1
|
Sørensen MES, Stiller ML, Kröninger L, Nowack ECM. Protein import into bacterial endosymbionts and evolving organelles. FEBS J 2024. [PMID: 39658314 DOI: 10.1111/febs.17356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/28/2024] [Accepted: 12/03/2024] [Indexed: 12/12/2024]
Abstract
Bacterial endosymbionts are common throughout the eukaryotic tree of life and provide a range of essential functions. The intricate integration of bacterial endosymbionts into a host led to the formation of the energy-converting organelles, mitochondria and plastids, that have shaped eukaryotic evolution. Protein import from the host has been regarded as one of the distinguishing features of organelles as compared to endosymbionts. In recent years, research has delved deeper into a diverse range of endosymbioses and discovered evidence for 'exceptional' instances of protein import outside of the canonical organelles. Here we review the current evidence for protein import into bacterial endosymbionts. We cover both 'recently evolved' organelles, where there is evidence for hundreds of imported proteins, and endosymbiotic systems where currently only single protein import candidates are described. We discuss the challenges of establishing protein import machineries and the diversity of mechanisms that have independently evolved to solve them. Understanding these systems and the different independent mechanisms, they have evolved is critical to elucidate how cellular integration arises and deepens at the endosymbiont to organelle interface. We finish by suggesting approaches that could be used in the future to address the open questions. Overall, we believe that the evidence now suggests that protein import into bacterial endosymbionts is more common than generally realized, and thus that there is an increasing number of partnerships that blur the distinction between endosymbiont and organelle.
Collapse
Affiliation(s)
- Megan E S Sørensen
- Department of Biology, Institute of Microbial Cell Biology, Heinrich Heine University Düsseldorf, Germany
| | - Mygg L Stiller
- Department of Biology, Institute of Microbial Cell Biology, Heinrich Heine University Düsseldorf, Germany
| | - Lena Kröninger
- Department of Biology, Institute of Microbial Cell Biology, Heinrich Heine University Düsseldorf, Germany
| | - Eva C M Nowack
- Department of Biology, Institute of Microbial Cell Biology, Heinrich Heine University Düsseldorf, Germany
| |
Collapse
|
2
|
Wang L, Liu X, Ruan Y. Sex-specific differences in symbiotic microorganisms associated with an invasive mealybug ( Phenacoccus solenopsis Tinsley) based on 16S ribosomal DNA. PeerJ 2023; 11:e15843. [PMID: 37601250 PMCID: PMC10434102 DOI: 10.7717/peerj.15843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/12/2023] [Indexed: 08/22/2023] Open
Abstract
The ability of Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) to utilize a wide range of host plants is closely related to the symbiotic bacteria within its body. This study investigated the diversity of symbiotic microorganisms associated with the sap-sucking hemipteran insect. Using deep sequencing of the 16S rDNA gene and subsequent analysis with the Qiime software package, we constructed a comprehensive library of bacterial operational taxonomic units (OTUs). We compared the microbial communities of female and male adult mealybugs. Our results showed significant differences in bacterial composition between the sexes, with Proteobacteria, Firmicutes, and Bacteroidetes being the dominant phyla in both female and male mealybugs. These results suggest that the diverse assemblage of symbiotic bacteria in P. solenopsis may be critical in enabling this insect to utilize a wide range of host plants by facilitating carbohydrate digestion and energy uptake.
Collapse
Affiliation(s)
- Lu Wang
- Zhejiang Normal University, College of Life Sciences, Jinhua, Zhejiang, China
| | - Xia Liu
- Zhejiang Normal University, College of Life Sciences, Jinhua, Zhejiang, China
| | - Yongming Ruan
- Zhejiang Normal University, College of Life Sciences, Jinhua, Zhejiang, China
- Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Jinhua, Zhejiang, China
| |
Collapse
|
3
|
Cornwallis CK, van 't Padje A, Ellers J, Klein M, Jackson R, Kiers ET, West SA, Henry LM. Symbioses shape feeding niches and diversification across insects. Nat Ecol Evol 2023; 7:1022-1044. [PMID: 37202501 PMCID: PMC10333129 DOI: 10.1038/s41559-023-02058-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 03/15/2023] [Indexed: 05/20/2023]
Abstract
For over 300 million years, insects have relied on symbiotic microbes for nutrition and defence. However, it is unclear whether specific ecological conditions have repeatedly favoured the evolution of symbioses, and how this has influenced insect diversification. Here, using data on 1,850 microbe-insect symbioses across 402 insect families, we found that symbionts have allowed insects to specialize on a range of nutrient-imbalanced diets, including phloem, blood and wood. Across diets, the only limiting nutrient consistently associated with the evolution of obligate symbiosis was B vitamins. The shift to new diets, facilitated by symbionts, had mixed consequences for insect diversification. In some cases, such as herbivory, it resulted in spectacular species proliferation. In other niches, such as strict blood feeding, diversification has been severely constrained. Symbioses therefore appear to solve widespread nutrient deficiencies for insects, but the consequences for insect diversification depend on the feeding niche that is invaded.
