1
|
Wang BT, Hu S, Oh DN, Jin CZ, Jin L, Lee JM, Jin FJ. Insights into the Lignocellulose-Degrading Enzyme System Based on the Genome Sequence of Flavodon sp. x-10. Int J Mol Sci 2025; 26:866. [PMID: 39940637 PMCID: PMC11816945 DOI: 10.3390/ijms26030866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/15/2025] [Accepted: 01/18/2025] [Indexed: 02/16/2025] Open
Abstract
The efficient hydrolysis of lignocellulosic biomass relies on the action of enzymes, which are crucial for the development of economically feasible cellulose bioconversion processes. However, low hydrolysis efficiency and the inhibition of cellulase production by carbon catabolite repression (CCR) have been significant obstacles in this process. The aim of this study was to identify the patterns of cellulose degradation and related genes through the genome analysis of a newly isolated lignocellulose-degrading fungus Flavodon sp. x-10. The whole-genome sequencing showed that the genome size of Flavodon sp. x-10 was 37.1 Mb, with a GC content of 49.48%. A total of 11,277 genes were predicted, with a total length of 18,218,150 bp and an average length of 1615 bp. Additionally, 157 tRNA genes responsible for transporting different amino acids were predicted, and the repeats and tandem repeats accounted for only 0.76% of the overall sequences. A total of 5039 genes were annotated in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, representing 44.68% of all genes, and 368 metabolic pathways were involved. Of the 595 genes annotated in the carbohydrate-active enzyme (CAZy) database, 183 are associated with plant cell wall-degrading enzymes (PCWDEs), surpassing those of Aspergillus niger (167), Trichoderma reesei (64), and Neurospora crassa (86). Compared to these three fungi, Flavodon sp. x-10 has a higher number of enzyme genes related to lignin degradation in its genome. Transporters were further identified by matching the whole-genome sequence to the Transporter Classification Database (TCDB), which includes 20 sugar transporters (STs) closely linked to sugar utilization. Through the comprehensive exploration of the whole-genome sequence, this study uncovered more vital lignocellulase genes and their degradation mechanisms, providing feasible strategies for improving the strains to reduce the cost of biofuel production.
Collapse
Affiliation(s)
- Bao-Teng Wang
- College of Ecology and Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China; (B.-T.W.); (S.H.); (L.J.)
| | - Shuang Hu
- College of Ecology and Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China; (B.-T.W.); (S.H.); (L.J.)
| | - Dong Nyoung Oh
- Department of Biotechnology, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea;
| | - Chun-Zhi Jin
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Republic of Korea;
| | - Long Jin
- College of Ecology and Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China; (B.-T.W.); (S.H.); (L.J.)
| | - Jong Min Lee
- Department of Biotechnology, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea;
| | - Feng-Jie Jin
- College of Ecology and Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China; (B.-T.W.); (S.H.); (L.J.)
| |
Collapse
|
2
|
Castaño JD, El Khoury IV, Goering J, Evans JE, Zhang J. Unlocking the distinctive enzymatic functions of the early plant biomass deconstructive genes in a brown rot fungus by cell-free protein expression. Appl Environ Microbiol 2024; 90:e0012224. [PMID: 38567954 PMCID: PMC11205865 DOI: 10.1128/aem.00122-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/10/2024] [Indexed: 05/22/2024] Open
Abstract
Saprotrophic fungi that cause brown rot of woody biomass evolved a distinctive mechanism that relies on reactive oxygen species (ROS) to kick-start lignocellulosic polymers' deconstruction. These ROS agents are generated at incipient decay stages through a series of redox relays that shuttle electrons from fungus's central metabolism to extracellular Fenton chemistry. A list of genes has been suggested encoding the enzyme catalysts of the redox processes involved in ROS's function. However, navigating the functions of the encoded enzymes has been challenging due to the lack of a rapid method for protein synthesis. Here, we employed cell-free expression system to synthesize four redox or degradative enzymes, which were identified, by transcriptomic data, as conserved players of the ROS oxidation phase across brown rot fungal species. All four enzymes were successfully expressed and showed activities that enable confident assignment of function, namely, benzoquinone reductase (BQR), ferric reductase, α-L-arabinofuranosidase (ABF), and heme-thiolate peroxidase (HTP). Detailed analysis of their catalytic features within the context of brown rot environments allowed us to interpret their roles during ROS-driven wood decomposition. Specifically, we validated the functions of BQR as the driver redox enzyme of Fenton cycles and reconstructed its interactions with the co-occurring HTP or laccase and ABF. Taken together, this research demonstrated that the cell-free expression platform is adequate for synthesizing functional fungal enzymes and provided an alternative route for the rapid characterization of fungal proteins, escalating our understanding of the distinctive biocatalyst system for plant biomass conversion.IMPORTANCEBrown rot fungi are efficient wood decomposers in nature, and their unique degradative systems harbor untapped catalysts pursued by the biorefinery and bioremediation industries. While the use of "omics" platforms has recently uncovered the key "oxidative-hydrolytic" mechanisms that allow these fungi to attack lignocellulose, individual protein characterization is lagging behind due to the lack of a robust method for rapid synthesis of crucial fungal enzymes. This work delves into the studies of biochemical functions of brown rot enzymes using a rapid, cell-free expression platform, which allowed the successful depictions of enzymes' catalytic features, their interactions with Fenton chemistry, and their roles played during the incipient stage of brown rot when fungus sets off the reactive oxygen species for oxidative degradation. We expect this research could illuminate cell-free protein expression system's use to fulfill the increasing need for functional studies of fungal enzymes, advancing the discoveries of novel biomass-converting catalysts.
Collapse
Affiliation(s)
- Jesus D. Castaño
- Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, Minnesota, USA
| | - Irina V. El Khoury
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Joshua Goering
- Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, Minnesota, USA
| | - James E. Evans
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | - Jiwei Zhang
- Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, Minnesota, USA
| |
Collapse
|
3
|
Feng M, Xie Y, Mao W, Lu Y, Wang Y, Li H, Zhang C. Efficient biodegradation of tris-(2-chloroisopropyl) phosphate by a novel strain Amycolatopsis sp. FT-1: Process optimization, mechanism studies and toxicity changes. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130149. [PMID: 36252405 DOI: 10.1016/j.jhazmat.2022.130149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/12/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
In this study, a newly isolated strain Amycolatopsis sp. FT-1 was confirmed to be an efficient tris-(2-chloroisopropyl) phosphate (TCPP) degrader. The maximum degradation efficiency of 100 % was achieved when glucose concentration was 6.0 g/L, TCPP concentration was 1.1 mg/L, pH was 6.3 and temperature was 35 °C. Proteome analysis indicated that TCPP was transformed into diester, monoester and ketone product through hydrolysis by phosphoesterase and oxidation mediated by proteins involved in bio-Fenton reaction. The increased expression of proteins serving as organic hydroperoxides scavenger and two subunits of xanthine dehydrogenase enabled Amycolatopsis sp. FT-1 to defend against TCPP-induced oxidative damage. Meanwhile, proteins involved in the resistance to proteotoxic stress were found to be up-regulated, including Hsp70 protein, ATP-dependent Clp protease proteolytic subunit, elongation factor G and trehalose synthesis-related enzymes. The overexpression of TetR/AcrR family transcriptional regulator and multidrug efflux transporter also benefited the survival of Amycolatopsis sp. FT-1 under TCPP stress. Luminescent bacteria test showed that biotoxicity of TCPP was remarkably decreased after biodegradation by Amycolatopsis sp. FT-1. To the best of our knowledge, this is the first study to report the biotransformation of TCPP by pure strain and to offer important insights into the proteomic mechanisms of TCPP microbial degradation.
Collapse
Affiliation(s)
- Mi Feng
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, College of Environmental Science and Engineering, Guilin 541004, Guangxi, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Yantian Xie
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, College of Environmental Science and Engineering, Guilin 541004, Guangxi, China
| | - Wei Mao
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, College of Environmental Science and Engineering, Guilin 541004, Guangxi, China
| | - Yanqin Lu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, College of Environmental Science and Engineering, Guilin 541004, Guangxi, China
| | - Yanwu Wang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, College of Environmental Science and Engineering, Guilin 541004, Guangxi, China
| | - Haixia Li
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, College of Environmental Science and Engineering, Guilin 541004, Guangxi, China
| | - Chenhao Zhang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, College of Environmental Science and Engineering, Guilin 541004, Guangxi, China
| |
Collapse
|
4
|
Ma X, Liu S, Wang H, Wang Y, Li Z, Gu T, Li Y, Xin F, Wen B. In Vitro Fermentation of Beechwood Lignin-Carbohydrate Complexes Provides Evidence for Utilization by Gut Bacteria. Nutrients 2023; 15:nu15010220. [PMID: 36615876 PMCID: PMC9824187 DOI: 10.3390/nu15010220] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Lignin-carbohydrate complexes (LCCs) are emerging as a new and natural product with pharmacological and nutraceutical potential. It is uncertain, however, whether LCCs have a positive effect on the microbiota of the gut based on the current evidence. Here, the LCC extracted from beechwood (BW-LCC) was used as a substrate for in vitro fermentation. The lignin in BW-LCC consisted of guaiacyl (G) and syringyl (S) units, which are mainly linked by β-O-4 bonds. After 24 h of in vitro fermentation, the pH had evidently declined. The concentrations of acetic acid and propionic acid, the two main short-chain fatty acids (SCFAs), were significantly higher than in the control group (CK). In addition, BW-LCC altered the microbial diversity and composition of gut microbes, including a reduction in the relative abundance of Firmicutes and an increase in the relative abundance of Proteobacteria and Bacteroidetes. The relative abundance of Escherichia coli-Shigella and Bacteroides were the most variable at the genus level. The genes of carbohydrate-active enzymes (CAZymes) also changed significantly with the fermentation and were related to the changes in microbes. Notably, the auxiliary actives (AAs), especially AA1, AA2, and AA3_2, play important roles in lignin degradation and were significantly enriched and concentrated in Proteobacteria. From this study, we are able to provide new perspectives on how gut microbes utilize LCC.
