1
|
Zhang Y, Naaz A, Cheng TYN, Lin JJ, Gao M, Dorajoo R, Alfatah M. Systematic transcriptomics analysis of calorie restriction and rapamycin unveils their synergistic interaction in prolonging cellular lifespan. Commun Biol 2025; 8:753. [PMID: 40369174 PMCID: PMC12078523 DOI: 10.1038/s42003-025-08178-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/06/2025] [Indexed: 05/16/2025] Open
Abstract
Aging is a multifaceted biological process marked by the decline in both mitotic and postmitotic cellular function, often central to the development of age-related diseases. In the pursuit of slowing or even reversing the aging process, a prominent strategy of significant interest is calorie restriction (CR), also known as dietary restriction, and the potential influence of a drug called rapamycin (RM). Both CR and RM have demonstrated the capacity to extend healthspan and lifespan across a diverse array of species, including yeast, worms, flies, and mice. Nevertheless, their individual and combined effects on mitotic and postmitotic cells, as well as their comparative analysis, remain areas that demand a thorough investigation. In this study, we employ RNA-sequencing methodologies to comprehensively analyze the impact of CR, RM, and their combination (CR + RM) on gene expression in yeast cells. Our analysis uncovers distinctive, overlapping, and even contrasting patterns of gene regulation, illuminating the unique and shared effects of CR and RM. Furthermore, the transcriptional synergistic interaction of CR + RM is validated in extending the lifespan of both yeast and human cells.
Collapse
Affiliation(s)
- Yizhong Zhang
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Arshia Naaz
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Trishia Yi Ning Cheng
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jovian Jing Lin
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Mingtong Gao
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Healthy Longevity, National University Health System, Singapore, Singapore
| | - Rajkumar Dorajoo
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mohammad Alfatah
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Centre for Healthy Longevity, National University Health System, Singapore, Singapore.
| |
Collapse
|
2
|
Qu T, Du G, Chen J, Chen A, Li J. Development of Freeze-Thaw Tolerant Yeast Strains via a Hybrid Fusion Evolutionary Strategy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:11841-11854. [PMID: 40325858 DOI: 10.1021/acs.jafc.4c11139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
The freeze-thaw cycle presents a significant challenge to Saccharomyces cerevisiae in industrial applications, impacting its resilience and viability. Traditional genetic modifications in industrial yeast strains have achieved limited success in enhancing freeze-thaw tolerance. To address this, we explored the untapped genetic diversity of wild diploid strains and developed a hybrid fusion evolution (HFE) strategy. This approach involved isolating haploids, implementing targeted modifications to increase glycerol accumulation and aquaporin expression, and subjecting these modified strains to cycles of fusion and selection. The HFE method enabled the development of robust yeast strains with significantly improved freeze-thaw tolerance, from an average of no more than 12% for the initial parents to an average of 67% for the third-generation strains, alongside enhanced resilience to other stresses such as high ethanol and moderate heat. Our findings demonstrate the potential of combining microbial breeding and gene regulation to exploit natural genetic diversity, providing a promising solution to improve industrial yeast strains for sustainable food production under environmental stress conditions.
Collapse
Affiliation(s)
- Tianzhi Qu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiaxing Institute of Future Food, Jiaxing 314050, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Anqi Chen
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
3
|
Schmidt C, Imann AM, Vasilev N, Kayser O. Approaches for Cannabinoid Glycosylation Catalyzed by CrUGT74AN3 and BlCGTase. Biotechnol J 2025; 20:e70007. [PMID: 40359332 DOI: 10.1002/biot.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/08/2025] [Accepted: 03/10/2025] [Indexed: 05/15/2025]
Abstract
Phytocannabinoids are natural products with highly promising pharmaceutical potential, mainly known from the plant Cannabis sativa. However, their bioavailability is limited due to their high lipophilicity. Modification through glycosylation is known to improve the water solubility and stability of molecules. Enzymatic glycosylation requires specific enzymes with high catalytic activity in combination with efficient production systems. To date, only a few glycosyltransferases with activity toward cannabinoids have been described. In this study, we explore the substrate spectrum of the promiscuous UDP-glycosyltransferase CrUGT74AN3 from Catharanthus roseus and demonstrate activity towards a broad range of cannabinoids and their biosynthetic intermediates. The highest activity was observed using cannabidiol (CBD) as an acceptor molecule. In addition, we show efficient biotransformation of CBD in an engineered Saccharomyces cerevisiae strain. We investigate the influence of the hydrolytic activity of endogenous glucosidases and identify the UDP-glucose supply as a limiting factor in the yeast system. The co-expression of CrUGT74AN3 and a cyclodextrin glycosyltransferase from Bacillus licheniformis in the engineered yeast strain led to the production of CBD-glycosides with up to six glucose moieties from CBD and cyclodextrin in vivo. Finally, we confirm the applicability of the engineered yeast systems to other cannabinoids using cannabigerol and cannabinol.
Collapse
Affiliation(s)
- Christina Schmidt
- Technical Biochemistry Laboratory, Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Astrid Maria Imann
- Technical Biochemistry Laboratory, Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
- Department of Engineering and Natural Sciences, Westphalian University of Applied Sciences, Recklinghausen, Germany
| | - Nikolay Vasilev
- Technical Biochemistry Laboratory, Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Oliver Kayser
- Technical Biochemistry Laboratory, Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
4
|
Stojković L, Gligorovski V, Geramimanesh M, Labagnara M, Rahi SJ. Automated plasmid design for marker-free genome editing in budding yeast. G3 (BETHESDA, MD.) 2025; 15:jkae297. [PMID: 39688855 PMCID: PMC11917472 DOI: 10.1093/g3journal/jkae297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024]
Abstract
Scarless genome editing in budding yeast with elimination of the selection marker has many advantages. Some markers such as URA3 and TRP1 can be recycled through counterselection. This permits seamless genome modification with pop-in/pop-out, in which a DNA construct first integrates in the genome and, subsequently, homologous regions recombine and excise undesired sequences. Popular approaches for creating such constructs use oligonucleotides and PCR. However, the use of oligonucleotides has many practical disadvantages. With the rapid reduction in price, synthesizing custom DNA sequences in specific plasmid backbones has become an appealing alternative. For designing plasmids for seamless pop-in/pop-out gene tagging or deletion, there are a number of factors to consider. To create only the shortest DNA sequences necessary, avoid errors in manual design, specify the amount of homology desired, and customize restriction sites, we created the computational tool PIPOline. Using it, we tested the ratios of homology that improve pop-out efficiency when targeting the genes HTB2 or WHI5. We supply optimal pop-in/pop-out plasmid sequences for tagging or deleting almost all S288C budding yeast open reading frames. Finally, we demonstrate how the histone variant Htb2 marked with a red fluorescent protein can be used as a cell-cycle stage marker, alternative to superfolder GFP, reducing light toxicity. We expect PIPOline to streamline genome editing in budding yeast.
Collapse
Affiliation(s)
- Lazar Stojković
- Laboratory of the Physics of Biological Systems, Institute of Physics, École polytechnique fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Vojislav Gligorovski
- Laboratory of the Physics of Biological Systems, Institute of Physics, École polytechnique fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Mahsa Geramimanesh
- Laboratory of the Physics of Biological Systems, Institute of Physics, École polytechnique fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Marco Labagnara
- Laboratory of the Physics of Biological Systems, Institute of Physics, École polytechnique fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Sahand Jamal Rahi
- Laboratory of the Physics of Biological Systems, Institute of Physics, École polytechnique fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
5
|
Leitão MDC, Cabral LS, Piva LC, Queiroz PFDS, Gomes TG, de Andrade RV, Perez ALA, de Paiva KLR, Báo SN, Reis VCB, Moraes LMP, Togawa RC, Barros LMG, Torres FAG, Pappas Júnior GJ, Coelho CM. SHIP identifies genomic safe harbors in eukaryotic organisms using genomic general feature annotation. Sci Rep 2025; 15:7193. [PMID: 40021804 PMCID: PMC11871141 DOI: 10.1038/s41598-025-91249-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/19/2025] [Indexed: 03/03/2025] Open
Abstract
Integrating foreign genes into loci, allowing their transcription without affecting endogenous gene expression, is the desirable strategy in genomic engineering. However, these loci, known as genomic safe harbors (GSHs), have been mainly identified by empirical methods. Furthermore, the most prominent available GSHs are localized within regions of high gene density, raising concerns about unstable expression. As synthetic biology is moving towards investigating polygenic modules rather than single genes, there is an increasing demand for tools to identify GSHs systematically. To expand the GSH repertoire, we present SHIP, an algorithm designed to detect potential GSHs in eukaryotes. Using the chassis organism Saccharomyces cerevisiae, five GSHs were experimentally curated based on data from DNA sequencing, stability, flow cytometry, qPCR, electron microscopy, RT-qPCR, and RNA-Seq assays. Our study places SHIP as a valuable tool for providing a list of promising candidates to assist in the experimental assessment of GSHs in eukaryotic organisms with available annotated genomes.
Collapse
Affiliation(s)
- Matheus de Castro Leitão
- Department of Genetics and Morphology, University of Brasilia, Brasilia, Brazil
- Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | | | - Luiza Cesca Piva
- Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | | | - Taísa Godoy Gomes
- Department of Microbiology, University of Brasilia, Brasilia, Brazil
| | | | | | | | - Sônia Nair Báo
- Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Yu H, Nyasae L, Lee R, Lu W, So E, Feng H, Yang Z. Development of a Dihydrofolate Reductase Selection System for Saccharomyces boulardii. Int J Mol Sci 2025; 26:2073. [PMID: 40076696 PMCID: PMC11899850 DOI: 10.3390/ijms26052073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Saccharomyces boulardii, the only commercially available probiotic yeast, has gained attention as a recombinant live biotherapeutic product (rLBP) empowered with the expression of heterologous therapeutic proteins for treating gastrointestinal diseases. However, the genetic modification of S. boulardii intended for clinical use is hindered by regulatory and technical challenges. In this study, we developed a dihydrofolate reductase (DHFR)-based selection system as an innovative alternative to traditional auxotrophic selection strategies for engineering S. boulardii. The DHFR selection system overcame inherent resistance of the yeast to methotrexate (MTX) by incorporating sulfanilamide, a dihydrofolate synthesis inhibitor, to enhance selection efficiency. The system demonstrated robust functionality, enabling the efficient screening of high-expression clones and tunable expression of therapeutic proteins, such as cytokines and antibodies, by modulating MTX concentrations. Furthermore, the yeast's endogenous DHFR homolog, DFR1, was shown to be a viable selection marker, providing greater host compatibility while maintaining functionality compared to DHFR. This selection system avoids reliance on foreign antibiotic selection markers and the construction of auxotrophic strains, thus simplifying engineering and allowing for a tunable protein expression. These advancements establish the DHFR/DFR1 selection system as a robust and versatile platform for developing S. boulardii-based live biotherapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhiyong Yang
- Fzata Inc., 1450 S. Rolling Rd, Halethorpe, MD 21227, USA
| |
Collapse
|
7
|
Deitert A, Fees J, Mertens A, Nguyen Van D, Maares M, Haase H, Blank LM, Keil C. Rapid Fluorescence Assay for Polyphosphate in Yeast Extracts Using JC-D7. Yeast 2024; 41:593-604. [PMID: 39262085 DOI: 10.1002/yea.3979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/07/2024] [Accepted: 08/23/2024] [Indexed: 09/13/2024] Open
Abstract
Polyphosphate (polyP) is an intriguing molecule that is found in almost any organism, covering a multitude of cellular functions. In industry, polyP is used due to its unique physiochemical properties, including pH buffering, water binding, and bacteriostatic activities. Despite the importance of polyP, its analytics is still challenging, with the gold standard being 31P NMR. Here, we present a simple staining method using the fluorescent dye JC-D7 for the semi-quantitative polyP evaluation in yeast extracts. Notably, fluorescence response was affected by polyP concentration and polymer chain length in the 0.5-500 µg/mL polyP concentration range. Hence, for polyP samples of unknown chain compositions, JC-D7 cannot be used for absolute quantification. Fluorescence of JC-D7 was unaffected by inorganic phosphate up to 50 mM. Trace elements (FeSO4 > CuSO4 > CoCl2 > ZnSO4) and toxic mineral salts (PbNO3 and HgCl2) diminished polyP-induced JC-D7 fluorescence, affecting its applicability to samples containing polyP-metal complexes. The fluorescence was only marginally affected by other parameters, such as pH and temperature. After validation, this simple assay was used to elucidate the degree of polyP production by yeast strains carrying gene deletions in (poly)phosphate homeostasis. The results suggest that staining with JC-D7 provides a robust and sensitive method for detecting polyP in yeast extracts and likely in extracts of other microbes. The simplicity of the assay enables high-throughput screening of microbes to fully elucidate and potentially enhance biotechnological polyP production, ultimately contributing to a sustainable phosphorus utilization.
