of hot water sprays alone or paired with lactic acid rinses are effective for reducing Escherichia coli O157:H7 loads on beef carcass surfaces, the mechanisms by which these interventions inactivate bacterial pathogens are still poorly understood. It was hypothesized that E. coli O157:H7 exposure to hot water in vitro at rising temperatures for longer time periods would result in increasing deterioration of bacterial outer membrane lipids, sensitizing the pathogen to subsequent lactic acid application. Cocktails of E. coli O157:H7 strains were subjected to hot water at 25 (control) 65, 75, or 85 °C incrementally up to 60 s, after which surviving cells were enumerated by plating. Formation of lipid hydroperoxides from bacterial membranes and cytoplasmic accumulation of L-lactic acid was quantified spectrophotometrically. Inactivation of E. coli O157:H7 proceeded in a hot water exposure duration- and temperature-dependent manner, with populations being reduced to nondetectable numbers following heating of cells in 85 °C water for 30 and 60 s (P < 0.05). Lipid hydroperoxide formation was not observed to be dependent upon increasing water temperature or exposure period. The data suggest that hot water application prior to organic acid application may function to increase the sensitivity of E. coli O157:H7 cells by degrading membrane lipids.
Collapse
Affiliation(s)
- Thelma F Cálix-Lara
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas 77843-2253, USA
| | - Katie R Kirsch
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas 77843-2253, USA
| | - Margaret D Hardin
- Department of Animal Science, Texas A&M AgriLife Research, College Station, Texas 77843-2471, USA; IEH Laboratories and Consulting Group, 15300 Bothell Way N.E., Lake Forest Park, WA 98155, USA
| | - Alejandro Castillo
- Department of Animal Science, Texas A&M AgriLife Research, College Station, Texas 77843-2471, USA
| | - Stephen B Smith
- Department of Animal Science, Texas A&M AgriLife Research, College Station, Texas 77843-2471, USA
| | - Thomas M Taylor
- Department of Animal Science, Texas A&M AgriLife Research, College Station, Texas 77843-2471, USA.
| |
Collapse
|
25
|
Li F, Zhu L, Wang L, Zhan Y. Gene expression of an arthrobacter in surfactant-enhanced biodegradation of a hydrophobic organic compound. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:3698-3704. [PMID: 25680000 DOI: 10.1021/es504673j] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Surfactants can affect the biodegradation process and the fate of hydrophobic organic compounds (HOCs) in the environment. Previous studies have shown that surfactants can enhance the biodegradation of HOCs by increasing cell surface hydrophobicity (CSH) and membrane fluidity. In this study, we took this work one step further by investigating the expression levels of three genes of Arthrobacter sp. SA02 in the biodegradation of phenanthrene as a typical HOC at different concentrations of sodium dodecyl benzenesulfonate (SDBS), which is a widely used surfactant. The Δ9 fatty acid desaturase gene codes for Δ9 fatty acid desaturase, which can convert saturated fatty acid to its unsaturated form. The ring-hydroxylating dioxygenase (RHDase) and the 1-hydroxyl-2-naphthoate dioxygenase (1H2Nase) genes code for the RHDase and 1H2Nase enzymes, respectively, which play a key role in decomposing doubly hydroxylated aromatic compounds. The results show that these three genes were upregulated in the presence of SDBS. On the basis of the genetic and physiological changes, we proposed a pathway that links the gene expression with the physiological phenomena, including CSH, membrane fluidity, and intracellular degradation. This study advances our understanding of the surfactant-enhanced biodegradation of HOCs at the gene level, and the proposed pathway should be further validated in the future.