Collapse
Affiliation(s)
- Xiaochen Ma
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shujun Liu
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hongliang Wang
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yulu Wang
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhen Li
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tianyi Gu
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yulong Li
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengjiao Xin
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (F.X.); (B.W.)
| | - Boting Wen
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (F.X.); (B.W.)
| |
Collapse
|
5
|
Phoenicin Switch: Discovering the Trigger for Radical Phoenicin Production in Multiple Wild-Type Penicillium Species. Appl Environ Microbiol 2022; 88:e0030222. [PMID: 35670582 DOI: 10.1128/aem.00302-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Society faces the challenge of storing energy from sustainable sources in inexpensive, nontoxic ways that do not deplete the limited resources of Earth. In this regard, quinone redox flow batteries have been proposed as ideal; however, industrially used quinones have traditionally been synthesized from fossil fuels. Therefore, we investigated the production of phoenicin (compound 1), a deep violet dibenzoquinone produced by certain Penicillium species, for its industrial potential. Strains grew as surface cultures on customized growth media with varying production parameters, and phoenicin production was assessed by ultrahigh-performance liquid chromatography-diode array detection-quadrupole time of flight mass spectrometry (UHPLC-DAD-QTOF MS) analysis of the supernatant. Phoenicin production was reliant on the sucrose concentration, and by varying that, we produced 4.94 ± 0.56 g/L phoenicin on a Czapek yeast autolysate broth (CY)-based medium with Penicillium phoeniceum (CBS 249.32) as the production host, with 71.91% phoenicin purity in the resulting medium broth. Unexpectedly, metabolites corresponding to phoenicin polymers were tentatively identified in P. phoeniceum, of which the dimer (diphoenicin) was a major chromatographic peak. An MS-based metabolomics study was conducted on P. atrosanguineum using feature-based molecular networking and multivariate statistics, and it was found that few or no known secondary metabolites besides phoenicin were secreted into the growth medium. Finally, the effects of sucrose, sodium nitrate, and yeast extract (YE) in the growth medium were investigated in a 23 full factorial design. The results indicated an optimal sucrose concentration of 92.87 g/L on CY when NaNO3 and YE were fixed at 3 and 5 g/L, respectively. IMPORTANCE This work was undertaken to explore the production of fungal quinones in wild-type strains for use as electrolytes in redox flow batteries. As society converts energy production in a more sustainable direction, it becomes increasingly more important to store sustainable energy in smart ways. Conventional battery technologies imply the use of highly toxic, expensive, and rare metals; thus, quinone redox flow batteries have been proposed to be a desirable alternative. In this study, we explored the possibility of producing the fungal quinone phoenicin in Penicillium spp. by changing the growth parameters. The production of other secondary metabolites and known mycotoxins was also investigated in a metabolomics study. It was shown that phoenicin production was activated by optimizing the carbon concentration of the medium, resulting in high titers and purity of the single metabolite.
Collapse
|
6
|
Capturing an Early Gene Induction Event during Wood Decay by the Brown Rot Fungus Rhodonia placenta. Appl Environ Microbiol 2022; 88:e0018822. [PMID: 35348388 PMCID: PMC9040566 DOI: 10.1128/aem.00188-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Brown rot fungi dominate wood decomposition in coniferous forests, and their carbohydrate-selective mechanisms are of commercial interest. Brown rot was recently described as a two-step, sequential mechanism orchestrated by fungi using differentially expressed genes (DEGs) and consisting of oxidation via reactive oxygen species (ROS) followed by enzymatic saccharification. There have been indications, however, that the initial oxidation step itself might require induction. To capture this early gene regulation event, here, we integrated fine-scale cryosectioning with whole-transcriptome sequencing to dissect gene expression at the single-hyphal-cell scale (tens of micrometers). This improved the spatial resolution 50-fold, relative to previous work, and we were able to capture the activity of the first 100 μm of hyphal front growth by Rhodonia placenta in aspen wood. This early decay period was dominated by delayed gene expression patterns as the fungus ramped up its mechanism. These delayed DEGs included many genes implicated in ROS pathways (lignocellulose oxidation [LOX]) that were previously and incorrectly assumed to be constitutively expressed. These delayed DEGs, which include those with and without predicted functions, also create a focused subset of target genes for functional genomics. However, this delayed pattern was not universal, with a few genes being upregulated immediately at the hyphal front. Most notably, this included a gene commonly implicated in hydroquinone and iron redox cycling: benzoquinone reductase. IMPORTANCE Earth's aboveground terrestrial biomass is primarily wood, and fungi dominate wood decomposition. Here, we studied these fungal pathways in a common "brown rot"-type fungus, Rhodonia placenta, that selectively extracts sugars from carbohydrates embedded within wood lignin. Using a space-for-time design to map fungal gene expression at the extreme hyphal front in wood, we made two discoveries. First, we found that many genes long assumed to be "on" (constitutively expressed) from the very beginning of decay were instead "off" before being upregulated, when mapped (via transcriptome sequencing [RNA-seq]) at a high resolution. Second, we found that the gene encoding benzoquinone reductase was "on" in incipient decay and quickly downregulated, implying a key role in "kick-starting" brown rot.
Collapse
|
7
|
Orłowska M, Muszewska A. In Silico Predictions of Ecological Plasticity Mediated by Protein Family Expansions in Early-Diverging Fungi. J Fungi (Basel) 2022; 8:67. [PMID: 35050007 PMCID: PMC8778642 DOI: 10.3390/jof8010067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 11/16/2022] Open
Abstract
Early-diverging fungi (EDF) are ubiquitous and versatile. Their diversity is reflected in their genome sizes and complexity. For instance, multiple protein families have been reported to expand or disappear either in particular genomes or even whole lineages. The most commonly mentioned are CAZymes (carbohydrate-active enzymes), peptidases and transporters that serve multiple biological roles connected to, e.g., metabolism and nutrients intake. In order to study the link between ecology and its genomic underpinnings in a more comprehensive manner, we carried out a systematic in silico survey of protein family expansions and losses among EDF with diverse lifestyles. We found that 86 protein families are represented differently according to EDF ecological features (assessed by median count differences). Among these there are 19 families of proteases, 43 CAZymes and 24 transporters. Some of these protein families have been recognized before as serine and metallopeptidases, cellulases and other nutrition-related enzymes. Other clearly pronounced differences refer to cell wall remodelling and glycosylation. We hypothesize that these protein families altogether define the preliminary fungal adaptasome. However, our findings need experimental validation. Many of the protein families have never been characterized in fungi and are discussed in the light of fungal ecology for the first time.
Collapse
Affiliation(s)
- Małgorzata Orłowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| |
Collapse
|
8
|
Role of quinone reductases in extracellular redox cycling in lichenized ascomycetes. Fungal Biol 2021; 125:879-885. [PMID: 34649674 DOI: 10.1016/j.funbio.2021.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/25/2021] [Accepted: 06/01/2021] [Indexed: 11/24/2022]
Abstract
Our previous work showed that many lichenized Ascomycetes can generate hydroxyl radicals using quinone-based extracellular redox cycling. During cycling, hydroquinones must be formed and subsequently regenerated from quinones using a quinone reductase (QR). However, we also showed that no simple correlation exists between QR activity and rates of hydroxyl radical formation. To further investigate the role of QR in hydroxyl radical formation, three model lichen species, Leptogium furfuraceum, Lasallia pustulata and Peltigera membranacea were selected for further investigation. All possessed QR activity and could metabolize quinones, and both Leptogium furfuraceum and Lasallia pustulata actively produced hydroxyl radicals. By contrast, P. membranacea produced almost no hydroxyl radicals, and although the lichen readily metabolized quinones, no hydroquinone production was detected. Peltigera had laccase (LAC) activity that was c. 50 times higher than in the other two species, suggesting that LAC rapidly oxidizes the hydroquinones, preventing radical formation deriving from auto-oxidation. It appears that in some lichens hydroxyl radical formation is blocked by the presence of high redox enzyme activity. QR from P. didactyla was studied further and found to display similar properties to the enzyme from free-living fungi, although it possessed an unusually high molecular mass (c. 62 kDa).
Collapse
|
9
|
Christiansen JV, Isbrandt T, Petersen C, Sondergaard TE, Nielsen MR, Pedersen TB, Sørensen JL, Larsen TO, Frisvad JC. Fungal quinones: diversity, producers, and applications of quinones from Aspergillus, Penicillium, Talaromyces, Fusarium, and Arthrinium. Appl Microbiol Biotechnol 2021; 105:8157-8193. [PMID: 34625822 DOI: 10.1007/s00253-021-11597-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/06/2021] [Accepted: 09/11/2021] [Indexed: 12/13/2022]
Abstract
Quinones represent an important group of highly structurally diverse, mainly polyketide-derived secondary metabolites widely distributed among filamentous fungi. Many quinones have been reported to have important biological functions such as inhibition of bacteria or repression of the immune response in insects. Other quinones, such as ubiquinones are known to be essential molecules in cellular respiration, and many quinones are known to protect their producing organisms from exposure to sunlight. Most recently, quinones have also attracted a lot of industrial interest since their electron-donating and -accepting properties make them good candidates as electrolytes in redox flow batteries, like their often highly conjugated double bond systems make them attractive as pigments. On an industrial level, quinones are mainly synthesized from raw components in coal tar. However, the possibility of producing quinones by fungal cultivation has great prospects since fungi can often be grown in industrially scaled bioreactors, producing valuable metabolites on cheap substrates. In order to give a better overview of the secondary metabolite quinones produced by and shared between various fungi, mainly belonging to the genera Aspergillus, Penicillium, Talaromyces, Fusarium, and Arthrinium, this review categorizes quinones into families such as emodins, fumigatins, sorbicillinoids, yanuthones, and xanthomegnins, depending on structural similarities and information about the biosynthetic pathway from which they are derived, whenever applicable. The production of these quinone families is compared between the different genera, based on recently revised taxonomy. KEY POINTS: • Quinones represent an important group of secondary metabolites widely distributed in important fungal genera such as Aspergillus, Penicillium, Talaromyces, Fusarium, and Arthrinium. • Quinones are of industrial interest and can be used in pharmacology, as colorants and pigments, and as electrolytes in redox flow batteries. • Quinones are grouped into families and compared between genera according to the revised taxonomy.
Collapse
Affiliation(s)
- J V Christiansen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - T Isbrandt
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - C Petersen
- Department of Chemistry and Bioscience, Aalborg University, 9220, Aalborg, Denmark
| | - T E Sondergaard
- Department of Chemistry and Bioscience, Aalborg University, 9220, Aalborg, Denmark
| | - M R Nielsen
- Department of Chemistry and Bioscience, Aalborg University, 6700, Esbjerg, Denmark
| | - T B Pedersen
- Department of Chemistry and Bioscience, Aalborg University, 6700, Esbjerg, Denmark
| | - J L Sørensen
- Department of Chemistry and Bioscience, Aalborg University, 6700, Esbjerg, Denmark
| | - T O Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - J C Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
10
|
Zawadzka K, Felczak A, Nowak M, Kowalczyk A, Piwoński I, Lisowska K. Antimicrobial activity and toxicological risk assessment of silver nanoparticles synthesized using an eco-friendly method with Gloeophyllum striatum. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126316. [PMID: 34118550 DOI: 10.1016/j.jhazmat.2021.126316] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/18/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
Recently, nanomaterials synthesized ecologically using microorganisms have attracted much interest. In the present study, the ability of Gloeophyllum striatum to synthesize silver nanoparticles is described for the first time. Nanoparticles were formed in an eco-friendly extracellular manner and characterized by UV-Vis, FT-IR, MADLS and SEM techniques. The obtained nanoparticles showed excellent activity against gram-positive and gram-negative bacteria. The MIC values for gram-negative bacteria were 15 µM, while for gram-positive strains they reached 30 µM. The haemolytic and cytotoxic activities of the synthesized nanoparticles towards mammalian cells were also determined. The addition of AgNPs at the concentrations above 30 µM caused 50% haemolysis of red blood cells after they 24-hour incubation. A decrease in the viability of fibroblasts by over 50% was also found in the samples treated with nanoparticles at the concentrations above 30 µM. The ecotoxicological risk of silver nanoparticles was assessed using A. franciscana and D. magna crustaceans as well as L. sativum plants. The EC50 values for A. franciscana and D. magna were 61.97 and 0.275 µM, respectively. An about 20% reduction in the length of L. sativum shoots and roots was noted after the treatment with AgNPs at the concentration of 100 µM.
