1
|
Ye Y, Wang Y, Xu Q, Liu J, Yang Z, Wuren T, Ge RL. In vitro study: HIF-1α-dependent glycolysis enhances NETosis in hypoxic conditions. Front Immunol 2025; 16:1583587. [PMID: 40356921 PMCID: PMC12066692 DOI: 10.3389/fimmu.2025.1583587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 04/07/2025] [Indexed: 05/15/2025] Open
Abstract
Background Hypoxia plays a pivotal role in modulating immune responses, especially in neutrophils, which are essential components of the innate immune system. Hypoxia-inducible factor (HIF)-1α, a key transcription factor in hypoxic adaptation, regulates cellular metabolism and inflammatory responses. However, the impact of HIF-1α-dependent glycolysis on the formation of neutrophil extracellular traps (known as NETosis) under hypoxic conditions remains unclear. Methods We employed two established neutrophil models, neutrophils isolated from human whole blood and DMSO-induced dHL-60 cells, to explore the role of HIF-1α in regulating glycolysis and its influence on NETosis under hypoxic conditions. We utilized western blotting, immunofluorescence staining, ELISA, and flow cytometry to evaluate the expression of key glycolytic enzymes and NETosis markers under hypoxia. Additionally, the effects of inhibiting HIF-1α with LW6 and blocking the glycolytic pathway with Bay-876 were investigated. Results HIF-1α-dependent glycolysis, through the upregulation of key glycolytic enzymes, significantly enhances NETosis under hypoxic conditions. Pharmacological inhibition of HIF-1α with LW6 and glycolytic blockade with Bay-876 markedly reduced NETosis, underscoring the crucial role of metabolic reprogramming in neutrophil function during hypoxia. Conclusion This study provides novel insights into the interplay between metabolic reprogramming and NETosis in response to hypoxic stress. We identify HIF-1α-dependent glycolysis as a key driver of NETs formation, advancing our understanding of the mechanisms underlying hypoxia-related inflammatory diseases. These findings also suggest that targeting metabolic pathways may offer potential therapeutic strategies for modulating immune responses in hypoxia-associated disorders.
Collapse
Affiliation(s)
- Yi Ye
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
- High-Altitude Medicine Key Laboratory of the Ministry of Education, Xining, China
- Qinghai Provincial Key Laboratory for Application of High-Altitude Medicine, Xining, China
| | - Yanjun Wang
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
- High-Altitude Medicine Key Laboratory of the Ministry of Education, Xining, China
- Qinghai Provincial Key Laboratory for Application of High-Altitude Medicine, Xining, China
- Department of Geriatrics, Qinghai University Affiliated Hospital, Xining, China
| | - Qiying Xu
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
- High-Altitude Medicine Key Laboratory of the Ministry of Education, Xining, China
- Qinghai Provincial Key Laboratory for Application of High-Altitude Medicine, Xining, China
- Department of Gynecology, Qinghai University Affiliated Hospital, Xining, China
| | - Juanli Liu
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
- High-Altitude Medicine Key Laboratory of the Ministry of Education, Xining, China
- Qinghai Provincial Key Laboratory for Application of High-Altitude Medicine, Xining, China
- Department of Critical Care Medicine, Qinghai Provincial People's Hospital, Xining, China
| | - Ziqi Yang
- Medical College of Qinghai University, Xining, China
| | - Tana Wuren
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
- High-Altitude Medicine Key Laboratory of the Ministry of Education, Xining, China
- Qinghai Provincial Key Laboratory for Application of High-Altitude Medicine, Xining, China
| | - Ri-Li Ge
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
- High-Altitude Medicine Key Laboratory of the Ministry of Education, Xining, China
- Qinghai Provincial Key Laboratory for Application of High-Altitude Medicine, Xining, China
| |
Collapse
|
2
|
Kawatra A, Dhankhar R, Datten B, Dhankhar S, Chhabra D, Gulati P. Integrated neural network and PSO hybrid approach for production of citrulline using immobilized permeabilized Pseudomonas furukawaii. Lett Appl Microbiol 2024; 77:ovae111. [PMID: 39567842 DOI: 10.1093/lambio/ovae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/19/2024] [Accepted: 11/19/2024] [Indexed: 11/22/2024]
Abstract
In the present study, nutraceutical citrulline was produced using immobilization of permeabilized whole cells of Pseudomonas furukawaii, an efficient producer of ADI. Since arginine deiminase (ADI) is intracellularly localized, various additives such as SDS (Sodium dodecyl sulfate), Triton X-100, and EDTA (Ethylenediaminetetraacetic Acid) were used to permeabilize the cell to improve substrate accessibility and ADI activity. The maximum ADI activity was observed with 0.25 mg ml-1 biomass concentration treated with 0.5 mmol l-1 EDTA for 15 min using OFAT (One factor at a time) approach. Optimization of permeabilization conditions of P. furukawaii cells using novel neural networks and particle swarm optimization led to maximum ADI activity with 0.10 mmol l-1 EDTA and 0.30 mg ml-1 biomass. Further, the morphological characterization of immobilized cells was assessed by field emission scanning electron microscopy and FTIR (Fourier transform infrared spectroscopy). An optimal citrulline production of 1.19 mmol l-1 was achieved at 2.5% sodium alginate with 20 mmol l-1 arginine at 38°C, and 180 min of incubation. The immobilized cells retained 90.3% productivity after seven reuse cycles. Thus, the formulated immobilized whole-cell biocatalyst, with higher stability offers cost-effective methods of citrulline production.
Collapse
Affiliation(s)
- Anubhuti Kawatra
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Rakhi Dhankhar
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Bharti Datten
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Shweta Dhankhar
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Deepak Chhabra
- Optimization and Mechatronics Laboratory, Department of Mechanical Engineering, University Institute of Engineering and Technology, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Pooja Gulati
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| |
Collapse
|
3
|
Jastrząb R, Tomecki R, Jurkiewicz A, Graczyk D, Szczepankowska AK, Mytych J, Wolman D, Siedlecki P. The strain-dependent cytostatic activity of Lactococcus lactis on CRC cell lines is mediated through the release of arginine deiminase. Microb Cell Fact 2024; 23:82. [PMID: 38481270 PMCID: PMC10938756 DOI: 10.1186/s12934-024-02345-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/20/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most commonly diagnosed cancers, posing a serious public health challenge that necessitates the development of new therapeutics, therapies, and prevention methods. Among the various therapeutic approaches, interventions involving lactic acid bacteria (LAB) as probiotics and postbiotics have emerged as promising candidates for treating and preventing CRC. While human-isolated LAB strains are considered highly favorable, those sourced from environmental reservoirs such as dairy and fermented foods are also being recognized as potential sources for future therapeutics. RESULTS In this study, we present a novel and therapeutically promising strain, Lactococcus lactis ssp. lactis Lc4, isolated from dairy sources. Lc4 demonstrated the ability to release the cytostatic agent - arginine deiminase (ADI) - into the post-cultivation supernatant when cultured under conditions mimicking the human gut environment. Released arginine deiminase was able to significantly reduce the growth of HT-29 and HCT116 cells due to the depletion of arginine, which led to decreased levels of c-Myc, reduced phosphorylation of p70-S6 kinase, and cell cycle arrest. The ADI release and cytostatic properties were strain-dependent, as was evident from comparison to other L. lactis ssp. lactis strains. CONCLUSION For the first time, we unveil the anti-proliferative properties of the L. lactis cell-free supernatant (CFS), which are independent of bacteriocins or other small molecules. We demonstrate that ADI, derived from a dairy-Generally Recognized As Safe (GRAS) strain of L. lactis, exhibits anti-proliferative activity on cell lines with different levels of argininosuccinate synthetase 1 (ASS1) expression. A unique feature of the Lc4 strain is also its capability to release ADI into the extracellular space. Taken together, we showcase L. lactis ADI and the Lc4 strain as promising, potential therapeutic agents with broad applicability.
Collapse
Affiliation(s)
- Rafał Jastrząb
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Adolfa Pawińskiego 5A, Warsaw, 02-106, Poland
- Olimp Laboratories, Pustynia 84F, Debica, 39-200, Poland
| | - Rafał Tomecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Adolfa Pawińskiego 5A, Warsaw, 02-106, Poland
- Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-089, Poland
| | - Aneta Jurkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Adolfa Pawińskiego 5A, Warsaw, 02-106, Poland
| | - Damian Graczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Adolfa Pawińskiego 5A, Warsaw, 02-106, Poland
| | - Agnieszka K Szczepankowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Adolfa Pawińskiego 5A, Warsaw, 02-106, Poland
| | | | - Damian Wolman
- Olimp Laboratories, Pustynia 84F, Debica, 39-200, Poland
| | - Pawel Siedlecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Adolfa Pawińskiego 5A, Warsaw, 02-106, Poland.
| |
Collapse
|
4
|
Kuang X, Hu Y, Peng L, Dan Li, Song H, Song K, Li C, Wang Y, He S. Application of biological soil crusts for efficient cadmium removal from acidic mine wastewater. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133524. [PMID: 38232555 DOI: 10.1016/j.jhazmat.2024.133524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/19/2024]
Abstract
Utilizing an acid-resistant biological soil crust (BSC) species that we discovered, we developed a device capable of efficiently removing cadmium (Cd) from mine wastewater with varying levels of acidity. Our research has demonstrated that this particular BSC species adapts to acidic environments by regulating the balance of fatty acids and acid-resistant enzymes. At a Cd concentration of 5 mg/L, the BSC grew well. When the initial Cd concentration was 2 mg/L, and the flow rate was set at 1 mL/min (at pH levels of 3, 4, and 5), BSC had a high removal rate of Cd, and the removal rate increased with the increase of pH (from 90% to 97%). Chemisorption is the primary removal mechanism in the initial stage, where the functional groups and minerals on the surface of the BSC play a significant role. In addition, BSC also adapts to Cd stress by changing bacterial community structure. It was discovered through infrared spectroscopy and two-dimensional correlation analysis that hydrophilic groups, specifically phosphate and carboxyl groups, exhibited the highest reactivity during the Cd binding process. Protein secondary structure analysis confirmed that as the pH increased, the adsorption capacity of the BSC increased; making biofilm formation easier. This study presents a novel approach for the treatment of acidic wastewater.