Collapse
Affiliation(s)
- Alexander Deitert
- Institute of Applied Microbiology-iAMB, Aachen Biology and Biotechnology-ABBt, RWTH Aachen University, Aachen, Germany
| | - Jana Fees
- Institute of Applied Microbiology-iAMB, Aachen Biology and Biotechnology-ABBt, RWTH Aachen University, Aachen, Germany
| | - Anna Mertens
- Institute of Applied Microbiology-iAMB, Aachen Biology and Biotechnology-ABBt, RWTH Aachen University, Aachen, Germany
| | - Duc Nguyen Van
- Department of Food Chemistry and Toxicology, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Berlin, Germany
| | - Maria Maares
- Department of Food Chemistry and Toxicology, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Berlin, Germany
| | - Hajo Haase
- Department of Food Chemistry and Toxicology, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Berlin, Germany
| | - Lars Mathias Blank
- Institute of Applied Microbiology-iAMB, Aachen Biology and Biotechnology-ABBt, RWTH Aachen University, Aachen, Germany
| | - Claudia Keil
- Department of Food Chemistry and Toxicology, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
8
|
Shemesh P, Fishman A. Optimal fermentation conditions for growth and recombinant protein production in Pichia pastoris: Strain selection, ploidy level and carbon source. Curr Res Food Sci 2024; 9:100840. [PMID: 39328387 PMCID: PMC11424953 DOI: 10.1016/j.crfs.2024.100840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/24/2024] [Accepted: 09/07/2024] [Indexed: 09/28/2024] Open
Abstract
High-cell-density fermentation is a critical aspect of industrial protein production, requiring the selection of an optimal growth medium and carbon source. Pichia pastoris, a methylotrophic yeast, has been established as a widespread recombinant protein expression system in the food and pharmaceutical industries. The primary objective of this work was to create a superior platform for producing alternative proteins thus contributing to future innovation in these sectors. This study compared three wild-type strains, with two of them also analyzed in their diploid versions, using shake flasks and bioreactors. It investigated glucose and glycerol as carbon sources using mCherry as a protein model. Glycerol emerged as the preferred carbon source, resulting in over 40% increase in biomass concentrations compared to glucose across all strains. Notably, wild-type strain Y-7556 reached an exceptional biomass concentration of 244 g DCW/L in just 48 h, the highest reported to date, highlighting the potential of high-cell-density fermentation in P. pastoris. Regarding protein expression, the diploid version of Y-11430 produced >43% of purified mCherry protein after 123 h of fermentation, compared to the haploid counterpart. Our findings underscore the advantages of diploid strains, optimized fermentation media, and carbon source selection, effectively addressing crucial gaps in the literature.
Collapse
Affiliation(s)
- Paz Shemesh
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Ayelet Fishman
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
9
|
Tomičić Z, Šarić L, Tomičić R. Novel Insights in the Application of Probiotic Yeast Saccharomyces boulardii in Dairy Products and Health Promotion. Foods 2024; 13:2866. [PMID: 39335795 PMCID: PMC11431368 DOI: 10.3390/foods13182866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Probiotic organisms are increasingly being incorporated into foods in order to develop products to prevent and reduce many diseases. Saccharomyces boulardii, a probiotic yeast with unique properties, such as viability over a wide pH range, antibiotic resistance, and the ability to reach a steady state, has an advantage over bacterial probiotics. The present review highlights the potential application of S. boulardii in functional fermented dairy products and the genetic engineering of this probiotic microorganism as a therapeutic agent for the treatment of various infectious diseases. It was found that probiotic yeast stimulates the growth of lactic acid bacteria in dairy products, creating favorable conditions and positively affecting the product's sensory characteristics. Moreover, its viability of more than 106 cfu/mL at the end of the yogurt shelf life confirms its probiotic effect. On the other hand, there is a growing interest in the design of probiotic strains to improve their characteristics and fill existing gaps in their spectrum of action such as the inhibition of some bacterial toxins, as well as anti-inflammatory and immunomodulatory effects. The strengthening of immune functions and effective therapies against various diseases by S. boulardii was confirmed. However, considering this yeast species' potential, further research is necessary to accurately determine the functional properties in terms of incorporation into food matrices and from the aspect of health and well-being claims.
Collapse
Affiliation(s)
- Zorica Tomičić
- Institute of Food Technology in Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Ljubiša Šarić
- Institute of Food Technology in Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Ružica Tomičić
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| |
Collapse
|
10
|
Gutbier U, Korp J, Scheufler L, Ostermann K. Genetic modules for α-factor pheromone controlled growth regulation of Saccharomyces cerevisiae. Eng Life Sci 2024; 24:e2300235. [PMID: 39113811 PMCID: PMC11300815 DOI: 10.1002/elsc.202300235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 03/29/2024] [Accepted: 05/05/2024] [Indexed: 08/10/2024] Open
Abstract
Saccharomyces cerevisiae is a commonly used microorganism in the biotechnological industry. For the industrial heterologous production of compounds, it is of great advantage to work with growth-controllable yeast strains. In our work, we utilized the natural pheromone system of S. cerevisiae and generated a set of different strains possessing an α-pheromone controllable growth behavior. Naturally, the α-factor pheromone is involved in communication between haploid S. cerevisiae cells. Perception of the pheromone initiates several cellular changes, enabling the cells to prepare for an upcoming mating event. We exploited this natural pheromone response system and developed two different plasmid-based modules, in which the target genes, MET15 and FAR1, are under control of the α-factor sensitive FIG1 promoter for a controlled expression in S. cerevisiae. Whereas expression of MET15 led to a growth induction, FAR1 expression inhibited growth. The utilization of low copy number or high copy number plasmids for target gene expression and different concentrations of α-factor allow a finely adjustable control of yeast growth rate.
Collapse
Affiliation(s)
- Uta Gutbier
- Faculty of BiologyResearch Group Biological Sensor‐Actuator‐SystemsTUD Dresden University of TechnologyDresdenGermany
- Else Kröner Fresenius Center for Digital HealthFaculty of Medicine Carl Gustav CarusTUD Dresden University of TechnologyDresdenGermany
| | - Juliane Korp
- Faculty of BiologyResearch Group Biological Sensor‐Actuator‐SystemsTUD Dresden University of TechnologyDresdenGermany
| | - Lennart Scheufler
- Faculty of BiologyResearch Group Biological Sensor‐Actuator‐SystemsTUD Dresden University of TechnologyDresdenGermany
| | - Kai Ostermann
- Faculty of BiologyResearch Group Biological Sensor‐Actuator‐SystemsTUD Dresden University of TechnologyDresdenGermany
| |
Collapse
|
11
|
Zhang S, Ma T, Zheng FH, Aslam M, Wang YJ, Chi ZM, Liu GL. Customizable and stable multilocus chromosomal integration: a novel glucose-dependent selection system in Aureobasidium spp. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:81. [PMID: 38886802 PMCID: PMC11181563 DOI: 10.1186/s13068-024-02531-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Non-conventional yeasts hold significant potential as biorefinery cell factories for microbial bioproduction. Currently, gene editing systems used for these yeasts rely on antibiotic and auxotrophic selection mechanisms. However, the drawbacks of antibiotics, including high costs, environmental concerns, and the dissemination of resistance genes, make them unsuitable for large-scale industrial fermentation. For auxotrophic selection system, the engineered strains harboring auxotrophic marker genes are typically supplemented with complex nutrient-rich components instead of precisely defined synthetic media in large-scale industrial fermentations, thus lack selection pressure to ensure the stability of heterologous metabolic pathways. Therefore, it is a critical to explore alternative selection systems that can be adapted for large-scale industrial fermentation. RESULTS Here, a novel glucose-dependent selection system was developed in a high pullulan-producing non-conventional strain A. melanogenum P16. The system comprised a glucose-deficient chassis cell Δpfk obtained through the knockout of the phosphofructokinase gene (PFK) and a series of chromosomal integration plasmids carrying a selection marker PFK controlled by different strength promoters. Utilizing the green fluorescent protein gene (GFP) as a reporter gene, this system achieved a 100% positive rate of transformation, and the chromosomal integration numbers of GFP showed an inverse relationship with promoter strength, with a customizable copy number ranging from 2 to 54. More importantly, the chromosomal integration numbers of target genes remained stable during successive inoculation and fermentation process, facilitated simply by using glucose as a cost-effective and environmental-friendly selectable molecule to maintain a constant and rigorous screening pressure. Moreover, this glucose-dependent selection system exhibited no significant effect on cell growth and product synthesis, and the glucose-deficient related selectable marker PFK has universal application potential in non-conventional yeasts. CONCLUSION Here, we have developed a novel glucose-dependent selection system to achieve customizable and stable multilocus chromosomal integration of target genes. Therefore, this study presents a promising new tool for genetic manipulation and strain enhancement in non-conventional yeasts, particularly tailored for industrial fermentation applications.
Collapse
Affiliation(s)
- Shuo Zhang
- MOE Key Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, 266003, Shandong, China
| | - Tao Ma
- MOE Key Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, 266003, Shandong, China
| | - Fu-Hui Zheng
- MOE Key Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, 266003, Shandong, China
| | - Muhammad Aslam
- Faculty of Basic Sciences, Bolan University of Medical and Health Sciences, Quetta, 87600, Pakistan
| | - Yu-Jie Wang
- MOE Key Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, 266003, Shandong, China
| | - Zhen-Ming Chi
- MOE Key Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, 266003, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, No.1 Wenhai Road, Qingdao, 266237, China
| | - Guang-Lei Liu
- MOE Key Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, 266003, Shandong, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, No.1 Wenhai Road, Qingdao, 266237, China.
| |
Collapse
|
12
|
Palomba E, Chiusano ML, Monticolo F, Langella MC, Sanchez M, Tirelli V, de Alteriis E, Iannaccone M, Termolino P, Capparelli R, Carteni F, Incerti G, Mazzoleni S. Extracellular Self-DNA Effects on Yeast Cell Cycle and Transcriptome during Batch Growth. Biomolecules 2024; 14:663. [PMID: 38927066 PMCID: PMC11201494 DOI: 10.3390/biom14060663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
The cell cycle and the transcriptome dynamics of yeast exposed to extracellular self-DNA during an aerobic batch culture on glucose have been investigated using cytofluorimetric and RNA-seq analyses. In parallel, the same study was conducted on yeast cells growing in the presence of (heterologous) nonself-DNA. The self-DNA treatment determined a reduction in the growth rate and a major elongation of the diauxic lag phase, as well as a significant delay in the achievement of the stationary phase. This was associated with significant changes in the cell cycle dynamics, with slower exit from the G0 phase, followed by an increased level of cell percentage in the S phase, during the cultivation. Comparatively, the exposure to heterologous DNA did not affect the growth curve and the cell cycle dynamics. The transcriptomic analysis showed that self-DNA exposure produced a generalized downregulation of transmembrane transport and an upregulation of genes associated with sulfur compounds and the pentose phosphate pathway. Instead, in the case of the nonself treatment, a clear response to nutrient deprivation was detected. Overall, the presented findings represent further insights into the complex functional mechanisms of self-DNA inhibition.
