1
|
Salvà-Serra F, Pérez-Pantoja D, Donoso RA, Jaén-Luchoro D, Fernández-Juárez V, Engström-Jakobsson H, Moore ERB, Lalucat J, Bennasar-Figueras A. Comparative genomics of Stutzerimonas balearica ( Pseudomonas balearica): diversity, habitats, and biodegradation of aromatic compounds. Front Microbiol 2023; 14:1159176. [PMID: 37275147 PMCID: PMC10234333 DOI: 10.3389/fmicb.2023.1159176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/13/2023] [Indexed: 06/07/2023] Open
Abstract
Stutzerimonas balearica (Pseudomonas balearica) has been found principally in oil-polluted environments. The capability of S. balearica to thrive from the degradation of pollutant compounds makes it a species of interest for potential bioremediation applications. However, little has been reported about the diversity of S. balearica. In this study, genome sequences of S. balearica strains from different origins were analyzed, revealing that it is a diverse species with an open pan-genome that will continue revealing new genes and functionalities as the genomes of more strains are sequenced. The nucleotide signatures and intra- and inter-species variation of the 16S rRNA genes of S. balearica were reevaluated. A strategy of screening 16S rRNA gene sequences in public databases enabled the detection of 158 additional strains, of which only 23% were described as S. balearica. The species was detected from a wide range of environments, although mostly from aquatic and polluted environments, predominantly related to petroleum oil. Genomic and phenotypic analyses confirmed that S. balearica possesses varied inherent capabilities for aromatic compounds degradation. This study increases the knowledge of the biology and diversity of S. balearica and will serve as a basis for future work with the species.
Collapse
Affiliation(s)
- Francisco Salvà-Serra
- Microbiology, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Danilo Pérez-Pantoja
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Santiago, Chile
| | - Raúl A. Donoso
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Daniel Jaén-Luchoro
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Víctor Fernández-Juárez
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Hedvig Engström-Jakobsson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Edward R. B. Moore
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jorge Lalucat
- Microbiology, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Antoni Bennasar-Figueras
- Microbiology, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
| |
Collapse
|
2
|
Neske A, Ruiz Hidalgo J, Cabedo N, Cortes D. Acetogenins from Annonaceae family. Their potential biological applications. PHYTOCHEMISTRY 2020; 174:112332. [PMID: 32200068 DOI: 10.1016/j.phytochem.2020.112332] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 05/14/2023]
Abstract
The aim of this contribution has been to continue with the knowledge about newly isolated acetogenins from Annonaceae family for the last fifteen years. This review will report classification, extraction, isolation, elucidation of the structure, biological activities and mechanism of action of such interesting natural products. In fact, out of the 532 compounds reviewed, 115 previously non-described annonaceous acetogenins have been added to the list of isolated compounds from 2005 to May 2019.
Collapse
Affiliation(s)
- Adriana Neske
- Departamento de Química Orgánica, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, 4000, San Miguel de Tucumán, Tucumán, Argentina.
| | - José Ruiz Hidalgo
- Departamento de Química Orgánica, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, 4000, San Miguel de Tucumán, Tucumán, Argentina
| | - Nuria Cabedo
- Department of Farmacología, Facultad de Farmacia, Universidad de Valencia, 46100, Burjassot, Valencia, Spain; Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain
| | - Diego Cortes
- Department of Farmacología, Facultad de Farmacia, Universidad de Valencia, 46100, Burjassot, Valencia, Spain.
| |
Collapse
|
3
|
Zhuang M, Sanganyado E, Xu L, Zhu J, Li P, Liu W. High Throughput Sediment DNA Sequencing Reveals Azo Dye Degrading Bacteria Inhabit Nearshore Sediments. Microorganisms 2020; 8:microorganisms8020233. [PMID: 32050437 PMCID: PMC7074817 DOI: 10.3390/microorganisms8020233] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 11/24/2022] Open
Abstract
Estuaries and coastal environments are often regarded as a critical resource for the bioremediation of organic pollutants such as azo dyes due to their high abundance and diversity of extremophiles. Bioremediation through the activities of azoreductase, laccase, and other associated enzymes plays a critical role in the removal of azo dyes in built and natural environments. However, little is known about the biodegradation genes and azo dye degradation genes residing in sediments from coastal and estuarine environments. In this study, high-throughput sequencing (16S rRNA) of sediment DNA was used to explore the distribution of azo-dye degrading bacteria and their functional genes in estuaries and coastal environments. Unlike laccase genes, azoreductase (azoR), and naphthalene degrading genes were ubiquitous in the coastal and estuarine environments. The relative abundances of most functional genes were higher in the summer compared to winter at locations proximal to the mouths of the Hanjiang River and its distributaries. These results suggested inland river discharges influenced the occurrence and abundance of azo dye degrading genes in the nearshore environments. Furthermore, the azoR genes had a significant negative relationship with total organic carbon, Hg, and Cr (p < 0.05). This study provides critical insights into the biodegradation potential of indigenous microbial communities in nearshore environments and the influence of environmental factors on microbial structure, composition, and function which is essential for the development of technologies for bioremediation in azo dye contaminated sites.
Collapse
Affiliation(s)
- Mei Zhuang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou 515063, China; (M.Z.); (L.X.); (P.L.)
| | - Edmond Sanganyado
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou 515063, China; (M.Z.); (L.X.); (P.L.)
- Correspondence: (E.S.); (W.L.)
| | - Liang Xu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou 515063, China; (M.Z.); (L.X.); (P.L.)
| | - Jianming Zhu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China;
| | - Ping Li
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou 515063, China; (M.Z.); (L.X.); (P.L.)
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou 515063, China; (M.Z.); (L.X.); (P.L.)
- Correspondence: (E.S.); (W.L.)
| |
Collapse
|
4
|
Chikere CB, Fenibo EO. Distribution of PAH-ring hydroxylating dioxygenase genes in bacteria isolated from two illegal oil refining sites in the Niger Delta, Nigeria. SCIENTIFIC AFRICAN 2018. [DOI: 10.1016/j.sciaf.2018.e00003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
5
|
Petroleum contamination and bioaugmentation in bacterial rhizosphere communities from Avicennia schaueriana. Braz J Microbiol 2018; 49:757-769. [PMID: 29866608 PMCID: PMC6175736 DOI: 10.1016/j.bjm.2018.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 02/01/2018] [Accepted: 02/14/2018] [Indexed: 11/23/2022] Open
Abstract
Anthropogenic activity, such as accidental oil spills, are typical sources of urban mangrove pollution that may affect mangrove bacterial communities as well as their mobile genetic elements. To evaluate remediation strategies, we followed over the time the effects of a petroleum hydrocarbon degrading consortium inoculated on mangrove tree Avicennia schaueriana against artificial petroleum contamination in a phytoremediation greenhouse experiment. Interestingly, despite plant protection due to the inoculation, denaturing gradient gel electrophoresis of the bacterial 16S rRNA gene fragments amplified from the total community DNA indicated that the different treatments did not significantly affect the bacterial community composition. However, while the bacterial community was rather stable, pronounced shifts were observed in the abundance of bacteria carrying plasmids. A PCR-Southern blot hybridization analysis indicated an increase in the abundance of IncP-9 catabolic plasmids. Denaturing gradient gel electrophoresis of naphthalene dioxygenase (ndo) genes amplified from cDNA (RNA) indicated the dominance of a specific ndo gene in the inoculated petroleum amendment treatment. The petroleum hydrocarbon degrading consortium characterization indicated the prevalence of bacteria assigned to Pseudomonas spp., Comamonas spp. and Ochrobactrum spp. IncP-9 plasmids were detected for the first time in Comamonas sp. and Ochrobactrum spp., which is a novelty of this study.
