1
|
Morse D, Tse SPK, Lo SCL. Exploring dinoflagellate biology with high-throughput proteomics. HARMFUL ALGAE 2018; 75:16-26. [PMID: 29778222 DOI: 10.1016/j.hal.2018.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
Dinoflagellates are notorious for their ability to form the harmful algal blooms known as "red tides," yet the mechanisms underlying bloom formation remain poorly understood. Despite recent advances in nucleic acid sequencing, which have generated transcriptomes from a wide range of species exposed to a variety of different conditions, measuring changes in RNA levels have not generally produced great insight into dinoflagellate cell biology or environmental physiology, nor do we have a thorough grasp on the molecular events underpinning bloom formation. Not only is the transcriptomic response of dinoflagellates to environmental change generally muted, but there is a markedly low degree of congruency between mRNA expression and protein expression in dinoflagellates. Herein we discuss the application of high-throughput proteomics to the study of dinoflagellate biology. By profiling the cellular protein complement (the proteome) instead of mRNA (the transcriptome), the biomolecular events that underlie the changes of phenotypes can be more readily evaluated, as proteins directly determine the structure and the function of the cell. Recent advances in proteomics have seen this technique become a high-throughput method that is now able to provide a perspective different from the more commonly employed nucleic acid sequencing. We suggest that the time is ripe to exploit these new technologies in addressing the many mysteries of dinoflagellate biology, such as how the symbiotic dinoflagellate inhabiting reef corals acclimate to increases in temperature, as well as how harmful algal blooms are initiated at the sub-cellular level. Furthermore, as dinoflagellates are not the only eukaryotes that demonstrate muted transcriptional responses, the techniques addressed within this review are amenable to a wide array of organisms.
Collapse
Affiliation(s)
- David Morse
- Institut de Recherche en biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Canada.
| | - Sirius P K Tse
- Shenzhen Key Laboratory of Food Biological Safety Control, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
| | - Samuel C L Lo
- Shenzhen Key Laboratory of Food Biological Safety Control, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
| |
Collapse
|
2
|
Dong HP, Hong YG, Lu S, Xie LY. Metaproteomics reveals the major microbial players and their biogeochemical functions in a productive coastal system in the northern South China Sea. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:683-695. [PMID: 25756122 DOI: 10.1111/1758-2229.12188] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We study the metaproteome of the GF/F-prefiltered fraction of a microbial community from Shantou coast summer surface waters using a shotgun proteomic approach. Spectra attributed to the marine Roseobacter clade (MRC), the oligotrophic marine Gammaproteobacteria (OMG) group and Flavobacteria dominated in the microbial community, accounting for 21.0%, 23.2% and 12.7% of all of the detected spectra, respectively, whereas the SAR 92 clade accounted for 50% of the OMG group. The abundance of TonB-dependent receptors (TBDRs) was detected and the majority of TBDRs were attributed to the OMG, whereas a large number of ABC transporters matched to the MRC, which suggests niche separation in the microbial community. Expression of proteorhodopsin and RagB/SusD from Flavobacteria facilitates their attachment and growth on algal-derived organic matter. Taurine and glycine betaine appear to be an important source of carbon and nitrogen for the Rhodobacteraceae and SAR11 cluster. The detection of carbon monoxide dehydrogenase, formate dehydrogenase, O-acetylhomoserine sulfhydrylase and sulfur oxidation protein from the MRC demonstrated that members of the MRC play important roles in coastal ocean biogeochemical cycles. This study provides the first insight into functional processes occurring in microbial communities in coastal waters in the South China Sea.