Collapse
Affiliation(s)
- Emanuela Palomba
- Institute of Biosciences and Bioresources CNR, Via Università 133, 80055 Portici, Italy; (E.P.); (P.T.)
| | - Maria Luisa Chiusano
- Department of Agricultural Sciences, University of Naples “Federico II”, Via Università 100, 80055 Portici, Italy; (M.L.C.); (F.M.); (M.C.L.); (R.C.); (F.C.)
| | - Francesco Monticolo
- Department of Agricultural Sciences, University of Naples “Federico II”, Via Università 100, 80055 Portici, Italy; (M.L.C.); (F.M.); (M.C.L.); (R.C.); (F.C.)
- Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Maria Chiara Langella
- Department of Agricultural Sciences, University of Naples “Federico II”, Via Università 100, 80055 Portici, Italy; (M.L.C.); (F.M.); (M.C.L.); (R.C.); (F.C.)
| | - Massimo Sanchez
- Istituto Superiore di Sanità (ISS) Core Facilities, Viale Regina Elena 299, 00161 Rome, Italy; (M.S.); (V.T.)
| | - Valentina Tirelli
- Istituto Superiore di Sanità (ISS) Core Facilities, Viale Regina Elena 299, 00161 Rome, Italy; (M.S.); (V.T.)
| | - Elisabetta de Alteriis
- Department of Biology, University of Naples “Federico II”, Via Cinthia 26, 80126 Naples, Italy;
| | - Marco Iannaccone
- Laboratory of Bioproducts and Bioprocesses ENEA, Piazzale Enrico Fermi 1, 80055 Portici, Italy;
| | - Pasquale Termolino
- Institute of Biosciences and Bioresources CNR, Via Università 133, 80055 Portici, Italy; (E.P.); (P.T.)
| | - Rosanna Capparelli
- Department of Agricultural Sciences, University of Naples “Federico II”, Via Università 100, 80055 Portici, Italy; (M.L.C.); (F.M.); (M.C.L.); (R.C.); (F.C.)
| | - Fabrizio Carteni
- Department of Agricultural Sciences, University of Naples “Federico II”, Via Università 100, 80055 Portici, Italy; (M.L.C.); (F.M.); (M.C.L.); (R.C.); (F.C.)
| | - Guido Incerti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy;
| | - Stefano Mazzoleni
- Department of Agricultural Sciences, University of Naples “Federico II”, Via Università 100, 80055 Portici, Italy; (M.L.C.); (F.M.); (M.C.L.); (R.C.); (F.C.)
| |
Collapse
|
13
|
Weiss F, Requena-Moreno G, Pichler C, Valero F, Glieder A, Garcia-Ortega X. Scalable protein production by Komagataella phaffii enabled by ARS plasmids and carbon source-based selection. Microb Cell Fact 2024; 23:116. [PMID: 38643119 PMCID: PMC11031860 DOI: 10.1186/s12934-024-02368-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/18/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Most recombinant Komagataella phaffii (Pichia pastoris) strains for protein production are generated by genomic integration of expression cassettes. The clonal variability in gene copy numbers, integration loci and consequently product titers limit the aptitude for high throughput applications in drug discovery, enzyme engineering or most comparative analyses of genetic elements such as promoters or secretion signals. Circular episomal plasmids with an autonomously replicating sequence (ARS), an alternative which would alleviate some of these limitations, are inherently unstable in K. phaffii. Permanent selection pressure, mostly enabled by antibiotic resistance or auxotrophy markers, is crucial for plasmid maintenance and hardly scalable for production. The establishment and use of extrachromosomal ARS plasmids with key genes of the glycerol metabolism (glycerol kinase 1, GUT1, and triosephosphate isomerase 1, TPI1) as selection markers was investigated to obtain a system with high transformation rates that can be directly used for scalable production processes in lab scale bioreactors. RESULTS In micro-scale deep-well plate experiments, ARS plasmids employing the Ashbya gossypii TEF1 (transcription elongation factor 1) promoter to regulate transcription of the marker gene were found to deliver high transformation efficiencies and the best performances with the reporter protein (CalB, lipase B of Candida antarctica) for both, the GUT1- and TPI1-based, marker systems. The GUT1 marker-bearing strain surpassed the reference strain with integrated expression cassette by 46% upon re-evaluation in shake flask cultures regarding CalB production, while the TPI1 system was slightly less productive compared to the control. In 5 L bioreactor methanol-free fed-batch cultivations, the episomal production system employing the GUT1 marker led to 100% increased CalB activity in the culture supernatant compared to integration construct. CONCLUSIONS For the first time, a scalable and methanol-independent expression system for recombinant protein production for K. phaffii using episomal expression vectors was demonstrated. Expression of the GUT1 selection marker gene of the new ARS plasmids was refined by employing the TEF1 promoter of A. gossypii. Additionally, the antibiotic-free marker toolbox for K. phaffii was expanded by the TPI1 marker system, which proved to be similarly suited for the use in episomal plasmids as well as integrative expression constructs for the purpose of recombinant protein production.
Collapse
Affiliation(s)
- Florian Weiss
- Christian Doppler Laboratory for Innovative Pichia pastoris host and vector systems, Institute of Molecular Biotechnology, Graz University of Technology, Graz, A-8010, Austria
| | - Guillermo Requena-Moreno
- Christian Doppler Laboratory for Innovative Pichia Pastoris Host and Vector Systems, Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra, 08193, Spain
| | - Carsten Pichler
- Christian Doppler Laboratory for Innovative Pichia pastoris host and vector systems, Institute of Molecular Biotechnology, Graz University of Technology, Graz, A-8010, Austria
| | - Francisco Valero
- Christian Doppler Laboratory for Innovative Pichia Pastoris Host and Vector Systems, Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra, 08193, Spain
| | - Anton Glieder
- Christian Doppler Laboratory for Innovative Pichia pastoris host and vector systems, Institute of Molecular Biotechnology, Graz University of Technology, Graz, A-8010, Austria.
| | - Xavier Garcia-Ortega
- Christian Doppler Laboratory for Innovative Pichia Pastoris Host and Vector Systems, Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra, 08193, Spain
| |
Collapse
|
14
|
Koster CC, Kleefeldt AA, van den Broek M, Luttik M, Daran JM, Daran-Lapujade P. Long-read direct RNA sequencing of the mitochondrial transcriptome of Saccharomyces cerevisiae reveals condition-dependent intron abundance. Yeast 2024; 41:256-278. [PMID: 37642136 DOI: 10.1002/yea.3893] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 08/31/2023] Open
Abstract
Mitochondria fulfil many essential roles and have their own genome, which is expressed as polycistronic transcripts that undergo co- or posttranscriptional processing and splicing. Due to the inherent complexity and limited technical accessibility of the mitochondrial transcriptome, fundamental questions regarding mitochondrial gene expression and splicing remain unresolved, even in the model eukaryote Saccharomyces cerevisiae. Long-read sequencing could address these fundamental questions. Therefore, a method for the enrichment of mitochondrial RNA and sequencing using Nanopore technology was developed, enabling the resolution of splicing of polycistronic genes and the quantification of spliced RNA. This method successfully captured the full mitochondrial transcriptome and resolved RNA splicing patterns with single-base resolution and was applied to explore the transcriptome of S. cerevisiae grown with glucose or ethanol as the sole carbon source, revealing the impact of growth conditions on mitochondrial RNA expression and splicing. This study uncovered a remarkable difference in the turnover of Group II introns between yeast grown in either mostly fermentative or fully respiratory conditions. Whether this accumulation of introns in glucose medium has an impact on mitochondrial functions remains to be explored. Combined with the high tractability of the model yeast S. cerevisiae, the developed method enables to monitor mitochondrial transcriptome responses in a broad range of relevant contexts, including oxidative stress, apoptosis and mitochondrial diseases.
Collapse
Affiliation(s)
- Charlotte C Koster
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Askar A Kleefeldt
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Marcel van den Broek
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Marijke Luttik
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Jean-Marc Daran
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | | |
Collapse
|
15
|
Mahdizade Ari M, Dadgar L, Elahi Z, Ghanavati R, Taheri B. Genetically Engineered Microorganisms and Their Impact on Human Health. Int J Clin Pract 2024; 2024:6638269. [PMID: 38495751 PMCID: PMC10944348 DOI: 10.1155/2024/6638269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/20/2023] [Accepted: 02/12/2024] [Indexed: 03/19/2024] Open
Abstract
The emergence of antibiotic-resistant strains, the decreased effectiveness of conventional therapies, and the side effects have led researchers to seek a safer, more cost-effective, patient-friendly, and effective method that does not develop antibiotic resistance. With progress in synthetic biology and genetic engineering, genetically engineered microorganisms effective in treatment, prophylaxis, drug delivery, and diagnosis have been developed. The present study reviews the types of genetically engineered bacteria and phages, their impacts on diseases, cancer, and metabolic and inflammatory disorders, the biosynthesis of these modified strains, the route of administration, and their effects on the environment. We conclude that genetically engineered microorganisms can be considered promising candidates for adjunctive treatment of diseases and cancers.
Collapse
Affiliation(s)
- Marzie Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Dadgar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Elahi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | | | - Behrouz Taheri
- Department of Biotechnology, School of Medicine, Ahvaz Jundishapour University of medical Sciences, Ahvaz, Iran
| |
Collapse
|
16
|
Peng H, Darlington APS, South EJ, Chen HH, Jiang W, Ledesma-Amaro R. A molecular toolkit of cross-feeding strains for engineering synthetic yeast communities. Nat Microbiol 2024; 9:848-863. [PMID: 38326570 PMCID: PMC10914607 DOI: 10.1038/s41564-023-01596-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 12/18/2023] [Indexed: 02/09/2024]
Abstract
Engineered microbial consortia often have enhanced system performance and robustness compared with single-strain biomanufacturing production platforms. However, few tools are available for generating co-cultures of the model and key industrial host Saccharomyces cerevisiae. Here we engineer auxotrophic and overexpression yeast strains that can be used to create co-cultures through exchange of essential metabolites. Using these strains as modules, we engineered two- and three-member consortia using different cross-feeding architectures. Through a combination of ensemble modelling and experimentation, we explored how cellular (for example, metabolite production strength) and environmental (for example, initial population ratio, population density and extracellular supplementation) factors govern population dynamics in these systems. We tested the use of the toolkit in a division of labour biomanufacturing case study and show that it enables enhanced and tuneable antioxidant resveratrol production. We expect this toolkit to become a useful resource for a variety of applications in synthetic ecology and biomanufacturing.
Collapse
Affiliation(s)
- Huadong Peng
- Department of Bioengineering, Imperial College London, London, UK
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Alexander P S Darlington
- Warwick Integrative Synthetic Biology Centre, School of Engineering, University of Warwick, Coventry, UK
| | - Eric J South
- Molecular Biology, Cell Biology and Biochemistry Program, Boston University, Boston, MA, USA
| | - Hao-Hong Chen
- Department of Bioengineering, Imperial College London, London, UK
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Wei Jiang
- Department of Bioengineering, Imperial College London, London, UK
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering, Imperial College London, London, UK.
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK.
| |
Collapse
|
17
|
Sjöberg G, Reķēna A, Fornstad M, Lahtvee PJ, van Maris AJA. Evaluation of enzyme-constrained genome-scale model through metabolic engineering of anaerobic co-production of 2,3-butanediol and glycerol by Saccharomyces cerevisiae. Metab Eng 2024; 82:49-59. [PMID: 38309619 DOI: 10.1016/j.ymben.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/27/2023] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Enzyme-constrained genome-scale models (ecGEMs) have potential to predict phenotypes in a variety of conditions, such as growth rates or carbon sources. This study investigated if ecGEMs can guide metabolic engineering efforts to swap anaerobic redox-neutral ATP-providing pathways in yeast from alcoholic fermentation to equimolar co-production of 2,3-butanediol and glycerol. With proven pathways and low product toxicity, the ecGEM solution space aligned well with observed phenotypes. Since this catabolic pathway provides only one-third of the ATP of alcoholic fermentation (2/3 versus 2 ATP per glucose), the ecGEM predicted a growth decrease from 0.36 h-1 in the reference to 0.175 h-1 in the engineered strain. However, this <3-fold decrease would require the specific glucose consumption rate to increase. Surprisingly, after the pathway swap the engineered strain immediately grew at 0.15 h-1 with a glucose consumption rate of 29 mmol (g CDW)-1 h-1, which was indeed higher than reference (23 mmol (g CDW)-1 h-1) and one of the highest reported for S. cerevisiae. The accompanying 2,3-butanediol- (15.8 mmol (g CDW)-1 h-1) and glycerol (19.6 mmol (g CDW)-1 h-1) production rates were close to predicted values. Proteomics confirmed that this increased consumption rate was facilitated by enzyme reallocation from especially ribosomes (from 25.5 to 18.5 %) towards glycolysis (from 28.7 to 43.5 %). Subsequently, 200 generations of sequential transfer did not improve growth of the engineered strain, showing the use of ecGEMs in predicting opportunity space for laboratory evolution. The observations in this study illustrate both the current potential, as well as future improvements, of ecGEMs as a tool for both metabolic engineering and laboratory evolution.