Collapse
Affiliation(s)
- Xiaolin Kuang
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha 410128, China
| | - Yiling Hu
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha 410128, China
| | - Liang Peng
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha 410128, China.
| | - Dan Li
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha 410128, China
| | - Huijuan Song
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha 410128, China
| | - Ke Song
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha 410128, China
| | - Changwu Li
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha 410128, China
| | - Yuanlong Wang
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha 410128, China
| | - Shilong He
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
5
|
González-Alonso V, Pradal I, Wardhana YR, Cnockaert M, Wieme AD, Vandamme P, De Vuyst L. Microbial ecology and metabolite dynamics of backslopped triticale sourdough productions and the impact of scale. Int J Food Microbiol 2023; 408:110445. [PMID: 39491387 DOI: 10.1016/j.ijfoodmicro.2023.110445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/18/2023] [Accepted: 10/09/2023] [Indexed: 11/05/2024]
Abstract
Triticale (X Triticosecale Wittmack) is a hybrid of wheat (Triticum aestivum L.) and rye (Secale cereale L.), combining the positive attributes of both cereals. However, it has not been exploited for sourdough production yet. Further, the effect of scale on sourdough production has not been investigated systematically up to now. The aims of the present study were to assess the microbial ecology and metabolomic output of eleven spontaneously fermented, backslopped sourdough productions made with triticale flour on a scale of 100, 200, 500, and 1000 g. The acidification profile [pH and total titratable acidity (TTA)], microbial diversity (culture-dependent and culture-independent), metabolite dynamics, and appropriate correlations were determined. After ten fermentation steps, different species of Lactobacillaceae were prevalent in the mature sourdoughs, in particular Latilactobacillus curvatus, Limosilactobacillus fermentum, and Pediococcus pentosaceus. The microbial diversity could be traced back to the grains and was also present in the milling fractions (flour, bran, and shorts). Furthermore, thanks to the use of Illumina-based high-throughput sequencing and an amplicon sequence variant (ASV) approach, the presence of undesirable bacterial groups (bacilli, clostridia, and enterobacteria) during the initial steps of the backslopping cycle was revealed, as well as a finetuned taxonomic diversity of the LAB genera involved. Small sourdough productions (100 and 200 g) selected for a lower species diversity and reached a stable consortium faster than large ones (500 and 1000 g). Although a comparable final pH of 3.6-4.0 was obtained, the TTA of small sourdoughs was lower than that of large ones. Regarding the metabolic output, the simultaneous production of mannitol and erythritol, beyond ethanol and glycerol, could be linked to sourdoughs in which Liml. fermentum was the sole LAB species present. Further, the use of the arginine deiminase pathway by P. pentosaceus and Liml. fermentum was obvious. An appropriate extraction method followed by liquid injection gas chromatography coupled to triple quadrupole tandem mass spectrometry allowed the quantification of interesting volatile organic compounds, such as ethyl lactate. These findings support the inclusion of triticale as a viable alternative to wheat or rye for the production of sourdoughs that can be integrated into bread-making production schemes.
Collapse
Affiliation(s)
- Víctor González-Alonso
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium
| | - Inés Pradal
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium
| | - Yohanes Raditya Wardhana
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium
| | - Margo Cnockaert
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | - Anneleen D Wieme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium; BCCM/LMG Bacteria Collection, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium; BCCM/LMG Bacteria Collection, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium.
| |
Collapse
|
6
|
Mancino W, Carnevali P, Terzi V, Pérez PG, Zhang L, Giuberti G, Morelli L, Patrone V, Lucini L. Hierarchical Effects of Lactic Fermentation and Grain Germination on the Microbial and Metabolomic Profile of Rye Doughs. Foods 2023; 12:998. [PMID: 36900515 PMCID: PMC10000819 DOI: 10.3390/foods12050998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
A multi-omics approach was adopted to investigate the impact of lactic acid fermentation and seed germination on the composition and physicochemical properties of rye doughs. Doughs were prepared with either native or germinated rye flour and fermented with Saccharomyces cerevisiae, combined or not with a sourdough starter including Limosilactobacillus fermentum, Weissella confusa and Weissella cibaria. LAB fermentation significantly increased total titrable acidity and dough rise regardless of the flour used. Targeted metagenomics revealed a strong impact of germination on the bacterial community profile of sprouted rye flour. Doughs made with germinated rye displayed higher levels of Latilactobacillus curvatus, while native rye doughs were associated with higher proportions of Lactoplantibacillus plantarum. The oligosaccharide profile of rye doughs indicated a lower carbohydrate content in native doughs as compared to the sprouted counterparts. Mixed fermentation promoted a consistent decrease in both monosaccharides and low-polymerization degree (PD)-oligosaccharides, but not in high-PD carbohydrates. Untargeted metabolomic analysis showed that native and germinated rye doughs differed in the relative abundance of phenolic compounds, terpenoids, and phospholipids. Sourdough fermentation promoted the accumulation of terpenoids, phenolic compounds and proteinogenic and non-proteinogenic amino acids. Present findings offer an integrated perspective on rye dough as a multi-constituent system and on cereal-sourced bioactive compounds potentially affecting the functional properties of derived food products.
Collapse
Affiliation(s)
- Walter Mancino
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Paola Carnevali
- R&D Food Microbiology & Molecular Biology Research Barilla G. e R. Fratelli S.p.A., 43122 Parma, Italy
| | - Valeria Terzi
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics, 29017 Fiorenzuola d’Arda, Italy
| | - Pascual García Pérez
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Universidade de Vigo, 32004 Ourense, Spain
| | - Leilei Zhang
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Gianluca Giuberti
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Lorenzo Morelli
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Vania Patrone
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| |
Collapse
|
7
|
Kuang X, Peng L, Chen S, Peng C, Song H. Immobilization of metal(loid)s from acid mine drainage by biological soil crusts through biomineralization. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130314. [PMID: 36368071 DOI: 10.1016/j.jhazmat.2022.130314] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/17/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Acid mine drainage is harmful to the environment. Bioremediation based on biological soil crusts (BSCs) can be used as a new method to alleviate metal pollution in acid mine drainage. In this study, we found that BSCs can survive in a strongly acidic environment (pH = 3.28) and have a high metal(loid)s accumulation ability. The algae of genera Fragilaria, Klebsormidium, Cymbella, Melosira, Microcystacea, and Planctonema a're the main components of BSCs. These organisms in the BSCs regulated fatty acids and produced acid-resistant enzymes. The bioconcentration factors for As, Cd, Pb, Zn, and Cu were as high as 16,000, 200, 50, 26, and 400, respectively. The concentration of As and Cd in acid mine drainage decreased from 7.1 μg and 350 μg/L to 1.9 μg and 110 μg/L, respectively. In total, 56% of As, 73% of Cd, 88% of Pb, 85% of Zn, and 92% of Cu were present in BSCs as residual or mineral-bound forms. The XRD results (e.g., quarartz and phyllosilicates), SEM results (e.g., phylosilicates and diatom shells) and correlation results show that these metal(loid)s are immobilized by Cymbella (diatoms) during the deposition of silica in the acidic environment. Furthermore, adsorption and co-precipitation are other ways that metal(loid)s could have been bound. These findings provide new insights into the removal of metals (loid) in acidic water.
Collapse
Affiliation(s)
- Xiaolin Kuang
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha 410128, China
| | - Liang Peng
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha 410128, China.
| | - Shaoning Chen
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha 410128, China
| | - Chen Peng
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha 410128, China
| | - Huijuan Song
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
8
|
Choińska R, Piasecka-Jóźwiak K, Woźniak Ł, Świder O, Bartosiak E, Bujak M, Roszko MŁ. Starter culture-related changes in free amino acids, biogenic amines profile, and antioxidant properties of fermented red beetroot grown in Poland. Sci Rep 2022; 12:20063. [PMID: 36414746 PMCID: PMC9681880 DOI: 10.1038/s41598-022-24690-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Fermentation of two red beet cultivars (Wodan and Alto) with single-strain starter cultures consisting of selected strains of lactic acid bacteria (LAB) of plant origin (Weissella cibaria KKP2058, Levilactobacillus brevis ZF165) and a multi-strain culture (containing W. cibaria KKP2058, L. brevis ZF165, Lactiplantibacillus plantarum KKP1822, Limosilactobacillus fermentum KKP1820, and Leuconostoc mesenteroides JEIIF) was performed to evaluate their impact on betalains, free amino acids, formation of biogenic amines, and antioxidative properties of the juice formed. Next-generation sequencing data analysis used to identify the microbial community revealed that the starter cultures promoted the dominance of the genus Lactobacillus, and decreased the proportion of spoilage bacteria compared to spontaneously fermented juices. Generally, the fermentation process significantly influenced the amount of the analyzed compounds, leading in most cases to their reduction. The observed changes in the studied parameters depended on the starter culture used, indicating different metabolic activities of the LAB strains towards bioactive compounds. The use of multi-strain starter cultures allowed to largely prevent the reduction of betacyanins and histamine formation.
Collapse
Affiliation(s)
- Renata Choińska
- grid.460348.d0000 0001 2286 1336Department of Fermentation Technology, Prof. W. Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka Str. 36, 02-532 Warsaw, Poland
| | - Katarzyna Piasecka-Jóźwiak
- grid.460348.d0000 0001 2286 1336Department of Fermentation Technology, Prof. W. Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka Str. 36, 02-532 Warsaw, Poland
| | - Łukasz Woźniak
- grid.460348.d0000 0001 2286 1336Department of Fruit and Vegetable Product Technology, Prof. W. Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka Str. 36, 02-532 Warsaw, Poland
| | - Olga Świder
- grid.460348.d0000 0001 2286 1336Department of Food Safety and Chemical Analysis, Prof. W. Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka Str. 36, 02-532 Warsaw, Poland
| | - Elżbieta Bartosiak
- grid.460348.d0000 0001 2286 1336Department of Fermentation Technology, Prof. W. Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka Str. 36, 02-532 Warsaw, Poland
| | - Marzena Bujak
- grid.460348.d0000 0001 2286 1336Department of Fermentation Technology, Prof. W. Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka Str. 36, 02-532 Warsaw, Poland
| | - Marek Łukasz Roszko
- grid.460348.d0000 0001 2286 1336Department of Food Safety and Chemical Analysis, Prof. W. Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka Str. 36, 02-532 Warsaw, Poland
| |
Collapse
|
9
|
Schwarz J, Schumacher K, Brameyer S, Jung K. Bacterial battle against acidity. FEMS Microbiol Rev 2022; 46:6652135. [PMID: 35906711 DOI: 10.1093/femsre/fuac037] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 01/09/2023] Open
Abstract
The Earth is home to environments characterized by low pH, including the gastrointestinal tract of vertebrates and large areas of acidic soil. Most bacteria are neutralophiles, but can survive fluctuations in pH. Herein, we review how Escherichia, Salmonella, Helicobacter, Brucella, and other acid-resistant Gram-negative bacteria adapt to acidic environments. We discuss the constitutive and inducible defense mechanisms that promote survival, including proton-consuming or ammonia-producing processes, cellular remodeling affecting membranes and chaperones, and chemotaxis. We provide insights into how Gram-negative bacteria sense environmental acidity using membrane-integrated and cytosolic pH sensors. Finally, we address in more detail the powerful proton-consuming decarboxylase systems by examining the phylogeny of their regulatory components and their collective functionality in a population.