Collapse
|
3
|
Johnson JG, Janech MG, Van Dolah FM. Caspase-like activity during aging and cell death in the toxic dinoflagellate Karenia brevis. HARMFUL ALGAE 2014; 31:41-53. [PMID: 28040110 DOI: 10.1016/j.hal.2013.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 06/06/2023]
Abstract
The observation of caspase-like activity during cell death has provided a new framework for understanding the evolutionary and ecological contexts of programmed cell death in phytoplankton. However, additional roles for this caspase-like activity, the enzymes responsible, and the targets of this enzyme activity in phytoplankton remain largely undefined. In the present study, the role of caspase-like activity in aging and ROS-mediated cell death were investigated and death programs both dependent on and independent of caspase-like activity were observed in the toxic dinoflagellate, Karenia brevis. The dual use of in situ caspase 3/7 and TUNEL staining identified previously undescribed death-associated morphotypes in K. brevis. In silico motif analysis identified several enzymes with predicted caspase-like activity in the K. brevis transcriptome, although bona fide caspases are absent. Lastly, computational prediction of downstream caspase substrates, using sequence context and predicted secondary structure, identified proteins involved in a wide range of biological processes including regulation of protein turnover, cell cycle progression, lipid metabolism, coenzyme metabolism, apoptotic and autophagic death. To confirm the computational predictions, a short peptide was designed around the predicated caspase cleavage site in a predicted novel K. brevis caspase 3/7-like target, S-adenosylmethionine synthetase (KbAdoMetS). Cleavage of the peptide substrate with recombinant caspase 3 enzyme was determined by MALDI-TOF MS, confirming that KbAdoMetS is indeed a bona fide caspase substrate. These data identify the involvement of caspase-like activity in both aging and cell death in K. brevis and identify novel executioner enzymes and downstream targets that may be important for bloom termination.
Collapse
Affiliation(s)
- Jillian G Johnson
- NOAA Center for Coastal Environmental Health and Biomolecular Research, Charleston, SC, USA; Marine Biomedicine and Environmental Sciences Program, Medical University of South Carolina, Charleston, SC, USA.
| | - Michael G Janech
- Marine Biomedicine and Environmental Sciences Program, Medical University of South Carolina, Charleston, SC, USA; Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC, USA.
| | - Frances M Van Dolah
- NOAA Center for Coastal Environmental Health and Biomolecular Research, Charleston, SC, USA; Marine Biomedicine and Environmental Sciences Program, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
4
|
Buddruhs N, Chertkov O, Petersen J, Fiebig A, Chen A, Pati A, Ivanova N, Lapidus A, Goodwin LA, Chain P, Detter JC, Gronow S, Kyrpides NC, Woyke T, Göker M, Brinkhoff T, Klenk HP. Complete genome sequence of the marine methyl-halide oxidizing Leisingera methylohalidivorans type strain (DSM 14336(T)), a representative of the Roseobacter clade. Stand Genomic Sci 2013; 9:128-41. [PMID: 24501651 PMCID: PMC3910543 DOI: 10.4056/sigs.4297965] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Leisingera methylohalidivorans Schaefer et al. 2002 emend. Vandecandelaere et al. 2008 is the type species of the genus Leisingera. The genus belongs to the Roseobacter clade (Rhodobacteraceae, Alphaproteobacteria), a widely distributed lineage in marine environments. Leisingera and particularly L. methylohalidivorans strain MB2(T) is of special interest due to its methylotrophy. Here we describe the complete genome sequence and annotation of this bacterium together with previously unreported aspects of its phenotype. The 4,650,996 bp long genome with its 4,515 protein-coding and 81 RNA genes consists of three replicons, a single chromosome and two extrachromosomal elements with sizes of 221 kb and 285 kb.
Collapse
Affiliation(s)
- Nora Buddruhs
- Leibniz-Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Olga Chertkov
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Jörn Petersen
- Leibniz-Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Anne Fiebig
- Leibniz-Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Amy Chen
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Amrita Pati
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | | | - Alla Lapidus
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia ; Algorithmic Biology Lab, St. Petersburg Academic University, St.Petersburg, Russia
| | - Lynne A Goodwin
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA ; DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Patrick Chain
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - John C Detter
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA ; DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Sabine Gronow
- Leibniz-Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | | | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Markus Göker
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment (ICMB), Oldenburg, Germany
| | - Hans-Peter Klenk
- Leibniz-Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
5
|
Wang DZ, Zhang YJ, Zhang SF, Lin L, Hong HS. Quantitative proteomic analysis of cell cycle of the dinoflagellate Prorocentrum donghaiense (Dinophyceae). PLoS One 2013; 8:e63659. [PMID: 23691081 PMCID: PMC3655175 DOI: 10.1371/journal.pone.0063659] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 04/05/2013] [Indexed: 12/29/2022] Open
Abstract
Dinoflagellates are the major causative agents of harmful algal blooms in the coastal zone, which has resulted in adverse effects on the marine ecosystem and public health, and has become a global concern. Knowledge of cell cycle regulation in proliferating cells is essential for understanding bloom dynamics, and so this study compared the protein profiles of Prorocentrum donghaiense at different cell cycle phases and identified differentially expressed proteins using 2-D fluorescence difference gel electrophoresis combined with MALDI-TOF-TOF mass spectrometry. The results showed that the synchronized cells of P. donghaiense completed a cell cycle within 24 hours and cell division was phased with the diurnal cycle. Comparison of the protein profiles at four cell cycle phases (G1, S, early and late G2/M) showed that 53 protein spots altered significantly in abundance. Among them, 41 were identified to be involved in a variety of biological processes, e.g. cell cycle and division, RNA metabolism, protein and amino acid metabolism, energy and carbon metabolism, oxidation-reduction processes, and ABC transport. The periodic expression of these proteins was critical to maintain the proper order and function of the cell cycle. This study, to our knowledge, for the first time revealed the major biological processes occurring at different cell cycle phases which provided new insights into the mechanisms regulating the cell cycle and growth of dinoflagellates.