Collapse
|
6
|
Izmalkova TY, Gafarov AB, Sazonova OI, Sokolov SL, Kosheleva IA, Boronin AM. Diversity of Oil-Degrading Microorganisms in the Gulf of Finland (Baltic Sea) in Spring and in Summer. Microbiology (Reading) 2018. [DOI: 10.1134/s0026261718020054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
7
|
Omrani R, Spini G, Puglisi E, Saidane D. Modulation of microbial consortia enriched from different polluted environments during petroleum biodegradation. Biodegradation 2018; 29:187-209. [DOI: 10.1007/s10532-018-9823-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/23/2018] [Indexed: 02/06/2023]
|
8
|
Wang C, Guo G, Huang Y, Hao H, Wang H. Salt Adaptation and Evolutionary Implication of a Nah-related PAHs Dioxygenase cloned from a Halophilic Phenanthrene Degrading Consortium. Sci Rep 2017; 7:12525. [PMID: 28970580 PMCID: PMC5624874 DOI: 10.1038/s41598-017-12979-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 09/14/2017] [Indexed: 12/05/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) pollutions often occur in marine and other saline environment, largely due to anthropogenic activities. However, study of the PAHs-degradation genotypes in halophiles is limited, compared with the mesophilic terrestrial PAHs degraders. In this study, a bacterial consortium (CY-1) was enriched from saline soil contaminated with crude oil using phenanthrene as the sole carbon source at 10% salinity. CY-1 was dominated by the moderate halophilic Marinobacter species, and its dominant PAHs ring-hydroxylating dioxygenase (RHD) genotypes shared high identity to the classic nah-related RHDs found in the mesophilic species. Further cloning of a 5.6-kb gene cluster from CY-1 unveiled the existence of a new type of PAHs degradation gene cluster (hpah), which most probably evolves from the nah-related gene clusters. Expression of the RHD in this gene cluster in E. coli lead to the discovery of its prominent salt-tolerant properties compared with two RHDs from mesophiles. As a common structural feature shared by all halophilic and halotolerant enzymes, higher abundance of acidic amino acids was also found on the surface of this RHD than its closest nah-related alleles. These results suggest evolution towards saline adaptation occurred after horizontal transfer of this hpah gene cluster into the halophiles.
Collapse
Affiliation(s)
- Chongyang Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Guang Guo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.,School of Environmental Engineering, Nanjing Institute of Technology, Nanjing, 211167, China
| | - Yong Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Han Hao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Hui Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
9
|
Costa DMA, Costa MAF, Guimarães SL, Coitinho JB, Gómez SV, Brandão TADS, Nagem RAP. A combined approach for enhancing the stability of recombinant cis-dihydrodiol naphthalene dehydrogenase from Pseudomonas putida G7 allowed for the structural and kinetic characterization of the enzyme. Protein Expr Purif 2017; 132:50-59. [PMID: 28089880 DOI: 10.1016/j.pep.2017.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/09/2016] [Accepted: 01/08/2017] [Indexed: 11/29/2022]
Abstract
The second enzyme of the naphthalene degradation pathway in Pseudomonas putida G7 is NahB, a dehydrogenase that converts cis-1,2-dihydroxy-1,2-dihydronaphthalene to 1,2-dihydroxynaphthalene. We report the cloning, optimization of expression, purification, kinetic studies and preliminary structural characterization of the recombinant NahB. The nahB gene was cloned into a T7 expression vector and the enzyme was overexpressed in Escherichia coli Rosetta (DE3) as an N-terminal hexa-histidine-tagged protein (6xHis-NahB). Using methods of enhancing protein stability in solution, we tested different expression, cell lysis, and purification protocols with and without ligand supplementation. The protein stability was evaluated by dynamic light scattering and circular dichroism spectroscopy assays. Best-derived protocols (expression at 18 °C, cell lysis with homogenizer, and three purification steps) were used to produce 20 mg of homogeneous 6xHis-NahB per liter of culture. The secondary and quaternary structures of 6xHis-NahB were assessed by circular dichroism and size-exclusion chromatography experiments, respectively. The enzyme was NAD+-dependent and active at pH 7.0 and 9.4 for the oxidation of the substrate. The Michaelis-Menten parameters determined at pH 7.0 and 25 °C for the substrate and cofactor, presented respective Km values of 6 and 350 μM, and a kcat value of 8.3 s-1. Furthermore, we identified conditions for the crystallization of 6xHis-NahB. X-ray diffraction data were collected from a single 6xHis-NahB crystal which diffracted to 2.21 Å. The crystal belongs to space group I222, with unit-cell parameters a = 63.62, b = 69.50, and c = 117.47 Å. The tertiary structure of 6xHis-NahB was determined using the molecular replacement method. Further structural refinement is currently underway.
Collapse
Affiliation(s)
- Débora Maria Abrantes Costa
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Mariana Amalia Figueiredo Costa
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Samuel Leite Guimarães
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Juliana Barbosa Coitinho
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Stefanya Velásquez Gómez
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Tiago Antônio da Silva Brandão
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Ronaldo Alves Pinto Nagem
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, CEP 31270-901, Brazil.