Collapse
Affiliation(s)
- Katarzyna Zawadzka
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland.
| | - Aleksandra Felczak
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland
| | - Marta Nowak
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland
| | - Aleksandra Kowalczyk
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland
| | - Ireneusz Piwoński
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, 163 Pomorska Street, 90-236 Lodz, Poland
| | - Katarzyna Lisowska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland.
| |
Collapse
|
11
|
Differential Roles of a Family of Flavodoxin-Like Proteins That Promote Resistance to Quinone-Mediated Oxidative Stress in Candida albicans. Infect Immun 2021; 89:IAI.00670-20. [PMID: 33468576 DOI: 10.1128/iai.00670-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/07/2021] [Indexed: 12/19/2022] Open
Abstract
Survival of the fungal pathogen Candida albicans within a mammalian host relies on its ability to resist oxidative stress. The four flavodoxin-like proteins (Pst1, Pst2, Pst3, and Ycp4) that reside on the inner surface of the C. albicans plasma membrane represent a recently discovered antioxidant mechanism that is essential for virulence. Flavodoxin-like proteins combat oxidative stress by promoting a two-electron reduction of quinone molecules, which prevents the formation of toxic semiquinone radicals. Previous studies indicated that Pst3 played a major role in promoting resistance to the small quinone molecules p-benzoquinone and menadione. Analysis of additional quinones confirmed this role for Pst3. To better define their function, antibodies were raised against each of the four flavodoxin-like proteins and used to quantify protein levels. Interestingly, the basal level of flavodoxin-like proteins differed, with Pst3 and Ycp4 being the most abundant. However, after induction with p-benzoquinone, Pst1 and Pst3 were the most highly induced, resulting in Pst3 becoming the most abundant. Constitutive expression of the flavodoxin-like protein genes from a TDH3 promoter resulted in similar protein levels and showed that Pst1 and Pst3 were better at protecting C. albicans against p-benzoquinone than Pst2 or Ycp4. In contrast, Pst1 and Ycp4 provided better protection against oxidative damage induced by tert-butyl hydroperoxide. Thus, both the functional properties and the relative abundance contribute to the distinct roles of the flavodoxin-like proteins in resisting oxidative stress. These results further define how C. albicans combats the host immune response and survives in an environment rich in oxidative stress.
Collapse
|
12
|
Shah F, Gressler M, Nehzati S, Op De Beeck M, Gentile L, Hoffmeister D, Persson P, Tunlid A. Secretion of Iron(III)-Reducing Metabolites during Protein Acquisition by the Ectomycorrhizal Fungus Paxillus involutus. Microorganisms 2020; 9:E35. [PMID: 33374225 PMCID: PMC7824621 DOI: 10.3390/microorganisms9010035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 11/17/2022] Open
Abstract
The ectomycorrhizal fungus Paxillus involutus decomposes proteins using a two-step mechanism, including oxidation and proteolysis. Oxidation involves the action of extracellular hydroxyl radicals (•OH) generated by the Fenton reaction. This reaction requires the presence of iron(II). Here, we monitored the speciation of extracellular iron and the secretion of iron(III)-reducing metabolites during the decomposition of proteins by P. involutus. X-ray absorption spectroscopy showed that extracellular iron was mainly present as solid iron(III) phosphates and oxides. Within 1 to 2 days, these compounds were reductively dissolved, and iron(II) complexes were formed, which remained in the medium throughout the incubation. HPLC and mass spectrometry detected five extracellular iron(III)-reducing metabolites. Four of them were also secreted when the fungus grew on a medium containing ammonium as the sole nitrogen source. NMR identified the unique iron(III)-reductant as the diarylcyclopentenone involutin. Involutin was produced from day 2, just before the elevated •OH production, preceding the oxidation of BSA. The other, not yet fully characterized iron(III)-reductants likely participate in the rapid reduction and dissolution of solid iron(III) complexes observed on day one. The production of these metabolites is induced by other environmental cues than for involutin, suggesting that they play a role beyond the Fenton chemistry associated with protein oxidation.
Collapse
Affiliation(s)
- Firoz Shah
- Microbial Ecology Group, Department of Biology, Lund University, 223 62 Lund, Sweden; (F.S.); (S.N.); (M.O.D.B.); (L.G.)
| | - Markus Gressler
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-Universität, 07747 Jena, Germany; (M.G.); (D.H.)
| | - Susan Nehzati
- Microbial Ecology Group, Department of Biology, Lund University, 223 62 Lund, Sweden; (F.S.); (S.N.); (M.O.D.B.); (L.G.)
- MAX IV Laboratory, Lund University, 221 00 Lund, Sweden
| | - Michiel Op De Beeck
- Microbial Ecology Group, Department of Biology, Lund University, 223 62 Lund, Sweden; (F.S.); (S.N.); (M.O.D.B.); (L.G.)
| | - Luigi Gentile
- Microbial Ecology Group, Department of Biology, Lund University, 223 62 Lund, Sweden; (F.S.); (S.N.); (M.O.D.B.); (L.G.)
| | - Dirk Hoffmeister
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-Universität, 07747 Jena, Germany; (M.G.); (D.H.)
| | - Per Persson
- Centre for Environmental and Climate Research (CEC), Lund University, 223 62 Lund, Sweden;
| | - Anders Tunlid
- Microbial Ecology Group, Department of Biology, Lund University, 223 62 Lund, Sweden; (F.S.); (S.N.); (M.O.D.B.); (L.G.)
| |
Collapse
|
13
|
Transcriptome analysis of the brown rot fungus Gloeophyllum trabeum during lignocellulose degradation. PLoS One 2020; 15:e0243984. [PMID: 33315957 PMCID: PMC7735643 DOI: 10.1371/journal.pone.0243984] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/01/2020] [Indexed: 11/24/2022] Open
Abstract
Brown rot fungi have great potential in biorefinery wood conversion systems because they are the primary wood decomposers in coniferous forests and have an efficient lignocellulose degrading system. Their initial wood degradation mechanism is thought to consist of an oxidative radical-based system that acts sequentially with an enzymatic saccharification system, but the complete molecular mechanism of this system has not yet been elucidated. Some studies have shown that wood degradation mechanisms of brown rot fungi have diversity in their substrate selectivity. Gloeophyllum trabeum, one of the most studied brown rot species, has broad substrate selectivity and even can degrade some grasses. However, the basis for this broad substrate specificity is poorly understood. In this study, we performed RNA-seq analyses on G. trabeum grown on media containing glucose, cellulose, or Japanese cedar (Cryptomeria japonica) as the sole carbon source. Comparison to the gene expression on glucose, 1,129 genes were upregulated on cellulose and 1,516 genes were upregulated on cedar. Carbohydrate Active enZyme (CAZyme) genes upregulated on cellulose and cedar media by G. trabeum included glycoside hyrolase family 12 (GH12), GH131, carbohydrate esterase family 1 (CE1), auxiliary activities family 3 subfamily 1 (AA3_1), AA3_2, AA3_4 and AA9, which is a newly reported expression pattern for brown rot fungi. The upregulation of both terpene synthase and cytochrome P450 genes on cedar media suggests the potential importance of these gene products in the production of secondary metabolites associated with the chelator-mediated Fenton reaction. These results provide new insights into the inherent wood degradation mechanism of G. trabeum and the diversity of brown rot mechanisms.
Collapse
|
14
|
Kölle M, Horta MAC, Nowrousian M, Ohm RA, Benz JP, Pilgård A. Degradative Capacity of Two Strains of Rhodonia placenta: From Phenotype to Genotype. Front Microbiol 2020; 11:1338. [PMID: 32625194 PMCID: PMC7314958 DOI: 10.3389/fmicb.2020.01338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/25/2020] [Indexed: 01/23/2023] Open
Abstract
Brown rot fungi, such as Rhodonia placenta (previously Postia placenta), occur naturally in northern coniferous forest ecosystems and are known to be the most destructive group of decay fungi, degrading wood faster and more effectively than other wood-degrading organisms. It has been shown that brown rot fungi not only rely on enzymatic degradation of lignocellulose, but also use low molecular weight oxidative agents in a non-enzymatic degradation step prior to the enzymatic degradation. R. placenta is used in standardized decay tests in both Europe and North America. However, two different strains are employed (FPRL280 and MAD-698, respectively) for which differences in colonization-rate, mass loss, as well as in gene expression have been observed, limiting the comparability of results. To elucidate the divergence between both strains, we investigated the phenotypes in more detail and compared their genomes. Significant phenotypic differences were found between the two strains, and no fusion was possible. MAD-698 degraded scots pine more aggressively, had a more constant growth rate and produced mycelia faster than FPRL280. After sequencing the genome of FPRL280 and comparing it with the published MAD-698 genome we found 660,566 SNPs, resulting in 98.4% genome identity. Specific analysis of the carbohydrate-active enzymes, encoded by the genome (CAZome) identified differences in many families related to plant biomass degradation, including SNPs, indels, gaps or insertions within structural domains. Four genes belonging to the AA3_2 family could not be found in or amplified from FPRL280 gDNA, suggesting the absence of these genes. Differences in other CAZy encoding genes that could potentially affect the lignocellulolytic activity of the strains were also predicted by comparison of genome assemblies (e.g., GH2, GH3, GH5, GH10, GH16, GH78, GT2, GT15, and CBM13). Overall, these mutations help to explain the phenotypic differences observed between both strains as they could interfere with the enzymatic activities, substrate binding ability or protein folding. The investigation of the molecular reasons that make these two strains distinct contributes to the understanding of the development of this important brown rot reference species and will help to put the data obtained from standardized decay tests across the globe into a better biological context.
Collapse
Affiliation(s)
- Martina Kölle
- Chair of Wood Science, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Maria Augusta Crivelente Horta
- Professorship for Wood Bioprocesses, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Minou Nowrousian
- Department of Molecular and Cellular Botany, Ruhr University Bochum, Bochum, Germany
| | - Robin A Ohm
- Department of Biology, Microbiology, Utrecht University, Utrecht, Netherlands
| | - J Philipp Benz
- Professorship for Wood Bioprocesses, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.,Institute of Advanced Study, Technical University of Munich, Garching, Germany
| | - Annica Pilgård
- Chair of Wood Science, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany.,Biobased Materials, Bioeconomy, RISE Research Institutes of Sweden, Borås, Sweden
| |
Collapse
|
15
|
Initial Rhodonia placenta Gene Expression in Acetylated Wood: Group-Wise Upregulation of Non-Enzymatic Oxidative Wood Degradation Genes Depending on the Treatment Level. FORESTS 2019. [DOI: 10.3390/f10121117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Acetylation has been shown to delay fungal decay, but the underlying mechanisms are poorly understood. Brown-rot fungi, such as Rhodonia placenta (Fr.) Niemelä, K.H. Larss. & Schigel, degrade wood in two steps, i.e., oxidative depolymerization followed by secretion of hydrolytic enzymes. Since separating the two degradation steps has been proven challenging, a new sample design was applied to the task. The aim of this study was to compare the expression of 10 genes during the initial decay phase in wood and wood acetylated to three different weight percentage gains (WPG). The results showed that not all genes thought to play a role in initiating brown-rot decay are upregulated. Furthermore, the results indicate that R. placenta upregulates an increasing number of genes involved in the oxidative degradation phase with increasing WPG.