Collapse
Affiliation(s)
- Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, China.
| | | | | | | | | |
Collapse
|
6
|
Zong R, Jiao N. Proteomic responses of Roseobacter litoralis OCh149 to starvation and light regimen. Microbes Environ 2012; 27:430-42. [PMID: 23047149 PMCID: PMC4103551 DOI: 10.1264/jsme2.me12029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Roseobacter litoralis OCh149 is a type strain of aerobic anoxygenic phototrophic bacteria in marine Roseobacter clade. Its full genome has been sequenced; however, proteomic research, which will give deeper insights into the environmental stimuli on gene expression networks, has yet to be performed. In the present study, a proteomic approach was employed to analyze the status of R. litoralis OCh149 in carbon starvation during the stationary phase and its responses to a dark/light regimen (12 h:12 h) in both exponential and stationary phases. LC-MS/MS-based analysis of highly abundant proteins under carbon starvation revealed that proteins involved in transport, the transcription/translation process and carbohydrate metabolism were the major functional categories, while poly-β-hydroxyalkanoate (PHA), previously accumulated in cells, was remobilized after stress. Glucose, as the sole carbon source in the defined medium, was broken down by Entner-Doudoroff and reductive pentose phosphate (PP) pathways. Carbohydrate catabolism-related proteins were down-regulated under light regardless of the growth phase, probably due to inhibition of respiration by light. In contrast, responses of amino acid metabolisms to light regimen varied among different proteins during growth phases depending on cellular requirements for proliferation, growth or survival. Fluorescence induction and relaxation measurements suggested that functional absorption cross-sections of the photosynthetic complexes decreased during the dark period and always recovered to about the previous level during the light period. Although the photosynthetic genes in R. litoralis OCh149 are located on the plasmid, these data indicate the regulatory mechanism of photoheterotroph metabolism by both carbon and light availability.
Collapse
Affiliation(s)
- Rui Zong
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, PR China
| | | |
Collapse
|
7
|
Wang D, Lin L, Wang M, Li C, Hong H. Proteomic analysis of a toxic dinoflagellate Alexandrium catenella under different growth phases and conditions. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11434-012-5160-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
8
|
Carvajal-Gamez BI, Arroyo R, Camacho-Nuez M, Lira R, Martínez-Benitez M, Alvarez-Sánchez ME. Putrescine is required for the expression of eif-5a in Trichomonas vaginalis. Mol Biochem Parasitol 2011; 180:8-16. [PMID: 21801756 DOI: 10.1016/j.molbiopara.2011.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Revised: 07/04/2011] [Accepted: 07/09/2011] [Indexed: 11/21/2022]
Abstract
Recently, we found that Trichomonas vaginalis contains a eukaryotic translation initiation factor 5A (TveIF-5A) with unknown function in this parasite. eIF-5A is the only cellular protein dependent of polyamines to form a hypusine residue, an unusual basic amino acid that is post-translationally formed by modification of a single specific lysine residue in an eIF-5A precursor protein. The purpose of this study was to determine the effect of a putrescine analogue, 1,4-diamino-2-butanone (DAB), on tveif-5a mRNA and TveIF-5A protein expression. TveIF-5A protein expression was reduced by inhibition of putrescine biosynthesis, and tveif-5a mRNA levels were reduced ∼90%, as shown by western blot and immunofluorescence assays. Cycloheximide treatment reduced the amount of mature TveIF-5A protein at 4h and decreased the tveif-5a transcript level at 2h, according to western blot, RT-PCR and qRT-PCR analyses. Actinomycin D treatment showed that the tveif-5a mRNA had half-life of ∼2.5h in DAB-treated parasites. The half-life of tveif-5a mRNA was ∼4.5h under exogenous putrescine conditions. These results suggest that putrescine is required for tveif-5a mRNA stability, and it is necessary for the expression, stability and maturation of TveIF-5A protein.