| |
Collapse
|
10
|
Pathak A, Chauhan A, Blom J, Indest KJ, Jung CM, Stothard P, Bera G, Green SJ, Ogram A. Comparative Genomics and Metabolic Analysis Reveals Peculiar Characteristics of Rhodococcus opacus Strain M213 Particularly for Naphthalene Degradation. PLoS One 2016; 11:e0161032. [PMID: 27532207 PMCID: PMC4988695 DOI: 10.1371/journal.pone.0161032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 07/27/2016] [Indexed: 12/12/2022] Open
Abstract
The genome of Rhodococcus opacus strain M213, isolated from a fuel-oil contaminated soil, was sequenced and annotated which revealed a genome size of 9,194,165 bp encoding 8680 putative genes and a G+C content of 66.72%. Among the protein coding genes, 71.77% were annotated as clusters of orthologous groups of proteins (COGs); 55% of the COGs were present as paralog clusters. Pulsed field gel electrophoresis (PFGE) analysis of M213 revealed the presence of three different sized replicons- a circular chromosome and two megaplasmids (pNUO1 and pNUO2) estimated to be of 750Kb 350Kb in size, respectively. Conversely, using an alternative approach of optical mapping, the plasmid replicons appeared as a circular ~1.2 Mb megaplasmid and a linear, ~0.7 Mb megaplasmid. Genome-wide comparative analysis of M213 with a cohort of sequenced Rhodococcus species revealed low syntenic affiliation with other R. opacus species including strains B4 and PD630. Conversely, a closer affiliation of M213, at the functional (COG) level, was observed with the catabolically versatile R. jostii strain RHA1 and other Rhodococcii such as R. wratislaviensis strain IFP 2016, R. imtechensis strain RKJ300, Rhodococcus sp. strain JVH1, and Rhodococcus sp. strain DK17, respectively. An in-depth, genome-wide comparison between these functional relatives revealed 971 unique genes in M213 representing 11% of its total genome; many associating with catabolic functions. Of major interest was the identification of as many as 154 genomic islands (GEIs), many with duplicated catabolic genes, in particular for PAHs; a trait that was confirmed by PCR-based identification of naphthalene dioxygenase (NDO) as a representative gene, across PFGE-resolved replicons of strain M213. Interestingly, several plasmid/GEI-encoded genes, that likely participate in degrading naphthalene (NAP) via a peculiar pathway, were also identified in strain M213 using a combination of bioinformatics, metabolic analysis and gene expression measurements of selected catabolic genes by RT-PCR. Taken together, this study provides a comprehensive understanding of the genome plasticity and ecological competitiveness of strain M213 likely facilitated by horizontal gene transfer (HGT), bacteriophage attacks and genomic reshuffling- aspects that continue to be understudied and thus poorly understood, in particular for the soil-borne Rhodococcii.
Collapse
Affiliation(s)
- Ashish Pathak
- School of the Environment, Florida A&M University, Tallahassee, Florida, United States of America
| | - Ashvini Chauhan
- School of the Environment, Florida A&M University, Tallahassee, Florida, United States of America
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Karl J. Indest
- Environmental Processes Branch, United States Army Engineer Research and Development Center, Vicksburg, Mississippi, United States of America
| | - Carina M. Jung
- Environmental Processes Branch, United States Army Engineer Research and Development Center, Vicksburg, Mississippi, United States of America
| | - Paul Stothard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Gopal Bera
- Geochemical and Environmental Research Group, Texas A&M University, College Station, Texas, United States of America
| | - Stefan J. Green
- DNA Services Facility, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Andrew Ogram
- Soil and Water Science Department, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
11
|
Tauler M, Vila J, Nieto JM, Grifoll M. Key high molecular weight PAH-degrading bacteria in a soil consortium enriched using a sand-in-liquid microcosm system. Appl Microbiol Biotechnol 2015; 100:3321-36. [DOI: 10.1007/s00253-015-7195-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/19/2015] [Accepted: 11/22/2015] [Indexed: 12/31/2022]
|
12
|
Yang Y, Wang J, Liao J, Xie S, Huang Y. Distribution of naphthalene dioxygenase genes in crude oil-contaminated soils. MICROBIAL ECOLOGY 2014; 68:785-793. [PMID: 25008984 DOI: 10.1007/s00248-014-0457-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 06/27/2014] [Indexed: 06/03/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are one of the major pollutants in soils in oil exploring areas. Biodegradation is the major process for natural elimination of PAHs from contaminated soils. Functional genes can be used as biomarkers to assess the biodegradation potential of indigenous microbial populations. However, little is known about the distribution of PAH-degrading genes in the environment. The links between environmental parameters and the distribution of PAH metabolic genes remain essentially unclear. The present study investigated the abundance and diversity of naphthalene dioxygenase genes in the oil-contaminated soils in the Shengli Oil Field (China). Spatial variations in the density and diversity of naphthalene dioxygenase genes occurred in this area. Four different sequence genotypes were observed in the contaminated soils, with the predominance of novel PAH-degrading genes. Pearson's correlation analysis illustrated that gene abundance had positive correlations with the levels of total organic carbon and aromatic hydrocarbons, while gene diversity showed a negative correlation with the level of polar aromatics. This work could provide some new insights toward the distribution of PAH metabolic genes and PAH biodegradation potential in oil-contaminated ecosystems.
Collapse
Affiliation(s)
- Yuyin Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | | | | | | | | |
Collapse
|
13
|
Hesham AEL, Mawad AMM, Mostafa YM, Shoreit A. Study of enhancement and inhibition phenomena and genes relating to degradation of petroleum polycyclic aromatic hydrocarbons in isolated bacteria. Microbiology (Reading) 2014. [DOI: 10.1134/s0026261714050129] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
14
|
Yang Y, Wang J, Liao J, Xie S, Huang Y. Abundance and diversity of soil petroleum hydrocarbon-degrading microbial communities in oil exploring areas. Appl Microbiol Biotechnol 2014; 99:1935-46. [PMID: 25236802 DOI: 10.1007/s00253-014-6074-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 01/23/2023]
Abstract
Alkanes and polycyclic aromatic hydrocarbons (PAHs) are the commonly detected petroleum hydrocarbon contaminants in soils in oil exploring areas. Hydrocarbon-degrading genes are useful biomarks for estimation of the bioremediation potential of contaminated sites. However, the links between environmental factors and the distribution of alkane and PAH metabolic genes still remain largely unclear. The present study investigated the abundances and diversities of soil n-alkane and PAH-degrading bacterial communities targeting both alkB and nah genes in two oil exploring areas at different geographic regions. A large variation in the abundances and diversities of alkB and nah genes occurred in the studied soil samples. Various environmental variables regulated the spatial distribution of soil alkane and PAH metabolic genes, dependent on geographic location. The soil alkane-degrading bacterial communities in oil exploring areas mainly consisted of Pedobacter, Mycobacterium, and unknown alkB-harboring microorganisms. Moreover, the novel PAH-degraders predominated in nah gene clone libraries from soils of the two oil exploring areas. This work could provide some new insights towards the distribution of hydrocarbon-degrading microorganisms and their biodegradation potential in soil ecosystems.