Collapse
Affiliation(s)
- Feng Li
- †Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- ‡Zhejiang Provincial Key Laboratory of Organic Pollution Process Control, Hangzhou 310058, China
- §Department of Environmental Science and Engineering, Xiangtan University, Xiangtan 411105, China
| | - Lizhong Zhu
- †Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- ‡Zhejiang Provincial Key Laboratory of Organic Pollution Process Control, Hangzhou 310058, China
| | - Lingwen Wang
- †Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- ‡Zhejiang Provincial Key Laboratory of Organic Pollution Process Control, Hangzhou 310058, China
| | - Yu Zhan
- †Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- ‡Zhejiang Provincial Key Laboratory of Organic Pollution Process Control, Hangzhou 310058, China
| |
Collapse
|
26
|
Increased membrane surface positive charge and altered membrane fluidity leads to cationic antimicrobial peptide resistance in Enterococcus faecalis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1367-75. [PMID: 25782727 DOI: 10.1016/j.bbamem.2015.03.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 02/21/2015] [Accepted: 03/09/2015] [Indexed: 12/11/2022]
Abstract
To understand the role of cell membrane phospholipids during resistance development to cationic antimicrobial peptides (CAMPs) in Enterococcus faecalis, gradual dose-dependent single exposure pediocin-resistant (Pedr) mutants of E. faecalis (Efv2.1, Efv3.1, Efv3.2, Efv4.1, Efv4.2, Efv5.1, Efv5.2 and Efv5.3), conferring simultaneous resistance to other CAMPs, selected in previous study were characterized for cell membrane phospholipid head-groups and fatty acid composition. The involvement of phospholipids in resistance acquisition was confirmed by in vitro colorimetric assay using PDA (polydiacetylene)-biomimetic membranes. Estimation of ratio of amino-containing phospholipids to amino-lacking phospholipids suggests that phospholipids in cell membrane of Pedr mutants loose anionic character. At moderate level of resistance, the cell-membrane becomes neutralized while at further higher level of resistance, the cell-surface acquired positive charge. Increased expression of mprF gene (responsible for lysinylation of phospholipids) was also observed on acquiring resistance to pediocin in PedrE. faecalis. Decreased level of branched chain fatty acids in Pedr mutants might have contributed in enhancing rigidification of cell membrane and contributing towards resistance. The interaction of pediocin with PDA-biomimetic membranes prepared from wild-type and Pedr mutants was monitored by measuring percent colorimetric response (%CR). Increased %CR of pediocin against PDA-biomimetic membranes prepared from Pedr mutants confirmed that cell membrane phospholipids are involved in the interactions of pore formation by CAMPs. There was a direct linear relationship between percent colorimetric response and IC50 of CAMPs for wild-type and Pedr mutants. This relationship further reveals that in vitro colorimetric assay can be used effectively for quantification of resistance to CAMPs.
Collapse
|
27
|
Khan A, Salmieri S, Fraschini C, Bouchard J, Riedl B, Lacroix M. Genipin cross-linked nanocomposite films for the immobilization of antimicrobial agent. ACS APPLIED MATERIALS & INTERFACES 2014; 6:15232-15242. [PMID: 25140839 DOI: 10.1021/am503564m] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Cellulose nanocrystal (CNC) reinforced chitosan based antimicrobial films were prepared by immobilizing nisin on the surface of the films. Nanocomposite films containing 18.65 μg/cm(2) of nisin reduced the count of L. monocytogenes by 6.73 log CFU/g, compared to the control meat samples (8.54 log CFU/g) during storage at 4 °C in a Ready-To-Eat (RTE) meat system. Film formulations containing 9.33 μg/cm(2) of nisin increased the lag phase of L. monocytogenes on meat by more than 21 days, whereas formulations with 18.65 μg/cm(2) completely inhibited the growth of L. monocytogenes during storage. Genipin was used to cross-link and protect the activity of nisin during storage. Nanocomposite films cross-linked with 0.05% w/v genipin exhibited the highest bioactivity (10.89 μg/cm(2)) during the storage experiment, as compared to that of the un-cross-linked films (7.23 μg/cm(2)). Genipin cross-linked films were able to reduce the growth rate of L. monocytogenes on ham samples by 21% as compared to the un-cross-linked films. Spectroscopic analysis confirmed the formation of genipin-nisin-chitosan heterocyclic cross-linked network. Genipin cross-linked films also improved the swelling, water solubility, and mechanical properties of the nanocomposite films.