Collapse
|
9
|
Rinta-Kanto JM, Sun S, Sharma S, Kiene RP, Moran MA. Bacterial community transcription patterns during a marine phytoplankton bloom. Environ Microbiol 2011; 14:228-39. [PMID: 21985473 DOI: 10.1111/j.1462-2920.2011.02602.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacterioplankton consume a large proportion of photosynthetically fixed carbon in the ocean and control its biogeochemical fate. We used an experimental metatranscriptomics approach to compare bacterial activities that route energy and nutrients during a phytoplankton bloom compared with non-bloom conditions. mRNAs were sequenced from duplicate bloom and control microcosms 1 day after a phytoplankton biomass peak, and transcript copies per litre of seawater were calculated using an internal mRNA standard. Transcriptome analysis revealed a potential novel mechanism for enhanced efficiency during carbon-limited growth, mediated through membrane-bound pyrophosphatases [V-type H(+)-translocating; hppA]; bloom bacterioplankton participated less in this metabolic energy scavenging than non-bloom bacterioplankton, with possible implications for differences in growth yields on organic substrates. Bloom bacterioplankton transcribed more copies of genes predicted to increase cell surface adhesiveness, mediated by changes in bacterial signalling molecules related to biofilm formation and motility; these may be important in microbial aggregate formation. Bloom bacterioplankton also transcribed more copies of genes for organic acid utilization, suggesting an increased importance of this compound class in the bioreactive organic matter released during phytoplankton blooms. Transcription patterns were surprisingly faithful within a taxon regardless of treatment, suggesting that phylogeny broadly predicts the ecological roles of bacterial groups across 'boom' and 'bust' environmental backgrounds.
Collapse
|
10
|
Fang X, Ma H, Lu D, Yu H, Lai W, Ruan S. Comparative proteomics analysis of proteins expressed in the I-1 and I-2 internodes of strawberry stolons. Proteome Sci 2011; 9:26. [PMID: 21569547 PMCID: PMC3113925 DOI: 10.1186/1477-5956-9-26] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 05/14/2011] [Indexed: 01/09/2023] Open
Abstract
Background Strawberries (Fragaria ananassa) reproduce asexually through stolons, which have strong tendencies to form adventitious roots at their second node. Understanding how the development of the proximal (I-1) and distal (I-2) internodes of stolons differ should facilitate nursery cultivation of strawberries. Results Herein, we compared the proteomic profiles of the strawberry stolon I-1 and I-2 internodes. Proteins extracted from the internodes were separated by two-dimensional gel electrophoresis, and 164 I-1 protein spots and 200 I-2 protein spots were examined further. Using mass spectrometry and database searches, 38 I-1 and 52 I-2 proteins were identified and categorized (8 and 10 groups, respectively) according to their cellular compartmentalization and functionality. Many of the identified proteins are enzymes necessary for carbohydrate metabolism and photosynthesis. Furthermore, identification of proteins that interact revealed that many of the I-2 proteins form a dynamic network during development. Finally, given our results, we present a mechanistic scheme for adventitious root formation of new clonal plants at the second node. Conclusions Comparative proteomic analysis of I-1 and I-2 proteins revealed that the ubiquitin-proteasome pathway and sugar-hormone pathways might be important during adventitious root formation at the second node of new clonal plants.
Collapse
Affiliation(s)
- Xianping Fang
- Laboratory of Plant Molecular Biology and Proteomics, Institute of Biology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China.
| | | | | | | | | | | |
Collapse
|
11
|
Xu J, Zhang B, Jiang C, Ming F. RceIF5A, encoding an eukaryotic translation initiation factor 5A in Rosa chinensis, can enhance thermotolerance, oxidative and osmotic stress resistance of Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2011; 75:167-78. [PMID: 21107886 DOI: 10.1007/s11103-010-9716-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Accepted: 11/15/2010] [Indexed: 05/04/2023]
Abstract
Eukaryotic translation initiation factor 5A (eIF5A) is the only cellular protein known to contain the unusual amino acid hypusine. It is a highly conserved protein found in all eukaryotic organisms. Although originally identified as a translation initiation factor, recent studies suggest that eIF5A is mainly involved in translation elongation, mRNA turnover and decay, cell proliferation, and programmed cell death. However, the precise cellular function of eIF5A remains largely unknown, especially in plants. Here, we report the identification and characterization of RceIF5A from Rosa chinensis. RceIF5A expression is up-regulated in Rosa chinensis under high temperature, and oxidative and osmotic stress conditions. We produced transgenic Arabidopsis that constitutively enhanced or suppressed expression of RceIF5A. The RceIF5A over-expression plants exhibited increased resistance to heat, and oxidative and osmotic stresses, while the suppressed expression plants (three AteIF5A isoforms in Arabidopsis were down-regulated) showed more susceptibility to these stresses. These results reveal a new physiological role for eIF5A in plants and contribute to the elucidation of the molecular mechanisms involved in the stress response pathway.