Collapse
Affiliation(s)
- Julia Schwarz
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | - Kilian Schumacher
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | - Sophie Brameyer
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | - Kirsten Jung
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| |
Collapse
|
10
|
Garbacz K. Anticancer activity of lactic acid bacteria. Semin Cancer Biol 2022; 86:356-366. [PMID: 34995799 DOI: 10.1016/j.semcancer.2021.12.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 01/27/2023]
Abstract
Lactic acid bacteria (LAB), a group of Gram-positive microorganisms naturally occurring in fermented food products and used as probiotics, have been gaining the interest of researchers for years. LAB are potent, albeit still not wholly understood, source of bioactive compounds with various functions and activity. Metabolites of LAB, among others, short-chain fatty acids, exopolysaccharides and bacteriocins have promising anticancer potential. Research on the interactions between the bioactive metabolites of LAB and immune mechanisms demonstrated that these substances could exert a strong immunomodulatory effect, which would explain their vast therapeutic potential. The anticancer activity of LAB was confirmed both in vitro and in animal models against cancer cells from various malignancies. LAB inhibit tumor growth through various mechanisms, including antiproliferative activity, induction of apoptosis, cell cycle arrest, as well as through antimutagenic, antiangiogenic and anti-inflammatory effects. The aim of this review was to summarize the most recent data about the anticancer activity of LAB, with particular emphasis on the most promising bioactive compounds with potential clinical application.
Collapse
Affiliation(s)
- Katarzyna Garbacz
- Department of Oral Microbiology, Medical Faculty, Medical University of Gdansk, 25 Dębowa Str., 80-204, Gdansk, Poland.
| |
Collapse
|
11
|
Dhankhar R, Kawatra A, Gupta V, Mohanty A, Gulati P. In silico and in vitro analysis of arginine deiminase from Pseudomonas furukawaii as a potential anticancer enzyme. 3 Biotech 2022; 12:220. [PMID: 35971334 PMCID: PMC9374873 DOI: 10.1007/s13205-022-03292-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 07/30/2022] [Indexed: 11/24/2022] Open
Abstract
Arginine deiminase (ADI), a promising anticancer enzyme from Mycoplasma hominis, is currently in phase III of clinical trials for the treatment of arginine auxotrophic tumors. However, it has been associated with several drawbacks in terms of low stability at human physiological conditions, high immunogenicity, hypersensitivity and systemic toxicity. In our previous work, Pseudomonas furukawaii 24 was identified as a potent producer of ADI with optimum activity under physiological conditions. In the present study, phylogenetic analysis of microbial ADIs indicated P. furukawaii ADI (PfADI) to be closely related to experimentally characterized ADIs of Pseudomonas sp. with proven anticancer activity. Immunoinformatics analysis was performed indicating lower immunogenicity of PfADI than MhADI (M. hominis ADI) both in terms of number of linear and conformational B-cell epitopes and T-cell epitope density. Overall antigenicity and allergenicity of PfADI was also lower as compared to MhADI, suggesting the applicability of PfADI as an alternative anticancer biotherapeutic. Hence, in vitro experiments were performed in which the ADI coding arcA gene of P. furukawaii was cloned and expressed in E. coli BL21. Recombinant ADI of P. furukawaii was purified, characterized and its anticancer activity was assessed. The enzyme was stable at human physiological conditions (pH 7 and 37 °C) with Km of 1.90 mM. PfADI was found to effectively inhibit the HepG2 cells with an IC50 value of 0.1950 IU/ml. Therefore, the current in silico and in vitro studies establish PfADI as a potential anticancer drug candidate with improved efficacy and low immunogenicity. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03292-2.
Collapse
Affiliation(s)
- Rakhi Dhankhar
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana India
| | - Anubhuti Kawatra
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana India
| | - Vatika Gupta
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana India
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Aparajita Mohanty
- Bioinformatics Infrastructure Facility, Gargi College, University of Delhi, New Delhi, India
| | - Pooja Gulati
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana India
| |
Collapse
|
12
|
Davachi SM, Dogan B, Khazdooz L, Zhang S, Khojastegi A, Fei Z, Sun H, Meletharayil G, Kapoor R, Simpson KW, Abbaspourrad A. Long-Term Lacticaseibacillus rhamnosus GG Storage at Ambient Temperature in Vegetable Oil: Viability and Functional Assessments. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9399-9411. [PMID: 35881537 DOI: 10.1021/acs.jafc.2c02953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Vegetable oils with varying saturated fat levels were inoculated with Lacticaseibacillus rhamnosus GG (LGG), subjected to different heat treatments in the absence and presence of inulin and stored for 12 months at room temperature. After storage, the heat-treated probiotics actively grew to high concentrations after removal of the oils and reculturing. The bacterial samples, regardless of aerobic or anaerobic conditions and treatment methods, showed no changes in their growth behavior. The random amplified polymorphic DNA-polymerase chain reaction, antimicrobial, morphology, and motility tests also showed no major differences. Samples of LGG treated with a higher antioxidant content (Gal400) showed reduced inflammatory and anti-inflammatory properties. These findings have been confirmed by metabolite and genome sequencing studies, indicating that Gal400 showed lower concentrations and secretion percentages and the highest number of single nucleotide polymorphisms. We have shown proof of concept that LGG can be stored in oil with minimum impact on probiotic in vitro viability.
Collapse
Affiliation(s)
- Seyed Mohammad Davachi
- Department of Food Science, College of Agriculture & Life Sciences, Cornell University, Stocking Hall, Ithaca, New York 14853, United States
| | - Belgin Dogan
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, United States
| | - Leila Khazdooz
- Department of Food Science, College of Agriculture & Life Sciences, Cornell University, Stocking Hall, Ithaca, New York 14853, United States
| | - Shiying Zhang
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, United States
| | - Anahita Khojastegi
- Department of Food Science, College of Agriculture & Life Sciences, Cornell University, Stocking Hall, Ithaca, New York 14853, United States
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853, United States
| | - Honghe Sun
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853, United States
| | | | - Rohit Kapoor
- National Dairy Council, 10255 W Higgins Rd, Rosemont, Illinois 60018, United States
| | - Kenneth W Simpson
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, United States
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agriculture & Life Sciences, Cornell University, Stocking Hall, Ithaca, New York 14853, United States
| |
Collapse
|
13
|
Exploiting Bacteria for Improving Hypoxemia of COVID-19 Patients. Biomedicines 2022; 10:biomedicines10081851. [PMID: 36009399 PMCID: PMC9405060 DOI: 10.3390/biomedicines10081851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Although useful in the time-race against COVID-19, CPAP cannot provide oxygen over the physiological limits imposed by severe pulmonary impairments. In previous studies, we reported that the administration of the SLAB51 probiotics reduced risk of developing respiratory failure in severe COVID-19 patients through the activation of oxygen sparing mechanisms providing additional oxygen to organs critical for survival. Methods: This “real life” study is a retrospective analysis of SARS-CoV-2 infected patients with hypoxaemic acute respiratory failure secondary to COVID-19 pneumonia undergoing CPAP treatment. A group of patients managed with ad interim routinely used therapy (RUT) were compared to a second group treated with RUT associated with SLAB51 oral bacteriotherapy (OB). Results: At baseline, patients receiving SLAB51 showed significantly lower blood oxygenation than controls. An opposite condition was observed after 3 days of treatment, despite the significantly reduced amount of oxygen received by patients taking SLAB51. At 7 days, a lower prevalence of COVID-19 patients needing CPAP in the group taking probiotics was observed. The administration of SLAB51 is a complementary approach for ameliorating oxygenation conditions at the systemic level. Conclusion: This study proves that probiotic administration results in an additional boost in alleviating hypoxic conditions, permitting to limit on the use of CPAP and its contraindications.
Collapse
|
14
|
Brownlie EJE, Chaharlangi D, Wong EOY, Kim D, Navarre WW. Acids produced by lactobacilli inhibit the growth of commensal Lachnospiraceae and S24-7 bacteria. Gut Microbes 2022; 14:2046452. [PMID: 35266847 PMCID: PMC8920129 DOI: 10.1080/19490976.2022.2046452] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Lactobacillaceae are an intensively studied family of bacteria widely used in fermented food and probiotics, and many are native to the gut and vaginal microbiota of humans and other animals. Various studies have shown that specific Lactobacillaceae species produce metabolites that can inhibit the colonization of fungal and bacterial pathogens, but less is known about how Lactobacillaceae affect individual bacterial species in the endogenous animal microbiota. Here, we show that numerous Lactobacillaceae species inhibit the growth of the Lachnospiraceae family and the S24-7 group, two dominant clades of bacteria within the gut. We demonstrate that inhibitory activity is a property common to homofermentative Lactobacillaceae species, but not to species that use heterofermentative metabolism. We observe that homofermentative Lactobacillaceae species robustly acidify their environment, and that acidification alone is sufficient to inhibit growth of Lachnospiraceae and S24-7 growth, but not related species from the Clostridiales or Bacteroidales orders. This study represents one of the first in-depth explorations of the dynamic between Lactobacillaceae species and commensal intestinal bacteria, and contributes valuable insight toward deconvoluting their interactions within the gut microbial ecosystem.
Collapse
Affiliation(s)
- Emma J. E. Brownlie
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Danica Chaharlangi
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Erin Oi-Yan Wong
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Deanna Kim
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - William Wiley Navarre
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada,CONTACT William Wiley Navarre Department of Molecular Genetics, University of Toronto Faculty of Medicine, 661 University Avenue, Suite 1600, Toronto, ONM5G 1M1, Canada
| |
Collapse
|
15
|
Fermentation in Pineapple Juice Significantly Enhances Ornithine and Citrulline Production in Lactococcus lactis MSC-3G Isolated from Sugarcane. Microorganisms 2022; 10:microorganisms10050962. [PMID: 35630406 PMCID: PMC9143541 DOI: 10.3390/microorganisms10050962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 12/04/2022] Open
Abstract
Lactic acid bacterial (LAB) fermentation of functional amino acids using fruit juices as a cultivation medium is not well-documented. In the present study, we successfully isolated a high ornithine- and citrulline-producing Lactococcus lactis strain, designated MSC-3G, from sugarcane and investigated the ornithine and citrulline production profile using various fruit juices as a cultivation medium. Among fruit juices, pineapple juice exhibited the highest potentiality to initiate ornithine production (56 mM), while the highest citrulline yield was obtained during lime juice cultivation (34.5 mM). Under the optimal cultivation condition, the highest yield of ornithine and citrulline in pineapple juice reached 98.9 ± 2.2 mM and 211.1 ± 35.7 mM, respectively, both of which were significantly higher than that in the well-known industrial strain of Corynebacterium (C.) glutamicum. Additionally, citrulline production was dependent on oxygen supplementation and increased twofold when grown aerobically. Whole genome sequencing showed that the MSC-3G genome possesses the arginine deiminase (ADI) gene cluster arcABD1C1C2TD2. The results of the ADI pathway enzyme activities of MSC-3G showed a significant increase in arginine deiminase activity, while ornithine carbamoyl transferase activity was decreased, which in turn indicates the high citrulline-accumulation ability of MSC-3G when cultivated in pineapple juice.