Collapse
Affiliation(s)
- Gustav Sjöberg
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Alīna Reķēna
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Matilda Fornstad
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Petri-Jaan Lahtvee
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Antonius J A van Maris
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
18
|
Kaplan K, Levkovich SA, DeRowe Y, Gazit E, Laor Bar-Yosef D. Mind your marker: the effect of common auxotrophic markers on complex traits in yeast. FEBS J 2024. [PMID: 38383986 DOI: 10.1111/febs.17095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/02/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Abstract
Yeast cells are extensively used as a key model organism owing to their highly conserved genome, metabolic pathways, and cell biology processes. To assist in genetic engineering and analysis, laboratory yeast strains typically harbor auxotrophic selection markers. When uncompensated, auxotrophic markers cause significant phenotypic bias compared to prototrophic strains and have different combinatorial influences on the metabolic network. Here, we used BY4741, a laboratory strain commonly used as a "wild type" strain in yeast studies, to generate a set of revertant strains, containing all possible combinations of four common auxotrophic markers (leu2∆, ura3∆, his3∆1, met15∆). We examined the effect of the auxotrophic combinations on complex phenotypes such as resistance to rapamycin, acetic acid, and ethanol. Among the markers, we found that leucine auxotrophy most significantly affected the phenotype. We analyzed the phenotypic bias caused by auxotrophy at the genomic level using a prototrophic version of a genome-wide deletion library and a decreased mRNA perturbation (DAmP) library. Prototrophy was found to suppress rapamycin sensitivity in many mutants previously annotated for the phenotype, raising a possible need for reevaluation of the findings in a native metabolic context. These results reveal a significant phenotypic bias caused by common auxotrophic markers and support the use of prototrophic wild-type strains in yeast research.
Collapse
Affiliation(s)
- Keila Kaplan
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
| | - Shon A Levkovich
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
| | - Yasmin DeRowe
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
| | - Ehud Gazit
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
- BLAVATNIK CENTER for Drug Discovery, Tel Aviv University, Israel
| | - Dana Laor Bar-Yosef
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
| |
Collapse
|
19
|
Lu M, Billerbeck S. Improving homology-directed repair by small molecule agents for genetic engineering in unconventional yeast?-Learning from the engineering of mammalian systems. Microb Biotechnol 2024; 17:e14398. [PMID: 38376092 PMCID: PMC10878012 DOI: 10.1111/1751-7915.14398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 02/21/2024] Open
Abstract
The ability to precisely edit genomes by deleting or adding genetic information enables the study of biological functions and the building of efficient cell factories. In many unconventional yeasts, such as those promising new hosts for cell factory design but also human pathogenic yeasts and food spoilers, this progress has been limited by the fact that most yeasts favour non-homologous end joining (NHEJ) over homologous recombination (HR) as a DNA repair mechanism, impairing genetic access to these hosts. In mammalian cells, small molecules that either inhibit proteins involved in NHEJ, enhance protein function in HR, or arrest the cell cycle in HR-dominant phases are regarded as promising agents for the simple and transient increase of HR-mediated genome editing without the need for a priori host engineering. Only a few of these chemicals have been applied to the engineering of yeast, although the targeted proteins are mostly conserved, making chemical agents a yet-underexplored area for enhancing yeast engineering. Here, we consolidate knowledge of the available small molecules that have been used to improve HR efficiency in mammalian cells and the few ones that have been used in yeast. We include available high-throughput-compatible NHEJ/HR quantification assays that could be used to screen for and isolate yeast-specific inhibitors.
Collapse
Affiliation(s)
- Min Lu
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - Sonja Billerbeck
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
20
|
Hu KKY, Suri A, Dumsday G, Haritos VS. Cross-feeding promotes heterogeneity within yeast cell populations. Nat Commun 2024; 15:418. [PMID: 38200012 PMCID: PMC10781747 DOI: 10.1038/s41467-023-44623-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Cellular heterogeneity in cell populations of isogenic origin is driven by intrinsic factors such as stochastic gene expression, as well as external factors like nutrient availability and interactions with neighbouring cells. Heterogeneity promotes population fitness and thus has important implications in antimicrobial and anticancer treatments, where stress tolerance plays a significant role. Here, we study plasmid retention dynamics within a population of plasmid-complemented ura3∆0 yeast cells, and show that the exchange of complementary metabolites between plasmid-carrying prototrophs and plasmid-free auxotrophs allows the latter to survive and proliferate in selective environments. This process also affects plasmid copy number in plasmid-carrying prototrophs, further promoting cellular functional heterogeneity. Finally, we show that targeted genetic engineering can be used to suppress cross-feeding and reduce the frequency of plasmid-free auxotrophs, or to exploit it for intentional population diversification and division of labour in co-culture systems.
Collapse
Affiliation(s)
- Kevin K Y Hu
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Ankita Suri
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Geoff Dumsday
- Commonwealth Scientific and Industrial Research Organisation, Clayton, VIC, 3169, Australia
| | - Victoria S Haritos
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
21
|
Lewis AG, Carmichael L, Wang RY, Gibney PA. Characterizing a panel of amino acid auxotrophs under auxotrophic starvation conditions. Yeast 2024; 41:5-18. [PMID: 37997284 DOI: 10.1002/yea.3910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/20/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Auxotrophic strains starving for their cognate nutrient, termed auxotrophic starvation, are characterized by a shorter lifespan, higher glucose wasting phenotype, and inability to accomplish cell cycle arrest when compared to a "natural starvation," where a cell is starving for natural environmental growth-limiting nutrients such as phosphate. Since evidence of this physiological response is limited to only a subset of auxotrophs, we evaluated a panel of auxotrophic mutants to determine whether these responses are characteristic of a broader range of amino acid auxotrophs. Based on the starvation survival kinetics, the panel of strains was grouped into three categories-short-lived strains, strains with survival similar to a prototrophic wild type strain, and long-lived strains. Among the short-lived strains, we observed that the tyrosine, asparagine, threonine, and aspartic acid auxotrophs rapidly decline in viability, with all strains unable to arrest cell cycle progression. The three basic amino acid auxotrophs had a survival similar to a prototrophic strain starving in minimal media. The leucine, tryptophan, methionine, and cysteine auxotrophs displayed the longest lifespan. We also demonstrate how the phenomenon of glucose wasting is limited to only a subset of the tested auxotrophs, namely the asparagine, leucine, and lysine auxotrophs. Furthermore, we observed pleiotropic phenotypes associated with a subgroup of auxotrophs, highlighting the importance of considering unintended phenotypic effects when using auxotrophic strains especially in chronological aging experiments.
Collapse
Affiliation(s)
- Alisha G Lewis
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Laurin Carmichael
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Rebecca Y Wang
- Calico Life Sciences LLC, South San Francisco, California, USA
| | - Patrick A Gibney
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
22
|
de Alteriis E, Incerti G, Cartenì F, Chiusano ML, Colantuono C, Palomba E, Termolino P, Monticolo F, Esposito A, Bonanomi G, Capparelli R, Iannaccone M, Foscari A, Landi C, Parascandola P, Sanchez M, Tirelli V, de Falco B, Lanzotti V, Mazzoleni S. Extracellular DNA secreted in yeast cultures is metabolism-specific and inhibits cell proliferation. MICROBIAL CELL (GRAZ, AUSTRIA) 2023; 10:292-295. [PMID: 38053574 PMCID: PMC10695634 DOI: 10.15698/mic2023.12.810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 12/07/2023]
Abstract
Extracellular DNA (exDNA) can be actively released by living cells and different putative functions have been attributed to it. Further, homologous exDNA has been reported to exert species-specific inhibitory effects on several organisms. Here, we demonstrate by different experimental evidence, including 1H-NMR metabolomic fingerprint, that the growth rate decline in Saccharomyces cerevisiae fed-batch cultures is determined by the accumulation of exDNA in the medium. Sequencing of such secreted exDNA represents a portion of the entire genome, showing a great similarity with extrachromosomal circular DNA (eccDNA) already reported inside yeast cells. The recovered DNA molecules were mostly single strands and specifically associated to the yeast metabolism displayed during cell growth. Flow cytometric analysis showed that the observed growth inhibition by exDNA corresponded to an arrest in the S phase of the cell cycle. These unprecedented findings open a new scenario on the functional role of exDNA produced by living cells.
Collapse
Affiliation(s)
- Elisabetta de Alteriis
- Department of Biology, University of Naples “Federico II”, Via Cinthia 26, 80126 Naples, Italy
| | - Guido Incerti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze 206, 33100 Udine, Italy
| | - Fabrizio Cartenì
- Department of Agricultural Sciences, University of Naples “Federico II”, via Università 100, 80055 Portici (NA), Italy
| | - Maria Luisa Chiusano
- Department of Agricultural Sciences, University of Naples “Federico II”, via Università 100, 80055 Portici (NA), Italy
| | - Chiara Colantuono
- Department of Agricultural Sciences, University of Naples “Federico II”, via Università 100, 80055 Portici (NA), Italy
| | - Emanuela Palomba
- Institute of Biosciences and Bioresources CNR, Via Università 133, 80055 Portici (NA), Italy
| | - Pasquale Termolino
- Institute of Biosciences and Bioresources CNR, Via Università 133, 80055 Portici (NA), Italy
| | - Francesco Monticolo
- Department of Agricultural Sciences, University of Naples “Federico II”, via Università 100, 80055 Portici (NA), Italy
- Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Alfonso Esposito
- Department of Agricultural Sciences, University of Naples “Federico II”, via Università 100, 80055 Portici (NA), Italy
| | - Giuliano Bonanomi
- Department of Agricultural Sciences, University of Naples “Federico II”, via Università 100, 80055 Portici (NA), Italy
- Task Force Microbiome - University of Naples “Federico II“
| | - Rosanna Capparelli
- Department of Agricultural Sciences, University of Naples “Federico II”, via Università 100, 80055 Portici (NA), Italy
| | - Marco Iannaccone
- Department of Agricultural Sciences, University of Naples “Federico II”, via Università 100, 80055 Portici (NA), Italy
- Laboratory of Biotechnological Processes for Energy and Industry, ENEA, Via Anguillarese, 301, - 00123 Rome, Italy
| | - Alessandro Foscari
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze 206, 33100 Udine, Italy
| | - Carmine Landi
- Department of Industrial Engineering, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy-
| | - Palma Parascandola
- Department of Industrial Engineering, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy-
| | - Massimo Sanchez
- Istituto Superiore di Sanità (ISS) Core Facilities, Viale Regina Elena 299, 00161 Rome, Italy
| | - Valentina Tirelli
- Istituto Superiore di Sanità (ISS) Core Facilities, Viale Regina Elena 299, 00161 Rome, Italy
| | - Bruna de Falco
- Department of Agricultural Sciences, University of Naples “Federico II”, via Università 100, 80055 Portici (NA), Italy
| | - Virginia Lanzotti
- Department of Agricultural Sciences, University of Naples “Federico II”, via Università 100, 80055 Portici (NA), Italy
| | - Stefano Mazzoleni
- Department of Agricultural Sciences, University of Naples “Federico II”, via Università 100, 80055 Portici (NA), Italy
- Task Force Microbiome - University of Naples “Federico II“
| |
Collapse
|
23
|
Rossio V, Liu X, Paulo JA. Comparative Proteomic Analysis of Two Commonly Used Laboratory Yeast Strains: W303 and BY4742. Proteomes 2023; 11:30. [PMID: 37873872 PMCID: PMC10594481 DOI: 10.3390/proteomes11040030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/25/2023] Open
Abstract
The yeast Saccharomyces cerevisiae is a powerful model system that is often used to expand our understanding of cellular processes and biological functions. Although many genetically well-characterized laboratory strains of S. cerevisiae are available, they may have different genetic backgrounds which can confound data interpretation. Here, we report a comparative whole-proteome analysis of two common laboratory yeast background strains, W303 and BY4742, in both exponential and stationary growth phases using isobaric-tag-based mass spectrometry to highlight differences in proteome complexity. We quantified over 4400 proteins, hundreds of which showed differences in abundance between strains and/or growth phases. Moreover, we used proteome-wide protein abundance to profile the mating type of the strains used in the experiment, the auxotrophic markers, and associated metabolic pathways, as well as to investigate differences in particular classes of proteins, such as the pleiotropic drug resistance (PDR) proteins. This study is a valuable resource that offers insight into mechanistic differences between two common yeast background strains and can be used as a guide to select a background that is best suited for addressing a particular biological question.