Collapse
Affiliation(s)
- Jianyao Xu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Fudan University, 220 Handan Road, Shanghai, 200433, People's Republic of China
| | | | | | | |
Collapse
|
12
|
Gene expression in proliferating cells of the dinoflagellate Alexandrium catenella (Dinophyceae). Appl Environ Microbiol 2010; 76:4521-9. [PMID: 20435767 DOI: 10.1128/aem.02345-09] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Understanding the conditions leading to harmful algal blooms, especially those produced by toxic dinoflagellate species, is important for environmental and health safety. In addition to investigations into the environmental conditions necessary for the formation of toxic blooms, we postulate that investigating gene expression in proliferating cells is essential for understanding bloom dynamics. Expressed sequence tags were produced from cultured cells of the toxic dinoflagellate Alexandrium catenella sampled during the initiation phase of growth using Sanger's method and by 454 pyrosequencing. A significant proportion of identified genes (ca. 25%) represented enzymes and proteins that participate in a variety of cellular regulatory mechanisms that may characterize proliferating cells, e.g., control of the cell cycle and division, regulation of transcription, translation and posttranslational protein modifications, signaling, intracellular trafficking, and transport. All of the several genes selected for gene expression assays due to their involvement in metabolism and the cell cycle were overexpressed during exponential growth. These data will be useful for investigating the mechanisms underlying growth and toxin production in toxic Alexandrium species and for studying and monitoring the development of toxic blooms.
Collapse
|
13
|
Carvajal-Gamez B, Arroyo R, Lira R, López-Camarillo C, Alvarez-Sánchez ME. Identification of two novel Trichomonas vaginalis eif-5a genes. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2010; 10:284-291. [PMID: 20060503 DOI: 10.1016/j.meegid.2009.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 12/17/2009] [Accepted: 12/25/2009] [Indexed: 11/19/2022]
Abstract
The eukaryotic translation initiation factor 5A (eIF-5A) is highly conserved and is the only protein that is known to contain the unique and essential amino acid residue hypusine. Synthesis of hypusine is essential for the function of eIF5A in eukaryotic cell proliferation and survival. In this study, we identified two novel eukaryotic translation initiation factor 5A (eIF-5A) genes in Trichomonas vaginalis. The tveif-5a1 and tveif-5a2 putative genes were localized in different contigs, both containing ORFs encoding proteins of 168 amino acids that share high sequence identity with eIF-5A sequences from other eukaryotic organisms. A phylogenetic tree constructed with TveIF-5A1 and TveIF-5A2 from T. vaginalis and 13 other eIF-5A sequences of eukaryotic and archaebacterial origin revealed that both trichomonal TveIF-5As show the highest degree of similarity to bacteria. Using an anti-TveIF-5A antibody, we detected two protein bands and spots of 19 and 20kDa with isoelectric points (pI) of 5.2 and 5.5, respectively, by one and two-dimensional Western blot assays. In addition, we used reverse transcription polymerase chain reaction (RT-PCR) to demonstrate that both of these tveif-5a genes are expressed in T. vaginalis. Immunofluorescence assays showed that the TveIF-5A protein was dispersed throughout the parasite cytoplasm. In conclusion, T. vaginalis has two eif-5a genes, and both genes are expressed as highly conserved proteins of 19kDa, which are localized in the cytoplasm of this parasite.