Collapse
|
16
|
Pérez Escriva P, Fuhrer T, Sauer U. Distinct N and C Cross-Feeding Networks in a Synthetic Mouse Gut Consortium. mSystems 2022; 7:e0148421. [PMID: 35357218 PMCID: PMC9040589 DOI: 10.1128/msystems.01484-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/03/2022] [Indexed: 11/20/2022] Open
Abstract
The complex interactions between the gut microbiome and host or pathogen colonization resistance cannot be understood solely from community composition. Missing are causal relationships, such as metabolic interactions among species, to better understand what shapes the microbiome. Here, we focused on metabolic niches generated and occupied by the Oligo-Mouse-Microbiota (OMM) consortium, a synthetic community composed of 12 members that is increasingly used as a model for the mouse gut microbiome. Combining monocultures and spent medium experiments with untargeted metabolomics revealed broad metabolic diversity in the consortium, constituting a dense cross-feeding network with more than 100 pairwise interactions. Quantitative analysis of the cross-feeding network revealed distinct C and N food webs, highlighting the two Bacteroidetes members Bacteroides caecimuris and Muribaculum intestinale as primary suppliers of carbon and a more diverse group as nitrogen providers. Cross-fed metabolites were mainly carboxylic acids, amino acids, and the so far not reported nucleobases. In particular, the dicarboxylic acids malate and fumarate provided a strong physiological benefit to consumers, presumably used in anaerobic respiration. Isotopic tracer experiments validated the fate of a subset of cross-fed metabolites, such as the conversion of the most abundant cross-fed compound succinate to butyrate. Thus, we show that this consortium is tailored to produce the anti-inflammatory metabolite butyrate. Overall, we provide evidence for metabolic niches generated and occupied by OMM members that lays a metabolic foundation to facilitate an understanding of the more complex in vivo behavior of this consortium in the mouse gut. IMPORTANCE This article maps out the cross-feeding network among 10 members of a synthetic consortium that is increasingly used as the model mouse gut microbiota. Combining metabolomics with in vitro cultivations, two dense networks of carbon and nitrogen exchange are described. The vast majority of the ∼100 interactions are synergistic in nature, in several cases providing distinct physiological benefits to the recipient species. These networks lay the groundwork toward understanding gut community dynamics and host-gut microbe interactions.
Collapse
Affiliation(s)
- Pau Pérez Escriva
- Institute of Molecular Systems Biology, D-BIOL, ETH Zurich, Zurich, Switzerland
- Systems Biology Graduate School, Zurich, Switzerland
| | - Tobias Fuhrer
- Institute of Molecular Systems Biology, D-BIOL, ETH Zurich, Zurich, Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology, D-BIOL, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Bockwoldt JA, Meng C, Ludwig C, Kupetz M, Ehrmann MA. Proteomic Analysis Reveals Enzymes for β-D-Glucan Formation and Degradation in Levilactobacillus brevis TMW 1.2112. Int J Mol Sci 2022; 23:ijms23063393. [PMID: 35328813 PMCID: PMC8951740 DOI: 10.3390/ijms23063393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/01/2023] Open
Abstract
Bacterial exopolysaccharide (EPS) formation is crucial for biofilm formation, for protection against environmental factors, or as storage compounds. EPSs produced by lactic acid bacteria (LAB) are appropriate for applications in food fermentation or the pharmaceutical industry, yet the dynamics of formation and degradation thereof are poorly described. This study focuses on carbohydrate active enzymes, including glycosyl transferases (GT) and glycoside hydrolases (GH), and their roles in the formation and potential degradation of O2-substituted (1,3)-β-D-glucan of Levilactobacillus (L.) brevis TMW 1.2112. The fermentation broth of L. brevis TMW 1.2112 was analyzed for changes in viscosity, β-glucan, and D-glucose concentrations during the exponential, stationary, and early death phases. While the viscosity reached its maximum during the stationary phase and subsequently decreased, the β-glucan concentration only increased to a plateau. Results were correlated with secretome and proteome data to identify involved enzymes and pathways. The suggested pathway for β-glucan biosynthesis involved a β-1,3 glucan synthase (GT2) and enzymes from maltose phosphorylase (MP) operons. The decreased viscosity appeared to be associated with cell lysis as the β-glucan concentration did not decrease, most likely due to missing extracellular carbohydrate active enzymes. In addition, an operon was discovered containing known moonlighting genes, all of which were detected in both proteome and secretome samples.
Collapse
Affiliation(s)
- Julia A. Bockwoldt
- Lehrstuhl für Mikrobiologie, Technische Universität München, 85354 Freising, Germany;
| | - Chen Meng
- Bayerisches Zentrum für Biomolekulare Massenspektrometrie (BayBioMS), Technische Universität München, 85354 Freising, Germany; (C.M.); (C.L.)
| | - Christina Ludwig
- Bayerisches Zentrum für Biomolekulare Massenspektrometrie (BayBioMS), Technische Universität München, 85354 Freising, Germany; (C.M.); (C.L.)
| | - Michael Kupetz
- Lehrstuhl für Brau- und Getränketechnologie, Technische Universität München, 85354 Freising, Germany;
| | - Matthias A. Ehrmann
- Lehrstuhl für Mikrobiologie, Technische Universität München, 85354 Freising, Germany;
- Correspondence:
| |
Collapse
|
18
|
De Vuyst L, Comasio A, Kerrebroeck SV. Sourdough production: fermentation strategies, microbial ecology, and use of non-flour ingredients. Crit Rev Food Sci Nutr 2021; 63:2447-2479. [PMID: 34523363 DOI: 10.1080/10408398.2021.1976100] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sourdough production is an ancient method to ferment flour from cereals for the manufacturing of baked goods. This review deals with the state-of-the-art of current fermentation strategies for sourdough production and the microbial ecology of mature sourdoughs, with a particular focus on the use of non-flour ingredients. Flour fermentation processes for sourdough production are typically carried out by heterogeneous communities of lactic acid bacteria and yeasts. Acetic acid bacteria may also occur, although their presence and role in sourdough production can be criticized. Based on the inoculum used, sourdough productions can be distinguished in fermentation processes using backslopping procedures, originating from a spontaneously fermented flour-water mixture (Type 1), starter culture-initiated fermentation processes (Type 2), and starter culture-initiated fermentation processes that are followed by backslopping (Type 3). In traditional recipes for the initiation and/or propagation of Type 1 sourdough productions, non-flour ingredients are often added to the flour-water mixture. These ingredients may be the source of an additional microbial inoculum and/or serve as (co-)substrates for fermentation. An example of the former is the addition of yoghurt; an example of the latter is the use of fruit juices. The survival of microorganisms transferred from the ingredients to the fermenting flour-water mixture depends on the competitiveness toward particular strains of the microbial species present under the harsh conditions of the sourdough ecosystem. Their survival and growth is also determined by the presence of the appropriate substrates, whether or not carried over by the ingredients added.
Collapse
Affiliation(s)
- Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Andrea Comasio
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Simon Van Kerrebroeck
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
19
|
Wu M, Jiang Y, Liu Y, Mou L, Zhang W, Xin F, Jiang M. Microbial application of thermophilic Thermoanaerobacterium species in lignocellulosic biorefinery. Appl Microbiol Biotechnol 2021; 105:5739-5749. [PMID: 34283269 DOI: 10.1007/s00253-021-11450-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022]
Abstract
Recently, thermophilic Thermoanaerobacterium species have attracted increasing attentions in consolidated bioprocessing (CBP), which can directly utilize lignocellulosic materials for biofuels production. Compared to the mesophilic process, thermophilic process shows greater prospects in CBP due to its relatively highly efficiency of lignocellulose degradation. In addition, thermophilic conditions can avoid microbial contamination, reduce the cooling costs, and further facilitate the downstream product recovery. However, only few reviews specifically focused on the microbial applications of thermophilic Thermoanaerobacterium species in lignocellulosic biorefinery. Accordingly, this review will comprehensively summarize the recent advances of Thermoanaerobacterium species in lignocellulosic biorefinery, including their secreted xylanases and bioenergy production. Furthermore, the co-culture can significantly reduce the metabolic burden and achieve the more complex work, which will be discussed as the further perspectives. KEY POINTS: • Thermoanaerobacterium species, promising chassis for lignocellulosic biorefinery. • Potential capability of hemicellulose degradation for Thermoanaerobacterium species. • Efficient bioenergy production by Thermoanaerobacterium species through metabolic engineering.
Collapse
Affiliation(s)
- Mengdi Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Yansong Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Lu Mou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China.
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, People's Republic of China.
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China.
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, People's Republic of China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, People's Republic of China
| |
Collapse
|
20
|
Lau SW, Chong AQ, Chin NL, Talib RA, Basha RK. Sourdough Microbiome Comparison and Benefits. Microorganisms 2021; 9:microorganisms9071355. [PMID: 34201420 PMCID: PMC8306212 DOI: 10.3390/microorganisms9071355] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022] Open
Abstract
Sourdough is the oldest form of leavened bread used as early as 2000 BC by the ancient Egyptians. It may have been discovered by accident when wild yeast drifted into dough that had been left out resulting in fermentation of good microorganisms, which made bread with better flavour and texture. The discovery was continued where sourdough was produced as a means of reducing wastage with little known (at that point of time) beneficial effects to health. With the progress and advent of science and technology in nutrition, sourdough fermentation is now known to possess many desirable attributes in terms of health benefits. It has become the focus of attention and practice in modern healthy eating lifestyles when linked to the secret of good health. The sourdough starter is an excellent habitat where natural and wild yeast plus beneficial bacteria grow by ingesting only water and flour. As each sourdough starter is unique, with different activities, populations and interactions of yeast and bacteria due to different ingredients, environment, fermentation time and its carbohydrate fermentation pattern, there is no exact elucidation on the complete make-up of the sourdough microbiome. Some lactic acid bacteria (LAB) strains that are part of the sourdough starter are considered as probiotics which have great potential for improving gastrointestinal health. Hence, from a wide literature surveyed, this paper gives an overview of microbial communities found in different sourdough starters. This review also provides a systematic analysis that identifies, categorises and compares these microbes in the effort of linking them to specific functions, particularly to unlock their health benefits.
Collapse
Affiliation(s)
| | | | - Nyuk Ling Chin
- Correspondence: ; Tel.: +603-9769-6353; Fax: +603-9769-4440
| | | | | |
Collapse
|
21
|
Oshiro M, Zendo T, Nakayama J. Diversity and dynamics of sourdough lactic acid bacteriota created by a slow food fermentation system. J Biosci Bioeng 2021; 131:333-340. [PMID: 33358094 DOI: 10.1016/j.jbiosc.2020.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 12/21/2022]
Abstract
Sourdough is a naturally fermented dough that is used worldwide to produce a variety of baked foods. Various lactic acid bacteria (LAB), which can determine the quality of sourdough baked foods by producing metabolites, have been found in the sourdough ecosystem. However, spontaneous fermentation of sourdough leads to unpredictable growth of various micro-organisms, which result in unstable product quality. From an ecological perspective, many researchers have recently studied sourdough LAB diversity, particularly the elucidation of LAB community interactions and the dynamic mechanisms during the fermentation process, in response to requests for the control and design of a desired sourdough microbial community. This article reviews recent advances in the study of sourdough LAB diversity and its dynamics in association with unique characteristics of the fermentation system; it also discusses future perspectives for better understanding of the complex sourdough microbial ecosystem, which can be attained efficiently by both in vitro and in situ experimental approaches.