Collapse
Affiliation(s)
- Yuyin Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (Peking University), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | | | | | | | | |
Collapse
|
15
|
Izmalkova TY, Sazonova OI, Kosheleva IA, Boronin AM. Phylogenetic analysis of the genes for naphthalene and phenanthrene degradation in Burkholderia sp. strains. RUSS J GENET+ 2013. [DOI: 10.1134/s1022795413060033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Panov AV, Esikova TZ, Sokolov SL, Kosheleva IA, Boronin AM. Influence of soil pollution on the composition of a microbial community. Microbiology (Reading) 2013. [DOI: 10.1134/s0026261713010116] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
17
|
Panov AV, Volkova OV, Puntus IF, Esikova TZ, Kosheleva IA, Boronin AM. scpA, a new salicylate hydroxylase gene localized in salicylate/caprolactam degradation plasmids. Mol Biol 2013. [DOI: 10.1134/s0026893313010147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
The organization of naphthalene degradation genes in Pseudomonas putida strain AK5. Res Microbiol 2012; 164:244-53. [PMID: 23266498 DOI: 10.1016/j.resmic.2012.12.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 12/07/2012] [Indexed: 11/21/2022]
Abstract
The Pseudomonas putida АК5 that was isolated from the slime pit of a Nizhnekamsk oil chemical factory can metabolize naphthalene via salicylate and gentisate. Catabolic genes are localized on non-conjugative IncP-7 plasmid pAK5 of about 115 kb in size. The "classical"nah-1 operon and the novel sgp-operon (salicylate-gentisate pathway) are both involved in naphthalene degradation by P. putida АК5, that was first described for Pseudomonas. The sgp-operon includes six open reading frames (ORFs) (sgpAIKGHB). The four ORFs code for the entire salicylate 5-hydroxylase - oxidoreductase component (sgpA), large and small subunits of the oxigenase component (sgpG and sgpH) and 2Fe-2S ferredoxin (sgpB). Genes for gentisate 1, 2-dioxygenase (sgpI) and fumarylpyruvate hydrolase (sgpK) are located in salicylate 5-hydroxylase genes clustering between sgpA and sgpG. The putative positive regulator for the sgp-operon (sgpR) was found upstream of the sgpA gene and oriented in the opposite direction from sgpA. The putative maleylacetoacetate isomerase gene is located apart, directly downstream from the sgp-operon. The sgp-operon organization and phylogenetic analysis of deduced amino acid sequences indicate that this operon has a mosaic structure according to the modular theory of the evolution of modern catabolic pathways.
Collapse
|
19
|
BAQUIRAN JEANPAUL, THATER BRIAN, SONGCO KRISNA, CROWLEY DAVIDE. Characterization of Culturable PAH and BTEX Degrading Bacteria from Heavy Oil of the Rancho La Brea Tarpits. Polycycl Aromat Compd 2012. [DOI: 10.1080/10406638.2011.651678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Plotnikova EG, Yastrebova OV, Anan’ina LN, Dorofeeva LV, Lysanskaya VY, Demakov VA. Halotolerant bacteria of the genus Arthrobacter degrading polycyclic aromatic hydrocarbons. RUSS J ECOL+ 2011. [DOI: 10.1134/s1067413611060130] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Akhmetov LI, Filonov AE, Puntus IF, Kosheleva IA, Nechaeva IA, Yonge DR, Petersen JN, Boronin AM. Horizontal transfer of catabolic plasmids in the process of naphthalene biodegradation in model soil systems. Microbiology (Reading) 2011. [DOI: 10.1134/s0026261708010049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
22
|
Pseudomonas diversity in crude-oil-contaminated intertidal sand samples obtained after the Prestige oil spill. Appl Environ Microbiol 2010; 77:1076-85. [PMID: 21131512 DOI: 10.1128/aem.01741-10] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Galicia seashore, in northwestern Spain, was one of the shorelines affected by the Prestige oil spill in November 2002. The diversity of autochthonous Pseudomonas populations present at two beaches (Carnota municipality) was analyzed using culture-independent and culture-dependent methods. The first analysis involved the screening of an rpoD gene library. The second involved the isolation of 94 Pseudomonas strains that were able to grow on selective media by direct plating or after serial enrichments on several carbon sources: biphenyl, gentisate, hexadecane, methylnaphthalene, naphthalene, phenanthrene, salicylate, xylene, and succinate. Eight denitrifying Pseudomonas strains were also isolated by their ability to grow anaerobically with nitrate. The calculated coverage index for Pseudomonas species was 89% when clones and isolates were considered together, and there were 29 phylospecies detected. The most abundant were members of the species P. stutzeri, P. putida, P. anguilliseptica, and P. oleovorans. Thirty-one isolates could not be identified at the species level and were considered representatives of 16 putative novel Pseudomonas species. One isolate was considered representative of a novel P. stutzeri genomovar. Concordant results were obtained when the diversities of the cloned DNA library and the cultured strains were compared. The clone library obtained by the rpoD PCR method was a useful tool for evaluating Pseudomonas communities and also for microdiversity studies of Pseudomonas populations.
Collapse
|
23
|
Panicker G, Mojib N, Aislabie J, Bej AK. Detection, expression and quantitation of the biodegradative genes in Antarctic microorganisms using PCR. Antonie van Leeuwenhoek 2009; 97:275-87. [PMID: 20043207 DOI: 10.1007/s10482-009-9408-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 12/16/2009] [Indexed: 11/29/2022]
Abstract
In this study, 28 hydrocarbon-degrading bacterial isolates from oil-contaminated Antarctic soils were screened for the presence of biodegradative genes such as alkane hydroxylase (alks), the ISPalpha subunit of naphthalene dioxygenase (ndoB), catechol 2,3-dioxygenase (C23DO) and toluene/biphenyl dioxygenase (todC1/bphA1) by using polymerase chain reaction (PCR) methods. All naphthalene degrading bacterial isolates exhibited the presence of a 648 bp amplicon that shared 97% identity to a known ndoB sequence from Pseudomonas putida. Twenty-two out of the twenty-eight isolates screened were positive for one, two or all three different regions of the C23DO gene. For alkane hydroxylase, all 6 Rhodococcus isolates were PCR-positive for a 194 bp and a 552 bp segment of the alkB gene, but exhibited variable results with primers located at different segments of this gene. Three Pseudomonas spp. 4/101, 19/1, 30/3 amplified 552 bp segment of alkB. Only two Pseudomonas sp. 7/156 and 4/101 amplified a segment of alkB exhibiting 89-94% nucleotide sequence identity with the existing sequence of alkB in the GenBank sequence database. Transcripts of three genes, alkB2, C23DO and ndoB, that were amplified by DNA-PCR in three different bacterial isolates also exhibited positive amplification by reverse transcriptase PCR (RT-PCR) method confirming that these genes are functional. A competitive PCR (cPCR) method was developed for a quantitative estimation of ndoB from pure cultures of the naphthalene-degrading Pseudomonas sp. 30/2. A minimum of 1 x 10(7) copies of the ndoB gene was detected based on the comparison of the intensities of the competitor and target DNA bands. It is expected that the identification and characterization of the biodegradative genes will provide a better understanding of the catabolic pathways in Antarctic psychrotolerant bacteria, and thereby help support bioremediation strategies for oil-contaminated Antarctic soils.