Collapse
Affiliation(s)
- Avik Khan
- Research Laboratories in Sciences Applied to Food, Canadian Irradiation Centre (CIC), INRS-Institut Armand-Frappier, Université du Québec , 531 Boulevard des Prairies, Laval, Québec H7V 1B7, Canada
| | | | | | | | | | | |
Collapse
|
28
|
Changes associated with cell membrane composition of Staphylococcus aureus on acquisition of resistance against class IIa bacteriocin and its in vitro substantiation. Eur Food Res Technol 2014. [DOI: 10.1007/s00217-014-2311-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Li F, Zhu L. Surfactant-modified fatty acid composition of Citrobacter sp. SA01 and its effect on phenanthrene transmembrane transport. CHEMOSPHERE 2014; 107:58-64. [PMID: 24875871 DOI: 10.1016/j.chemosphere.2014.03.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 02/13/2014] [Accepted: 03/01/2014] [Indexed: 06/03/2023]
Abstract
The effects of the surfactants, Tween 80 and sodium dodecyl benzene sulfonate (SDBS) on a membrane's fatty acid composition and the transmembrane transport of phenanthrene were investigated. The results indicated that both surfactants could modify the composition of fatty acids of Citrobacter sp. Strain SA01 cells, 50 mg L(-1) of both surfactants changed the composition of the fatty acids the most, increasing the amount of unsaturated fatty acids. The comparison of fatty acid profiles with diphenylhexatriene fluorescence anisotropy, a probe for plasma membrane fluidity, suggested that an increased amount of unsaturated fatty acids corresponded to greater membrane fluidity. In addition, increased unsaturated fatty acids promoted phenanthrene to partition from the extracellular matrix to cell debris, which increased reverse partitioning from the cell debris to the cytochylema. The results of this study were expected in that the addition of a surfactant is a simple and effective method for accelerating the rate-limiting step of transmembrane transport of hydrophobic organic compounds (HOCs) in bioremediation.
Collapse
Affiliation(s)
- Feng Li
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process Control, Hangzhou 310058, China; Zhejiang Yuying College, Hangzhou 310018, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process Control, Hangzhou 310058, China.
| |
Collapse
|
30
|
Influence of freezing stress on morphological alteration and biofilm formation by Listeria monocytogenes: relationship with cell surface hydrophobicity and membrane fluidity. Arch Microbiol 2013; 195:705-15. [DOI: 10.1007/s00203-013-0921-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 07/23/2013] [Accepted: 08/17/2013] [Indexed: 12/25/2022]
|
31
|
Zhou H, Fang J, Tian Y, Lu XY. Mechanisms of nisin resistance in Gram-positive bacteria. ANN MICROBIOL 2013. [DOI: 10.1007/s13213-013-0679-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
32
|
Kaczorek E, Sałek K, Guzik U, Dudzińska-Bajorek B. Cell surface properties and fatty acids composition of Stenotrophomonas maltophilia under the influence of hydrophobic compounds and surfactants. N Biotechnol 2013; 30:173-82. [DOI: 10.1016/j.nbt.2012.09.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 09/09/2012] [Accepted: 09/10/2012] [Indexed: 10/27/2022]
|
33
|
Antimicrobial activity of rhamnolipids against Listeria monocytogenes and their synergistic interaction with nisin. Food Control 2013. [DOI: 10.1016/j.foodcont.2012.06.009] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Zou Y, Jung LS, Lee SH, Kim S, Cho Y, Ahn J. Enhanced antimicrobial activity of nisin in combination with allyl isothiocyanate againstListeria monocytogenes,Staphylococcus aureus,Salmonella TyphimuriumandShigella boydii. Int J Food Sci Technol 2012. [DOI: 10.1111/j.1365-2621.2012.03190.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yunyun Zou
- Department of Medical Biomaterials Engineering; Kangwon National University; Chuncheon; Gangwon 200-701; Korea
| | - Lae-Seung Jung
- Department of Medical Biomaterials Engineering; Kangwon National University; Chuncheon; Gangwon 200-701; Korea
| | | | - Sungkyun Kim
- CJ CheilJedang Corp; Guro-gu; Seoul 152-050; Korea
| | - Youngjae Cho
- Research Institute of Bioscience & Biotechnology; Kangwon National University; Chuncheon; Gangwon 200-701; Korea
| | | |
Collapse
|
35
|
Mehla J, Sood SK. Connecting membrane fluidity and surface charge to pore-forming antimicrobial peptides resistance by an ANN-based predictive model. Appl Microbiol Biotechnol 2012; 97:4377-84. [DOI: 10.1007/s00253-012-4289-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 07/03/2012] [Accepted: 07/07/2012] [Indexed: 11/25/2022]
|
36
|
Hayrapetyan H, Hazeleger WC, Beumer RR. Inhibition of Listeria monocytogenes by pomegranate (Punica granatum) peel extract in meat paté at different temperatures. Food Control 2012. [DOI: 10.1016/j.foodcont.2011.06.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