Collapse
|
16
|
Petrasch S, Silva CJ, Mesquida-Pesci SD, Gallegos K, van den Abeele C, Papin V, Fernandez-Acero FJ, Knapp SJ, Blanco-Ulate B. Infection Strategies Deployed by Botrytis cinerea, Fusarium acuminatum, and Rhizopus stolonifer as a Function of Tomato Fruit Ripening Stage. FRONTIERS IN PLANT SCIENCE 2019; 10:223. [PMID: 30881367 PMCID: PMC6405687 DOI: 10.3389/fpls.2019.00223] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 02/08/2019] [Indexed: 05/12/2023]
Abstract
Worldwide, 20-25% of all harvested fruit and vegetables are lost annually in the field and throughout the postharvest supply chain due to rotting by fungal pathogens. Most postharvest pathogens exhibit necrotrophic or saprotrophic lifestyles, resulting in decomposition of the host tissues and loss of marketable commodities. Necrotrophic fungi can readily infect ripe fruit leading to the rapid establishment of disease symptoms. However, these pathogens generally fail to infect unripe fruit or remain quiescent until host conditions stimulate a successful infection. Previous research on infections of fruit has mainly been focused on the host's genetic and physicochemical factors that inhibit or promote disease. Here, we investigated if fruit pathogens can modify their own infection strategies in response to the ripening stage of the host. To test this hypothesis, we profiled global gene expression of three fungal pathogens that display necrotrophic behavior-Botrytis cinerea, Fusarium acuminatum, and Rhizopus stolonifer-during interactions with unripe and ripe tomato fruit. We assembled and functionally annotated the transcriptomes of F. acuminatum and R. stolonifer as no genomic resources were available. Then, we conducted differential gene expression analysis to compare each pathogen during inoculations versus in vitro conditions. Through characterizing patterns of overrepresented pathogenicity and virulence functions (e.g., phytotoxin production, cell wall degradation, and proteolysis) among the differentially expressed genes, we were able to determine shared strategies among the three fungi during infections of compatible (ripe) and incompatible (unripe) fruit tissues. Though each pathogen's strategy differed in the details, interactions with unripe fruit were commonly characterized by an emphasis on the degradation of cell wall components, particularly pectin, while colonization of ripe fruit featured more heavily redox processes, proteolysis, metabolism of simple sugars, and chitin biosynthesis. Furthermore, we determined that the three fungi were unable to infect fruit from the non-ripening (nor) tomato mutant, confirming that to cause disease, these pathogens require the host tissues to undergo specific ripening processes. By enabling a better understanding of fungal necrotrophic infection strategies, we move closer to generating accurate models of fruit diseases and the development of early detection tools and effective management strategies.
Collapse
Affiliation(s)
- Stefan Petrasch
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Christian J. Silva
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Saskia D. Mesquida-Pesci
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
- Laboratory of Phytopathology, Wageningen University, Wageningen, Netherlands
| | - Karina Gallegos
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Casper van den Abeele
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
- Laboratory of Plant Physiology, Wageningen University, Wageningen, Netherlands
| | - Victor Papin
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
- Ecole Nationale Supérieure Agronomique de Toulouse, Toulouse, France
| | - Francisco J. Fernandez-Acero
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
- Microbiology Laboratory, Institute of Viticulture and Agri-Food Research, Marine and Environmental Sciences Faculty, University of Cádiz, Cádiz, Spain
| | - Steven J. Knapp
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Barbara Blanco-Ulate
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| |
Collapse
|
17
|
Pandey V, Gupta AK, Singh M, Pandey D, Kumar A. Complementary Proteomics, Genomics approaches identifies potential pathogenicity/virulence factors in Tilletia indica induced under the influence of host factor. Sci Rep 2019; 9:553. [PMID: 30679765 PMCID: PMC6346058 DOI: 10.1038/s41598-018-37810-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 12/05/2018] [Indexed: 12/21/2022] Open
Abstract
Karnal bunt disease of wheat is incited by quarantine fungal pathogen T. indica. Till date, there is little information on the pathogenic mechanisms involved in Karnal bunt. In order to understand the molecular mechanisms of disease pathogenesis, highly aggressive T. indica TiK isolate was cultured in the presence of host factor extracted from developing spikes of wheat variety WH-542. Modulation in protein profile of mycelial proteins and secretome from TiK cultured in the absence and presence of host factor was analyzed by 2-DE. Fifteen and twenty nine protein spots were up-regulated/differentially regulated in the proteome of mycelial and secreted proteins, respectively and identified using MALDI-TOF/TOF. Identified proteins are involved in suppression of host defense responses, lignin degradation of plant cell wall, penetration, adhesion of pathogen to host tissues, pathogen mediated reactive oxygen species generation, hydrolytic enzymes, detoxification of host generated reactive oxygen species. Further, integration of proteomic and genomic analysis has led to candidate pathogenicity/virulence factors identification. They were functionally annotated by sequence as well as structure based analysis. In this study, complementation of proteomics and genomics approaches resulted in novel pathogenicity/virulence factor(s) identification in T. indica.
Collapse
Affiliation(s)
- Vishakha Pandey
- Department of Molecular biology and Genetic Engineering, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Atul Kumar Gupta
- Department of Molecular biology and Genetic Engineering, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India.
| | - Manoj Singh
- Department of Molecular biology and Genetic Engineering, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Dinesh Pandey
- Department of Molecular biology and Genetic Engineering, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Anil Kumar
- Department of Molecular biology and Genetic Engineering, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India.
| |
Collapse
|
18
|
Bissaro B, Várnai A, Røhr ÅK, Eijsink VGH. Oxidoreductases and Reactive Oxygen Species in Conversion of Lignocellulosic Biomass. Microbiol Mol Biol Rev 2018; 82:e00029-18. [PMID: 30257993 PMCID: PMC6298611 DOI: 10.1128/mmbr.00029-18] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Biomass constitutes an appealing alternative to fossil resources for the production of materials and energy. The abundance and attractiveness of vegetal biomass come along with challenges pertaining to the intricacy of its structure, evolved during billions of years to face and resist abiotic and biotic attacks. To achieve the daunting goal of plant cell wall decomposition, microorganisms have developed many (enzymatic) strategies, from which we seek inspiration to develop biotechnological processes. A major breakthrough in the field has been the discovery of enzymes today known as lytic polysaccharide monooxygenases (LPMOs), which, by catalyzing the oxidative cleavage of recalcitrant polysaccharides, allow canonical hydrolytic enzymes to depolymerize the biomass more efficiently. Very recently, it has been shown that LPMOs are not classical monooxygenases in that they can also use hydrogen peroxide (H2O2) as an oxidant. This discovery calls for a revision of our understanding of how lignocellulolytic enzymes are connected since H2O2 is produced and used by several of them. The first part of this review is dedicated to the LPMO paradigm, describing knowns, unknowns, and uncertainties. We then present different lignocellulolytic redox systems, enzymatic or not, that depend on fluxes of reactive oxygen species (ROS). Based on an assessment of these putatively interconnected systems, we suggest that fine-tuning of H2O2 levels and proximity between sites of H2O2 production and consumption are important for fungal biomass conversion. In the last part of this review, we discuss how our evolving understanding of redox processes involved in biomass depolymerization may translate into industrial applications.
Collapse
Affiliation(s)
- Bastien Bissaro
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Anikó Várnai
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Åsmund K Røhr
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| |
Collapse
|
19
|
Whole-Genome De Novo Sequencing of the Lignin-Degrading Wood Rot Fungus Phanerochaete chrysosporium (ATCC 20696). GENOME ANNOUNCEMENTS 2017; 5:5/32/e00731-17. [PMID: 28798174 PMCID: PMC5552983 DOI: 10.1128/genomea.00731-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Phanerochaete chrysosporium (ATCC 20696) has a catabolic ability to degrade lignin. Here, we report whole-genome sequencing used to identify genes related to lignin modification. We determined the 39-Mb draft genome sequence of this fungus, comprising 13,560 predicted gene models. Gene annotation provided crucial information about the location and function of protein-encoding genes.
Collapse
|
20
|
Hong CY, Ryu SH, Jeong H, Lee SS, Kim M, Choi IG. Phanerochaete chrysosporium Multienzyme Catabolic System for in Vivo Modification of Synthetic Lignin to Succinic Acid. ACS Chem Biol 2017; 12:1749-1759. [PMID: 28463479 DOI: 10.1021/acschembio.7b00046] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Whole cells of the basidiomycete fungus Phanerochaete chrysosporium (ATCC 20696) were applied to induce the biomodification of lignin in an in vivo system. Our results indicated that P. chrysosporium has a catabolic system that induces characteristic biomodifications of synthetic lignin through a series of redox reactions, leading not only to the degradation of lignin but also to its polymerization. The reducing agents ascorbic acid and α-tocopherol were used to stabilize the free radicals generated from the ligninolytic process. The application of P. chrysosporium in combination with reducing agents produced aromatic compounds and succinic acid as well as degraded lignin polymers. P. chrysosporium selectively catalyzed the conversion of lignin to succinic acid, which has an economic value. A transcriptomic analysis of P. chrysosporium suggested that the bond cleavage of synthetic lignin was caused by numerous enzymes, including extracellular enzymes such as lignin peroxidase and manganese peroxidase, and that the aromatic compounds released were metabolized in both the short-cut and classical tricarboxylic acid cycles of P. chrysosporium. In conclusion, P. chrysosporium is suitable as a biocatalyst for lignin degradation to produce a value-added product.
Collapse
Affiliation(s)
- Chang-Young Hong
- Division of Wood Chemistry & Microbiology, Department of Forest Products, National Institute of Forest Science, Seoul, Republic of Korea
| | - Sun-Hwa Ryu
- Division of Wood Chemistry & Microbiology, Department of Forest Products, National Institute of Forest Science, Seoul, Republic of Korea
| | - Hanseob Jeong
- Division of Wood Chemistry & Microbiology, Department of Forest Products, National Institute of Forest Science, Seoul, Republic of Korea
| | - Sung-Suk Lee
- Division of Wood Chemistry & Microbiology, Department of Forest Products, National Institute of Forest Science, Seoul, Republic of Korea
| | - Myungkil Kim
- Division of Wood Chemistry & Microbiology, Department of Forest Products, National Institute of Forest Science, Seoul, Republic of Korea
| | - In-Gyu Choi
- Department
of Forest Sciences, Seoul National University, Seoul, Republic of Korea
- Research
Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Institutes
of Green Bio Science and Technology, Seoul National University, Pyeongchang, Republic of Korea
| |
Collapse
|
21
|
Romero R, Contreras D, Segura C, Schwederski B, Kaim W. Hydroxyl radical production by a heterogeneous Fenton reaction supported in insoluble tannin from bark of Pinus radiata. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:6135-6142. [PMID: 27585587 DOI: 10.1007/s11356-016-7532-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 08/26/2016] [Indexed: 06/06/2023]
Abstract
Fenton reactions driven by dihydroxybenzenes (DHBs) have been used for pollutant removal via advanced oxidation processes (AOPs), but such systems have the disadvantage of DHB release into the aqueous phase. In this work, insoluble tannins from bark can be used to drive Fenton reactions and as a heterogeneous support. This avoids the release of DHBs into the aqueous phase and can be used for AOPs. The production of ·OH was investigated using a spin-trapping electron paramagnetic resonance technique (5-dimethyl-1-pyrroline-N-oxide/·OH) in the first minute of the reaction and a high-performance liquid chromatography-fluorescence technique (coumarin/7-hydroxycoumarin) for 20 min. The ·OH yield achieved using insoluble tannins from Pinus radiata bark was higher than that achieved using catechin to drive the Fenton reaction. The Fenton-like system driven by insoluble tannins achieved 92.6 ± 0.3 % degradation of atrazine in 30 min. The degradation kinetics of atrazine was linearly correlated with ·OH production. The increased reactivity in ·OH production and insolubility of the ligand are promising for the development of a new technique for degradation of pollutants in wastewater using heterogeneous Fenton systems.