Collapse
Affiliation(s)
| | - Anouk van 't Padje
- Amsterdam Institute for Life and Environment, section Ecology and Evolution, Vrije Universiteit, Amsterdam, the Netherlands
- Laboratory of Genetics, Wageningen University and Research, Wageningen, the Netherlands
| | - Jacintha Ellers
- Amsterdam Institute for Life and Environment, section Ecology and Evolution, Vrije Universiteit, Amsterdam, the Netherlands
| | - Malin Klein
- Amsterdam Institute for Life and Environment, section Ecology and Evolution, Vrije Universiteit, Amsterdam, the Netherlands
| | - Raphaella Jackson
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - E Toby Kiers
- Amsterdam Institute for Life and Environment, section Ecology and Evolution, Vrije Universiteit, Amsterdam, the Netherlands
| | - Stuart A West
- Department of Biology, University of Oxford, Oxford, UK
| | - Lee M Henry
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
| |
Collapse
|
4
|
Szklarzewicz T, Kalandyk‐Kołodziejczyk M, Michalik A. Ovary structure and symbiotic associates of a ground mealybug, Rhizoecus albidus (Hemiptera, Coccomorpha: Rhizoecidae) and their phylogenetic implications. J Anat 2022; 241:860-872. [PMID: 35686658 PMCID: PMC9358763 DOI: 10.1111/joa.13712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/29/2022] [Accepted: 05/19/2022] [Indexed: 11/27/2022] Open
Abstract
The ovary structure and the organization of its symbiotic system of the ground mealybug, Rhizoecus albidus (Rhizoecidae), were examined by means of microscopic and molecular methods. Each of the paired elongated ovaries of R. albidus is composed of circa one hundred short telotrophic-meroistic ovarioles, which are radially arranged along the distal part of the lateral oviduct. Analysis of serial sections revealed that each ovariole contains four germ cells: three trophocytes (nurse cells) occupying the tropharium and a single oocyte in the vitellarium. The ovaries are accompanied by giant cells termed bacteriocytes which are tightly packed with large pleomorphic bacteria. Their identity as Brownia rhizoecola (Bacteroidetes) was confirmed by means of amplicon sequencing and fluorescence in situ hybridization techniques. Moreover, to our knowledge, this is the first report on the morphology and ultrastructure of the Brownia rhizoecola bacterium. In the bacteriocyte cytoplasm bacteria Brownia co-reside with sporadic rod-shaped smaller bacteria, namely Wolbachia (Proteobacteria: Alphaproteobacteria). Both symbionts are transmitted to the next generation vertically (maternally), that is, via female germline cells. We documented that, at the time when ovarioles contain oocytes at the vitellogenic stage, these symbionts leave the bacteriocytes and move toward the neck region of ovarioles (i.e. the region between tropharium and vitellarium). Next, the bacteria enter the cytoplasm of follicular cells surrounding the basal part of the tropharium, leave them and enter the space between the follicular epithelium and surface of the nutritive cord connecting the tropharium and vitellarium. Finally, they gather in the deep depression of the oolemma at the anterior pole of the oocyte in the form of a 'symbiont ball'. Our results provide further arguments strongly supporting the validity of the recent changes in the classification of mealybugs, which involved excluding ground mealybugs from the Pseudococcidae family and raising them to the rank of their own family Rhizoecidae.