Collapse
Affiliation(s)
- Gitika Panicker
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294-1170, USA
| | | | | | | |
Collapse
|
24
|
Flocco CG, Gomes NCM, Mac Cormack W, Smalla K. Occurrence and diversity of naphthalene dioxygenase genes in soil microbial communities from the Maritime Antarctic. Environ Microbiol 2009; 11:700-14. [PMID: 19278452 DOI: 10.1111/j.1462-2920.2008.01858.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The diversity of naphthalene dioxygenase genes (ndo) in soil environments from the Maritime Antarctic was assessed, dissecting as well the influence of the two vascular plants that grow in the Antarctic: Deschampsia antarctica and Colobanthus quitensis. Total community DNA was extracted from bulk and rhizosphere soil samples from Jubany station and Potter Peninsula, South Shetland Islands. ndo genes were amplified by a nested PCR and analysed by denaturant gradient gel electrophoresis approach (PCR-DGGE) and cloning and sequencing. The ndo-DGGE fingerprints of oil-contaminated soil samples showed even and reproducible patterns, composed of four dominant bands. The presence of vascular plants did not change the relative abundance of ndo genotypes compared with bulk soil. For non-contaminated sites, amplicons were not obtained for all replicates and the variability among the fingerprints was comparatively higher, likely reflecting a lower abundance of ndo genes. The phylogenetic analyses showed that all sequences were affiliated to the nahAc genes closely related to those described for Pseudomonas species and related mobile genetic elements. This study revealed that a microdiversity of nahAc-like genes exists in microbial communities of Antarctic soils and quantitative PCR indicated that their relative abundance was increased in response to anthropogenic sources of pollution.
Collapse
Affiliation(s)
- Cecilia G Flocco
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants (JKI), Braunschweig, Germany.
| | | | | | | |
Collapse
|
25
|
Vázquez S, Nogales B, Ruberto L, Hernández E, Christie-Oleza J, Lo Balbo A, Bosch R, Lalucat J, Mac Cormack W. Bacterial community dynamics during bioremediation of diesel oil-contaminated Antarctic soil. MICROBIAL ECOLOGY 2009; 57:598-610. [PMID: 18685886 DOI: 10.1007/s00248-008-9420-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Accepted: 06/19/2008] [Indexed: 05/26/2023]
Abstract
The effect of nutrient and inocula amendment in a bioremediation field trial using a nutrient-poor Antarctic soil chronically contaminated with hydrocarbons was tested. The analysis of the effects that the treatments caused in bacterial numbers and hydrocarbon removal was combined with the elucidation of the changes occurring on the bacterial community, by 16S rDNA-based terminal restriction fragment length polymorphism (T-RFLP) typing, and the detection of some of the genes involved in the catabolism of hydrocarbons. All treatments caused a significant increase in the number of bacteria able to grow on hydrocarbons and a significant decrease in the soil hydrocarbon content, as compared to the control. However, there were no significant differences between treatments. Comparison of the soil T-RFLP profiles indicated that there were changes in the structure and composition of bacterial communities during the bioremediation trial, although the communities in treated plots were highly similar irrespective of the treatment applied, and they had a similar temporal dynamics. These results showed that nutrient addition was the main factor contributing to the outcome of the bioremediation experiment. This was supported by the lack of evidence of the establishment of inoculated consortia in soils, since their characteristic electrophoretic peaks were only detectable in soil profiles at the beginning of the experiment. Genetic potential for naphthalene degradation, evidenced by detection of nahAc gene, was observed in all soil plots including the control. In treated plots, an increase in the detection of catechol degradation genes (nahH and catA) and in a key gene of denitrification (nosZ) was observed as well. These results indicate that treatments favored the degradation of aromatic hydrocarbons and probably stimulated denitrification, at least transiently. This mesocosm study shows that recovery of chronically contaminated Antarctic soils can be successfully accelerated using biostimulation with nutrients, and that this causes a change in the indigenous bacterial communities and in the genetic potential for hydrocarbon degradation.
Collapse
Affiliation(s)
- S Vázquez
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Diversity of polycyclic aromatic hydrocarbons-degrading bacteria in intertidal marine sediments of patagonia. J Biotechnol 2008. [DOI: 10.1016/j.jbiotec.2008.07.1282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Nyyssönen M, Piskonen R, Itävaara M. Monitoring aromatic hydrocarbon biodegradation by functional marker genes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2008; 154:192-202. [PMID: 18037200 DOI: 10.1016/j.envpol.2007.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 09/30/2007] [Accepted: 10/07/2007] [Indexed: 05/25/2023]
Abstract
The development of biological treatment technologies for contaminated environments requires tools for obtaining direct information about the biodegradation of specific contaminants. The potential of functional gene array analysis to monitor changes in the amount of functional marker genes as indicators of contaminant biodegradation was investigated. A prototype functional gene array was developed for targeting key functions in the biodegradation of naphthalene, toluene and xylenes. Internal standard probe based normalization was introduced to facilitate comparison across multiple samples. Coupled with one-colour hybridization, the signal normalization improved the consistency among replicate hybridizations resulting in better discrimination for the differences in the amount of target DNA. During the naphthalene biodegradation in a PAH-contaminated soil slurry microcosm, the normalized hybridization signals in naphthalene catabolic gene probes were in good agreement with the amount of naphthalene-degradation genes and the production of 14CO2. Gene arrays provide efficient means for monitoring of contaminant biodegradation in the environment.
Collapse
|
28
|
Piskonen R, Nyyssönen M, Itävaara M. Evaluating the biodegradation of aromatic hydrocarbons by monitoring of several functional genes. Biodegradation 2008; 19:883-95. [PMID: 18425625 DOI: 10.1007/s10532-008-9190-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Accepted: 04/01/2008] [Indexed: 10/22/2022]
Abstract
Various microbial activities determine the effectiveness of bioremediation processes. In this work, we evaluated the feasibility of gene array hybridization for monitoring the efficiency of biodegradation processes. Biodegradation of 14C-labelled naphthalene and toluene by the aromatic hydrocarbon-degrading Pseudomonas putida F1, P. putida mt-2 and P. putida G7 was followed in mixed liquid culture microcosm by a preliminary, nylon membrane-based gene array. In the beginning of the study, toluene was degraded rapidly and increased amount of toluene degradation genes was detected by the preliminary gene array developed for the study. After toluene was degraded, naphthalene mineralization started and the amount of naphthalene degradation genes increased as biodegradation proceeded. The amount of toluene degradation genes decreased towards the end of the study. The hybridization signal intensities determined by preliminary gene array were in good agreement with mineralization of naphthalene and toluene and with the amount of naphthalene dioxygenase and toluene dioxygenase genes quantified by dot blot hybridization. The clear correlation between the results obtained by the preliminary array and the biodegradation process suggests that gene array methods can be considered as a promising tool for monitoring the efficiency of biodegradation processes.