Collapse
Affiliation(s)
- B Carvajal-Gamez
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM). San Lorenzo # 290, Col. Del Valle, CP 03100 Mexico City, Mexico
| | | | | | | | | |
Collapse
|
14
|
Ho P, Kong KF, Chan YH, Tsang JSH, Wong JTY. An unusual S-adenosylmethionine synthetase gene from dinoflagellate is methylated. BMC Mol Biol 2007; 8:87. [PMID: 17915037 PMCID: PMC2148060 DOI: 10.1186/1471-2199-8-87] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 10/04/2007] [Indexed: 01/02/2023] Open
Abstract
Background S-Adenosylmethionine synthetase (AdoMetS) catalyzes the formation of S-Adenosylmethionine (AdoMet), the major methyl group donor in cells. AdoMet-mediated methylation of DNA is known to have regulatory effects on DNA transcription and chromosome structure. Transcription of environmental-responsive genes was demonstrated to be mediated via DNA methylation in dinoflagellates. Results A full-length cDNA encoding AdoMetS was cloned from the dinoflagellate Crypthecodinium cohnii. Phylogenetic analysis suggests that the CcAdoMetS gene, is associated with the clade of higher plant orthrologues, and not to the clade of the animal orthrologues. Surprisingly, three extra stretches of residues (8 to 19 amino acids) were found on CcAdoMetS, when compared to other members of this usually conserved protein family. Modeled on the bacterial AdeMetS, two of the extra loops are located close to the methionine binding site. Despite this, the CcAdoMetS was able to rescue the corresponding mutant of budding yeast. Southern analysis, coupled with methylation-sensitive and insensitive enzyme digestion of C. cohnii genomic DNA, demonstrated that the AdoMetS gene is itself methylated. The increase in digestibility of methylation-sensitive enzymes on AdoMet synthetase gene observed following the addition of DNA methylation inhibitors L-ethionine and 5-azacytidine suggests the presence of cytosine methylation sites within CcAdoMetS gene. During the cell cycle, both the transcript and protein levels of CcAdoMetS peaked at the G1 phase. L-ethionine was able to delay the cell cycle at the entry of S phase. A cell cycle delay at the exit of G2/M phase was induced by 5-azacytidine. Conclusion The present study demonstrates a major role of AdoMet-mediated DNA methylation in the regulation of cell proliferation and that the CcAdoMetS gene is itself methylated.
Collapse
Affiliation(s)
- Percy Ho
- Department of Biology, Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - KF Kong
- Department of Botany, University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - YH Chan
- Department of Biology, Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Jimmy SH Tsang
- Department of Botany, University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Joseph TY Wong
- Department of Biology, Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| |
Collapse
|
15
|
Lu P, Rangan A, Chan SY, Appling DR, Hoffman DW, Marcotte EM. Global metabolic changes following loss of a feedback loop reveal dynamic steady states of the yeast metabolome. Metab Eng 2006; 9:8-20. [PMID: 17049899 DOI: 10.1016/j.ymben.2006.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Revised: 05/27/2006] [Accepted: 06/20/2006] [Indexed: 11/16/2022]
Abstract
Metabolic enzymes control cellular metabolite concentrations dynamically in response to changing environmental and intracellular conditions. Such real-time feedback regulation suggests the global metabolome may sample distinct dynamic steady states, forming "basins of stability" in the energy landscape of possible metabolite concentrations and enzymatic activities. Using metabolite, protein and transcriptional profiling, we characterize three dynamic steady states of the yeast metabolome that form by perturbing synthesis of the universal methyl donor S-adenosylmethionine (AdoMet). Conversion between these states is driven by replacement of serine with glycine+formate in the media, loss of feedback inhibition control by the metabolic enzyme Met13, or both. The latter causes hyperaccumulation of methionine and AdoMet, and dramatic global compensatory changes in the metabolome, including differences in amino acid and sugar metabolism, and possibly in the global nitrogen balance, ultimately leading to a G1/S phase cell cycle delay. Global metabolic changes are not necessarily accompanied by global transcriptional changes, and metabolite-controlled post-transcriptional regulation of metabolic enzymes is clearly evident.