Collapse
Affiliation(s)
- Teresa Szklarzewicz
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Faculty of BiologyJagiellonian UniversityKrakówPoland
| | | | - Anna Michalik
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Faculty of BiologyJagiellonian UniversityKrakówPoland
| |
Collapse
|
5
|
Garber AI, Kupper M, Laetsch DR, Weldon SR, Ladinsky MS, Bjorkman PJ, McCutcheon JP. The Evolution of Interdependence in a Four-Way Mealybug Symbiosis. Genome Biol Evol 2021; 13:evab123. [PMID: 34061185 PMCID: PMC8331144 DOI: 10.1093/gbe/evab123] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2021] [Indexed: 01/03/2023] Open
Abstract
Mealybugs are insects that maintain intracellular bacterial symbionts to supplement their nutrient-poor plant sap diets. Some mealybugs have a single betaproteobacterial endosymbiont, a Candidatus Tremblaya species (hereafter Tremblaya) that alone provides the insect with its required nutrients. Other mealybugs have two nutritional endosymbionts that together provision these same nutrients, where Tremblaya has gained a gammaproteobacterial partner that resides in its cytoplasm. Previous work had established that Pseudococcus longispinus mealybugs maintain not one but two species of gammaproteobacterial endosymbionts along with Tremblaya. Preliminary genomic analyses suggested that these two gammaproteobacterial endosymbionts have large genomes with features consistent with a relatively recent origin as insect endosymbionts, but the patterns of genomic complementarity between members of the symbiosis and their relative cellular locations were unknown. Here, using long-read sequencing and various types of microscopy, we show that the two gammaproteobacterial symbionts of P. longispinus are mixed together within Tremblaya cells, and that their genomes are somewhat reduced in size compared with their closest nonendosymbiotic relatives. Both gammaproteobacterial genomes contain thousands of pseudogenes, consistent with a relatively recent shift from a free-living to an endosymbiotic lifestyle. Biosynthetic pathways of key metabolites are partitioned in complex interdependent patterns among the two gammaproteobacterial genomes, the Tremblaya genome, and horizontally acquired bacterial genes that are encoded on the mealybug nuclear genome. Although these two gammaproteobacterial endosymbionts have been acquired recently in evolutionary time, they have already evolved codependencies with each other, Tremblaya, and their insect host.
Collapse
Affiliation(s)
- Arkadiy I Garber
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Biodesign Center for Mechanisms of Evolution and School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Maria Kupper
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Biodesign Center for Mechanisms of Evolution and School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Dominik R Laetsch
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephanie R Weldon
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Mark S Ladinsky
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Pamela J Bjorkman
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - John P McCutcheon
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Biodesign Center for Mechanisms of Evolution and School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
6
|
Jackson D, Maltz MR, Freund HL, Borneman J, Aronson E. Environment and Diet Influence the Bacterial Microbiome of Ambigolimax valentianus, an Invasive Slug in California. INSECTS 2021; 12:575. [PMID: 34201881 PMCID: PMC8307491 DOI: 10.3390/insects12070575] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 12/27/2022]
Abstract
Ambigolimax valentianus is an invasive European terrestrial gastropod distributed throughout California. It is a serious pest of gardens, plant nurseries, and greenhouses. We evaluated the bacterial microbiome of whole slugs to capture a more detailed picture of bacterial diversity and composition in this host. We concentrated on the influences of diet and environment on the Ambigolimax valentianus core bacterial microbiome as a starting point for obtaining valuable information to aid in future slug microbiome studies. Ambigolimax valentianus were collected from two environments (gardens or reared from eggs in a laboratory). DNA from whole slugs were extracted and next-generation 16S rRNA gene sequencing was performed. Slug microbiomes differed between environmental sources (garden- vs. lab-reared) and were influenced by a sterile diet. Lab-reared slugs fed an unsterile diet harbored greater bacterial species than garden-reared slugs. A small core microbiome was present that was shared across all slug treatments. This is consistent with our hypothesis that a core microbiome is present and will not change due to these treatments. Findings from this study will help elucidate the impacts of slug-assisted bacterial dispersal on soils and plants, while providing valuable information about the slug microbiome for potential integrated pest research applications.
Collapse
Affiliation(s)
- Denise Jackson
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, USA; (D.J.); (H.L.F.); (J.B.)
- Natural Science Division, Porterville College, Porterville, CA 93257, USA
| | - Mia R. Maltz
- Center for Conservation Biology, University of California, Riverside, CA 92521, USA;
- Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Hannah L. Freund
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, USA; (D.J.); (H.L.F.); (J.B.)
- Genetics, Genomics, and Bioinformatics Program, University of California, Riverside, CA 92521, USA
| | - James Borneman
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, USA; (D.J.); (H.L.F.); (J.B.)
| | - Emma Aronson
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, USA; (D.J.); (H.L.F.); (J.B.)