Collapse
Affiliation(s)
- Mugihito Oshiro
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Central Laboratory of Yamazaki Baking Company Limited, 3-23-27 Ichikawa, Ichikawa-shi, Chiba 272-8581, Japan.
| | - Takeshi Zendo
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Jiro Nakayama
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
22
|
Lin J, Luo X, Gänzle MG, Luo L. Characterization of the two nonidentical ArgR regulators of Tetragenococcus halophilus and their regulatory effects on arginine metabolism. Appl Microbiol Biotechnol 2020; 104:8775-8787. [PMID: 32880693 DOI: 10.1007/s00253-020-10868-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/06/2020] [Accepted: 08/26/2020] [Indexed: 11/25/2022]
Abstract
The halophilic lactic acid bacterium Tetragenococcus halophilus has been widely used in high-salinity fermentation processes of food. Previous studies have indicated that the catabolism of arginine may contribute to the osmotic stress adaptation of T. halophilus. Unusually, in the chromosome of T. halophilus, preceding the arginine deiminase (ADI) operon, locate two co-transcribed genes, both encoding an ArgR regulator; similar structure was rarely found and the roles of the regulators have not been demonstrated. In the current study, regulatory roles of these two nonidentical ArgR regulators on the arginine metabolism of T. halophilus were investigated. The results show that these two regulators play different roles in arginine metabolism, ArgR1 acts as a negative regulator of the ADI pathway by binding to the promoter sequences and repressing the transcription of genes, and the addition of arginine or hyper-osmotic stress conditions can abolish the ArgR1 repression, whereas ArgR2 negatively regulates the genes involved in arginine biosynthesis. Our study found that despite the commonly known roles of the ArgR regulators as the activator of arginine catabolism and the repressor of arginine biosynthesis, which are found in most studied bacteria possessed one ArgR regulator, the two nonidentical ArgR regulators of T. halophilus both act as repressors, and the repression by which is regulated when sensing changes of environments. By revealing the regulation of arginine metabolism, the current study provides molecular insights and potential tools for future applications of halophiles in biotechnology. KEY POINTS: • The expression of the ADI pathway of T. halophilus is regulated by carbon sources and osmotic stress. • The arginine metabolism process of T. halophilus is fine-tuned by the two ArgR regulators. • The ADI pathway may contribute to the osmotic stress adaptation by generating more energy and accumulating citrulline which acts as compatible solute.
Collapse
Affiliation(s)
- Jieting Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Agriculture/Forestry Centre, Edmonton, Alberta, T6G 2P5, Canada
| | - Xiaotong Luo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Michael G Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Agriculture/Forestry Centre, Edmonton, Alberta, T6G 2P5, Canada
| | - Lixin Luo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China.
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
23
|
Qu C, Chen L, Fu H, Wang J. Engineering Thermoanaerobacterium aotearoense SCUT27 with argR knockout for enhanced ethanol production from lignocellulosic hydrolysates. BIORESOURCE TECHNOLOGY 2020; 310:123435. [PMID: 32361198 DOI: 10.1016/j.biortech.2020.123435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Although Thermoanaerobacterium aotearoense SCUT27 (SCUT27) could co-utilize glucose and xylose, the presence of glucose still repressed xylose catabolism. Arginine repressors (ArgRs) were involved in several key metabolic pathways and might be the global regulator. In SCUT27, three genes (V518_0585; V518_1870; V518_1864) were annotated as argR and only the deficiency of argR1864 could greatly improve the co-utilization of glucose and xylose, due to the enhanced activity of xylose isomerase, xylulokinase and the higher energy level. The metabolic flux of SCUT27/ΔargR1864 indicated that new carbon distribution had been re-established and the ethanol yield had increased by 82.95%, strains growth and acetate yield improved by ~35.91% without detectable lactate for the poor activity of lactate dehydrogenase. The improved concentration of ATP and NAD(H) in SCUT27/ΔargR1864 provided more energy to respond the stress, which enabled the mutant the better cell viability to utilize lignocellulosic hydrolysates for enhanced ethanol formation.
Collapse
Affiliation(s)
- Chunyun Qu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Lili Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Hongxin Fu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; The State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
24
|
Sano A, Takatera M, Kawai M, Ichinose R, Yamasaki-Yashiki S, Katakura Y. Suppression of lactate production by aerobic fed-batch cultures of Lactococcus lactis. J Biosci Bioeng 2020; 130:402-408. [PMID: 32669208 DOI: 10.1016/j.jbiosc.2020.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/01/2020] [Accepted: 06/07/2020] [Indexed: 11/20/2022]
Abstract
Aerobic fed-batch cultures were studied as a means of suppressing the production of lactate, which inhibits the growth of lactic acid bacteria (LAB). LAB produce lactate via lactate dehydrogenase (LDH), regenerating nicotinamide adenine dinucleotide (NAD+) consumed during glycolysis. Therefore, we focused on NADH oxidase (NOX), employing oxygen as an electron acceptor, as an alternative pathway to LDH for NAD+ regeneration. To avoid glucose repression of NOX and NAD+ consumption by glycolysis exceeding NAD+ regeneration by NOX, glucose was fed gradually. When Lactococcus lactis MG 1363 was aerobically fed at a specific growth rate of 0.2 h-1, the amount of lactate produced per amount of grown cell was reduced to 12% of that in anaerobic batch cultures. Metabolic flux analysis revealed that in addition to NAD+ regeneration by NOX, ATP acquisition by production of acetate and NAD+ regeneration by production of acetoin and 2,3-butanediol contributed to suppression of lactate production.
Collapse
Affiliation(s)
- Anna Sano
- Graduate School of Science and Engineering, Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan.
| | - Misato Takatera
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan.
| | - Mio Kawai
- Graduate School of Science and Engineering, Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan.
| | - Ryo Ichinose
- Graduate School of Science and Engineering, Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan.
| | - Shino Yamasaki-Yashiki
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan.
| | - Yoshio Katakura
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate, Suita, Osaka 564-8680, Japan.
| |
Collapse
|
25
|
Yang H, Sadiq FA, Liu T, Zhang G, He G. Use of physiological and transcriptome analysis to infer the interactions between Saccharomyces cerevisiae and Lactobacillus sanfranciscensis isolated from Chinese traditional sourdoughs. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Abruzzo A, Vitali B, Lombardi F, Guerrini L, Cinque B, Parolin C, Bigucci F, Cerchiara T, Arbizzani C, Gallucci MC, Luppi B. Mucoadhesive Buccal Films for Local Delivery of Lactobacillus brevis. Pharmaceutics 2020; 12:E241. [PMID: 32182651 PMCID: PMC7150759 DOI: 10.3390/pharmaceutics12030241] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/28/2020] [Accepted: 03/06/2020] [Indexed: 12/17/2022] Open
Abstract
The aim of this work was to prepare mucoadhesive buccal films for local release of Lactobacillus brevis CD2, which shows interesting anti-inflammatory properties due to its high levels of arginine deiminase. Hydroxypropylmethylcellulose-based films were prepared by means of a modified casting method, which allowed L. brevis CD2 loading on one side of the film, before its complete drying. Three batches of films were prepared, stored at +2-8 °C and +23-25 °C for 48 weeks and characterized in terms of physico-chemical and functional properties. For each batch, the L. brevis viable count and arginine deiminase activity were evaluated at different time points in order to assess functional property maintenance over time. Moreover, the mucoadhesive properties and ability of the films to release L. brevis CD2 were evaluated. A good survival of L. brevis CD2 was observed, particularly at the storage temperature of +2-8 °C, while the activity of arginine deiminase was maintained at both temperature values. Films showed good mucoadhesive properties and guaranteed a prolonged release of viable lactobacilli, which can be directed towards the whole buccal cavity or specific mucosa lesions. In conclusion, the proposed preparative method can be successfully employed for the production of buccal films able to release viable L. brevis CD2 cells that maintain the anti-inflammatory enzymatic activity.
Collapse
Affiliation(s)
- Angela Abruzzo
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy (B.V.); (C.P.); (F.B.); (T.C.)
| | - Beatrice Vitali
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy (B.V.); (C.P.); (F.B.); (T.C.)
| | - Francesca Lombardi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Pompeo Spennati, Building Rita Levi Montalcini, Coppito, 67100 L’Aquila, Italy; (F.L.); (L.G.); (B.C.)
| | - Luca Guerrini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Pompeo Spennati, Building Rita Levi Montalcini, Coppito, 67100 L’Aquila, Italy; (F.L.); (L.G.); (B.C.)
| | - Benedetta Cinque
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Pompeo Spennati, Building Rita Levi Montalcini, Coppito, 67100 L’Aquila, Italy; (F.L.); (L.G.); (B.C.)
| | - Carola Parolin
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy (B.V.); (C.P.); (F.B.); (T.C.)
| | - Federica Bigucci
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy (B.V.); (C.P.); (F.B.); (T.C.)
| | - Teresa Cerchiara
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy (B.V.); (C.P.); (F.B.); (T.C.)
| | - Catia Arbizzani
- Department of Chemistry “Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy;
| | - Maria Caterina Gallucci
- Department of Chemistry and Chemical Technology, Calabria University, Arcavacata di Rende, Via P. Bucci, Cubo 15D, 87036 Cosenza, Italy;
| | - Barbara Luppi
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy (B.V.); (C.P.); (F.B.); (T.C.)
| |
Collapse
|
27
|
Functional Efficacy of Probiotic Lactobacillus sanfranciscensis in Apple, Orange and Tomato Juices with Special Reference to Storage Stability and In Vitro Gastrointestinal Survival. BEVERAGES 2020. [DOI: 10.3390/beverages6010013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is an increasing demand for non-dairy probiotic carriers such as fruit and vegetable juices. Probiotic Lactobacillus sanfranciscensis is predominantly used in the bakery industry, and its efficacy in fruit juices has not been studied sufficiently. Additionally, support from the carrier matrices for maintaining probiotic viability and gastrointestinal tolerance is important in selecting suitable vehicles for probiotic delivery. Three different non-dairy carrier juices (apple, orange and tomato) were tested for their ability to maintain L. sanfranciscensis viable during four weeks of refrigerated storage (4 °C). Their potential protection of L. sanfranciscensis against in vitro gastrointestinal digestion was also evaluated. Results indicated that the probiotics viability in all three juice samples met the recommended level for probiotic food (>106–107 cfu/mL) at the end of storage. However, all three juice samples showed a comparatively lower protective effect (p < 0.05) on the viability of L. sanfranciscensis when exposed to simulated gastric juice (pH = 2) at the end of 60 min and simulated intestinal juice with 0.3% (w/v) bile salt (pH = 8) at the end of 240 min exposure. In general, the three tested juices can be regarded as the potential non-dairy based carriers for L. sanfranciscensis. The future research is needed to improve the modification of the probiotic carriers in order to prolong the viability of L. sanfranciscensis during the gastrointestinal digestion.