Collapse
Affiliation(s)
- Peng Lu
- Center for Systems and Synthetic Biology, University of Texas, 1 University Station, Austin, TX 78712-0159, USA
| | | | | | | | | | | |
Collapse
|
16
|
Lidie KB, Ryan JC, Barbier M, Van Dolah FM. Gene expression in Florida red tide dinoflagellate Karenia brevis: analysis of an expressed sequence tag library and development of DNA microarray. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2005; 7:481-93. [PMID: 15976935 DOI: 10.1007/s10126-004-4110-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Accepted: 12/15/2004] [Indexed: 05/03/2023]
Abstract
Karenia brevis (Davis) is the dinoflagellate responsible for nearly annual red tides in the Gulf of Mexico. Although the mechanisms regulating the growth and toxicity of this problematic organism are of considerable interest, little information is available on its molecular biology. We therefore constructed a complementary DNA library from which to gain insight into its expressed genome and to develop tools for studying its gene expression. Large-scale sequencing yielded 7001 high-quality expressed sequence tags (ESTs), which clustered into 5280 unique gene groups. The vast majority of genes expressed fell into a low-abundance class, with the highest expressed gene accounting for only 1% of the total ESTs. Approximately 29% of genes were found to have similarity to known sequences in other organisms after BLAST similarity comparisons to the GenBank public protein database using a cutoff of P < 10e(-4). We identified for the first time in a dinoflagellate a suite of conserved eukaryotic genes involved in cell cycle control, intracellular signaling, and the transcription and translation machinery. At least 40% of gene clusters displayed single nucleotide polymorphisms, suggesting the presence of multiple gene copies. The average GC content of ESTs was 51%, with a slight preference for G or C in the third codon position (53.5%). The ESTs were used to develop an oligonucleotide microarray containing 4629 unique features and 3462 replicate probes. Microarray labeling has been optimized, and the microarray has been validated for probe specificity and reproducibility. This is the first information to be developed on the expressed genome of K. brevis and provides the basis from which to begin functional genomic studies on this harmful algal bloom species.
Collapse
Affiliation(s)
- Kristy B Lidie
- Marine Biotoxins Program, NOAA Center for Coastal Environmental and Biomolecular Research, SC 29412, USA
| | | | | | | |
Collapse
|
17
|
Moreno Díaz de la Espina S, Alverca E, Cuadrado A, Franca S. Organization of the genome and gene expression in a nuclear environment lacking histones and nucleosomes: the amazing dinoflagellates. Eur J Cell Biol 2005; 84:137-49. [PMID: 15819396 DOI: 10.1016/j.ejcb.2005.01.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Dinoflagellates are fascinating protists that have attracted researchers from different fields. The free-living species are major primary producers and the cause of harmful algal blooms sometimes associated with red tides. Dinoflagellates lack histones and nucleosomes and present a unique genome and chromosome organization, being considered the only living knockouts of histones. Their plastids contain genes organized in unigenic minicircles. Basic cell structure, biochemistry and molecular phylogeny place the dinoflagellates firmly among the eukaryotes. They have G1-S-G2-M cell cycles, repetitive sequences, ribosomal genes in tandem, nuclear matrix, snRNAs, and eukaryotic cytoplasm, whereas their nuclear DNA is different, from base composition to chromosome organization. They have a high G + C content, highly methylated and rare bases such as 5-hydroxymethyluracil (HOMeU), no TATA boxes, and form distinct interphasic dinochromosomes with a liquid crystalline organization of DNA, stabilized by metal cations and structural RNA. Without histones and with a protein:DNA mass ratio (1:10) lower than prokaryotes, they need a different way of packing their huge amounts of DNA into a functional chromatin. In spite of the high interest in the dinoflagellate system in genetics, molecular and cellular biology, their analysis until now has been very restricted. We review here the main achievements in the characterization of the genome, nucleus and chromosomes in this diversified phylum. The recent discovery of a eukaryotic structural and functional differentiation in the dinochromosomes and of the organization of gene expression in them, demonstrate that in spite of the secondary loss of histones, that produce a lack of nucleosomal and supranucleosomal chromatin organization, they keep a functional nuclear organization closer to eukaryotes than to prokaryotes.
Collapse
|
18
|
Abstract
The dinoflagellates, a diverse sister group of the malaria parasites, are the major agents causing harmful algal blooms and are also the symbiotic algae of corals. Dinoflagellate nuclei differ significantly from other eukaryotic nuclei by having extranuclear spindles, no nucleosomes and enormous genomes in liquid crystal states. These cytological characteristics were related to the acquisition of prokaryotic genes during evolution (hence Mesokaryotes), which may also account for the biochemical diversity and the relatively slow growth rates of dinoflagellates. The fact that the proliferation of many dinoflagellates is sensitive to turbulence may be due to the physiological requirements of the genome's liquid crystal states. Mechanical stress and anti-microtubule drugs induce cell cycle arrest mainly in G1, implicating a role for the permanent cortical microtubular cytoskeleton in mechanotransduction. The cell cycles of photosynthetic dinoflagellates are also gated by the circadian rhythm, with cell division occurring mainly at the end of the dark phase. Cell growth and the biosynthesis of many toxins occur during the light phase, corresponding to G1 in the cell cycle. The dinoflagellates also embody several options for coupling cell cycle progression to cell growth, enabling them to make the best use of available resources and possibly preparing them for a symbiotic existence.