Collapse
|
22
|
Daly P, van Munster JM, Blythe MJ, Ibbett R, Kokolski M, Gaddipati S, Lindquist E, Singan VR, Barry KW, Lipzen A, Ngan CY, Petzold CJ, Chan LJG, Pullan ST, Delmas S, Waldron PR, Grigoriev IV, Tucker GA, Simmons BA, Archer DB. Expression of Aspergillus niger CAZymes is determined by compositional changes in wheat straw generated by hydrothermal or ionic liquid pretreatments. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:35. [PMID: 28184248 PMCID: PMC5294722 DOI: 10.1186/s13068-017-0700-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 01/05/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND The capacity of fungi, such as Aspergillus niger, to degrade lignocellulose is harnessed in biotechnology to generate biofuels and high-value compounds from renewable feedstocks. Most feedstocks are currently pretreated to increase enzymatic digestibility: improving our understanding of the transcriptomic responses of fungi to pretreated lignocellulosic substrates could help to improve the mix of activities and reduce the production costs of commercial lignocellulose saccharifying cocktails. RESULTS We investigated the responses of A. niger to untreated, ionic liquid and hydrothermally pretreated wheat straw over a 5-day time course using RNA-seq and targeted proteomics. The ionic liquid pretreatment altered the cellulose crystallinity while retaining more of the hemicellulosic sugars than the hydrothermal pretreatment. Ionic liquid pretreatment of straw led to a dynamic induction and repression of genes, which was correlated with the higher levels of pentose sugars saccharified from the ionic liquid-pretreated straw. Hydrothermal pretreatment of straw led to reduced levels of transcripts of genes encoding carbohydrate-active enzymes as well as the derived proteins and enzyme activities. Both pretreatments abolished the expression of a large set of genes encoding pectinolytic enzymes. These reduced levels could be explained by the removal of parts of the lignocellulose by the hydrothermal pretreatment. The time course also facilitated identification of temporally limited gene induction patterns. CONCLUSIONS The presented transcriptomic and biochemical datasets demonstrate that pretreatments caused modifications of the lignocellulose, to both specific structural features as well as the organisation of the overall lignocellulosic structure, that determined A. niger transcript levels. The experimental setup allowed reliable detection of substrate-specific gene expression patterns as well as hitherto non-expressed genes. Our data suggest beneficial effects of using untreated and IL-pretreated straw, but not HT-pretreated straw, as feedstock for CAZyme production.
Collapse
Affiliation(s)
- Paul Daly
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Jolanda M. van Munster
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
- Chemical Biology, Manchester Institute for Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN UK
| | - Martin J. Blythe
- Deep Seq, Faculty of Medicine and Health Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham, NG7 2UH UK
| | - Roger Ibbett
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| | - Matt Kokolski
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - Sanyasi Gaddipati
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| | - Erika Lindquist
- US Department of Energy Joint Genome Institute, Walnut Creek, CA 94598 USA
| | - Vasanth R. Singan
- US Department of Energy Joint Genome Institute, Walnut Creek, CA 94598 USA
| | - Kerrie W. Barry
- US Department of Energy Joint Genome Institute, Walnut Creek, CA 94598 USA
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Walnut Creek, CA 94598 USA
| | - Chew Yee Ngan
- US Department of Energy Joint Genome Institute, Walnut Creek, CA 94598 USA
| | | | | | - Steven T. Pullan
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
- TB Programme, Microbiology Services, Public Health England, Salisbury, UK
| | - Stéphane Delmas
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
- UPMC, Univ. Paris 06, CNRS UMR7238, Sorbonne Universités, 15 rue de l’Ecole de Médecine, 75270 Paris, France
| | - Paul R. Waldron
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| | - Igor V. Grigoriev
- US Department of Energy Joint Genome Institute, Walnut Creek, CA 94598 USA
| | - Gregory A. Tucker
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| | | | - David B. Archer
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| |
Collapse
|
23
|
Piras C, Soggiu A, Greco V, Martino PA, Del Chierico F, Putignani L, Urbani A, Nally JE, Bonizzi L, Roncada P. Mechanisms of antibiotic resistance to enrofloxacin in uropathogenic Escherichia coli in dog. J Proteomics 2015; 127:365-76. [PMID: 26066767 DOI: 10.1016/j.jprot.2015.05.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 05/12/2015] [Accepted: 05/29/2015] [Indexed: 01/25/2023]
Abstract
Escherichia coli (E. coli) urinary tract infections (UTIs) are becoming a serious problem both for pets and humans (zoonosis) due to the close contact and to the increasing resistance to antibiotics. This study has been performed in order to unravel the mechanism of induced enrofloxacin resistance in canine E. coli isolates that represent a good tool to study this pathology. The isolated E. coli has been induced with enrofloxacin and studied through 2D DIGE and shotgun MS. Discovered differentially expressed proteins are principally involved in antibiotic resistance and linked to oxidative stress response, to DNA protection and to membrane permeability. Moreover, since enrofloxacin is an inhibitor of DNA gyrase, the overexpression of DNA starvation/stationary phase protection protein (Dsp) could be a central point to discover the mechanism of this clone to counteract the effects of enrofloxacin. In parallel, the dramatic decrease of the synthesis of the outer membrane protein W, which represents one of the main gates for enrofloxacin entrance, could explain additional mechanism of E. coli defense against this antibiotic. All 2D DIGE and MS data have been deposited into the ProteomeXchange Consortium with identifier PXD002000 and DOI http://dx.doi.org/10.6019/PXD002000. This article is part of a Special Issue entitled: HUPO 2014.
Collapse
Affiliation(s)
- Cristian Piras
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, Università degli studi di Milano, Milan, Italy
| | - Alessio Soggiu
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, Università degli studi di Milano, Milan, Italy
| | - Viviana Greco
- Fondazione Santa Lucia - IRCCS, Rome, Italy; Dipartimento di Medicina Sperimentale e Chirurgia, Università degli Studi di Roma "Tor Vergata", Italy
| | - Piera Anna Martino
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, Università degli studi di Milano, Milan, Italy
| | | | - Lorenza Putignani
- Parasitology and Metagenomics Units, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Urbani
- Fondazione Santa Lucia - IRCCS, Rome, Italy; Dipartimento di Medicina Sperimentale e Chirurgia, Università degli Studi di Roma "Tor Vergata", Italy
| | - Jarlath E Nally
- Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA 50010, United States
| | - Luigi Bonizzi
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, Università degli studi di Milano, Milan, Italy
| | - Paola Roncada
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, Università degli studi di Milano, Milan, Italy; Istituto Sperimentale Italiano L. Spallanzani, Milano, Italy.
| |
Collapse
|
24
|
Tenebrionid secretions and a fungal benzoquinone oxidoreductase form competing components of an arms race between a host and pathogen. Proc Natl Acad Sci U S A 2015; 112:E3651-60. [PMID: 26056261 DOI: 10.1073/pnas.1504552112] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Entomopathogenic fungi and their insect hosts represent a model system for examining invertebrate-pathogen coevolutionary selection processes. Here we report the characterization of competing components of an arms race consisting of insect protective antimicrobial compounds and evolving fungal mechanisms of detoxification. The insect pathogenic fungus Beauveria bassiana has a remarkably wide host range; however, some insects are resistant to fungal infection. Among resistant insects is the tenebrionid beetle Tribolium castaneum that produces benzoquinone-containing defensive secretions. Reduced fungal germination and growth was seen in media containing T. castaneum dichloromethane extracts or synthetic benzoquinone. In response to benzoquinone exposure, the fungus expresses a 1,4-benzoquinone oxidoreductase, BbbqrA, induced >40-fold. Gene knockout mutants (ΔBbbqrA) showed increased growth inhibition, whereas B. bassiana overexpressing BbbqrA (Bb::BbbqrA(O)) displayed increased resistance to benzoquinone compared with wild type. Increased benzoquinone reductase activity was detected in wild-type cells exposed to benzoquinone and in the overexpression strain. Heterologous expression and purification of BbBqrA in Escherichia coli confirmed NAD(P)H-dependent benzoquinone reductase activity. The ΔBbbqrA strain showed decreased virulence toward T. castaneum, whereas overexpression of BbbqrA increased mortality versus T. castaneum. No change in virulence was seen for the ΔBbbqrA or Bb::BbbqrA(O) strains when tested against the greater wax moth Galleria mellonella or the beetle Sitophilus oryzae, neither of which produce significant amounts of cuticular quinones. The observation that artificial overexpression of BbbqrA results in increased virulence only toward quinone-secreting insects implies the lack of strong selection or current failure of B. bassiana to counteradapt to this particular host defense throughout evolution.
Collapse
|
25
|
Winger AM, Heazlewood JL, Chan LJG, Petzold CJ, Permaul K, Singh S. Secretome analysis of the thermophilic xylanase hyper-producer Thermomyces lanuginosus SSBP cultivated on corn cobs. J Ind Microbiol Biotechnol 2014; 41:1687-96. [PMID: 25223615 DOI: 10.1007/s10295-014-1509-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 09/03/2014] [Indexed: 12/27/2022]
Abstract
Thermomyces lanuginosus is a thermophilic fungus known for its ability to produce industrially important enzymes including large amounts of xylanase, the key enzyme in hemicellulose hydrolysis. The secretome of T. lanuginosus SSBP was profiled by shotgun proteomics to elucidate important enzymes involved in hemicellulose saccharification and to characterise the presence of other industrially interesting enzymes. This study reproducibly identified a total of 74 proteins in the supernatant following growth on corn cobs. An analysis of proteins revealed nine glycoside hydrolase (GH) enzymes including xylanase GH11, β-xylosidase GH43, β-glucosidase GH3, α-galactosidase GH36 and trehalose hydrolase GH65. Two commercially produced Thermomyces enzymes, lipase and amylase, were also identified. In addition, other industrially relevant enzymes not currently explored in Thermomyces were identified including glutaminase, fructose-bisphosphate aldolase and cyanate hydratase. Overall, these data provide insight into the novel ability of a cellulase-free fungus to utilise lignocellulosic material, ultimately producing a number of enzymes important to various industrial processes.