Collapse
|
28
|
Dhankhar R, Kumar A, Kumar S, Chhabra D, Shukla P, Gulati P. Multilevel algorithms and evolutionary hybrid tools for enhanced production of arginine deiminase from Pseudomonas furukawaii RS3. BIORESOURCE TECHNOLOGY 2019; 290:121789. [PMID: 31326652 DOI: 10.1016/j.biortech.2019.121789] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
In the present study a high arginine deiminase (ADI) yielding bacterium was isolated from soil samples of Haryana, India and identified as Pseudomonas furukawaii. The specific enzyme activity was optimized to 1.420 IU/ml by OFAT and further enhanced to 2.708 IU/ml (an increase of 90.7%) with the help of statistical parametric optimization approaches using GA-ANN and GA-ANFIS. The obtained value of the coefficient of correlation (R = 0.88) for ANN and epoch error (0.12) for ANFIS, indicates the prediction accuracy and strength of these data training models. ADI production was improved significantly in simple super broth media supplemented with 1.5% fructose and 1.75% arginine at pH 7 at 37 °C using multilevel algorithms and evolutionary hybrid tools. The native enzyme was partially purified (ten-fold) up to a specific enzyme activity of 29.559 IU/mg.
Collapse
Affiliation(s)
- Rakhi Dhankhar
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Ashwani Kumar
- Optimization and Mechatronics Laboratory, Department of Mechanical Engineering, University Institute of Engineering and Technology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Sanjay Kumar
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Deepak Chhabra
- Optimization and Mechatronics Laboratory, Department of Mechanical Engineering, University Institute of Engineering and Technology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India.
| | - Pooja Gulati
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India.
| |
Collapse
|
29
|
Xu X, Bao Y, Wu B, Lao F, Hu X, Wu J. Chemical analysis and flavor properties of blended orange, carrot, apple and Chinese jujube juice fermented by selenium-enriched probiotics. Food Chem 2019; 289:250-258. [DOI: 10.1016/j.foodchem.2019.03.068] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 10/27/2022]
|
30
|
Weckx S, Van Kerrebroeck S, De Vuyst L. Omics approaches to understand sourdough fermentation processes. Int J Food Microbiol 2019; 302:90-102. [DOI: 10.1016/j.ijfoodmicro.2018.05.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/12/2018] [Accepted: 05/28/2018] [Indexed: 12/31/2022]
|
31
|
Nakamura A, Ooga T, Matsumoto M. Intestinal luminal putrescine is produced by collective biosynthetic pathways of the commensal microbiome. Gut Microbes 2018; 10:159-171. [PMID: 30183487 PMCID: PMC6546329 DOI: 10.1080/19490976.2018.1494466] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The intestinal microbiome produces various metabolites that may harm or benefit the host. However, the production pathways of these metabolites have not been well characterised. The polyamines putrescine and spermidine required for physiological process are also produced by intestinal microbiome. The production and release of these polyamines by microbiome are poorly understood, though we have confirmed that intestinal bacteria produced putrescine from arginine. In this study, we characterised polyamine synthesis by analysing the collective metabolic functions of the intestinal microbiome. In particular, we analysed polyamines and their intermediates in faecal cultures, as well as the colonic contents of rats injected with isotope-labelled arginine through a colon catheter, using mass spectrometry. Isotope-labelled putrescine was detected in faecal cultures and colonic contents of rats injected with isotope-labelled arginine. Putrescine is produced through multiple pathways, and its extracellular intermediates are exchanged between bacterial species. Additionally, we demonstrated that the collective metabolic pathway depends on a complex exchange of metabolites released into the colonic lumen. This study demonstrates the existence of putrescine biosynthetic pathways based on the collective metabolic functions of the intestinal microbial community. Our findings provide knowledge to manipulate the levels of intestinal microbial products, including polyamines, that may modulate host health.
Collapse
Affiliation(s)
- Atsuo Nakamura
- Dairy Science and Technology Institute, Kyodo Milk Industry Co., Ltd., Tokyo, Japan
| | - Takushi Ooga
- Human Metabolome Technologies Inc., Yamagata, Japan
| | - Mitsuharu Matsumoto
- Dairy Science and Technology Institute, Kyodo Milk Industry Co., Ltd., Tokyo, Japan,CONTACT Mitsuharu Matsumoto Dairy Science and Technology Institute, Kyodo Milk Industry Co., Ltd., 20-1 Hirai, Hinode, Nishitama 190-0182, Tokyo, Japan
| |
Collapse
|
32
|
Minervini F, Lattanzi A, Dinardo FR, De Angelis M, Gobbetti M. Wheat endophytic lactobacilli drive the microbial and biochemical features of sourdoughs. Food Microbiol 2018; 70:162-171. [DOI: 10.1016/j.fm.2017.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 09/08/2017] [Accepted: 09/10/2017] [Indexed: 11/27/2022]
|
33
|
Yu W, Li X, Lu J, Xie G. Citrulline production by lactic acid bacteria in Chinese rice wine. JOURNAL OF THE INSTITUTE OF BREWING 2018. [DOI: 10.1002/jib.475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Wei Yu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education; Jiangnan University; 1800 Lihu Road Wuxi 214122 People's Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology; Jiangnan University; 1800 Lihu Road Wuxi 214122 People's Republic of China
- School of Biotechnology; Jiangnan University; 1800 Lihu Road Wuxi 214122 People's Republic of China
| | - Xiaomin Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education; Jiangnan University; 1800 Lihu Road Wuxi 214122 People's Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology; Jiangnan University; 1800 Lihu Road Wuxi 214122 People's Republic of China
- School of Biotechnology; Jiangnan University; 1800 Lihu Road Wuxi 214122 People's Republic of China
| | - Jian Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education; Jiangnan University; 1800 Lihu Road Wuxi 214122 People's Republic of China
- School of Biotechnology; Jiangnan University; 1800 Lihu Road Wuxi 214122 People's Republic of China
| | - Guangfa Xie
- School of Biotechnology; Jiangnan University; 1800 Lihu Road Wuxi 214122 People's Republic of China
- National Engineering Research Center for Chinese Rice Wine; China Shaoxing Rice Wine Group Co. Ltd; Shaoxing 312000 People's Republic of China
| |
Collapse
|
34
|
Guo Y, Tian X, Huang R, Tao X, Shah NP, Wei H, Wan C. A physiological comparative study of acid tolerance of Lactobacillus plantarum ZDY 2013 and L. plantarum ATCC 8014 at membrane and cytoplasm levels. ANN MICROBIOL 2017. [DOI: 10.1007/s13213-017-1295-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
35
|
Exploitation of grape marc as functional substrate for lactic acid bacteria and bifidobacteria growth and enhanced antioxidant activity. Food Microbiol 2017; 65:25-35. [DOI: 10.1016/j.fm.2017.01.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 01/25/2017] [Accepted: 01/30/2017] [Indexed: 11/21/2022]
|
36
|
De Angelis M, Calasso M, Cavallo N, Di Cagno R, Gobbetti M. Functional proteomics within the genus Lactobacillus. Proteomics 2016; 16:946-62. [PMID: 27001126 DOI: 10.1002/pmic.201500117] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 11/24/2015] [Accepted: 01/11/2016] [Indexed: 12/13/2022]
Abstract
Lactobacillus are mainly used for the manufacture of fermented dairy, sourdough, meat, and vegetable foods or used as probiotics. Under optimal processing conditions, Lactobacillus strains contribute to food functionality through their enzyme portfolio and the release of metabolites. An extensive genomic diversity analysis was conducted to elucidate the core features of the genus Lactobacillus, and to provide a better comprehension of niche adaptation of the strains. However, proteomics is an indispensable "omics" science to elucidate the proteome diversity, and the mechanisms of regulation and adaptation of Lactobacillus strains. This review focuses on the novel and comprehensive knowledge of functional proteomics and metaproteomics of Lactobacillus species. A large list of proteomic case studies of different Lactobacillus species is provided to illustrate the adaptability of the main metabolic pathways (e.g., carbohydrate transport and metabolism, pyruvate metabolism, proteolytic system, amino acid metabolism, and protein synthesis) to various life conditions. These investigations have highlighted that lactobacilli modulate the level of a complex panel of proteins to growth/survive in different ecological niches. In addition to the general regulation and stress response, specific metabolic pathways can be switched on and off, modifying the behavior of the strains.
Collapse
Affiliation(s)
- Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Maria Calasso
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Noemi Cavallo
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Raffaella Di Cagno
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Marco Gobbetti
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
37
|
Duport C, Jobin M, Schmitt P. Adaptation in Bacillus cereus: From Stress to Disease. Front Microbiol 2016; 7:1550. [PMID: 27757102 PMCID: PMC5047918 DOI: 10.3389/fmicb.2016.01550] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/15/2016] [Indexed: 12/23/2022] Open
Abstract
Bacillus cereus is a food-borne pathogen that causes diarrheal disease in humans. After ingestion, B. cereus experiences in the human gastro-intestinal tract abiotic physical variables encountered in food, such as acidic pH in the stomach and changing oxygen conditions in the human intestine. B. cereus responds to environmental changing conditions (stress) by reversibly adjusting its physiology to maximize resource utilization while maintaining structural and genetic integrity by repairing and minimizing damage to cellular infrastructure. As reviewed in this article, B. cereus adapts to acidic pH and changing oxygen conditions through diverse regulatory mechanisms and then exploits its metabolic flexibility to grow and produce enterotoxins. We then focus on the intricate link between metabolism, redox homeostasis, and enterotoxins, which are recognized as important contributors of food-borne disease.
Collapse
Affiliation(s)
- Catherine Duport
- Sécurité et Qualité des Produits d'Origine Végétale, UMR0408, Avignon Université, Institut National de la Recherche Agronomique Avignon, France
| | - Michel Jobin
- Sécurité et Qualité des Produits d'Origine Végétale, UMR0408, Avignon Université, Institut National de la Recherche Agronomique Avignon, France
| | - Philippe Schmitt
- Sécurité et Qualité des Produits d'Origine Végétale, UMR0408, Avignon Université, Institut National de la Recherche Agronomique Avignon, France
| |
Collapse
|
38
|
Nionelli L, Rizzello CG. Sourdough-Based Biotechnologies for the Production of Gluten-Free Foods. Foods 2016; 5:E65. [PMID: 28231160 PMCID: PMC5302394 DOI: 10.3390/foods5030065] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/31/2016] [Accepted: 09/09/2016] [Indexed: 01/29/2023] Open
Abstract
Sourdough fermentation, a traditional biotechnology for making leavened baked goods, was almost completely replaced by the use of baker's yeast and chemical leavening agents in the last century. Recently, it has been rediscovered by the scientific community, consumers, and producers, thanks to several effects on organoleptic, technological, nutritional, and functional features of cereal-based products. Acidification, proteolysis, and activation of endogenous enzymes cause several changes during sourdough fermentation, carried out by lactic acid bacteria and yeasts, which positively affect the overall quality of the baked goods. In particular, the hydrolysis of native proteins of the cereal flours may improve the functional features of baked goods. The wheat flour processed with fungal proteases and selected lactic acid bacteria was demonstrated to be safe for coeliac patients. This review article focuses on the biotechnologies that use selected sourdough lactic acid bacteria to potentially counteract the adverse reactions to gluten, and the risk of gluten contamination.