Collapse
Affiliation(s)
- Joseph T Y Wong
- Department of Biology, Hong Kong University of Science and Technology, Hong Kong SAR, People's Republic of China.
| | | |
Collapse
|
19
|
Moran MA, Buchan A, González JM, Heidelberg JF, Whitman WB, Kiene RP, Henriksen JR, King GM, Belas R, Fuqua C, Brinkac L, Lewis M, Johri S, Weaver B, Pai G, Eisen JA, Rahe E, Sheldon WM, Ye W, Miller TR, Carlton J, Rasko DA, Paulsen IT, Ren Q, Daugherty SC, Deboy RT, Dodson RJ, Durkin AS, Madupu R, Nelson WC, Sullivan SA, Rosovitz MJ, Haft DH, Selengut J, Ward N. Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment. Nature 2004; 432:910-3. [PMID: 15602564 DOI: 10.1038/nature03170] [Citation(s) in RCA: 316] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Accepted: 11/01/2004] [Indexed: 11/08/2022]
Abstract
Since the recognition of prokaryotes as essential components of the oceanic food web, bacterioplankton have been acknowledged as catalysts of most major biogeochemical processes in the sea. Studying heterotrophic bacterioplankton has been challenging, however, as most major clades have never been cultured or have only been grown to low densities in sea water. Here we describe the genome sequence of Silicibacter pomeroyi, a member of the marine Roseobacter clade (Fig. 1), the relatives of which comprise approximately 10-20% of coastal and oceanic mixed-layer bacterioplankton. This first genome sequence from any major heterotrophic clade consists of a chromosome (4,109,442 base pairs) and megaplasmid (491,611 base pairs). Genome analysis indicates that this organism relies upon a lithoheterotrophic strategy that uses inorganic compounds (carbon monoxide and sulphide) to supplement heterotrophy. Silicibacter pomeroyi also has genes advantageous for associations with plankton and suspended particles, including genes for uptake of algal-derived compounds, use of metabolites from reducing microzones, rapid growth and cell-density-dependent regulation. This bacterium has a physiology distinct from that of marine oligotrophs, adding a new strategy to the recognized repertoire for coping with a nutrient-poor ocean.
Collapse
Affiliation(s)
- Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Athens, Georgia 30602, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Molitor IM, Knöbel S, Dang C, Spielmann T, Alléra A, König GM. Translation initiation factor eIF-5A from Plasmodium falciparum. Mol Biochem Parasitol 2004; 137:65-74. [PMID: 15279952 DOI: 10.1016/j.molbiopara.2004.04.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Revised: 04/07/2004] [Accepted: 04/23/2004] [Indexed: 10/26/2022]
Abstract
Eukaryotic translation initiation factor (eIF-5A) is a highly conserved and essential protein that contains the unique amino acid hypusine. The first step in the post-translational biosynthesis of hypusine, the transfer of an aminobutyl moiety from the polyamine substrate spermidine to the -amino group of a specific lysine residue in the eIF-5A precursor, is catalyzed by the enzyme deoxyhypusine synthase. A cDNA encoding a protein homologous to eIF-5A was isolated by plaque hybridization from a cDNA library of Plasmodium falciparum. The cloned cDNA contains an open reading frame encoding a protein of 161 amino acids, which shares a high sequence identity with other eukaryotic eIF-5A sequences. A phylogenetic tree constructed with eIF-5A from P. falciparum and 16 other eIF-5A sequences of eukaryotic and archaeal origin reveals that plasmodial eIF-5A together with other apicomplexan eIF-5A show a higher degree of homology to plant proteins than to animal and fungal sequences. The plasmodial eIF-5A gene was expressed as a six-histidine tagged fusion protein in Escherichia coli. Radioactive incorporation studies with [1,8-3H] spermidine indicated that this protein can serve as a substrate for human deoxyhypusine synthase. Results of quantitative real-time PCR studies with synchronized erythrocytic stages of P. falciparum revealed no significant induction or downregulation but only some variation in the expression level of plasmodial eIF-5A in ring, trophozoite and schizont stage.
Collapse
Affiliation(s)
- Ilka M Molitor
- Department of Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115, Germany.
| | | | | | | | | | | |
Collapse
|