Collapse
Affiliation(s)
- A M Winger
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban, 4001, South Africa
| | | | | | | | | | | |
Collapse
|
26
|
Arantes V, Goodell B. Current Understanding of Brown-Rot Fungal Biodegradation Mechanisms: A Review. ACS SYMPOSIUM SERIES 2014. [DOI: 10.1021/bk-2014-1158.ch001] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Valdeir Arantes
- University of British Columbia, 4035-2424 Main Mall, V6T 1Z4, Vancouver BC, Canada
- Virginia Polytechnic Institute and State University (Virginia Tech), 216 ICTAS II Building (0917), 1075 Life Sciences Circle, Blacksburg VA 24061, United States
| | - Barry Goodell
- University of British Columbia, 4035-2424 Main Mall, V6T 1Z4, Vancouver BC, Canada
- Virginia Polytechnic Institute and State University (Virginia Tech), 216 ICTAS II Building (0917), 1075 Life Sciences Circle, Blacksburg VA 24061, United States
| |
Collapse
|
27
|
Rohr CO, Levin LN, Mentaberry AN, Wirth SA. A first insight into Pycnoporus sanguineus BAFC 2126 transcriptome. PLoS One 2013; 8:e81033. [PMID: 24312521 PMCID: PMC3846667 DOI: 10.1371/journal.pone.0081033] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 10/09/2013] [Indexed: 12/12/2022] Open
Abstract
Fungi of the genus Pycnoporus are white-rot basidiomycetes widely studied because of their ability to synthesize high added-value compounds and enzymes of industrial interest. Here we report the sequencing, assembly and analysis of the transcriptome of Pycnoporus sanguineus BAFC 2126 grown at stationary phase, in media supplemented with copper sulfate. Using the 454 pyrosequencing platform we obtained a total of 226,336 reads (88,779,843 bases) that were filtered and de novo assembled to generate a reference transcriptome of 7,303 transcripts. Putative functions were assigned for 4,732 transcripts by searching similarities of six-frame translated sequences against a customized protein database and by the presence of conserved protein domains. Through the analysis of translated sequences we identified transcripts encoding 178 putative carbohydrate active enzymes, including representatives of 15 families with roles in lignocellulose degradation. Furthermore, we found many transcripts encoding enzymes related to lignin hydrolysis and modification, including laccases and peroxidases, as well as GMC oxidoreductases, copper radical oxidases and other enzymes involved in the generation of extracellular hydrogen peroxide and iron homeostasis. Finally, we identified the transcripts encoding all of the enzymes involved in terpenoid backbone biosynthesis pathway, various terpene synthases related to the biosynthesis of sesquiterpenoids and triterpenoids precursors, and also cytochrome P450 monooxygenases, glutathione S-transferases and epoxide hydrolases with potential functions in the biodegradation of xenobiotics and the enantioselective biosynthesis of biologically active drugs. To our knowledge this is the first report of a transcriptome of genus Pycnoporus and a resource for future molecular studies in P. sanguineus.
Collapse
Affiliation(s)
- Cristian O. Rohr
- Instituto de Ecología, Genética y Evolución, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires, Buenos Aires, Argentina
| | - Laura N. Levin
- Laboratorio de Micología Experimental, Departamento de Biodiversidad y Biología Experimental, Universidad de Buenos Aires, Ciudad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro N. Mentaberry
- Laboratorio de Agrobiotecnología, Universidad de Buenos Aires, Ciudad de Buenos Aires, Buenos Aires, Argentina
| | - Sonia A. Wirth
- Laboratorio de Agrobiotecnología, Universidad de Buenos Aires, Ciudad de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
28
|
Heyno E, Alkan N, Fluhr R. A dual role for plant quinone reductases in host-fungus interaction. PHYSIOLOGIA PLANTARUM 2013; 149:340-53. [PMID: 23464356 DOI: 10.1111/ppl.12042] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 01/30/2013] [Accepted: 02/05/2013] [Indexed: 05/20/2023]
Abstract
Quinone reductases (QR, EC 1.5.6.2) are flavoproteins that protect organisms from oxidative stress. The function of plant QRs has not as yet been addressed in vivo despite biochemical evidence for their involvement in redox reactions. Here, using knock-out (KO) and overexpressing lines, we studied the protective role of two groups of Arabidopsis thaliana cytosolic QRs, Nqr (NAD(P)H:quinone oxidoreductase) and Fqr (flavodoxin-like quinone reductase), in response to infection by necrotrophic fungi. The KO lines nqr(-) and fqr1(-) displayed significantly slower development of lesions of Botrytis cinerea and Sclerotinia sclerotium in comparison to the wild type (WT). Consistent with this observation, the overexpressing line FQR1(+) was hypersensitive to the pathogens. Both the nqr(-) and fqr1(-) displayed increased fluorescence of 2',7'-dichlorofluorescein, a reporter for reactive oxygen species in response to B. cinerea. Infection by B. cinerea was accompanied with increased Nqr and Fqr1 protein levels in the WT as revealed by western blotting. In addition, a marked stimulation of salicylic acid-sensitive transcripts and suppression of jasmonate-sensitive transcripts was observed in moderately wounded QR KO mutant leaves, a condition mimicking the early stage of infection. In contrast to the above observations, germination of conidia was accelerated on leaves of QR KO mutants in comparison with the WT and FQR1(+). The same effect was observed in water-soluble leaf surface extracts. It is proposed that the altered interaction between B. cinerea and the QR mutants is a consequence of subtly altered redox state of the host, which perturbs host gene expression in response to environmental stress such as fungal growth.
Collapse
Affiliation(s)
- Eiri Heyno
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | | | | |
Collapse
|
29
|
Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B. Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:41. [PMID: 23514094 PMCID: PMC3620520 DOI: 10.1186/1754-6834-6-41] [Citation(s) in RCA: 807] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 03/11/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND Since its inception, the carbohydrate-active enzymes database (CAZy; http://www.cazy.org) has described the families of enzymes that cleave or build complex carbohydrates, namely the glycoside hydrolases (GH), the polysaccharide lyases (PL), the carbohydrate esterases (CE), the glycosyltransferases (GT) and their appended non-catalytic carbohydrate-binding modules (CBM). The recent discovery that members of families CBM33 and family GH61 are in fact lytic polysaccharide monooxygenases (LPMO), demands a reclassification of these families into a suitable category. RESULTS Because lignin is invariably found together with polysaccharides in the plant cell wall and because lignin fragments are likely to act in concert with (LPMO), we have decided to join the families of lignin degradation enzymes to the LPMO families and launch a new CAZy class that we name "Auxiliary Activities" in order to accommodate a range of enzyme mechanisms and substrates related to lignocellulose conversion. Comparative analyses of these auxiliary activities in 41 fungal genomes reveal a pertinent division of several fungal groups and subgroups combining their phylogenetic origin and their nutritional mode (white vs. brown rot). CONCLUSIONS The new class introduced in the CAZy database extends the traditional CAZy families, and provides a better coverage of the full extent of the lignocellulose breakdown machinery.
Collapse
Affiliation(s)
- Anthony Levasseur
- INRA, UMR1163 Biotechnologie des Champignons Filamenteux, Aix-Marseille Université, ESIL Polytech Marseille, 163 avenue de Luminy, CP 925, 13288, Marseille, Cedex 09, France
| | - Elodie Drula
- Architecture et Fonction des Macromolécules Biologiques, UMR6098, CNRS, Aix-Marseille Université, 163 Avenue de Luminy, Marseille, 13288, France
| | - Vincent Lombard
- Architecture et Fonction des Macromolécules Biologiques, UMR6098, CNRS, Aix-Marseille Université, 163 Avenue de Luminy, Marseille, 13288, France
| | - Pedro M Coutinho
- Architecture et Fonction des Macromolécules Biologiques, UMR6098, CNRS, Aix-Marseille Université, 163 Avenue de Luminy, Marseille, 13288, France
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, UMR6098, CNRS, Aix-Marseille Université, 163 Avenue de Luminy, Marseille, 13288, France
| |
Collapse
|
30
|
Wang M, Gu B, Huang J, Jiang S, Chen Y, Yin Y, Pan Y, Yu G, Li Y, Wong BHC, Liang Y, Sun H. Transcriptome and proteome exploration to provide a resource for the study of Agrocybe aegerita. PLoS One 2013; 8:e56686. [PMID: 23418592 PMCID: PMC3572045 DOI: 10.1371/journal.pone.0056686] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 01/14/2013] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Agrocybe aegerita, the black poplar mushroom, has been highly valued as a functional food for its medicinal and nutritional benefits. Several bioactive extracts from A. aegerita have been found to exhibit antitumor and antioxidant activities. However, limited genetic resources for A. aegerita have hindered exploration of this species. METHODOLOGY/PRINCIPAL FINDINGS To facilitate the research on A. aegerita, we established a deep survey of the transcriptome and proteome of this mushroom. We applied high-throughput sequencing technology (Illumina) to sequence A. aegerita transcriptomes from mycelium and fruiting body. The raw clean reads were de novo assembled into a total of 36,134 expressed sequences tags (ESTs) with an average length of 663 bp. These ESTs were annotated and classified according to Gene Ontology (GO), Clusters of Orthologous Groups (COG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways. Gene expression profile analysis showed that 18,474 ESTs were differentially expressed, with 10,131 up-regulated in mycelium and 8,343 up-regulated in fruiting body. Putative genes involved in polysaccharide and steroid biosynthesis were identified from A. aegerita transcriptome, and these genes were differentially expressed at the two stages of A. aegerita. Based on one-dimensional gel electrophoresis (1-DGE) coupled with electrospray ionization liquid chromatography tandem MS (LC-ESI-MS/MS), we identified a total of 309 non-redundant proteins. And many metabolic enzymes involved in glycolysis were identified in the protein database. CONCLUSIONS/SIGNIFICANCE This is the first study on transcriptome and proteome analyses of A. aegerita. The data in this study serve as a resource of A. aegerita transcripts and proteins, and offer clues to the applications of this mushroom in nutrition, pharmacy and industry.
Collapse
Affiliation(s)
- Man Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Bianli Gu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
- Molecular Diagnosis Center, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Jie Huang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Shuai Jiang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yijie Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yalin Yin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yongfu Pan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Guojun Yu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yamu Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Barry Hon Cheung Wong
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yi Liang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
- Department of Clinical Immunology, Guangdong Medical College, Dongguan, People's Republic of China
| | - Hui Sun
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, People's Republic of China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, Wuhan, People's Republic of China
- * E-mail:
| |
Collapse
|
31
|
Kishko I, Harish B, Zayats V, Reha D, Tenner B, Beri D, Gustavsson T, Ettrich R, Carey J. Biphasic kinetic behavior of E. coli WrbA, an FMN-dependent NAD(P)H:quinone oxidoreductase. PLoS One 2012; 7:e43902. [PMID: 22952804 PMCID: PMC3430622 DOI: 10.1371/journal.pone.0043902] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 07/27/2012] [Indexed: 11/24/2022] Open
Abstract
The E. coli protein WrbA is an FMN-dependent NAD(P)H:quinone oxidoreductase that has been implicated in oxidative defense. Three subunits of the tetrameric enzyme contribute to each of four identical, cavernous active sites that appear to accommodate NAD(P)H or various quinones, but not simultaneously, suggesting an obligate tetramer with a ping-pong mechanism in which NAD departs before oxidized quinone binds. The present work was undertaken to evaluate these suggestions and to characterize the kinetic behavior of WrbA. Steady-state kinetics results reveal that WrbA conforms to a ping-pong mechanism with respect to the constancy of the apparent Vmax to Km ratio with substrate concentration. However, the competitive/non-competitive patterns of product inhibition, though consistent with the general class of bi-substrate reactions, do not exclude a minor contribution from additional forms of the enzyme. NMR results support the presence of additional enzyme forms. Docking and energy calculations find that electron-transfer-competent binding sites for NADH and benzoquinone present severe steric overlap, consistent with the ping-pong mechanism. Unexpectedly, plots of initial velocity as a function of either NADH or benzoquinone concentration present one or two Michaelis-Menten phases depending on the temperature at which the enzyme is held prior to assay. The effect of temperature is reversible, suggesting an intramolecular conformational process. WrbA shares these and other details of its kinetic behavior with mammalian DT-diaphorase, an FAD-dependent NAD(P)H:quinone oxidoreductase. An extensive literature review reveals several other enzymes with two-plateau kinetic plots, but in no case has a molecular explanation been elucidated. Preliminary sedimentation velocity analysis of WrbA indicates a large shift in size of the multimer with temperature, suggesting that subunit assembly coupled to substrate binding may underlie the two-plateau behavior. An additional aim of this report is to bring under wider attention the apparently widespread phenomenon of two-plateau Michaelis-Menten plots.