Collapse
Affiliation(s)
- Reetta Piskonen
- VTT Technical Research Centre of Finland, Tietotie 2, P. O. Box 1000, 02044 VTT, Espoo, Finland.
| | | | | |
Collapse
|
29
|
Lozada M, Riva Mercadal JP, Guerrero LD, Di Marzio WD, Ferrero MA, Dionisi HM. Novel aromatic ring-hydroxylating dioxygenase genes from coastal marine sediments of Patagonia. BMC Microbiol 2008; 8:50. [PMID: 18366740 PMCID: PMC2364624 DOI: 10.1186/1471-2180-8-50] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Accepted: 03/25/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Polycyclic aromatic hydrocarbons (PAHs), widespread pollutants in the marine environment, can produce adverse effects in marine organisms and can be transferred to humans through seafood. Our knowledge of PAH-degrading bacterial populations in the marine environment is still very limited, and mainly originates from studies of cultured bacteria. In this work, genes coding catabolic enzymes from PAH-biodegradation pathways were characterized in coastal sediments of Patagonia with different levels of PAH contamination. RESULTS Genes encoding for the catalytic alpha subunit of aromatic ring-hydroxylating dioxygenases (ARHDs) were amplified from intertidal sediment samples using two different primer sets. Products were cloned and screened by restriction fragment length polymorphism analysis. Clones representing each restriction pattern were selected in each library for sequencing. A total of 500 clones were screened in 9 gene libraries, and 193 clones were sequenced. Libraries contained one to five different ARHD gene types, and this number was correlated with the number of PAHs found in the samples above the quantification limit (r = 0.834, p < 0.05). Overall, eight different ARHD gene types were detected in the sediments. In five of them, their deduced amino acid sequences formed deeply rooted branches with previously described ARHD peptide sequences, exhibiting less than 70% identity to them. They contain consensus sequences of the Rieske type [2Fe-2S] cluster binding site, suggesting that these gene fragments encode for ARHDs. On the other hand, three gene types were closely related to previously described ARHDs: archetypical nahAc-like genes, phnAc-like genes as identified in Alcaligenes faecalis AFK2, and phnA1-like genes from marine PAH-degraders from the genus Cycloclasticus. CONCLUSION These results show the presence of hitherto unidentified ARHD genes in this sub-Antarctic marine environment exposed to anthropogenic contamination. This information can be used to study the geographical distribution and ecological significance of bacterial populations carrying these genes, and to design molecular assays to monitor the progress and effectiveness of remediation technologies.
Collapse
Affiliation(s)
- Mariana Lozada
- Centro Nacional Patagónico (CENPAT-CONICET), Boulevard Brown 2825, Puerto Madryn (9120), Chubut, Argentina.
| | | | | | | | | | | |
Collapse
|
30
|
Cébron A, Norini MP, Beguiristain T, Leyval C. Real-Time PCR quantification of PAH-ring hydroxylating dioxygenase (PAH-RHDalpha) genes from Gram positive and Gram negative bacteria in soil and sediment samples. J Microbiol Methods 2008; 73:148-59. [PMID: 18329116 DOI: 10.1016/j.mimet.2008.01.009] [Citation(s) in RCA: 259] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 01/08/2008] [Accepted: 01/18/2008] [Indexed: 11/26/2022]
Abstract
Real-Time PCR based assays were developed to quantify Gram positive (GP) and Gram negative (GN) bacterial populations that are capable of degrading the polycyclic aromatic hydrocarbons (PAH) in soil and sediment samples with contrasting contamination levels. These specific and sensitive Real-Time PCR assays were based on the quantification of the copy number of the gene that encodes the alpha subunit of the PAH-ring hydroxylating dioxygenases (PAH-RHDalpha), involved in the initial step of the aerobic metabolism of PAH. The PAH-RHDalpha-GP primer set was designed against the different allele types present in the data base (narAa, phdA/pdoA2, nidA/pdoA1, nidA3/fadA1) common to the Gram positive PAH degraders such as Rhodococcus, Mycobacterium, Nocardioides and Terrabacter strains. The PAH-RHDalpha-GN primer set was designed against the genes (nahAc, nahA3, nagAc, ndoB, ndoC2, pahAc, pahA3, phnAc, phnA1, bphAc, bphA1, dntAc and arhA1) common to the Gram negative PAH degraders such as Pseudomonas, Ralstonia, Commamonas, Burkholderia, Sphingomonas, Alcaligenes, Polaromonas strains. The PCR clones for DNA extracted from soil and sediment samples using the designed primers showed 100% relatedness to the PAH-RHDalpha genes targeted. Deduced from highly sensitive Real-Time PCR quantification, the ratio of PAH-RHDalpha gene relative to the 16S rRNA gene copy number showed that the PAH-bacterial degraders could represent up to 1% of the total bacterial community in the PAH-contaminated sites. This ratio highlighted a positive correlation between the PAH-bacterial biodegradation potential and the PAH-contamination level in the environmental samples studied.
Collapse
Affiliation(s)
- Aurélie Cébron
- Laboratoire des Interactions Microorganismes-Minéraux-Matière Organique dans les Sols UMR7137, Nancy Université, CNRS, Faculté des Sciences, B.P. 239, 54506 Vandoeuvre-les-Nancy Cedex, France.
| | | | | | | |
Collapse
|
31
|
Kim JS, Crowley DE. Microbial diversity in natural asphalts of the Rancho La Brea Tar Pits. Appl Environ Microbiol 2007; 73:4579-91. [PMID: 17416692 PMCID: PMC1932828 DOI: 10.1128/aem.01372-06] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Accepted: 03/27/2007] [Indexed: 02/01/2023] Open
Abstract
Bacteria commonly inhabit subsurface oil reservoirs, but almost nothing is known yet about microorganisms that live in naturally occurring terrestrial oil seeps and natural asphalts that are comprised of highly recalcitrant petroleum hydrocarbons. Here we report the first survey of microbial diversity in ca. 28,000-year-old samples of natural asphalts from the Rancho La Brea Tar Pits in Los Angeles, CA. Microbiological studies included analyses of 16S rRNA gene sequences and DNA encoding aromatic ring-hydroxylating dioxygenases from two tar pits differing in chemical composition. Our results revealed a wide range of phylogenetic groups within the Archaea and Bacteria domains, in which individual taxonomic clusters were comprised of sets of closely related species within novel genera and families. Fluorescent staining of asphalt-soil particles using phylogenetic probes for Archaea, Bacteria, and Pseudomonas showed coexistence of mixed microbial communities at high cell densities. Genes encoding dioxygenases included three novel clusters of enzymes. The discovery of life in the tar pits provides an avenue for further studies of the evolution of enzymes and catabolic pathways for bacteria that have been exposed to complex hydrocarbons for millennia. These bacteria also should have application for industrial microbiology and bioremediation.