- Center for Conservation Biology, University of California, Riverside, CA 92521, USA;
| |
Collapse
|
7
|
Kohli S, Gulati P, Narang A, Maini J, Shamsudheen KV, Pandey R, Scaria V, Sivasubbu S, Brahmachari V. Genome and transcriptome analysis of the mealybug Maconellicoccus hirsutus: Correlation with its unique phenotypes. Genomics 2021; 113:2483-2494. [PMID: 34022346 DOI: 10.1016/j.ygeno.2021.05.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 04/02/2021] [Accepted: 05/17/2021] [Indexed: 11/27/2022]
Abstract
Mealybugs are aggressive pests with world-wide distribution and are suitable for the study of different phenomena like genomic imprinting and epigenetics. Genomic approaches facilitate these studies in absence of robust genetics in this system. We sequenced, de novo assembled, annotated Maconellicoccus hirsutus genome. We carried out comparative genomics it with four mealybug and eight other insect species, to identify expanded, specific and contracted gene classes that relate to pesticide and desiccation resistance. We identified horizontally transferred genes adding to the mutualism between the mealybug and its endosymbionts. Male and female transcriptome analysis indicates differential expression of metabolic pathway genes correlating with their physiology and the genes for sexual dimorphism. The significantly lower expression of endosymbiont genes in males relates to the depletion of endosymbionts in males during development.
Collapse
Affiliation(s)
- Surbhi Kohli
- Dr.B.R.Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Parul Gulati
- Dr.B.R.Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Ankita Narang
- Dr.B.R.Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India.
| | - Jayant Maini
- Dr.B.R.Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - K V Shamsudheen
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Rajesh Pandey
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Vinod Scaria
- CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | | | - Vani Brahmachari
- Dr.B.R.Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India.
| |
Collapse
|
8
|
Evolution of default genetic control mechanisms. PLoS One 2021; 16:e0251568. [PMID: 33984070 PMCID: PMC8118313 DOI: 10.1371/journal.pone.0251568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/28/2021] [Indexed: 11/19/2022] Open
Abstract
We present a model of the evolution of control systems in a genome under environmental constraints. The model conceptually follows the Jacob and Monod model of gene control. Genes contain control elements which respond to the internal state of the cell as well as the environment to control expression of a coding region. Control and coding regions evolve to maximize a fitness function between expressed coding sequences and the environment. The model was run 118 times to an average of 1.4∙106 ‘generations’ each with a range of starting parameters probed the conditions under which genomes evolved a ‘default style’ of control. Unexpectedly, the control logic that evolved was not significantly correlated to the complexity of the environment. Genetic logic was strongly correlated with genome complexity and with the fraction of genes active in the cell at any one time. More complex genomes correlated with the evolution of genetic controls in which genes were active (‘default on’), and a low fraction of genes being expressed correlated with a genetic logic in which genes were biased to being inactive unless positively activated (‘default off’ logic). We discuss how this might relate to the evolution of the complex eukaryotic genome, which operates in a ‘default off’ mode.
Collapse
|
9
|
Hernández-Hernández T, Miller EC, Román-Palacios C, Wiens JJ. Speciation across the Tree of Life. Biol Rev Camb Philos Soc 2021; 96:1205-1242. [PMID: 33768723 DOI: 10.1111/brv.12698] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 01/04/2023]
Abstract
Much of what we know about speciation comes from detailed studies of well-known model systems. Although there have been several important syntheses on speciation, few (if any) have explicitly compared speciation among major groups across the Tree of Life. Here, we synthesize and compare what is known about key aspects of speciation across taxa, including bacteria, protists, fungi, plants, and major animal groups. We focus on three main questions. Is allopatric speciation predominant across groups? How common is ecological divergence of sister species (a requirement for ecological speciation), and on what niche axes do species diverge in each group? What are the reproductive isolating barriers in each group? Our review suggests the following patterns. (i) Based on our survey and projected species numbers, the most frequent speciation process across the Tree of Life may be co-speciation between endosymbiotic bacteria and their insect hosts. (ii) Allopatric speciation appears to be present in all major groups, and may be the most common mode in both animals and plants, based on non-overlapping ranges of sister species. (iii) Full sympatry of sister species is also widespread, and may be more common in fungi than allopatry. (iv) Full sympatry of sister species is more common in some marine animals than in terrestrial and freshwater ones. (v) Ecological divergence of sister species is widespread in all groups, including ~70% of surveyed species pairs of plants and insects. (vi) Major axes of ecological divergence involve species interactions (e.g. host-switching) and habitat divergence. (vii) Prezygotic isolation appears to be generally more widespread and important than postzygotic isolation. (viii) Rates of diversification (and presumably speciation) are strikingly different across groups, with the fastest rates in plants, and successively slower rates in animals, fungi, and protists, with the slowest rates in prokaryotes. Overall, our study represents an initial step towards understanding general patterns in speciation across all organisms.