Collapse
Affiliation(s)
- Valentina Rossio
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA;
| | | | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA;
| |
Collapse
|
24
|
Trivedi VD, Sullivan SF, Choudhury D, Endalur Gopinarayanan V, Hart T, Nair NU. Integration of metabolism and regulation reveals rapid adaptability to growth on non-native substrates. Cell Chem Biol 2023; 30:1135-1143.e5. [PMID: 37421944 PMCID: PMC10529486 DOI: 10.1016/j.chembiol.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/18/2023] [Accepted: 06/08/2023] [Indexed: 07/10/2023]
Abstract
Engineering synthetic heterotrophy is a key to the efficient bio-based valorization of renewable and waste substrates. Among these, engineering hemicellulosic pentose utilization has been well-explored in Saccharomyces cerevisiae (yeast) over several decades-yet the answer to what makes their utilization inherently recalcitrant remains elusive. Through implementation of a semi-synthetic regulon, we find that harmonizing cellular and engineering objectives are a key to obtaining highest growth rates and yields with minimal metabolic engineering effort. Concurrently, results indicate that "extrinsic" factors-specifically, upstream genes that direct flux of pentoses into central carbon metabolism-are rate-limiting. We also reveal that yeast metabolism is innately highly adaptable to rapid growth on non-native substrates and that systems metabolic engineering (i.e., functional genomics, network modeling, etc.) is largely unnecessary. Overall, this work provides an alternate, novel, holistic (and yet minimalistic) approach based on integrating non-native metabolic genes with a native regulon system.
Collapse
Affiliation(s)
- Vikas D Trivedi
- Department of Chemical & Biological Engineering, Tufts University, Medford, MA, USA
| | - Sean F Sullivan
- Department of Chemical & Biological Engineering, Tufts University, Medford, MA, USA
| | - Debika Choudhury
- Department of Chemical & Biological Engineering, Tufts University, Medford, MA, USA
| | | | - Taylor Hart
- Department of Chemical & Biological Engineering, Tufts University, Medford, MA, USA
| | - Nikhil U Nair
- Department of Chemical & Biological Engineering, Tufts University, Medford, MA, USA.
| |
Collapse
|
25
|
Tkachenko AA, Borshchevskaya LN, Sineoky SP, Gordeeva TL. CRISPR/Cas9-Mediated Genome Editing of the Komagataella phaffii to Obtain a Phytase-Producer Markerless Strain. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1338-1346. [PMID: 37770400 DOI: 10.1134/s0006297923090134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 04/19/2023] [Accepted: 05/19/2023] [Indexed: 09/30/2023]
Abstract
Using CRISPR/Cas9 system, the recipient strains K. phaffii VKPM Y-5013 (His- phenotype) and K. phaffii VKPM Y-5014 (Leu- phenotype) were derived from the K. phaffii VKPM Y-4287 strain, which has a high expression potential. Based on the developed recipient strains, markerless producers of heterologous proteins could be obtained. Efficiency of the gene inactivation with different variants of sgRNA ranged from 65 to 98% and from 15 to 72% for the HIS4 and LEU2 genes, respectively. The recipient strains retained growth characteristics of the parent strain and exhibited high expression potential, as estimated by the production of heterologous phytase from Citrobacter gillenii. Average productivity of the transformants based on the K. phaffii VKPM Y-5013 and K. phaffii VKPM Y-5014 strains was 2.1 and 2.0 times higher than productivity of the transformants of the commercial K. phaffii GS115 strain. Method for sequential integration of genetic material into genome of the K. phaffii VKPM Y-5013 strain was proposed. A highly effective multicopy markerless strain producing C. gillenii phytase was obtained.
Collapse
Affiliation(s)
- Artur A Tkachenko
- National Research Center "Kurchatov Institute", Moscow, 117545, Russia.
| | | | - Sergey P Sineoky
- National Research Center "Kurchatov Institute", Moscow, 117545, Russia
| | | |
Collapse
|
26
|
Gossing M, Limeta A, Skrekas C, Wigglesworth M, Davis A, Siewers V, David F. Multiplexed Guide RNA Expression Leads to Increased Mutation Frequency in Targeted Window Using a CRISPR-Guided Error-Prone DNA Polymerase in Saccharomyces cerevisiae. ACS Synth Biol 2023; 12:2271-2277. [PMID: 37486342 PMCID: PMC10443033 DOI: 10.1021/acssynbio.2c00689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Indexed: 07/25/2023]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technology, with its ability to target a specific DNA locus using guide RNAs (gRNAs), is particularly suited for targeted mutagenesis. The targeted diversification of nucleotides in Saccharomyces cerevisiae using a CRISPR-guided error-prone DNA polymerase─called yEvolvR─was recently reported. Here, we investigate the effect of multiplexed expression of gRNAs flanking a short stretch of DNA on reversion and mutation frequencies using yEvolvR. Phenotypic assays demonstrate that higher reversion frequencies are observed when expressing multiple gRNAs simultaneously. Next generation sequencing reveals a synergistic effect of multiple gRNAs on mutation frequencies, which is more pronounced in a mutant with a partially defective DNA mismatch repair system. Additionally, we characterize a galactose-inducible yEvolvR, which enables temporal control of mutagenesis. This study demonstrates that multiplex expression of gRNAs and induction of mutagenesis greatly improves the capabilities of yEvolvR for generation of genetic libraries in vivo.
Collapse
Affiliation(s)
- Michael Gossing
- Discovery
Sciences, Biopharmaceuticals R&D, AstraZeneca, SE-41320 Gothenburg, Sweden
| | - Angelo Limeta
- Department
of Life Sciences, Chalmers University of
Technology, SE-41296 Gothenburg, Sweden
| | - Christos Skrekas
- Department
of Life Sciences, Chalmers University of
Technology, SE-41296 Gothenburg, Sweden
| | - Mark Wigglesworth
- Discovery
Sciences, Biopharmaceuticals R&D, AstraZeneca, Alderley Park SK10 2NA, U.K.
- Alderley
Lighthouse Laboratories Ltd., Alderley
Park SK10 4TG, Macclesfield, U.K.
| | - Andrew Davis
- Discovery
Sciences, Biopharmaceutical R&D, AstraZeneca, Cambridge CB2 0AA, U.K.
| | - Verena Siewers
- Department
of Life Sciences, Chalmers University of
Technology, SE-41296 Gothenburg, Sweden
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Florian David
- Department
of Life Sciences, Chalmers University of
Technology, SE-41296 Gothenburg, Sweden
| |
Collapse
|
27
|
Salazar-Cerezo S, de Vries RP, Garrigues S. Strategies for the Development of Industrial Fungal Producing Strains. J Fungi (Basel) 2023; 9:834. [PMID: 37623605 PMCID: PMC10455633 DOI: 10.3390/jof9080834] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023] Open
Abstract
The use of microorganisms in industry has enabled the (over)production of various compounds (e.g., primary and secondary metabolites, proteins and enzymes) that are relevant for the production of antibiotics, food, beverages, cosmetics, chemicals and biofuels, among others. Industrial strains are commonly obtained by conventional (non-GMO) strain improvement strategies and random screening and selection. However, recombinant DNA technology has made it possible to improve microbial strains by adding, deleting or modifying specific genes. Techniques such as genetic engineering and genome editing are contributing to the development of industrial production strains. Nevertheless, there is still significant room for further strain improvement. In this review, we will focus on classical and recent methods, tools and technologies used for the development of fungal production strains with the potential to be applied at an industrial scale. Additionally, the use of functional genomics, transcriptomics, proteomics and metabolomics together with the implementation of genetic manipulation techniques and expression tools will be discussed.
Collapse
Affiliation(s)
- Sonia Salazar-Cerezo
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands (R.P.d.V.)
| | - Ronald P. de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands (R.P.d.V.)
| | - Sandra Garrigues
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, VLC, Spain
| |
Collapse
|
28
|
Aulakh SK, Sellés Vidal L, South EJ, Peng H, Varma SJ, Herrera-Dominguez L, Ralser M, Ledesma-Amaro R. Spontaneously established syntrophic yeast communities improve bioproduction. Nat Chem Biol 2023:10.1038/s41589-023-01341-2. [PMID: 37248413 PMCID: PMC10374442 DOI: 10.1038/s41589-023-01341-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/14/2023] [Indexed: 05/31/2023]
Abstract
Nutritional codependence (syntrophy) has underexplored potential to improve biotechnological processes by using cooperating cell types. So far, design of yeast syntrophic communities has required extensive genetic manipulation, as the co-inoculation of most eukaryotic microbial auxotrophs does not result in cooperative growth. Here we employ high-throughput phenotypic screening to systematically test pairwise combinations of auxotrophic Saccharomyces cerevisiae deletion mutants. Although most coculture pairs do not enter syntrophic growth, we identify 49 pairs that spontaneously form syntrophic, synergistic communities. We characterized the stability and growth dynamics of nine cocultures and demonstrated that a pair of tryptophan auxotrophs grow by exchanging a pathway intermediate rather than end products. We then introduced a malonic semialdehyde biosynthesis pathway split between different pairs of auxotrophs, which resulted in increased production. Our results report the spontaneous formation of stable syntrophy in S. cerevisiae auxotrophs and illustrate the biotechnological potential of dividing labor in a cooperating intraspecies community.
Collapse
Affiliation(s)
- Simran Kaur Aulakh
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
- The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Lara Sellés Vidal
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Eric J South
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Huadong Peng
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Sreejith Jayasree Varma
- Department of Biochemistry, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lucia Herrera-Dominguez
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
- Department of Biochemistry, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Markus Ralser
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK.
- The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Department of Biochemistry, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Max Planck Institute for Molecular Genetics, Berlin, Germany.
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, UK.
| |
Collapse
|
29
|
Tapia SM, Macías LG, Pérez-Torrado R, Daroqui N, Manzanares P, Querol A, Barrio E. A novel aminotransferase gene and its regulator acquired in Saccharomyces by a horizontal gene transfer event. BMC Biol 2023; 21:102. [PMID: 37158891 PMCID: PMC10169451 DOI: 10.1186/s12915-023-01566-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/16/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND Horizontal gene transfer (HGT) is an evolutionary mechanism of adaptive importance, which has been deeply studied in wine S. cerevisiae strains, where those acquired genes conferred improved traits related to both transport and metabolism of the nutrients present in the grape must. However, little is known about HGT events that occurred in wild Saccharomyces yeasts and how they determine their phenotypes. RESULTS Through a comparative genomic approach among Saccharomyces species, we detected a subtelomeric segment present in the S. uvarum, S. kudriavzevii, and S. eubayanus species, belonging to the first species to diverge in the Saccharomyces genus, but absent in the other Saccharomyces species. The segment contains three genes, two of which were characterized, named DGD1 and DGD2. DGD1 encodes dialkylglicine decarboxylase, whose specific substrate is the non-proteinogenic amino acid 2-aminoisobutyric acid (AIB), a rare amino acid present in some antimicrobial peptides of fungal origin. DGD2 encodes putative zinc finger transcription factor, which is essential to induce the AIB-dependent expression of DGD1. Phylogenetic analysis showed that DGD1 and DGD2 are closely related to two adjacent genes present in Zygosaccharomyces. CONCLUSIONS The presented results show evidence of an early HGT event conferring new traits to the ancestor of the Saccharomyces genus that could be lost in the evolutionary more recent Saccharomyces species, perhaps due to loss of function during the colonization of new habitats.