Mehla J, Sood SK. Substantiation in Enterococcus faecalis of dose-dependent resistance and cross-resistance to pore-forming antimicrobial peptides by use of a polydiacetylene-based colorimetric assay. Appl Environ Microbiol 2011; 77:786-93. [PMID: 21115699 PMCID: PMC3028714 DOI: 10.1128/aem.01496-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 11/15/2010] [Indexed: 11/20/2022] Open
Abstract
A better understanding of the antimicrobial peptide (AMP) resistance mechanisms of bacteria will facilitate the design of effective and potent AMPs. Therefore, to understand resistance mechanisms and for in vitro assessment, variants of Enterococcus faecalis that are resistant to different doses of the fungal AMP alamethicin (Alm(r)) were selected and characterized. The resistance developed was dose dependent, as both doses of alamethicin and degrees of resistance were colinear. The formation of bacterial cell aggregates observed in resistant cells may be the prime mechanism of resistance because overall, a smaller cell surface in aggregated cells is exposed to AMPs. Increased rigidity of the membranes of Alm(r) variants, because of their altered fatty acids, was correlated with limited membrane penetration by alamethicin. Thus, resistance developed against alamethicin was an adaptation of the bacterial cells through changes in their morphological features and physiological activity and the composition of membrane phospholipids. The Alm(r) variants showed cross-resistance to pediocin, which indicated that resistance developed against both AMPs may share a mechanism, i.e., an alteration in the cell membrane. High percentages of colorimetric response by both AMPs against polydiacetylene/lipid biomimetic membranes of Alm(r) variants confirmed that altered phospholipid and fatty acid compositions were responsible for acquisition of resistance. So far, this is the only report of quantification of resistance and cross-resistance using an in vitro colorimetric approach. Our results imply that a single AMP or AMP analog may be effective against bacterial strains having a common mechanism of resistance. Therefore, an understanding of resistance would contribute to the development of a single efficient, potent AMP against resistant strains that share a mechanism of resistance.
Collapse
Affiliation(s)
- Jitender Mehla
- Animal Biochemistry Division, National Dairy Research Institute, Karnal-132001, Haryana, India.
| | | |
Collapse
|
38
|
Verdon J, Labanowski J, Sahr T, Ferreira T, Lacombe C, Buchrieser C, Berjeaud JM, Héchard Y. Fatty acid composition modulates sensitivity of Legionella pneumophila to warnericin RK, an antimicrobial peptide. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:1146-53. [PMID: 21182824 DOI: 10.1016/j.bbamem.2010.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 11/25/2010] [Accepted: 12/13/2010] [Indexed: 11/16/2022]
Abstract
Warnericin RK is an antimicrobial peptide, produced by a Staphyloccocus warneri strain, described to be specifically active against Legionella, the pathogenic bacteria responsible for Legionnaires' disease. Warnericin RK is an amphiphilic alpha-helical peptide, which possesses a detergent-like mode of action. Two others peptides, δ-hemolysin I and II, produced by the same S. warneri strain, are highly similar to S. aureus δ-hemolysin and also display anti-Legionella activity. It has been recently reported that S. aureus δ-hemolysin activity on vesicles is likewise related to phospholipid acyl-chain structure, such as chain length and saturation. As staphylococcal δ-hemolysins were highly similar, we thus hypothesized that fatty acid composition of Legionella's membrane might influence the sensitivity of the bacteria to warnericin RK. Relationship between sensitivity to the peptide and fatty acid composition was then followed in various conditions. Cells in stationary phase, which were already described as less resistant than cells in exponential phase, displayed higher amounts of branched-chain fatty acids (BCFA) and short chain fatty acids. An adapted strain, able to grow at a concentration 33 fold higher than minimal inhibitory concentration of the wild type (i.e. 1μM), was isolated after repeated transfers of L. pneumophila in the presence of increased concentrations of warnericin RK. The amount of BCFA was significantly higher in the adapted strain than in the wild type strain. Also, a transcriptomic analysis of the wild type and adapted strains showed that two genes involved in fatty acid biosynthesis were repressed in the adapted strain. These genes encode enzymes involved in desaturation and elongation of fatty acids respectively. Their repression was in agreement with the decrease of unsaturated fatty acids and fatty acid chain length in the adapted strain. Conclusively, our results indicate that the increase of BCFA and the decrease of fatty acid chain length in membrane were correlated with the increase in resistance to warnericin RK. Therefore, fatty acid profile seems to play a critical role in the sensitivity of L. pneumophila to warnericin RK.