Collapse
Affiliation(s)
- Jong-Shik Kim
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | | |
Collapse
|
32
|
Leuchuk AA, Bulyha IM, Izmalkova TY, Sevastyanovich YR, Kosheleva IA, Thomas CM, Titok MA. Nah plasmids of the IncP-9 group in natural Pseudomonas strains. Mol Biol 2006. [DOI: 10.1134/s0026893306050098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Nyyssönen M, Piskonen R, Itävaara M. A targeted real-time PCR assay for studying naphthalene degradation in the environment. MICROBIAL ECOLOGY 2006; 52:533-43. [PMID: 17013553 DOI: 10.1007/s00248-006-9082-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Revised: 02/20/2006] [Accepted: 04/20/2006] [Indexed: 05/12/2023]
Abstract
A quantitative real-time polymerase chain reaction (PCR) assay was developed for monitoring naphthalene degradation during bioremediation processes. The phylogenetic affiliations of known naphthalene-hydroxylating dioxygenase genes were determined to target functionally related bacteria, and degenerate primers were designed on the basis of the close relationships among dioxygenase genes identified from naphthalene-degrading Proteobacteria. Evaluation of the amplification specificity demonstrated that the developed real-time PCR assay represents a rapid, precise means for the group-specific enumeration of naphthalene-degrading bacteria. According to validation with bacterial pure cultures, the assay discriminated between the targeted group of naphthalene dioxygenase sequences and genes in other naphthalene or aromatic hydrocarbon-degrading bacterial strains. Specific amplification of gene fragments sharing a high sequence similarity with the genes included in the assay design was also observed in soil samples recovered from large-scale remediation processes. The target genes could be quantified reproducibly at over five orders of magnitude down to 3 x 10(2) gene copies. To investigate the suitability of the assay in monitoring naphthalene biodegradation, the assay was applied in enumerating the naphthalene dioxygenase genes in a soil slurry microcosm. The results were in good agreement with contaminant mineralization and dot blot quantification of nahAc gene copies. Furthermore, the real-time PCR assay was found to be more sensitive than hybridization-based analysis.
Collapse
Affiliation(s)
- Mari Nyyssönen
- VTT Technical Research Center of Finland, P.O. Box 1000, 02044 VTT, Espoo, Finland.
| | | | | |
Collapse
|
34
|
Ní Chadhain SM, Norman RS, Pesce KV, Kukor JJ, Zylstra GJ. Microbial dioxygenase gene population shifts during polycyclic aromatic hydrocarbon biodegradation. Appl Environ Microbiol 2006; 72:4078-87. [PMID: 16751518 PMCID: PMC1489606 DOI: 10.1128/aem.02969-05] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The degradation of polycyclic aromatic hydrocarbons (PAHs) by bacteria has been widely studied. While many pure cultures have been isolated and characterized for their ability to grow on PAHs, limited information is available on the diversity of microbes involved in PAH degradation in the environment. We have designed generic PCR primers targeting the gene fragment encoding the Rieske iron sulfur center common to all PAH dioxygenase enzymes. These Rieske primers were employed to track dioxygenase gene population shifts in soil enrichment cultures following exposure to naphthalene, phenanthrene, or pyrene. PAH degradation was monitored by gas chromatograph with flame ionization detection. DNA was extracted from the enrichment cultures following PAH degradation. 16S rRNA and Rieske gene fragments were PCR amplified from DNA extracted from each enrichment culture and an unamended treatment. The PCR products were cloned and sequenced. Molecular monitoring of the enrichment cultures before and after PAH degradation using denaturing gradient gel electrophoresis and 16S rRNA gene libraries suggests that specific phylotypes of bacteria were associated with the degradation of each PAH. Sequencing of the cloned Rieske gene fragments showed that different suites of genes were present in soil microbe populations under each enrichment culture condition. Many of the Rieske gene fragment sequences fell into clades which are distinct from the reference dioxygenase gene sequences used to design the PCR primers. The ability to profile not only the bacterial community but also the dioxygenases which they encode provides a powerful tool for both assessing bioremediation potential in the environment and for the discovery of novel dioxygenase genes.
Collapse
Affiliation(s)
- Sinéad M Ní Chadhain
- Biotechnology Center for Agriculture and the Environment, Rutgers University, 59 Dudley Rd., New Brunswick, NJ 08901-8520, USA
| | | | | | | | | |
Collapse
|
35
|
Izmalkova TY, Mavrodi DV, Sokolov SL, Kosheleva IA, Smalla K, Thomas CM, Boronin AM. Molecular classification of IncP-9 naphthalene degradation plasmids. Plasmid 2006; 56:1-10. [PMID: 16472859 DOI: 10.1016/j.plasmid.2005.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Revised: 12/19/2005] [Accepted: 12/24/2005] [Indexed: 10/25/2022]
Abstract
A large collection of naphthalene-degrading fluorescent Pseudomonas strains isolated from sites contaminated with coal tar and crude oil was screened for the presence of IncP-9 plasmids. Seventeen strains were found to carry naphthalene catabolic plasmids ranging in size from 83 to 120 kb and were selected for further study. Results of molecular genotyping revealed that 15 strains were closely related to P. putida, one to P. fluorescens, and one to P. aeruginosa. All catabolic plasmids found in these strains, with the exception of pBS216, pSN11, and p8909N-1, turned out to belong to IncP-9 beta-subgroup. Plasmids pBS216, pSN11, and p8909N-1 were identified as members of IncP-9 delta-subgroup. One plasmid, pBS2, contains fused replicons of IncP-9beta and IncP-7 groups. RFLP analyses of the naphthalene catabolic plasmids revealed that organisation of the replicon correlates well with the overall plasmid structure. Comparative PCR studies with conserved oligonucleotide primers indicated that genes for key enzymes of naphthalene catabolism are highly conserved among all studied plasmids. Three bacterial strains, P. putida BS202, P. putida BS3701, and P. putida BS3790, were found to have two different salicylate hydroxylase genes one of which has no similarity to the "classic" enzyme encoded by nahG gene. Discovery of a large group of plasmid with unique nahR suggested that the regulatory loop may also represent a variable part of the pathway for catabolism of naphthalene in fluorescent Pseudomonas spp.
Collapse
Affiliation(s)
- Tatyana Yu Izmalkova
- G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russian Federation.
| | | | | | | | | | | | | |
Collapse
|
36
|
Yu CP, Chu KH. A quantitative assay for linking microbial community function and structure of a naphthalene-degrading microbial consortium. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2005; 39:9611-9. [PMID: 16475342 DOI: 10.1021/es051024e] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A comprehensive culture-independent assay, called Q-FAST, was developed for concurrent identification and quantification of active microorganisms involved a specific function in a given microbial community. The development of Q-FAST was achieved by integrating the concept of stable isotope probing technique into a new quantitative fingerprinting assay called real-time-t-RFLP for microbial community structure analysis. The Q-FAST was successfully validated by using a three-member artificial microbial community containing a known naphthalene-utilizing bacterium (Pseudomonas putida G7) and two nonnaphthalene-degrading bacteria (Escherichia coli and Bacillus thuringiensis). The application of Q-FAST to identify and quantify a guild of naphthalene-utilizing microorganisms in soils revealed the involvement of eight members, with six members relating to several phylogenetic groups of eubacteria (three in beta-proteobacteria, two in gamma-proteobacteria, and one in genera Intrasporangium of Gram-positive bacteria) and two members showing no close phylogenetic affiliation to any known bacterial sequences deposited in GenBank. The quantity of three members belonging to beta-proteobacteria accounted for 34% of total 16S rDNA copies measured from the "heavier" fraction of DNA that was contributed from the DNA of microorganisms capable of incorporating 13C-labeled naphthalene into their genetic biomarkers. The other five members composed 66% of total 16S rDNA copies of active naphthalene-utilizing populations measured. Offering a powerful tool for studying microbial ecology, Q-FAST thus opens a new avenue for deeper exploration of microbial-mediated processes, mainly the quantitative relationship between microbial diversity and microbial activity in a given environment.