Collapse
Affiliation(s)
- Sebastián M Tapia
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
| | - Laura G Macías
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
| | | | - Noemi Daroqui
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
| | - Paloma Manzanares
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
| | - Amparo Querol
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
| | - Eladio Barrio
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain.
- Departament de Genètica, Universitat de València, Valencia, Spain.
| |
Collapse
|
30
|
Thai HD, Do LTBX, Nguyen XT, Vu TX, Tran HTT, Nguyen HQ, Tran VT. A newly constructed Agrobacterium-mediated transformation system based on the hisB auxotrophic marker for genetic manipulation in Aspergillus niger. Arch Microbiol 2023; 205:183. [PMID: 37032362 DOI: 10.1007/s00203-023-03530-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/15/2023] [Accepted: 03/31/2023] [Indexed: 04/11/2023]
Abstract
The filamentous fungus Aspergillus niger is widely exploited as an industrial workhorse for producing enzymes and organic acids. So far, different genetic tools, including CRISPR/Cas9 genome editing strategies, have been developed for the engineering of A. niger. However, these tools usually require a suitable method for gene transfer into the fungal genome, like protoplast-mediated transformation (PMT) or Agrobacterium tumefaciens-mediated transformation (ATMT). Compared to PMT, ATMT is considered more advantageous because fungal spores can be used directly for genetic transformation instead of protoplasts. Although ATMT has been applied in many filamentous fungi, it remains less effective in A. niger. In the present study, we deleted the hisB gene and established an ATMT system for A. niger based on the histidine auxotrophic mechanism. Our results revealed that the ATMT system could achieve 300 transformants per 107 fungal spores under optimal transformation conditions. The ATMT efficiency in this work is 5 - 60 times higher than those of the previous ATMT studies in A. niger. The ATMT system was successfully applied to express the DsRed fluorescent protein-encoding gene from the Discosoma coral in A. niger. Furthermore, we showed that the ATMT system was efficient for gene targeting in A. niger. The deletion efficiency of the laeA regulatory gene using hisB as a selectable marker could reach 68 - 85% in A. niger strains. The ATMT system constructed in our work represents a promising genetic tool for heterologous expression and gene targeting in the industrially important fungus A. niger.
Collapse
Affiliation(s)
- Hanh-Dung Thai
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
- Faculty of Biology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Loc Thi Binh Xuan Do
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Xuan Thi Nguyen
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Tao Xuan Vu
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
- Center for Experimental Biology, National Center for Technological Progress, Ministry of Science and Technology, C6 Thanh Xuan Bac, Thanh Xuan, Hanoi, Viet Nam
| | - Huyen Thi Thanh Tran
- Faculty of Biology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Huy Quang Nguyen
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
- Faculty of Biology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Van-Tuan Tran
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam.
- Faculty of Biology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam.
| |
Collapse
|
31
|
Pavão G, Sfalcin I, Bonatto D. Biocontainment Techniques and Applications for Yeast Biotechnology. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9040341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Biocontainment techniques for genetically modified yeasts (GMYs) are pivotal due to the importance of these organisms for biotechnological processes and also due to the design of new yeast strains by using synthetic biology tools and technologies. Due to the large genetic modifications that many yeast strains display, it is highly desirable to avoid the leakage of GMY cells into natural environments and, consequently, the spread of synthetic genes and circuits by horizontal or vertical gene transfer mechanisms within the microorganisms. Moreover, it is also desirable to avoid patented yeast gene technologies spreading outside the production facility. In this review, the different biocontainment technologies currently available for GMYs were evaluated. Interestingly, uniplex-type biocontainment approaches (UTBAs), which rely on nutrient auxotrophies induced by gene mutation or deletion or the expression of the simple kill switches apparatus, are still the major biocontainment approaches in use with GMY. While bacteria such as Escherichia coli account for advanced biocontainment technologies based on synthetic biology and multiplex-type biocontainment approaches (MTBAs), GMYs are distant from this scenario due to many reasons. Thus, a comparison of different UTBAs and MTBAs applied for GMY and genetically engineered microorganisms (GEMs) was made, indicating the major advances of biocontainment techniques for GMYs.
Collapse
|
32
|
Paccetti-Alves I, Batista MSP, Pimpão C, Victor BL, Soveral G. Unraveling the Aquaporin-3 Inhibitory Effect of Rottlerin by Experimental and Computational Approaches. Int J Mol Sci 2023; 24:ijms24066004. [PMID: 36983077 PMCID: PMC10057066 DOI: 10.3390/ijms24066004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
The natural polyphenolic compound Rottlerin (RoT) showed anticancer properties in a variety of human cancers through the inhibition of several target molecules implicated in tumorigenesis, revealing its potential as an anticancer agent. Aquaporins (AQPs) are found overexpressed in different types of cancers and have recently emerged as promising pharmacological targets. Increasing evidence suggests that the water/glycerol channel aquaporin-3 (AQP3) plays a key role in cancer and metastasis. Here, we report the ability of RoT to inhibit human AQP3 activity with an IC50 in the micromolar range (22.8 ± 5.82 µM for water and 6.7 ± 2.97 µM for glycerol permeability inhibition). Moreover, we have used molecular docking and molecular dynamics simulations to understand the structural determinants of RoT that explain its ability to inhibit AQP3. Our results show that RoT blocks AQP3-glycerol permeation by establishing strong and stable interactions at the extracellular region of AQP3 pores interacting with residues essential for glycerol permeation. Altogether, our multidisciplinary approach unveiled RoT as an anticancer drug against tumors where AQP3 is highly expressed providing new information to aquaporin research that may boost future drug design.
Collapse
Affiliation(s)
- Inês Paccetti-Alves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Marta S P Batista
- Biosystems and Integrative Sciences Institute, Faculty of Sciences, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Catarina Pimpão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Bruno L Victor
- Biosystems and Integrative Sciences Institute, Faculty of Sciences, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| |
Collapse
|
33
|
Gokhale CS, Velasque M, Denton JA. Ecological Drivers of Community Cohesion. mSystems 2023; 8:e0092922. [PMID: 36656037 PMCID: PMC9948702 DOI: 10.1128/msystems.00929-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/16/2022] [Indexed: 01/20/2023] Open
Abstract
From protocellular to societal, networks of living systems are complex and multiscale. Discerning the factors that facilitate assembly of these intricate interdependencies using pairwise interactions can be nearly impossible. To facilitate a greater understanding, we developed a mathematical and computational model based on a synthetic four-strain Saccharomyces cerevisiae interdependent system. Specifically, we aimed to provide a greater understanding of how ecological factors influence community dynamics. By leveraging transiently structured ecologies, we were able to drive community cohesion. We show how ecological interventions could reverse or slow the extinction rate of a cohesive community. An interconnected system first needs to persist long enough to be a subject of natural selection. Our emulation of Darwin's "warm little ponds" with an ecology governed by transient compartmentalization provided the necessary persistence. Our results reveal utility across scales of organization, stressing the importance of cyclic processes in major evolutionary transitions, engineering of synthetic microbial consortia, and conservation biology. IMPORTANCE We are facing unprecedented disruption and collapse of ecosystems across the globe. To have any hope of mitigating this phenomenon, a much greater understanding of ecosystem dynamics is required. However, ecosystems are typically composed of highly dynamic networks of individual species. These interactions are further modulated by abiotic and biotic factors that vary temporally and spatially. Thus, ecological dynamics are obfuscated by this complexity. Here, we developed a theoretical model, informed by a synthetic experimental system, of Darwin's "warm little ponds." This cycling four-species system seeks to elucidate the ecological factors that drive or inhibit interaction. We show that these factors could provide an essential tool for avoiding the accelerating ecological collapse. Our study also provides a starting point to develop a more encompassing model to inform conservation efforts.
Collapse
Affiliation(s)
- Chaitanya S. Gokhale
- Research Group for Theoretical Models of Eco-evolutionary Dynamics, Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Mariana Velasque
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology, Onna-son, Japan
- Experimental Evolutionary Biology Lab, Monash University, Clayton, Australia
| | - Jai A. Denton
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology, Onna-son, Japan
- World Mosquito Program, Institute of Vector-borne Disease, Monash University, Clayton, Australia
| |
Collapse
|
34
|
Zou M, Xin B, Sun X, Lin R, Lu J, Qi J, Xie B, Cheng X. URA3 as a Selectable Marker for Disruption and Functional Assessment of PacC Gene in the Entomopathogenic Fungus Isaria javanica. J Fungi (Basel) 2023; 9:jof9010092. [PMID: 36675913 PMCID: PMC9860623 DOI: 10.3390/jof9010092] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
An effective selection marker is necessary for genetic engineering and functional genomics research in the post-genomic era. Isaria javanica is an important entomopathogenic fungus with a broad host range and prospective biocontrol potentials. Given that no antibiotic marker is available currently in this fungus, developing an effective selection marker is necessary. In this study, by applying overlap PCR and split-marker deletion strategy, combining PEG-mediated protoplasm transformation method, the uridine auxotrophy gene (ura3) in the I. javanica genome was knocked out. Then, using this transformation system, the pH response transcription factor gene (IjpacC) was disrupted successfully. Loss of IjpacC gene results in an obvious decrease in conidial production, but little impact on mycelial growth. The virulence of the ΔIjpacC mutant on caterpillars is similar to that of the wild-type strain. RT-qPCR detection shows that expression level of an acidic-expressed S53 gene (IF1G_06234) in ΔIjpacC mutant is more significantly upregulated than in the wild-type strain during the fungal infection on caterpillars. Our results indicate that a markerless transformation system based upon complementation of uridine auxotrophy is successfully developed in I. javanica, which is useful for exploring gene function and for genetic engineering to enhance biological control potential of the fungus.
Collapse
Affiliation(s)
- Manling Zou
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Bei Xin
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Sun
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Runmao Lin
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junru Lu
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Qi
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Bingyan Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (B.X.); (X.C.); Tel.: +86-10-82109546 (B.X.); +86-10-58809696 (X.C.)
| | - Xinyue Cheng
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Beijing 100080, China
- Correspondence: (B.X.); (X.C.); Tel.: +86-10-82109546 (B.X.); +86-10-58809696 (X.C.)
| |
Collapse
|
35
|
van Aalst ACA, Geraats EH, Jansen MLA, Mans R, Pronk JT. Optimizing the balance between heterologous acetate- and CO2-reduction pathways in anaerobic cultures of Saccharomyces cerevisiae strains engineered for low-glycerol production. FEMS Yeast Res 2023; 23:foad048. [PMID: 37942589 PMCID: PMC10647013 DOI: 10.1093/femsyr/foad048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/24/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023] Open
Abstract
In anaerobic Saccharomyces cerevisiae cultures, NADH (reduced form of nicotinamide adenine dinucleotide)-cofactor balancing by glycerol formation constrains ethanol yields. Introduction of an acetate-to-ethanol reduction pathway based on heterologous acetylating acetaldehyde dehydrogenase (A-ALD) can replace glycerol formation as 'redox-sink' and improve ethanol yields in acetate-containing media. Acetate concentrations in feedstock for first-generation bioethanol production are, however, insufficient to completely replace glycerol formation. An alternative glycerol-reduction strategy bypasses the oxidative reaction in glycolysis by introducing phosphoribulokinase (PRK) and ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). For optimal performance in industrial settings, yeast strains should ideally first fully convert acetate and, subsequently, continue low-glycerol fermentation via the PRK-RuBisCO pathway. However, anaerobic batch cultures of a strain carrying both pathways showed inferior acetate reduction relative to a strain expressing only the A-ALD pathway. Complete A-ALD-mediated acetate reduction by a dual-pathway strain, grown anaerobically on 50 g L-1 glucose and 5 mmol L-1 acetate, was achieved upon reducing PRK abundance by a C-terminal extension of its amino acid sequence. Yields of glycerol and ethanol on glucose were 55% lower and 6% higher, respectively, than those of a nonengineered reference strain. The negative impact of the PRK-RuBisCO pathway on acetate reduction was attributed to sensitivity of the reversible A-ALD reaction to intracellular acetaldehyde concentrations.