Collapse
Affiliation(s)
- Iryna Kishko
- Institute of Nanobiology and Structural Biology, Global Change Research Center, Academy of Sciences of the Czech Republic, Nove Hrady, Czech Republic
- Faculty of Sciences, University of South Bohemia, Nove Hrady, Czech Republic
| | - Balasubramanian Harish
- Chemistry Department, Princeton University, Princeton, New Jersey, United States of America
| | - Vasilina Zayats
- Institute of Nanobiology and Structural Biology, Global Change Research Center, Academy of Sciences of the Czech Republic, Nove Hrady, Czech Republic
- Faculty of Sciences, University of South Bohemia, Nove Hrady, Czech Republic
| | - David Reha
- Institute of Nanobiology and Structural Biology, Global Change Research Center, Academy of Sciences of the Czech Republic, Nove Hrady, Czech Republic
| | - Brian Tenner
- Chemistry Department, Princeton University, Princeton, New Jersey, United States of America
| | - Dhananjay Beri
- Chemistry Department, Princeton University, Princeton, New Jersey, United States of America
| | - Tobias Gustavsson
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, Lund, Sweden
| | - Rüdiger Ettrich
- Institute of Nanobiology and Structural Biology, Global Change Research Center, Academy of Sciences of the Czech Republic, Nove Hrady, Czech Republic
- Faculty of Sciences, University of South Bohemia, Nove Hrady, Czech Republic
- * E-mail: (JC); (RE)
| | - Jannette Carey
- Chemistry Department, Princeton University, Princeton, New Jersey, United States of America
- * E-mail: (JC); (RE)
| |
Collapse
|
32
|
Arantes V, Jellison J, Goodell B. Peculiarities of brown-rot fungi and biochemical Fenton reaction with regard to their potential as a model for bioprocessing biomass. Appl Microbiol Biotechnol 2012; 94:323-38. [DOI: 10.1007/s00253-012-3954-y] [Citation(s) in RCA: 220] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Revised: 02/06/2012] [Accepted: 02/07/2012] [Indexed: 11/24/2022]
|
33
|
Harms H, Schlosser D, Wick LY. Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 2011; 9:177-92. [PMID: 21297669 DOI: 10.1038/nrmicro2519] [Citation(s) in RCA: 535] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Fe-superoxide dismutase and 2-hydroxy-1,4-benzoquinone reductase preclude the auto-oxidation step in 4-aminophenol metabolism by Burkholderia sp. strain AK-5. Biodegradation 2010; 22:1-11. [DOI: 10.1007/s10532-010-9369-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 05/04/2010] [Indexed: 10/19/2022]
|
35
|
Peterbauer CK, Volc J. Pyranose dehydrogenases: biochemical features and perspectives of technological applications. Appl Microbiol Biotechnol 2009; 85:837-48. [PMID: 19768457 DOI: 10.1007/s00253-009-2226-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 08/24/2009] [Accepted: 08/24/2009] [Indexed: 11/25/2022]
Abstract
Pyranose dehydrogenase is a fungal flavin-dependent sugar oxidoreductase which is structurally and catalytically related to fungal pyranose oxidase and cellobiose dehydrogenase and probably fulfills similar biological functions in lignocellulose breakdown. It is a monomeric secretory glycoprotein and is limited to a rather small group of litter-decomposing basidiomycetes. Compared with pyranose oxidase, it displays broader substrate specificity and a variable regioselectivity and is unable to utilize oxygen as electron acceptor using substituted benzoquinones and (organo) metallic ions instead. Depending on the structure of the sugar in pyranose form (mono/di/oligosaccharide or glycoside) and the enzyme source, selective monooxidations at C-1, C-2, C-3, or dioxidations at C-2,3 or C-3,4 of the molecule to the corresponding aldonolactones (C-1), or (di)dehydrosugars (aldos(di)uloses) can be performed. These features make pyranose dehydrogenase a promising and versatile biocatalyst for production of highly reactive, sometimes unique, di- and tri-carbonyl sugar derivatives that may serve as interesting chiral intermediates for the synthesis of rare sugars, novel drugs, and fine chemicals.
Collapse
Affiliation(s)
- Clemens K Peterbauer
- Department of Food Sciences and Technology, BOKU-University of Natural Resources and Applied Life Sciences, Vienna, Austria.
| | | |
Collapse
|
36
|
Sedláček V, Spanning RJV, Kučera I. Characterization of the quinone reductase activity of the ferric reductase B protein from Paracoccus denitrificans. Arch Biochem Biophys 2009; 483:29-36. [DOI: 10.1016/j.abb.2008.12.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 12/12/2008] [Accepted: 12/19/2008] [Indexed: 11/24/2022]
|
37
|
Albrecht M, Schneider O, Schmidt A. Redox active donor-substituted punicin derivatives. Org Biomol Chem 2009; 7:1445-53. [DOI: 10.1039/b822353j] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Espagne E, Lespinet O, Malagnac F, Da Silva C, Jaillon O, Porcel BM, Couloux A, Aury JM, Ségurens B, Poulain J, Anthouard V, Grossetete S, Khalili H, Coppin E, Déquard-Chablat M, Picard M, Contamine V, Arnaise S, Bourdais A, Berteaux-Lecellier V, Gautheret D, de Vries RP, Battaglia E, Coutinho PM, Danchin EG, Henrissat B, Khoury RE, Sainsard-Chanet A, Boivin A, Pinan-Lucarré B, Sellem CH, Debuchy R, Wincker P, Weissenbach J, Silar P. The genome sequence of the model ascomycete fungus Podospora anserina. Genome Biol 2008; 9:R77. [PMID: 18460219 PMCID: PMC2441463 DOI: 10.1186/gb-2008-9-5-r77] [Citation(s) in RCA: 236] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 02/12/2008] [Accepted: 05/06/2008] [Indexed: 12/13/2022] Open
Abstract
A 10X draft sequence of Podospora anserina genome shows highly dynamic evolution since its divergence from Neurospora crassa. Background The dung-inhabiting ascomycete fungus Podospora anserina is a model used to study various aspects of eukaryotic and fungal biology, such as ageing, prions and sexual development. Results We present a 10X draft sequence of P. anserina genome, linked to the sequences of a large expressed sequence tag collection. Similar to higher eukaryotes, the P. anserina transcription/splicing machinery generates numerous non-conventional transcripts. Comparison of the P. anserina genome and orthologous gene set with the one of its close relatives, Neurospora crassa, shows that synteny is poorly conserved, the main result of evolution being gene shuffling in the same chromosome. The P. anserina genome contains fewer repeated sequences and has evolved new genes by duplication since its separation from N. crassa, despite the presence of the repeat induced point mutation mechanism that mutates duplicated sequences. We also provide evidence that frequent gene loss took place in the lineages leading to P. anserina and N. crassa. P. anserina contains a large and highly specialized set of genes involved in utilization of natural carbon sources commonly found in its natural biotope. It includes genes potentially involved in lignin degradation and efficient cellulose breakdown. Conclusion The features of the P. anserina genome indicate a highly dynamic evolution since the divergence of P. anserina and N. crassa, leading to the ability of the former to use specific complex carbon sources that match its needs in its natural biotope.
Collapse
Affiliation(s)
- Eric Espagne
- Univ Paris-Sud, Institut de Génétique et Microbiologie, UMR8621, 91405 Orsay cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Chapter 2 Enzymes of saprotrophic basidiomycetes. BRITISH MYCOLOGICAL SOCIETY SYMPOSIA SERIES 2008. [DOI: 10.1016/s0275-0287(08)80004-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
41
|
Crystal structure of the NADH:quinone oxidoreductase WrbA from Escherichia coli. J Bacteriol 2007; 189:9101-7. [PMID: 17951395 DOI: 10.1128/jb.01336-07] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The flavoprotein WrbA, originally described as a tryptophan (W) repressor-binding protein in Escherichia coli, has recently been shown to exhibit the enzymatic activity of a NADH:quinone oxidoreductase. This finding points toward a possible role in stress response and in the maintenance of a supply of reduced quinone. We have determined the three-dimensional structure of the WrbA holoprotein from E. coli at high resolution (1.66 A), and we observed a characteristic, tetrameric quaternary structure highly similar to the one found in the WrbA homologs of Deinococcus radiodurans and Pseudomonas aeruginosa. A similar tetramer was originally observed in an iron-sulfur flavoprotein involved in the reduction of reactive oxygen species. Together with other, recently characterized proteins such as YhdA or YLR011wp (Lot6p), these tetrameric flavoproteins may constitute a large family with diverse functions in redox catalysis. WrbA binds substrates at an active site that provides an ideal stacking environment for aromatic moieties, while providing a pocket that is structured to stabilize the ADP part of an NADH molecule in its immediate vicinity. Structures of WrbA in complex with benzoquinone and NADH suggest a sequential binding mechanism for both molecules in the catalytic cycle.
Collapse
|
42
|
Daniel G, Volc J, Filonova L, Plíhal O, Kubátová E, Halada P. Characteristics of Gloeophyllum trabeum alcohol oxidase, an extracellular source of H2O2 in brown rot decay of wood. Appl Environ Microbiol 2007; 73:6241-53. [PMID: 17660304 PMCID: PMC2075019 DOI: 10.1128/aem.00977-07] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Accepted: 07/23/2007] [Indexed: 11/20/2022] Open
Abstract
A novel alcohol oxidase (AOX) has been purified from mycelial pellets of the wood-degrading basidiomycete Gloeophyllum trabeum and characterized as a homooctameric nonglycosylated protein with native and subunit molecular masses of 628 and 72.4 kDa, containing noncovalently bonded flavin adenine dinucleotide. The isolated AOX cDNA contained an open reading frame of 1,953 bp translating into a polypeptide of 651 amino acids displaying 51 to 53% identity with other published fungal AOX amino acid sequences. The enzyme catalyzed the oxidation of short-chain primary aliphatic alcohols with a preference for methanol (K(m) = 2.3 mM, k(cat) = 15.6 s(-1)). Using polyclonal antibodies and immunofluorescence staining, AOX was localized on liquid culture hyphae and extracellular slime in sections from degraded wood and on cotton fibers. Transmission electron microscopy immunogold labeling localized the enzyme in the hyphal periplasmic space and wall and on extracellular tripartite membranes and slime, while there was no labeling of hyphal peroxisomes. AOX was further shown to be associated with membranous or slime structures secreted by hyphae in wood fiber lumina and within the secondary cell walls of degraded wood fibers. The differences in AOX targeting compared to the known yeast peroxisomal localization were traced to a unique C-terminal sequence of the G. trabeum oxidase, which is apparently responsible for the protein's different translocation. The extracellular distribution and the enzyme's abundance and preference for methanol, potentially available from the demethylation of lignin, all point to a possible role for AOX as a major source of H(2)O(2), a component of Fenton's reagent implicated in the generally accepted mechanisms for brown rot through the production of highly destructive hydroxyl radicals.