Collapse
Affiliation(s)
- Chang-Ping Yu
- Zachry Department of Civil Engineering, Texas A&M University, College Station, Texas 77843-3136, USA
| | | |
Collapse
|
37
|
Izmalkova TY, Sazonova OI, Sokolov SL, Kosheleva IA, Boronin AM. The P-7 Incompatibility Group Plasmids Responsible for Biodegradation of Naphthalene and Salicylate in Fluorescent Pseudomonads. Microbiology (Reading) 2005. [DOI: 10.1007/s11021-005-0065-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
38
|
Piskonen R, Nyyssönen M, Rajamäki T, Itävaara M. Monitoring of accelerated naphthalene-biodegradation in a bioaugmented soil slurry. Biodegradation 2005; 16:127-34. [PMID: 15730023 DOI: 10.1007/s10532-004-4893-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The effect of microbial inoculation on the mineralization of naphthalene in a bioslurry treatment was evaluated in soil slurry microcosms. Inoculation by Pseudomonas putida G7 carrying the naphthalene dioxygenase (nahA) gene resulted in rapid mineralization of naphthalene, whereas indigenous microorganisms in the PAH-contaminated soil required a 28 h adaptation period before significant mineralization occurred. The number of nahA-like gene copies increased in both the inoculated and non-inoculated soil as mineralization proceeded, indicating selection towards naphthalene dioxygenase producing bacteria in the microbial community. In addition, 16S rRNA analysis by denaturing gradient gel electrophoresis (DGGE) analysis showed that significant selection occurred in the microbial community as a result of biodegradation. However, the indigenous soil bacteria were not able to compete with the P. putida G7 inoculum adapted to naphthalene biodegradation, even though the soil microbial community slightly suppressed naphthalene mineralization by P. putida G7.
Collapse
|
39
|
Izmalkova TY, Sazonova OI, Sokolov SL, Kosheleva IA, Boronin AM. Diversity of genetic systems responsible for naphthalene biodegradation in Pseudomonas fluorescens strains. Microbiology (Reading) 2005. [DOI: 10.1007/s11021-005-0029-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
40
|
|
41
|
Aitken MD, Long TC. Biotransformation, Biodegradation, and Bioremediation of Polycyclic Aromatic Hydrocarbons. SOIL BIOLOGY 2004. [DOI: 10.1007/978-3-662-06066-7_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
42
|
Abstract
Recent advances in molecular biology have extended our understanding of the metabolic processes related to microbial transformation of petroleum hydrocarbons. The physiological responses of microorganisms to the presence of hydrocarbons, including cell surface alterations and adaptive mechanisms for uptake and efflux of these substrates, have been characterized. New molecular techniques have enhanced our ability to investigate the dynamics of microbial communities in petroleum-impacted ecosystems. By establishing conditions which maximize rates and extents of microbial growth, hydrocarbon access, and transformation, highly accelerated and bioreactor-based petroleum waste degradation processes have been implemented. Biofilters capable of removing and biodegrading volatile petroleum contaminants in air streams with short substrate-microbe contact times (<60 s) are being used effectively. Microbes are being injected into partially spent petroleum reservoirs to enhance oil recovery. However, these microbial processes have not exhibited consistent and effective performance, primarily because of our inability to control conditions in the subsurface environment. Microbes may be exploited to break stable oilfield emulsions to produce pipeline quality oil. There is interest in replacing physical oil desulfurization processes with biodesulfurization methods through promotion of selective sulfur removal without degradation of associated carbon moieties. However, since microbes require an environment containing some water, a two-phase oil-water system must be established to optimize contact between the microbes and the hydrocarbon, and such an emulsion is not easily created with viscous crude oil. This challenge may be circumvented by application of the technology to more refined gasoline and diesel substrates, where aqueous-hydrocarbon emulsions are more easily generated. Molecular approaches are being used to broaden the substrate specificity and increase the rates and extents of desulfurization. Bacterial processes are being commercialized for removal of H(2)S and sulfoxides from petrochemical waste streams. Microbes also have potential for use in removal of nitrogen from crude oil leading to reduced nitric oxide emissions provided that technical problems similar to those experienced in biodesulfurization can be solved. Enzymes are being exploited to produce added-value products from petroleum substrates, and bacterial biosensors are being used to analyze petroleum-contaminated environments.
Collapse
Affiliation(s)
- Jonathan D Van Hamme
- Department of Biological Sciences, The University College of the Cariboo, Kamloops, British Columbia V2C 5N3
| | | | | |
Collapse
|
43
|
Olivera NL, Commendatore MG, Delgado O, Esteves JL. Microbial characterization and hydrocarbon biodegradation potential of natural bilge waste microflora. J Ind Microbiol Biotechnol 2003; 30:542-8. [PMID: 12898391 DOI: 10.1007/s10295-003-0078-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2003] [Accepted: 06/20/2003] [Indexed: 11/24/2022]
Abstract
Shipping operations produce oily wastes that must be managed properly to avoid environmental pollution. The aim of this study was to characterize microorganisms occurring in ship bilge wastes placed in open lagoons and, particularly, to assess their potential to degrade polycyclic aromatic hydrocarbons (PAHs). A first-order kinetic was suitable for describing hydrocarbon biodegradation after 17 days of treatment. The calculated rate constants were 0.0668 and 0.0513 day(-1) with a corresponding half-life of 10.3 and 13.5 days for the aliphatic and aromatic hydrocarbon fractions, respectively. At day 17, PAH removal percentages were: acenaphtylene 100, fluorene 95.2, phenanthrene 93.6, anthracene 70.3, and pyrene 71.5. Methyl phenanthrene removals were lower than that of their parent compound (3-methyl phenanthrene 83.6, 2-methyl phenanthrene 80.8, 1-methyl phenanthrene 77.3, 9-methyl phenanthrene 75.1, and 2,7-dimethyl phenanthrene 76.6). Neither pure cultures nor the microbial community from these wastes showed extracellular biosurfactant production suggesting that the addition of an exogenously produced biosurfactant may be important in enhancing hydrocarbon bioavailability and biodegradation. DNA analysis of bilge waste samples revealed a ubiquitous distribution of the nahAc genotype in the dump pools. Although almost all of the isolates grew on naphthalene as sole carbon source, only some of them yielded nahAc amplification under the experimental conditions used. The variety of PAHs in bilge wastes could support bacteria with multiple degradation pathways and a diversity of catabolic genes divergent from the classical nah-like type.
Collapse
Affiliation(s)
- N L Olivera
- Centro Nacional Patagónico (CONICET), Blvd. Brown s/n, 9120 Puerto Madryn, Chubut, Argentina.
| | | | | | | |
Collapse
|