Collapse
Affiliation(s)
- Aafke C A van Aalst
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Ellen H Geraats
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Mickel L A Jansen
- DSM Biotechnology Centre, Alexander Fleminglaan 1, 2613 AX Delft, The Netherlands
| | - Robert Mans
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
36
|
Fukushima T, Kodama Y. Selection of a histidine auxotrophic Marchantia polymorpha strain with an auxotrophic selective marker. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2022; 39:345-354. [PMID: 37283617 PMCID: PMC10240916 DOI: 10.5511/plantbiotechnology.22.0810a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/10/2022] [Indexed: 06/08/2023]
Abstract
Marchantia polymorpha has emerged as a model liverwort species, with molecular tools increasingly available. In the present study, we developed an auxotrophic strain of M. polymorpha and an auxotrophic selective marker gene as new experimental tools for this valuable model system. Using CRISPR (clustered regularly interspaced palindromic repeats)/Cas9-mediated genome editing, we mutated the genomic region for IMIDAZOLEGLYCEROL-PHOSPHATE DEHYDRATASE (IGPD) in M. polymorpha to disrupt the biosynthesis of histidine (igpd). We modified an IGPD gene (IGPDm) with silent mutations, generating a histidine auxotrophic selective marker gene that was not a target of our CRISPR/Cas9-mediated genome editing. The M. polymorpha igpd mutant was a histidine auxotrophic strain, growing only on medium containing histidine. The igpd mutant could be complemented by transformation with the IGPDm gene, indicating that this gene could be used as an auxotrophic selective marker. Using the IGPDm marker in the igpd mutant background, we produced transgenic lines without the need for antibiotic selection. The histidine auxotrophic strain igpd and auxotrophic selective marker IGPDm represent new molecular tools for M. polymorpha research.
Collapse
Affiliation(s)
- Tatsushi Fukushima
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi 321-8505, Japan
- Graduate School of Regional Development and Creativity, Utsunomiya University, Tochigi 321-8505, Japan
| | - Yutaka Kodama
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi 321-8505, Japan
- Graduate School of Regional Development and Creativity, Utsunomiya University, Tochigi 321-8505, Japan
| |
Collapse
|
37
|
Mahilkar A, Nagendra P, Saini S. Determination of the Mating Efficiency of Haploids in Saccharomyces cerevisiae. J Vis Exp 2022:10.3791/64596. [PMID: 36533830 PMCID: PMC7614933 DOI: 10.3791/64596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Saccharomyces cerevisiae is a widely used model organism in genetics, evolution, and molecular biology. In recent years, it has also become a popular model organism to study problems related to speciation. The life cycle of yeast involves both asexual and sexual reproductive phases. The ease of performing evolution experiments and the short generation time of the organism allow for the study of the evolution of reproductive barriers. The efficiency with which the two mating types (a and α) mate to form the a/α diploid is referred to as the mating efficiency. Any decrease in the mating efficiency between haploids indicates a pre-zygotic barrier. Thus, to quantify the extent of reproductive isolation between two haploids, a robust method to quantify the mating efficiency is required. To this end, a simple and highly reproducible protocol is presented here. The protocol involves four main steps, which include patching the haploids on a YPD plate, mixing the haploids in equal numbers, diluting and plating for single colonies, and finally, calculating the efficiency based on the number of colonies on a drop-out plate. Auxotrophic markers are employed to clearly make the distinction between haploids and diploids.
Collapse
Affiliation(s)
- Anjali Mahilkar
- Department of Chemical Engineering, Indian Institute of Technology Bombay; Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor
| | - Prachitha Nagendra
- Department of Chemical Engineering, Indian Institute of Technology Bombay
| | - Supreet Saini
- Department of Chemical Engineering, Indian Institute of Technology Bombay;
| |
Collapse
|
38
|
de Valk SC, Bouwmeester SE, de Hulster E, Mans R. Engineering proton-coupled hexose uptake in Saccharomyces cerevisiae for improved ethanol yield. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:47. [PMID: 35524322 PMCID: PMC9077909 DOI: 10.1186/s13068-022-02145-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/16/2022] [Indexed: 11/28/2022]
Abstract
Background In the yeast Saccharomyces cerevisiae, which is widely applied for industrial bioethanol production, uptake of hexoses is mediated by transporters with a facilitated diffusion mechanism. In anaerobic cultures, a higher ethanol yield can be achieved when transport of hexoses is proton-coupled, because of the lower net ATP yield of sugar dissimilation. In this study, the facilitated diffusion transport system for hexose sugars of S. cerevisiae was replaced by hexose–proton symport. Results Introduction of heterologous glucose– or fructose–proton symporters in an hxt0 yeast background strain (derived from CEN.PK2-1C) restored growth on the corresponding sugar under aerobic conditions. After applying an evolutionary engineering strategy to enable anaerobic growth, the hexose–proton symporter-expressing strains were grown in anaerobic, hexose-limited chemostats on synthetic defined medium, which showed that the biomass yield of the resulting strains was decreased by 44.0-47.6%, whereas the ethanol yield had increased by up to 17.2% (from 1.51 to 1.77 mol mol hexose−1) compared to an isogenic strain expressing the hexose uniporter HXT5. To apply this strategy to increase the ethanol yield on sucrose, we constructed a platform strain in which all genes encoding hexose transporters, disaccharide transporters and disaccharide hydrolases were deleted, after which a combination of a glucose–proton symporter, fructose–proton symporter and extracellular invertase (SUC2) were introduced. After evolution, the resulting strain exhibited a 16.6% increased anaerobic ethanol yield (from 1.51 to 1.76 mol mol hexose equivalent−1) and 46.6% decreased biomass yield on sucrose. Conclusions This study provides a proof-of-concept for the replacement of the endogenous hexose transporters of S. cerevisiae by hexose-proton symport, and the concomitant decrease in ATP yield, to greatly improve the anaerobic yield of ethanol on sugar. Moreover, the sugar-negative platform strain constructed in this study acts as a valuable starting point for future studies on sugar transport or development of cell factories requiring specific sugar transport mechanisms. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02145-7.
Collapse
|
39
|
Spasskaya DS, Davletshin AI, Tutyaeva VV, Kulagin KA, Garbuz DG, Karpov DS. A Test System for Assessment of the Activity of Mutant Cas9 Variants in Saccharomyces cerevisiae. Mol Biol 2022. [DOI: 10.1134/s0026893322060164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Bouwknegt J, Vos AM, Ortiz Merino RA, van Cuylenburg DC, Luttik MAH, Pronk JT. Identification of fungal dihydrouracil-oxidase genes by expression in Saccharomyces cerevisiae. Antonie Van Leeuwenhoek 2022; 115:1363-1378. [PMID: 36241945 PMCID: PMC9585004 DOI: 10.1007/s10482-022-01779-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 09/23/2022] [Indexed: 11/29/2022]
Abstract
Analysis of predicted fungal proteomes revealed a large family of sequences that showed similarity to the Saccharomyces cerevisiae Class-I dihydroorotate dehydrogenase Ura1, which supports synthesis of pyrimidines under aerobic and anaerobic conditions. However, expression of codon-optimised representatives of this gene family, from the ascomycete Alternaria alternata and the basidiomycete Schizophyllum commune, only supported growth of an S. cerevisiae ura1Δ mutant when synthetic media were supplemented with dihydrouracil. A hypothesis that these genes encode NAD(P)+-dependent dihydrouracil dehydrogenases (EC 1.3.1.1 or 1.3.1.2) was rejected based on absence of complementation in anaerobic cultures. Uracil- and thymine-dependent oxygen consumption and hydrogen-peroxide production by cell extracts of S. cerevisiae strains expressing the A. alternata and S. commune genes showed that, instead, they encode active dihydrouracil oxidases (DHO, EC1.3.3.7). DHO catalyses the reaction dihydrouracil + O2 → uracil + H2O2 and was only reported in the yeast Rhodotorula glutinis (Owaki in J Ferment Technol 64:205–210, 1986). No structural gene for DHO was previously identified. DHO-expressing strains were highly sensitive to 5-fluorodihydrouracil (5F-dhu) and plasmids bearing expression cassettes for DHO were readily lost during growth on 5F-dhu-containing media. These results show the potential applicability of fungal DHO genes as counter-selectable marker genes for genetic modification of S. cerevisiae and other organisms that lack a native DHO. Further research should explore the physiological significance of this enigmatic and apparently widespread fungal enzyme.
Collapse
Affiliation(s)
- Jonna Bouwknegt
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Aurin M Vos
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Raúl A Ortiz Merino
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Daphne C van Cuylenburg
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Marijke A H Luttik
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629, HZ, Delft, The Netherlands.
| |
Collapse
|
41
|
Dhakal S, Macreadie I. The Use of Yeast in Biosensing. Microorganisms 2022; 10:1772. [PMID: 36144374 PMCID: PMC9505958 DOI: 10.3390/microorganisms10091772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022] Open
Abstract
Yeast has been used as a model for several diseases as it is the simplest unicellular eukaryote, safe and easy to culture and harbors most of the fundamental processes that are present in almost all higher eukaryotes, including humans. From understanding the pathogenesis of disease to drug discovery studies, yeast has served as an important biosensor. It is not only due to the conservation of genetics, amenable modification of its genome and easily accessible analytical methods, but also some characteristic features such as its ability to survive with defective mitochondria, making it a highly flexible microbe for designing whole-cell biosensing systems. The aim of this review is to report on how yeasts have been utilized as biosensors, reporting on responses to various stimuli.
Collapse
Affiliation(s)
| | - Ian Macreadie
- School of Science, RMIT University, Bundoora, VIC 3083, Australia
| |
Collapse
|
42
|
Malcı K, Watts E, Roberts TM, Auxillos JY, Nowrouzi B, Boll HO, Nascimento CZSD, Andreou A, Vegh P, Donovan S, Fragkoudis R, Panke S, Wallace E, Elfick A, Rios-Solis L. Standardization of Synthetic Biology Tools and Assembly Methods for Saccharomyces cerevisiae and Emerging Yeast Species. ACS Synth Biol 2022; 11:2527-2547. [PMID: 35939789 PMCID: PMC9396660 DOI: 10.1021/acssynbio.1c00442] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
![]()
As redesigning organisms using engineering principles
is one of
the purposes of synthetic biology (SynBio), the standardization of
experimental methods and DNA parts is becoming increasingly a necessity.
The synthetic biology community focusing on the engineering of Saccharomyces cerevisiae has been in the foreground in this
area, conceiving several well-characterized SynBio toolkits widely
adopted by the community. In this review, the molecular methods and
toolkits developed for S. cerevisiae are discussed
in terms of their contributions to the required standardization efforts.
In addition, the toolkits designed for emerging nonconventional yeast
species including Yarrowia lipolytica, Komagataella
phaffii, and Kluyveromyces marxianus are
also reviewed. Without a doubt, the characterized DNA parts combined
with the standardized assembly strategies highlighted in these toolkits
have greatly contributed to the rapid development of many metabolic
engineering and diagnostics applications among others. Despite the
growing capacity in deploying synthetic biology for common yeast genome
engineering works, the yeast community has a long journey to go to
exploit it in more sophisticated and delicate applications like bioautomation.