Collapse
Affiliation(s)
- Julien Verdon
- Laboratoire de Chimie et Microbiologie de l'Eau, UMR CNRS 6008, Université de Poitiers, Poitiers, France
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Brandt AL, Castillo A, Harris KB, Keeton JT, Hardin MD, Taylor TM. Inhibition of Listeria monocytogenes by Food Antimicrobials Applied Singly and in Combination. J Food Sci 2010; 75:M557-63. [DOI: 10.1111/j.1750-3841.2010.01843.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
40
|
Serio A, Chiarini M, Tettamanti E, Paparella A. Electronic paramagnetic resonance investigation of the activity of Origanum vulgare L. essential oil on the Listeria monocytogenes membrane. Lett Appl Microbiol 2010; 51:149-57. [DOI: 10.1111/j.1472-765x.2010.02877.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Thippeswamy HS, Sood SK, Venkateswarlu R, Raj I. Membranes of five-fold alamethicin-resistantStaphylococcus aureus, Enterococcus faecalis andBacillus cereus show decreased interactions with alamethicin due to changes in membrane fluidity and surface charge. ANN MICROBIOL 2009. [DOI: 10.1007/bf03175151] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
42
|
Tokarskyy O, Marshall DL. Mechanism of synergistic inhibition of Listeria monocytogenes growth by lactic acid, monolaurin, and nisin. Appl Environ Microbiol 2008; 74:7126-9. [PMID: 18820062 PMCID: PMC2592944 DOI: 10.1128/aem.01292-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Accepted: 09/18/2008] [Indexed: 11/20/2022] Open
Abstract
The combined lactic acid, monolaurin, and nisin effects on time-to-detection (optical density at 600 nm) extension were greater (P < 0.05) than any single or paired combination effect, which demonstrates a synergistic interaction among the antimicrobials. Monolaurin exposure caused C12:0 cell membrane incorporation. Lactic acid caused increased monolaurin C12:0 membrane incorporation, while nisin had no influence. We postulate that lactic acid-enhanced monolaurin C12:0 incorporation into the cell membrane increased membrane fluidity resulting in increased nisin activity.
Collapse
Affiliation(s)
- Oleksandr Tokarskyy
- Department of Food Science, Nutrition, and Health Promotion, Mississippi Agricultural and Forestry Experiment Station, Mississippi State University, Mississippi State, Mississippi 39762-9805, USA
| | | |
Collapse
|
43
|
Moorman MA, Thelemann CA, Zhou S, Pestka JJ, Linz JE, Ryser ET. Altered hydrophobicity and membrane composition in stress-adapted Listeria innocua. J Food Prot 2008; 71:182-5. [PMID: 18236681 DOI: 10.4315/0362-028x-71.1.182] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Exposure of Listeria innocua to acid and starvation stress decreases sensitivity to the quaternary ammonium compound cetrimide, whereas exposure to cold and heat stress increases sensitivity to this compound. Changes in membrane lipids occur in response to certain types of stress, and these changes likely impact cell sensitivity to chemical sanitizers. The present study included an assessment of the effects of acid, starvation, cold, and heat stress on net cell hydrophobicity and fatty acid composition in L. innocua. Net cell hydrophobicity was determined by measuring absorbance of stress-adapted cell suspensions after partitioning with the nonpolar solvent n-hexadecane. Free fatty acids extracted from stress-adapted suspensions were analyzed by gas chromatography. Adaptation to acid and starvation increased net cell hydrophobicity and decreased membrane fluidity, which was correlated with reductions in anteiso fatty acids and in ratios of anteiso to iso fatty acids. Conversely, cold-stressed populations exhibited decreased net cell hydrophobicity and increased membrane fluidity with a corresponding increase in C15:C17 and anteiso:iso ratios and in C18 unsaturated fatty acids. No significant changes in net cell hydrophobicity or membrane fluidity were observed in heat-stressed cells, which exhibited increased sensitivity to cetrimide, suggesting another mechanism for altered cell sensitivity. These findings indicate that the efficacy of cetrimide against Listeria is partially dependent on the physiological state of the organism following exposure to various environmental stresses.