Collapse
Affiliation(s)
- Luana Nionelli
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, I-70126 Bari, Italy.
| | - Carlo Giuseppe Rizzello
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, I-70126 Bari, Italy.
| |
Collapse
|
39
|
Carrizo SL, Montes de Oca CE, Laiño JE, Suarez NE, Vignolo G, LeBlanc JG, Rollán G. Ancestral Andean grain quinoa as source of lactic acid bacteria capable to degrade phytate and produce B-group vitamins. Food Res Int 2016; 89:488-494. [PMID: 28460943 DOI: 10.1016/j.foodres.2016.08.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/04/2016] [Accepted: 08/13/2016] [Indexed: 11/19/2022]
Abstract
The lactic acid bacteria (LAB) microbiota of quinoa grains (QG) and spontaneous sourdough (QSS) was evaluated. Different strains of Lactobacillus (L.) plantarum (7), L. rhamnosus (5), L. sakei (1), Pediococcus (Ped.) pentosaceus (9), Leuconostoc (Leuc.) mesenteroides (1), Enterococcus (E.) casseliflavus (2), E. mundtii (3), E. hirae (1), E. gallinarum (12), Enterococcus sp. (1), and E. hermanniensis (2) were isolated, identified and characterized. Only four strains isolated from QSS and eight strains isolated from QG showed amylolytic activity. L. plantarum CRL 1973 and CRL 1970, L. rhamnosus CRL 1972 and L. sakei CRL 1978 produced elevated concentrations of folate with strain CRL 1973 producing the highest concentration (143±6ng/ml). L. rhamnosus, isolated from QSS, was the LAB species that produced the most elevated concentrations of total riboflavin (>270ng/ml) with strain CRL 1963 producing the highest amounts (360±10ng/ml). Phytase activity, evaluated in forty-four LAB strains from quinoa, was predominantly detected in L. rhamnosus and Enterococci strains with the highest activities observed in E. mundtii CRL 2007 (957±25U/ml) followed by E. casseliflavus CRL 1988 (684±38U/ml), Leuc. mesenteroides CRL 2012 (617±38U/ml) and L. rhamnosus CRL 1983 (606±79U/ml). In conclusion, this study shows that a diverse LAB microbiota is present in quinoa with important properties; these microorganisms could be used as potential starter cultures to increase the nutritional and functional properties of Andean grains based foods.
Collapse
Affiliation(s)
- Silvana L Carrizo
- Centro de Referencia para Lactobacilos (CERELA) - CONICET, Chacabuco 145, 4000, San Miguel de Tucumán, Argentina
| | - Cecilia E Montes de Oca
- Centro de Referencia para Lactobacilos (CERELA) - CONICET, Chacabuco 145, 4000, San Miguel de Tucumán, Argentina
| | - Jonathan E Laiño
- Centro de Referencia para Lactobacilos (CERELA) - CONICET, Chacabuco 145, 4000, San Miguel de Tucumán, Argentina
| | - Nadia E Suarez
- Centro de Referencia para Lactobacilos (CERELA) - CONICET, Chacabuco 145, 4000, San Miguel de Tucumán, Argentina
| | - Graciela Vignolo
- Centro de Referencia para Lactobacilos (CERELA) - CONICET, Chacabuco 145, 4000, San Miguel de Tucumán, Argentina
| | - Jean Guy LeBlanc
- Centro de Referencia para Lactobacilos (CERELA) - CONICET, Chacabuco 145, 4000, San Miguel de Tucumán, Argentina
| | - Graciela Rollán
- Centro de Referencia para Lactobacilos (CERELA) - CONICET, Chacabuco 145, 4000, San Miguel de Tucumán, Argentina; Universidad del Norte Santo Tomás de Aquino (UNSTA), Av. Presidente Perón 2085, Yerba Buena, Tucumán, Argentina.
| |
Collapse
|
40
|
Laroute V, Yasaro C, Narin W, Mazzoli R, Pessione E, Cocaign-Bousquet M, Loubière P. GABA Production in Lactococcus lactis Is Enhanced by Arginine and Co-addition of Malate. Front Microbiol 2016; 7:1050. [PMID: 27458444 PMCID: PMC4934118 DOI: 10.3389/fmicb.2016.01050] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/22/2016] [Indexed: 11/13/2022] Open
Abstract
Lactococcus lactis NCDO 2118 was previously selected for its ability to decarboxylate glutamate to γ-aminobutyric acid (GABA), an interesting nutritional supplement able to improve mood and relaxation. Amino acid decarboxylation is generally considered as among the biochemical systems allowing lactic acid bacteria to counteracting acidic stress and obtaining metabolic energy. These strategies also include arginine deiminase pathway and malolactic fermentation but little is known about their possible interactions of with GABA production. In the present study, the effects of glutamate, arginine, and malate (i.e., the substrates of these acid-resistance pathways) on L. lactis NCDO 2118 growth and GABA production performances were analyzed. Both malate and arginine supplementation resulted in an efficient reduction of acidity and improvement of bacterial biomass compared to glutamate supplementation. Glutamate decarboxylation was limited to narrow environmental conditions (pH < 5.1) and physiological state (stationary phase). However, some conditions were able to improve GABA production or activate glutamate decarboxylation system even outside of this compass. Arginine clearly stimulated glutamate decarboxylation: the highest GABA production (8.6 mM) was observed in cultures supplemented with both arginine and glutamate. The simultaneous addition of arginine, malate, and glutamate enabled earlier GABA production (i.e., during exponential growth) at relatively high pH (6.5). As far as we know, no previous study has reported GABA production in such conditions. Although further studies are needed to understand the molecular basis of these phenomena, these results represent important keys suitable of application in GABA production processes.
Collapse
Affiliation(s)
- Valérie Laroute
- Laboratoire d’Ingénierie des Systéms Biologiques et des Procédés, Université de Toulouse, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Institut National des Sciences Appliquées, ToulouseFrance
| | - Chonthicha Yasaro
- Laboratoire d’Ingénierie des Systéms Biologiques et des Procédés, Université de Toulouse, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Institut National des Sciences Appliquées, ToulouseFrance
| | - Waranya Narin
- Laboratoire d’Ingénierie des Systéms Biologiques et des Procédés, Université de Toulouse, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Institut National des Sciences Appliquées, ToulouseFrance
| | - Roberto Mazzoli
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di TorinoTurin, Italy
| | - Enrica Pessione
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di TorinoTurin, Italy
| | - Muriel Cocaign-Bousquet
- Laboratoire d’Ingénierie des Systéms Biologiques et des Procédés, Université de Toulouse, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Institut National des Sciences Appliquées, ToulouseFrance
| | - Pascal Loubière
- Laboratoire d’Ingénierie des Systéms Biologiques et des Procédés, Université de Toulouse, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Institut National des Sciences Appliquées, ToulouseFrance
| |
Collapse
|
41
|
Genotypic diversity of Lactobacillus sanfranciscensis strains isolated from French organic sourdoughs. Int J Food Microbiol 2016; 226:13-9. [DOI: 10.1016/j.ijfoodmicro.2016.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 03/02/2016] [Accepted: 03/11/2016] [Indexed: 11/20/2022]
|
42
|
Patil MD, Shinde KD, Patel G, Chisti Y, Banerjee UC. Use of response surface method for maximizing the production of arginine deiminase by Pseudomonas putida. ACTA ACUST UNITED AC 2016; 10:29-37. [PMID: 28352521 PMCID: PMC5070923 DOI: 10.1016/j.btre.2016.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/23/2016] [Accepted: 03/04/2016] [Indexed: 12/18/2022]
Abstract
First report on Arginine deiminase production from
Pseudomonas putida using RSM. Optimum conditions for ADI production were established in
shake flasks. ADI production was assessed in a 14 L
bioreactor under the optimized conditions. Repressor effect of aeration on ADI production was
observed in 14 L bioreactor. Substantial improvement of 4.5-folds in ADI titre was
achieved.
Statistically designed experiments were used to optimize
the production of arginine deiminase (ADI) by Pseudomonas
putida KT2440 in batch culture. A Plackett-Burman design involving
eleven factors showed that ADI production was most influenced by the initial pH and
the initial concentrations of glucose and yeast extract. A central composite
experimental design showed that the optimal values of these factors were 8.0,
10 g/L and 12.5 g/L, respectively. The other
components of the optimal culture medium were bacto peptone 7.5 g/L, Triton X–100 0.30% (v/v), and arginine 3 g/L, for a culture
temperature of 25 °C. Compared with the basal medium, the ADI
activity in the optimized medium had nearly 4.5-fold increase (4.31 U/mL). The optimized medium was then used for a further study of ADI production in
a 14 L stirred tank bioreactor. The agitation speed and the
aeration rates were varied to determine suitable values of these
variables.
Collapse
Affiliation(s)
- Mahesh D Patil
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062 Punjab, India
| | - Kiran D Shinde
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062 Punjab, India
| | - Gopal Patel
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062 Punjab, India
| | - Yusuf Chisti
- School of Engineering, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| | - Uttam Chand Banerjee
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062 Punjab, India
| |
Collapse
|
43
|
Kaur B, Kaur R. Purification of a dimeric arginine deiminase from Enterococcus faecium GR7 and study of its anti-cancerous activity. Protein Expr Purif 2015; 125:53-60. [PMID: 26363115 DOI: 10.1016/j.pep.2015.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/07/2015] [Accepted: 09/08/2015] [Indexed: 10/23/2022]
Abstract
The arginine deiminase (ADI, E.C 3.5.3.6) - a key enzyme of ADI pathway of Enterococcus faecium GR7 was purified to homogeneity. A sequential purification strategy involving ammonium sulfate fractionation, molecular sieve followed by Sephadex G-100 gel filtration was applied to the crude culture filtrate to obtain a pure enzyme preparation. The enzyme was purified with a fold of 16.92 and showed a final specific activity of 76.65IU/mg with a 49.17% yield. The dimeric ADI has a molecular mass of about 94,364.929Da, and comprises of hetrodimers of 49.1kDa and 46.5kDa as determined by MALDI-TOF and PAGE analysis. To assess anti-cancerous activity of ADI by MTT assay was carried out against cancer cell lines (MCF-7, Sp2/0-Ag14 and Hep-G2). Purified ADI exhibited the most profound antiproliferative activity against Hep-G2 cells; with half-maximal inhibitory concentration (IC50) of 1.95μg/ml. Purified ADI from E. faecium GR7 was observed to induce apoptosis in the Hep-G2 cells by DNA fragmentation assay. Our findings suggest the possibility of a future use of ADI from E. faecium GR7 as a potential anticancer drug.