Collapse
Affiliation(s)
- Koray Malcı
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Kings Buildings, EH9 3BF Edinburgh, United Kingdom.,Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Kings Buildings, EH9 3BD Edinburgh, United Kingdom
| | - Emma Watts
- School of Biological Sciences, University of Edinburgh, Kings Buildings, EH9 3JW Edinburgh, United Kingdom
| | | | - Jamie Yam Auxillos
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Kings Buildings, EH9 3BD Edinburgh, United Kingdom.,Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Kings Buildings, EH9 3FF Edinburgh, United Kingdom
| | - Behnaz Nowrouzi
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Kings Buildings, EH9 3BF Edinburgh, United Kingdom.,Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Kings Buildings, EH9 3BD Edinburgh, United Kingdom
| | - Heloísa Oss Boll
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília, Federal District 70910-900, Brazil
| | | | - Andreas Andreou
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Kings Buildings, EH9 3BD Edinburgh, United Kingdom
| | - Peter Vegh
- Edinburgh Genome Foundry, University of Edinburgh, Kings Buildings, Edinburgh EH9 3BF, United Kingdom
| | - Sophie Donovan
- Edinburgh Genome Foundry, University of Edinburgh, Kings Buildings, Edinburgh EH9 3BF, United Kingdom
| | - Rennos Fragkoudis
- Edinburgh Genome Foundry, University of Edinburgh, Kings Buildings, Edinburgh EH9 3BF, United Kingdom
| | - Sven Panke
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Edward Wallace
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Kings Buildings, EH9 3BD Edinburgh, United Kingdom.,Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Kings Buildings, EH9 3FF Edinburgh, United Kingdom
| | - Alistair Elfick
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Kings Buildings, EH9 3BF Edinburgh, United Kingdom.,Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Kings Buildings, EH9 3BD Edinburgh, United Kingdom
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Kings Buildings, EH9 3BF Edinburgh, United Kingdom.,Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Kings Buildings, EH9 3BD Edinburgh, United Kingdom.,School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| |
Collapse
|
43
|
Abstract
Background: Knowledge about the origin of SARS-CoV-2 is necessary for both a biological and epidemiological understanding of the COVID-19 pandemic. Evidence suggests that a proximal evolutionary ancestor of SARS-CoV-2 belongs to the bat coronavirus family. However, as further evidence for a direct zoonosis remains limited, alternative modes of SARS-CoV-2 biogenesis should also be considered. Results: Here we show that the genomes of SARS-CoV-2 and SARS-CoV-1 significantly diverge from other SARS-like coronaviruses through short chromosomal sequences from the yeast S. cerevisiae at focal positions that are known to be critical for host cell invasion, virus replication, and host immune response. For SARS-CoV-1, we identify two sites: one at the start of the RNA dependent RNA polymerase gene, and the other at the start of the spike protein’s receptor binding domain; for SARS-CoV-2, one at the start of the viral replicase domain, and the other toward the end of the spike gene past its domain junction. At this junction, we detect a highly specific stretch of yeast origin covering the critical furin cleavage site insert PRRA, which has not been seen in other lineage b betacoronaviruses. As yeast is not a natural host for this virus family, we propose an artificial synthesis model for viral constructs in yeast cells based on co-transformation of virus DNA plasmids carrying yeast selectable genetic markers followed by intra-chromosomal homologous recombination through gene conversion. Highly differential yeast sequence patterns congruent with chromosomes harboring specific auxotrophic markers further support yeast artificial synthesis. Conclusions: These results provide evidence that the genomes of SARS-CoV-1 and SARS-CoV-2 contain sequence information that points to their artificial synthesis in genetically modified yeast cells. Our data specifically allow the identification of the yeast S. cerevisiae as a potential recombination donor for the critical furin cleavage site in SARS-CoV-2.
Collapse
|
44
|
Engineering Saccharomyces cerevisiae for production of the capsaicinoid nonivamide. Microb Cell Fact 2022; 21:106. [PMID: 35643562 PMCID: PMC9148506 DOI: 10.1186/s12934-022-01831-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/16/2022] [Indexed: 12/02/2022] Open
Abstract
Background Capsaicinoids are produced by plants in the Capsicum genus and are the main reason for the pungency of chili pepper fruits. They are strong agonists of TRPV1 (the transient receptor potential cation channel subfamily V member 1) and used as active ingredients in pharmaceuticals for the treatment of pain. The use of bioengineered microorganisms in a fermentation process may be an efficient route for their preparation, as well as for the discovery of (bio-)synthetic capsaicinoids with improved or novel bioactivities. Results Saccharomyces cerevisiae was engineered to over-express a selection of amide-forming N-acyltransferase and CoA-ligase enzyme cascades using a combinatorial gene assembly method, and was screened for nonivamide production from supplemented vanillylamine and nonanoic acid. Data from this work demonstrate that Tyramine N-hydroxycinnamoyl transferase from Capsicum annuum (CaAT) was most efficient for nonivamide formation in yeast, outcompeting the other candidates including AT3 (Pun1) from Capsicum spp. The CoA-ligase partner with highest activity from the ones evaluated here were from Petunia hybrida (PhCL) and Spingomonas sp. Ibu-2 (IpfF). A yeast strain expressing CaAT and IpfF produced 10.6 mg L−1 nonivamide in a controlled bioreactor setup, demonstrating nonivamide biosynthesis by S. cerevisiae for the first time. Conclusions Baker’s yeast was engineered for production of nonivamide as a model capsaicinoid, by expressing N-acyltransferases and CoA-ligases of plant and bacterial origin. The constructed yeast platform holds potential for in vivo biocatalytic formation of capsaicinoids and could be a useful tool for the discovery of novel drugs. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01831-3.
Collapse
|
45
|
Salerno P, Leckenby MW, Humphrey B, Cranenburgh RM. Xer Recombination for the Automatic Deletion of Selectable Marker Genes From Plasmids in Enteric Bacteria. Synth Biol (Oxf) 2022; 7:ysac005. [PMID: 35601876 PMCID: PMC9113270 DOI: 10.1093/synbio/ysac005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/15/2022] [Accepted: 04/12/2022] [Indexed: 11/17/2022] Open
Abstract
Antibiotic resistance genes are widely used to select bacteria transformed with plasmids and to prevent plasmid loss from cultures, yet antibiotics represent contaminants in the biopharmaceutical manufacturing process, and retaining antibiotic resistance genes in vaccines and biological therapies is discouraged by regulatory agencies. To overcome these limitations, we have developed X-mark™, a novel technology that leverages Xer recombination to generate selectable marker gene-free plasmids for downstream therapeutic applications. Using this technique, X-mark plasmids with antibiotic resistance genes flanked by XerC/D target sites are generated in Escherichia coli cytosol aminopeptidase (E. coli pepA) mutants, which are deficient in Xer recombination on plasmids, and subsequently transformed into enteric bacteria with a functional Xer system. This results in rapid deletion of the resistance gene at high resolution (100%) and stable replication of resolved plasmids for more than 40 generations in the absence of antibiotic selective pressure. This technology is effective in both Escherichia coli and Salmonella enterica bacteria due to the high degree of homology between accessory sequences, including strains that have been developed as oral vaccines for clinical use. X-mark effectively eliminates any regulatory and safety concerns around antibiotic resistance carryover in biopharmaceutical products, such as vaccines and therapeutic proteins.
Graphical Abstract
Collapse
Affiliation(s)
- Paola Salerno
- London Bioscience Innovation Centre, Prokarium Ltd, London, UK
| | - Matthew W Leckenby
- Cobra Biologics Ltd, Stephenson Building, Keele Science Park, Keele, Staffordshire, UK
| | - Bruce Humphrey
- London Bioscience Innovation Centre, Prokarium Ltd, London, UK
| | | |
Collapse
|
46
|
Abstract
Background: Knowledge about the origin of SARS-CoV-2 is necessary for both a biological and epidemiological understanding of the COVID-19 pandemic. Evidence suggests that a proximal evolutionary ancestor of SARS-CoV-2 belongs to the bat coronavirus family. However, as further evidence for a direct zoonosis remains limited, alternative modes of SARS-CoV-2 biogenesis should be considered. Results: Here we show that the genomes from SARS-CoV-2 and from SARS-CoV-1 are differentially enriched with short chromosomal sequences from the yeast S. cerevisiae at focal positions that are known to be critical for host cell invasion, virus replication, and host immune response. For SARS-CoV-1, we identify two sites: one at the start of the RNA dependent RNA polymerase gene, and the other at the start of the spike protein’s receptor binding domain; for SARS-CoV-2, one at the start of the viral replicase domain, and the other toward the end of the spike gene past its domain junction. At this junction, we detect a highly specific stretch of yeast DNA origin covering the critical furin cleavage site insert PRRA, which has not been seen in other lineage b betacoronaviruses. As yeast is not a natural host for this virus family, we propose a passage model for viral constructs in yeast cells based on co-transformation of virus DNA plasmids carrying yeast selectable genetic markers followed by intra-chromosomal homologous recombination through gene conversion. Highly differential sequence homology data across yeast chromosomes congruent with chromosomes harboring specific auxotrophic markers further support this passage model. Conclusions: These results provide evidence that among SARS-like coronaviruses only the genomes of SARS-CoV-1 and SARS-CoV-2 contain information that points to a synthetic passage in genetically modified yeast cells. Our data specifically allow the identification of the yeast S. cerevisiae as a potential recombination donor for the critical furin cleavage site in SARS-CoV-2.
Collapse
|
47
|
Data mining of Saccharomyces cerevisiae mutants engineered for increased tolerance towards inhibitors in lignocellulosic hydrolysates. Biotechnol Adv 2022; 57:107947. [DOI: 10.1016/j.biotechadv.2022.107947] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 12/15/2022]
|
48
|
Satta A, Lu Z, Plan MR, Esquirol L, Ebert BE. Microbial Production, Extraction, and Quantitative Analysis of Isoprenoids. Methods Mol Biol 2022; 2469:239-259. [PMID: 35508844 DOI: 10.1007/978-1-0716-2185-1_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Isoprenoids, also known as terpenes or terpenoids, are compounds made of one or more isoprene (C5H8) moieties and constitute the largest class of natural products. They play diverse roles in biology and have broad industrial uses as flavors, fragrances, biofuels, polymers, agricultural chemicals, and medicines. Most isoprenoids are secondary plant metabolites and only produced in very low amounts. To make these valuable compounds economically accessible, significant efforts in the culture and engineering of microbial cells for isoprenoid biosynthesis have been made in the last decades. The protocols presented here describe lab-scale cultivation of microbes, either naturally producing or engineered, for isoprenoid production, the extraction of products and their quantification by high-performance liquid chromatography. Examples of isoprenoids covered in this chapter include (C10) mono-, (C15) sesqui-, (C20) di-, (C30) tri-, and (C40) tetraterpenoids. We focus on yeast and cyanobacteria as production systems, but the protocols can be adapted for other organisms.
Collapse
Affiliation(s)
- Alessandro Satta
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
| | - Zeyu Lu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
| | - Manuel R Plan
- Metabolomics Australia (Queensland Node), Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
| | - Lygie Esquirol
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Birgitta E Ebert
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
49
|
Otto M, Liu D, Siewers V. Saccharomyces cerevisiae as a Heterologous Host for Natural Products. Methods Mol Biol 2022; 2489:333-367. [PMID: 35524059 DOI: 10.1007/978-1-0716-2273-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cell factories can provide a sustainable supply of natural products with applications as pharmaceuticals, food-additives or biofuels. Besides being an important model organism for eukaryotic systems, Saccharomyces cerevisiae is used as a chassis for the heterologous production of natural products. Its success as a cell factory can be attributed to the vast knowledge accumulated over decades of research, its overall ease of engineering and its robustness. Many methods and toolkits have been developed by the yeast metabolic engineering community with the aim of simplifying and accelerating the engineering process.In this chapter, a range of methodologies are highlighted, which can be used to develop novel natural product cell factories or to improve titer, rate and yields of an existing cell factory with the goal of developing an industrially relevant strain. The addressed topics are applicable for different stages of a cell factory engineering project and include the choice of a natural product platform strain, expression cassette design for heterologous or native genes, basic and advanced genetic engineering strategies, and library screening methods using biosensors. The many engineering methods available and the examples of yeast cell factories underline the importance and future potential of this host for industrial production of natural products.
Collapse
Affiliation(s)
- Maximilian Otto
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Dany Liu
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Verena Siewers
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
50
|
Abstract
For genetic manipulation of yeast, numerous selection marker genes have been employed. These include prototrophic markers, markers conferring drug resistance, autoselection markers, and counterselectable markers. This chapter describes the different classes of selection markers and provides a number of examples for different applications.
Collapse
Affiliation(s)
- Verena Siewers
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|