Collapse
|
44
|
Cheng YW, Chan RCY, Wong PK. Disinfection of Legionella pneumophila by photocatalytic oxidation. WATER RESEARCH 2007; 41:842-52. [PMID: 17224169 DOI: 10.1016/j.watres.2006.11.033] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 11/18/2006] [Accepted: 11/21/2006] [Indexed: 05/13/2023]
Abstract
Photocatalytic oxidation (PCO) was proven to be efficacious in the inactivation of Legionella pneumophila serogroup 1 Strains 977, 1009, 1014 and ATCC 33153. The local (Strains 997, 1009 and 1014) and ATCC (Strain 33153) strains showed sensitivity differences towards PCO. The inactivation mechanisms of PCO were investigated by transmission and scanning electron microscopy by which PCO was found to disintegrate the cells eventually. Before the disintegration, there was lipid peroxidation of outer and cytoplasmic membrane causing holes formation and leading to the entry of OH into the cells to oxidize the intracellular components. Fatty acid profile analysis found that the amount of saturated, 16-carbon branched-chain fatty acid, which is predominant in Legionella, decreased in the surviving populations from PCO. A relationship between the amount of this fatty acid and the PCO sensitivity of the tested strains was also observed. Mineralization of cells by PCO was proven by total organic carbon analysis.
Collapse
Affiliation(s)
- Y W Cheng
- Department of Biology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | | | | |
Collapse
|
45
|
Morphological changes of temperature- and pH-stressed Salmonella following exposure to cetylpyridinium chloride and nisin. Lebensm Wiss Technol 2006. [DOI: 10.1016/j.lwt.2005.07.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Giotis ES, McDowell DA, Blair IS, Wilkinson BJ. Role of branched-chain fatty acids in pH stress tolerance in Listeria monocytogenes. Appl Environ Microbiol 2006; 73:997-1001. [PMID: 17114323 PMCID: PMC1800763 DOI: 10.1128/aem.00865-06] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In alkaline conditions, Listeria monocytogenes cells develop higher proportions of branched-chain fatty acids (FAs), including more anteiso forms. In acid conditions, the opposite occurs. Reduced growth of pH-sensitive mutants at adverse pH (5.0/9.0) was alleviated by the addition of 2-methylbutyrate (an anteiso-FA precursor), suggesting that anteiso-FAs are important in adaptation to adverse pH. The balance between anteiso- and iso-FAs may be more important than changes in the amounts and/or degrees of saturation of FAs in pH adaptation.
Collapse
Affiliation(s)
- Efstathios S Giotis
- Food Microbiology Research Group, School of Health Sciences, University of Ulster, Shore Road, Whiteabbey, Northern Ireland BT37 0QB, United Kingdom
| | | | | | | |
Collapse
|
47
|
Theivendran S, Hettiarachchy NS, Johnson MG. Inhibition of Listeria monocytogenes by Nisin Combined with Grape Seed Extract or Green Tea Extract in Soy Protein Film Coated on Turkey Frankfurters. J Food Sci 2006. [DOI: 10.1111/j.1365-2621.2006.tb08905.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Kramer NE, van Hijum SAFT, Knol J, Kok J, Kuipers OP. Transcriptome analysis reveals mechanisms by which Lactococcus lactis acquires nisin resistance. Antimicrob Agents Chemother 2006; 50:1753-61. [PMID: 16641446 PMCID: PMC1472215 DOI: 10.1128/aac.50.5.1753-1761.2006] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 01/18/2006] [Accepted: 02/07/2006] [Indexed: 11/20/2022] Open
Abstract
Nisin, a posttranslationally modified antimicrobial peptide produced by Lactococcus lactis, is widely used as a food preservative. Yet, the mechanisms leading to the development of nisin resistance in bacteria are poorly understood. We used whole-genome DNA microarrays of L. lactis IL1403 to identify the factors underlying acquired nisin resistance mechanisms. The transcriptomes of L. lactis IL1403 and L. lactis IL1403 Nis(r), which reached a 75-fold higher nisin resistance level, were compared. Differential expression was observed in genes encoding proteins that are involved in cell wall biosynthesis, energy metabolism, fatty acid and phospholipid metabolism, regulatory functions, and metal and/or peptide transport and binding. These results were further substantiated by showing that several knockout and overexpression mutants of these genes had strongly altered nisin resistance levels and that some knockout strains could no longer become resistant to the same level of nisin as that of the wild-type strain. The acquired nisin resistance mechanism in L. lactis is complex, involving various different mechanisms. The four major mechanisms are (i) preventing nisin from reaching the cytoplasmic membrane, (ii) reducing the acidity of the extracellular medium, thereby stimulating the binding of nisin to the cell wall, (iii) preventing the insertion of nisin into the membrane, and (iv) possibly transporting nisin across the membrane or extruding nisin out of the membrane.