Collapse
Affiliation(s)
- Baljinder Kaur
- Department of Biotechnology, Punjabi University, Patiala 147002, Punjab, India.
| | - Rajinder Kaur
- Department of Biotechnology, Punjabi University, Patiala 147002, Punjab, India
| |
Collapse
|
44
|
Detection of acid and hop shock induced responses in beer spoiling Lactobacillus brevis by MALDI-TOF MS. Food Microbiol 2015; 46:501-506. [DOI: 10.1016/j.fm.2014.09.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 08/27/2014] [Accepted: 09/28/2014] [Indexed: 11/24/2022]
|
45
|
Nadaroglu H, Adiguzel A, Adiguzel G. Purification and characterisation of β-mannanase fromLactobacillus plantarum(M24) and its applications in some fruit juices. Int J Food Sci Technol 2015. [DOI: 10.1111/ijfs.12739] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hayrunnisa Nadaroglu
- Department of Food Technology; Erzurum Vocational Training School; Ataturk University; 25240 Erzurum Turkey
| | - Ahmet Adiguzel
- Department of Molecular Biology and Genetics; Faculty of Science; Ataturk University; 25240 Erzurum Turkey
| | - Gulsah Adiguzel
- Department of Food Hygiene and Technology; Faculty of Veterinary; Ataturk University; 25240 Erzurum Turkey
| |
Collapse
|
46
|
Lynch KM, Lucid A, Arendt EK, Sleator RD, Lucey B, Coffey A. Genomics of Weissella cibaria with an examination of its metabolic traits. MICROBIOLOGY-SGM 2015; 161:914-30. [PMID: 25678547 DOI: 10.1099/mic.0.000053] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/06/2015] [Indexed: 12/17/2022]
Abstract
Weissella is a genus of lactic acid bacteria (LAB) consisting of species formerly included in the Leuconostoc paramesenteroides group. Similar to other LAB, they are commonly found in fermented foods but have also been isolated from environmental and human samples. Currently there are 20 recognized species. Herein, three Weissella cibaria genomes were sequenced using Illumia Mi-Seq and Roche 454 technologies. Annotation was performed using the Prokka and JGI IMG pipelines. A thorough analysis of the genomics of the W. cibaria strains was performed, in addition to brief comparative analyses of the genus Weissella as a whole. Genomic sequence data from the newly sequenced W. cibaria strains and data available in GenBank for other Weissella strains was used (n = 10; four Weissella cibaria, one Weissella ceti, one Weissella confusa, one Weissella halotolerans, two Weissella koreensis and one Weissella paramesenteroides). The genomes had sizes varying from 1.3 to 2.4 Mb. DNA G+C contents ranged from 35 to 45 mol%. The core- and pan-proteome at genus and species levels were determined. The genus pan-proteome was found to comprise 4712 proteins. Analysis of the four W. cibaria genomes indicated that the core-proteome, consisting of 729 proteins, constitutes 69 % of the species pan-proteome. This large core-set may explain the divergent niches in which this species has been found. In W. cibaria, in addition to a number of phosphotransferase systems conferring the ability to assimilate plant-associated polysaccharides, an extensive proteolytic system was identified.
Collapse
Affiliation(s)
- Kieran M Lynch
- Department of Biological Sciences, Cork Institute of Technology, Rossa Avenue, Bishopstown, Cork, Ireland
| | - Alan Lucid
- Department of Biological Sciences, Cork Institute of Technology, Rossa Avenue, Bishopstown, Cork, Ireland
| | - Elke K Arendt
- School of Food and Nutritional Sciences, University College Cork, Ireland
| | - Roy D Sleator
- Department of Biological Sciences, Cork Institute of Technology, Rossa Avenue, Bishopstown, Cork, Ireland
| | - Brigid Lucey
- Department of Biological Sciences, Cork Institute of Technology, Rossa Avenue, Bishopstown, Cork, Ireland
| | - Aidan Coffey
- Department of Biological Sciences, Cork Institute of Technology, Rossa Avenue, Bishopstown, Cork, Ireland
| |
Collapse
|
47
|
El-Sayed ASA, Hassan MN, Nada HMS. Purification, immobilization, and biochemical characterization of l-arginine deiminase from thermophilic Aspergillus fumigatus KJ434941: anticancer activity in vitro. Biotechnol Prog 2015; 31:396-405. [PMID: 25582958 DOI: 10.1002/btpr.2045] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/31/2014] [Indexed: 12/16/2022]
Abstract
l-Arginine deiminase (ADI) has a powerful anticancer activity against various tumors, via arginine depletion, arresting the cell cycle at G1 phase. However, the current clinically tried bacterial ADI displayed a higher antigenicity and lower thermal stability. Thus, our objective was to purify and characterize this enzyme from thermophilic fungi, to explore its catalytic and antigenic properties for therapeutic uses. ADI was purified from thermophilic Aspergillus fumigatus KJ434941 to its electrophoretic homogeneity by 5.1-fold, with molecular subunit 50 kDa. The purified ADI was PEGylated and covalently immobilized on dextran to explore its catalytic properties. The specific activity of free ADI, PEG-ADI, and Dex-ADI was 26.7, 21.5, and 18.0 U/mg, respectively. At 50°C, PEG-ADI displays twofold resistance to thermal denaturation (t1/2 13.9 h), than free ADI (t1/2 6.9 h), while at 70°C, the thermal stability of PEG-ADI was increased by 1.7-fold, with similar stability to Dex-ADI with the free one. Kinetically, free ADI had the higher catalytic affinity to arginine, followed by PEG-ADI and Dex-ADI. Upon proteolysis for 30 min, the residual activity of native ADI, PEG-ADI, and Dex-AD was 8.0, 32.0, and 20.0% for proteinase K and 10.0, 52.0, and 90.0% for acid protease, respectively. The anticancer activity of the ADIs was assessed against HCT, HEP-G2, and MCF7, in vitro. The free and PEG-ADI exhibits a similar cytotoxic efficacy for the tested cells, lower than Dex-ADI. The free ADI had IC50 value 22.0, 16.6, and 13.9 U/mL, while Dex-ADI had 3.98, 5.18, and 4.43 U/mL for HCT, MCF7, and HEPG-2, respectively. The in vitro anticancer activity of ADI against HCT, MCF7, and HEPG-2 was increased by five-, three-, and threefold upon covalent modification by dextran. The biochemical and hematological parameters of the experimented animals were not affected by ADIs dosing, with no signs of anti-ADI immunoglobulins in vivo. The in vivo half-life time of free ADI, PEG-ADI, and Dex-ADI was 29.7, 91.1, 59.6 h, respectively. The present findings explored a novel thermostable, less antigenic ADI from thermophilic A. fumigatus, with further molecular and crystallographic analyses, this enzyme will be a powerful candidate for clinical trials.
Collapse
|
48
|
Kaur B, Kaur R. Isolation, identification and genetic organization of the ADI operon in Enterococcus faecium GR7. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-014-0981-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
49
|
De Angelis M, Bottacini F, Fosso B, Kelleher P, Calasso M, Di Cagno R, Ventura M, Picardi E, van Sinderen D, Gobbetti M. Lactobacillus rossiae, a vitamin B12 producer, represents a metabolically versatile species within the Genus Lactobacillus. PLoS One 2014; 9:e107232. [PMID: 25264826 PMCID: PMC4180280 DOI: 10.1371/journal.pone.0107232] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 08/06/2014] [Indexed: 01/21/2023] Open
Abstract
Lactobacillus rossiae is an obligately hetero-fermentative lactic acid bacterium, which can be isolated from a broad range of environments including sourdoughs, vegetables, fermented meat and flour, as well as the gastrointestinal tract of both humans and animals. In order to unravel distinctive genomic features of this particular species and investigate the phylogenetic positioning within the genus Lactobacillus, comparative genomics and phylogenomic approaches, followed by functional analyses were performed on L. rossiae DSM 15814T, showing how this type strain not only occupies an independent phylogenetic branch, but also possesses genomic features underscoring its biotechnological potential. This strain in fact represents one of a small number of bacteria known to encode a complete de novo biosynthetic pathway of vitamin B12 (in addition to other B vitamins such as folate and riboflavin). In addition, it possesses the capacity to utilize an extensive set of carbon sources, a characteristic that may contribute to environmental adaptation, perhaps enabling the strain's ability to populate different niches.
Collapse
Affiliation(s)
- Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | | | - Bruno Fosso
- Department of Bioscience, Biotechnology and Biopharmaceutical, University of Bari Aldo Moro, Bari, Italy
| | - Philip Kelleher
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Maria Calasso
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Raffaella Di Cagno
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma, Parma, Italy
| | - Ernesto Picardi
- Department of Bioscience, Biotechnology and Biopharmaceutical, University of Bari Aldo Moro, Bari, Italy; Institute of Biomembranes and Bioenergetics (IBBE), CNR, Bari, Italy; National Institute of Biostructures and Biosystems (INBB), Rome, Italy
| | - Douwe van Sinderen
- Department of Microbiology, University College Cork, Cork, Ireland; Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Marco Gobbetti
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
50
|
Arginine deiminase in Staphylococcus epidermidis functions to augment biofilm maturation through pH homeostasis. J Bacteriol 2014; 196:2277-89. [PMID: 24727224 DOI: 10.1128/jb.00051-14] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Allelic replacement mutants were constructed within arginine deiminase (arcA1 and arcA2) to assess the function of the arginine deiminase (ADI) pathway in organic acid resistance and biofilm formation of Staphylococcus epidermidis 1457. A growth-dependent acidification assay (pH ∼5.0 to ∼5.2) determined that strain 1457 devoid of arginine deiminase activity (1457 ΔADI) was significantly less viable than the wild type following depletion of glucose and in the presence of arginine. However, no difference in viability was noted for individual 1457 ΔarcA1 (native) or ΔarcA2 (arginine catabolic mobile element [ACME]-derived) mutants, suggesting that the native and ACME-derived ADIs are compensatory in S. epidermidis. Furthermore, flow cytometry and electron paramagnetic resonance spectroscopy results suggested that organic acid stress resulted in oxidative stress that could be partially rescued by the iron chelator dipyridyl. Collectively, these results suggest that formation of hydroxyl radicals is partially responsible for cell death via organic acid stress and that ADI-derived ammonia functions to counteract this acid stress. Finally, static biofilm assays determined that viability, ammonia synthesis, and pH were reduced in strain 1457 ΔADI following 120 h of growth in comparison to strain 1457 and the arcA1 and arcA2 single mutants. It is hypothesized that ammonia synthesis via the ADI pathway is important to reduce pH stress in specific microniches that contain high concentrations of organic acids.
Collapse
|