Collapse
Affiliation(s)
- Geoffrey Daniel
- Department of Forest Products/Wood Science, Swedish University of Agricultural Sciences, P.O. Box 7008, SE-750 07 Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
43
|
Wolfová J, Mesters JR, Brynda J, Grandori R, Natalello A, Carey J, Kutá Smatanová I. Crystallization and preliminary diffraction analysis of Escherichia coli WrbA in complex with its cofactor flavin mononucleotide. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007; 63:571-5. [PMID: 17620713 PMCID: PMC2335133 DOI: 10.1107/s1744309107026103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Accepted: 05/28/2007] [Indexed: 11/10/2022]
Abstract
The flavoprotein WrbA from Escherichia coli is considered to be the prototype of a new family of multimeric flavodoxin-like proteins that are implicated in cell protection against oxidative stress. The present study is aimed at structural characterization of the E. coli protein with respect to its recently revealed oxidoreductase activity. Crystals of WrbA holoprotein in complex with the oxidized flavin cofactor (FMN) were obtained using standard vapour-diffusion techniques. Deep yellow tetragonal crystals obtained from differing crystallization conditions display different space groups and unit-cell parameters. X-ray crystal structures of the WrbA holoprotein have been determined to resolutions of 2.0 and 2.6 A.
Collapse
Affiliation(s)
- Julie Wolfová
- Institute of Physical Biology, University of South Bohemia České Budějovice, Zámek 136, CZ-373 33 Nové Hrady, Czech Republic
- Institute of Systems Biology and Ecology, v.v.i., Academy of Science of the Czech Republic, Zámek 136, CZ-373 33 Nové Hrady, Czech Republic
| | - Jeroen R. Mesters
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Jiří Brynda
- Institute of Physical Biology, University of South Bohemia České Budějovice, Zámek 136, CZ-373 33 Nové Hrady, Czech Republic
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, CZ-16637 Prague 6, Czech Republic
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Jannette Carey
- Chemistry Department, Princeton University, Washington Road and William Street, Princeton, NJ 08544-1009, USA
| | - Ivana Kutá Smatanová
- Institute of Physical Biology, University of South Bohemia České Budějovice, Zámek 136, CZ-373 33 Nové Hrady, Czech Republic
- Institute of Systems Biology and Ecology, v.v.i., Academy of Science of the Czech Republic, Zámek 136, CZ-373 33 Nové Hrady, Czech Republic
| |
Collapse
|
44
|
Laufer Z, Beckett RP, Minibayeva FV, Lüthje S, Böttger M. Occurrence of laccases in lichenized ascomycetes of the Peltigerineae. ACTA ACUST UNITED AC 2006; 110:846-53. [PMID: 16797954 DOI: 10.1016/j.mycres.2006.03.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 02/01/2006] [Accepted: 03/10/2006] [Indexed: 11/29/2022]
Abstract
Following our previous findings of high extracellular redox activity in lichens, the results of the work presented here identify the enzymes involved as laccases. Despite numerous data on laccases in fungi and flowering plants, this is the first report of the occurrence of laccases in lichenized ascomycetes. Extracellular laccase activity was measured in 40 species of lichens from different taxonomic groupings and contrasting habitats. Out of 20 species tested from suborder Peltigerineae, 18 displayed laccase activity, while activity was absent in species tested from other lichen groups. Identification of the enzymes as laccases was confirmed by the ability of lichen leachates to readily metabolize substrates such as 2,2'-azino(bis-3-ethylbenzthiazoline-6-sulfonate) (ABTS), syringaldazine and o-tolidine in the absence of hydrogen peroxide, sensitivity of the enzymes to cyanide and azide, the enzymes having typical laccase pH and temperature optima, and an absorption spectrum with a peak at 614nm. Desiccation and wounding stimulated laccase activity. Laccase activity was not increased after treatment with normal inducers of laccase synthesis, suggesting that they are constitutively expressed. Electrophoresis showed that the active form of laccase from Peltigera malacea was a tetramer with an unusually high molecular mass of 340kDa and an isoelectric point (pI) of 4.7. The finding of abundant extracellular redox enzymes known to actively produce reactive oxygen species suggest that their roles may include increasing nutrient supply to lichens by delignification, and deterring pathogens by contributing to the oxidative burst. Furthermore, once released into the environment, they may participate in the carbon cycle by facilitating the breakdown or formation of humic substances.
Collapse
Affiliation(s)
- Zsanett Laufer
- School of Biological and Conservation Sciences, University of KwaZulu-Natal, Private Bag X01, Pietermaritzburg, Scottsville 3209, Republic of South Africa
| | | | | | | | | |
Collapse
|
45
|
Patridge EV, Ferry JG. WrbA from Escherichia coli and Archaeoglobus fulgidus is an NAD(P)H:quinone oxidoreductase. J Bacteriol 2006; 188:3498-506. [PMID: 16672604 PMCID: PMC1482846 DOI: 10.1128/jb.188.10.3498-3506.2006] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
WrbA (tryptophan [W] repressor-binding protein) was discovered in Escherichia coli, where it was proposed to play a role in regulation of the tryptophan operon; however, this has been put in question, leaving the function unknown. Here we report a phylogenetic analysis of 30 sequences which indicated that WrbA is the prototype of a distinct family of flavoproteins which exists in a diversity of cell types across all three domains of life and includes documented NAD(P)H:quinone oxidoreductases (NQOs) from the Fungi and Viridiplantae kingdoms. Biochemical characterization of the prototypic WrbA protein from E. coli and WrbA from Archaeoglobus fulgidus, a hyperthermophilic species from the Archaea domain, shows that these enzymes have NQO activity, suggesting that this activity is a defining characteristic of the WrbA family that we designate a new type of NQO (type IV). For E. coli WrbA, the K(m)(NADH) was 14 +/- 0.43 microM and the K(m)(benzoquinone) was 5.8 +/- 0.12 microM. For A. fulgidus WrbA, the K(m)(NADH) was 19 +/- 1.7 microM and the K(m)(benzoquinone) was 37 +/- 3.6 microM. Both enzymes were found to be homodimeric by gel filtration chromatography and homotetrameric by dynamic light scattering and to contain one flavin mononucleotide molecule per monomer. The NQO activity of each enzyme is retained over a broad pH range, and apparent initial velocities indicate that maximal activities are comparable to the optimum growth temperature for the respective organisms. The results are discussed and implicate WrbA in the two-electron reduction of quinones, protecting against oxidative stress.
Collapse
Affiliation(s)
- Eric V Patridge
- Department of Biochemistry and Molecular Biology, Eberly College of Science, The Pennsylvania State University, University Park, 16802-4500, USA
| | | |
Collapse
|
46
|
Karl W, Schneider J, Wetzstein HG. Outlines of an “exploding” network of metabolites generated from the fluoroquinolone enrofloxacin by the brown rot fungus Gloeophyllum striatum. Appl Microbiol Biotechnol 2006; 71:101-13. [PMID: 16249878 DOI: 10.1007/s00253-005-0177-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 08/08/2005] [Accepted: 09/02/2005] [Indexed: 10/25/2022]
Abstract
Degradation of the veterinary fluoroquinolone antibiotic enrofloxacin (EFL) was studied with three strains of Gloeophyllum, basidiomycetous fungi thought to produce extracellular hydroxyl radicals. Metabolites generated in a mineral medium were analyzed by combined high-performance liquid chromatography/high-resolution electrospray ionization mass spectrometry. Their origin was inferred from peak doublets representing 12C and 14C isotopomers detected at a defined proportion. From each exact molecular mass, the molecular formula was derived for which the most probable chemical structure was postulated, using for guidance 18 known EFL metabolites. All supernatants provided similar metabolite patterns, with the most comprehensive consisting of 87 compounds. These metabolites belonged to five families headed by EFL, its oxidatively decarboxylated or defluorinated congeners, an isatin-, and an anthranilic acid-type derivative. Metabolites hydroxylated in the aromatic part suggested the formation of three catechols and two oxidizable ortho-aminophenol-type compounds. After oxidation to the respective ortho-quinones or ortho-quinone imines and oxidative ring cleavage at one of three alternative sites, the formation of various cis,cis-muconic acid-type derivatives is likely, one of which could be detected. Anthranilic acid-type compounds provided two additional sites for ortho-aminophenol formation and aromatic ring cleavage. An "exploding" network of diverse EFL congeners produced by Gloeophyllum suggests the broad utility of our model for studying biodegradation.
Collapse
Affiliation(s)
- W Karl
- Bayer Industry Services GmbH & Co. OHG, 51368, Leverkusen, Germany
| | | | | |
Collapse
|
47
|
|
48
|
Affiliation(s)
- Robert H White
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, 24061, USA.
| |
Collapse
|
49
|
Shimizu M, Yuda N, Nakamura T, Tanaka H, Wariishi H. Metabolic regulation at the tricarboxylic acid and glyoxylate cycles of the lignin-degrading basidiomycete Phanerochaete chrysosporium against exogenous addition of vanillin. Proteomics 2006; 5:3919-31. [PMID: 16217726 DOI: 10.1002/pmic.200401251] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A proteomic differential display technique was utilized to study cellular responses of Phanerochaete chrysosporium exposed to vanillin, one of the key intermediates found during lignin biodegradation. Intracellular proteins were resolved by 2-DE and target protein spots were identified using MALDI-MS after in-gel tryptic digestions. Upon addition of vanillin to P. chrysosporium, up-regulation of homogentisate 1,2-dioxygenase, 1,4-benzoquinone reductases, aldehyde dehydrogenase, and aryl-alcohol dehydrogenase, which seem to play roles in vanillin metabolism, was observed. Furthermore, enzymes involved in glycolysis, the tricarboxylic acid cycle, the pentose-phosphate cycle, and heme biosynthesis were also activated. Up-regulation of extracellular peroxidase was also observed. One of the most unique phenomena against exogenous vanillin was a switch from the glyoxylate cycle to the tricarboxylic acid cycle, where a drastic increase in isocitrate dehydrogenase activity was observed. The exogenous addition of other aromatic compounds also caused an increase in its activity, which in turn triggered NAD(P)H production via the action of dehydrogenases in the tricarboxylic acid cycle, heme biosynthesis via the action of aminolevulinic acid synthase on succinyl-CoA, and energy production via activation of the mitochondrial electron transfer system. These metabolic shifts seem to be required for activating a metabolic system for aromatic compounds.
Collapse
|
50
|
Greenshields DL, Liu G, Selvaraj G, Wei Y. Differential regulation of wheat quinone reductases in response to powdery mildew infection. PLANTA 2005; 222:867-75. [PMID: 16079999 DOI: 10.1007/s00425-005-0029-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Accepted: 05/09/2005] [Indexed: 05/03/2023]
Abstract
At least two types of quinone reductases are present in plants: (1) the zeta-crystallin-like quinone reductases (QR1, EC 1.6.5.5) that catalyze the univalent reduction of quinones to semiquinone radicals, and (2) the DT-diaphorase-like quinone reductases (QR2, EC 1.6.99.2) that catalyze the divalent reduction of quinones to hydroquinones. QR2s protect cells from oxidative stress by making the quinones available for conjugation, thereby releasing them from the superoxide-generating one electron redox cycling, catalyzed by QR1s. Two genes, putatively encoding a QR1 and a QR2, respectively, were isolated from an expressed sequence tag collection derived from the epidermis of a diploid wheat Triticum monococcum L. 24 h after inoculation with the powdery mildew fungus Blumeria graminis (DC) EO Speer f. sp. tritici Em. Marchal. Northern analysis and tissue-specific RT-PCR showed that TmQR1 was repressed while TmQR2 was induced in the epidermis during powdery mildew infection. Heterologous expression of TmQR2 in Escherichia coli confirmed that the gene encoded a functional, dicumarol-inhibitable QR2 that could use either NADH or NADPH as an electron donor. The localization of dicumarol-inhibitable QR2 activity around powdery mildew infection sites was accomplished using a histochemical technique, based on tetrazolium dye reduction.
Collapse
Affiliation(s)
- David L Greenshields
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | | | | | | |
Collapse
|