Collapse
Affiliation(s)
- Naomi E Kramer
- Molecular Genetics Group, Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, P.O. Box 14, 9750 AA Haren, The Netherlands
| | | | | | | | | |
Collapse
|
49
|
Bonnet M, Rafi MM, Chikindas ML, Montville TJ. Bioenergetic mechanism for nisin resistance, induced by the acid tolerance response of Listeria monocytogenes. Appl Environ Microbiol 2006; 72:2556-63. [PMID: 16597957 PMCID: PMC1449014 DOI: 10.1128/aem.72.4.2556-2563.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Accepted: 02/02/2006] [Indexed: 12/31/2022] Open
Abstract
This study examined the bioenergetics of Listeria monocytogenes, induced to an acid tolerance response (ATR). Changes in bioenergetic parameters were consistent with the increased resistance of ATR-induced (ATR(+)) cells to the antimicrobial peptide nisin. These changes may also explain the increased resistance of L. monocytogenes to other lethal factors. ATR(+) cells had lower transmembrane pH (DeltapH) and electric potential (Deltapsi) than the control (ATR(-)) cells. The decreased proton motive force (PMF) of ATR(+) cells increased their resistance to nisin, the action of which is enhanced by energized membranes. Paradoxically, the intracellular ATP levels of the PMF-depleted ATR(+) cells were approximately 7-fold higher than those in ATR(-) cells. This suggested a role for the F(o)F(1) ATPase enzyme complex, which converts the energy of ATP hydrolysis to PMF. Inhibition of the F(o)F(1) ATPase enzyme complex by N'-N'-1,3-dicyclohexylcarbodiimide increased ATP levels in ATR(-) but not in ATR(+) cells, where ATPase activity was already low. Spectrometric analyses (surface-enhanced laser desorption ionization-time of flight mass spectrometry) suggested that in ATR(+) listeriae, the downregulation of the proton-translocating c subunit of the F(o)F(1) ATPase was responsible for the decreased ATPase activity, thereby sparing vital ATP. These data suggest that regulation of F(o)F(1) ATPase plays an important role in the acid tolerance response of L. monocytogenes and in its induced resistance to nisin.
Collapse
Affiliation(s)
- Marcelo Bonnet
- Department of Food Science, Rutgers, The State University of New Jersey, 65 Dudley Rd., New Brunswick, NJ 08901, USA
| | | | | | | |
Collapse
|
50
|
Abstract
Bacteriocins are bacterially produced antimicrobial peptides with narrow or broad host ranges. Many bacteriocins are produced by food-grade lactic acid bacteria, a phenomenon which offers food scientists the possibility of directing or preventing the development of specific bacterial species in food. This can be particularly useful in preservation or food safety applications, but also has implications for the development of desirable flora in fermented food. In this sense, bacteriocins can be used to confer a rudimentary form of innate immunity to foodstuffs, helping processors extend their control over the food flora long after manufacture.
Collapse
Affiliation(s)
- Paul D Cotter
- Alimentary Pharmabiotic Centre, Microbiology Department, University College Cork, Cork, Ireland
| | | | | |
Collapse
|