Collapse
Affiliation(s)
- Tania Hernández-Hernández
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A.,Catedrática CONACYT asignada a LANGEBIO-UGA Cinvestav, Libramiento Norte Carretera León Km 9.6, 36821, Irapuato, Guanajuato, Mexico
| | - Elizabeth C Miller
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A
| | - Cristian Román-Palacios
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A
| | - John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A
| |
Collapse
|
10
|
Andreason SA, Shelby EA, Moss JB, Moore PJ, Moore AJ, Simmons AM. Whitefly Endosymbionts: Biology, Evolution, and Plant Virus Interactions. INSECTS 2020; 11:insects11110775. [PMID: 33182634 PMCID: PMC7696030 DOI: 10.3390/insects11110775] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/03/2020] [Accepted: 11/07/2020] [Indexed: 11/16/2022]
Abstract
Whiteflies (Hemiptera: Aleyrodidae) are sap-feeding global agricultural pests. These piercing-sucking insects have coevolved with intracellular endosymbiotic bacteria that help to supplement their nutrient-poor plant sap diets with essential amino acids and carotenoids. These obligate, primary endosymbionts have been incorporated into specialized organs called bacteriomes where they sometimes coexist with facultative, secondary endosymbionts. All whitefly species harbor the primary endosymbiont Candidatus Portiera aleyrodidarum and have a variable number of secondary endosymbionts. The secondary endosymbiont complement harbored by the cryptic whitefly species Bemisia tabaci is particularly complex with various assemblages of seven different genera identified to date. In this review, we discuss whitefly associated primary and secondary endosymbionts. We focus on those associated with the notorious B. tabaci species complex with emphasis on their biological characteristics and diversity. We also discuss their interactions with phytopathogenic begomoviruses (family Geminiviridae), which are transmitted exclusively by B. tabaci in a persistent-circulative manner. Unraveling the complex interactions of these endosymbionts with their insect hosts and plant viruses could lead to advancements in whitefly and whitefly transmitted virus management.
Collapse
Affiliation(s)
- Sharon A. Andreason
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Vegetable Laboratory, Charleston, SC 29414, USA;
| | - Emily A. Shelby
- Department of Entomology, University of Georgia, Athens, GA 30602, USA; (E.A.S.); (J.B.M.); (P.J.M.); (A.J.M.)
| | - Jeanette B. Moss
- Department of Entomology, University of Georgia, Athens, GA 30602, USA; (E.A.S.); (J.B.M.); (P.J.M.); (A.J.M.)
| | - Patricia J. Moore
- Department of Entomology, University of Georgia, Athens, GA 30602, USA; (E.A.S.); (J.B.M.); (P.J.M.); (A.J.M.)
| | - Allen J. Moore
- Department of Entomology, University of Georgia, Athens, GA 30602, USA; (E.A.S.); (J.B.M.); (P.J.M.); (A.J.M.)
| | - Alvin M. Simmons
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Vegetable Laboratory, Charleston, SC 29414, USA;
- Correspondence:
| |
Collapse
|
11
|
Russell SL, Pepper-Tunick E, Svedberg J, Byrne A, Ruelas Castillo J, Vollmers C, Beinart RA, Corbett-Detig R. Horizontal transmission and recombination maintain forever young bacterial symbiont genomes. PLoS Genet 2020; 16:e1008935. [PMID: 32841233 PMCID: PMC7473567 DOI: 10.1371/journal.pgen.1008935] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 09/04/2020] [Accepted: 06/16/2020] [Indexed: 12/30/2022] Open
Abstract
Bacterial symbionts bring a wealth of functions to the associations they participate in, but by doing so, they endanger the genes and genomes underlying these abilities. When bacterial symbionts become obligately associated with their hosts, their genomes are thought to decay towards an organelle-like fate due to decreased homologous recombination and inefficient selection. However, numerous associations exist that counter these expectations, especially in marine environments, possibly due to ongoing horizontal gene flow. Despite extensive theoretical treatment, no empirical study thus far has connected these underlying population genetic processes with long-term evolutionary outcomes. By sampling marine chemosynthetic bacterial-bivalve endosymbioses that range from primarily vertical to strictly horizontal transmission, we tested this canonical theory. We found that transmission mode strongly predicts homologous recombination rates, and that exceedingly low recombination rates are associated with moderate genome degradation in the marine symbionts with nearly strict vertical transmission. Nonetheless, even the most degraded marine endosymbiont genomes are occasionally horizontally transmitted and are much larger than their terrestrial insect symbiont counterparts. Therefore, horizontal transmission and recombination enable efficient natural selection to maintain intermediate symbiont genome sizes and substantial functional genetic variation.
Collapse
Affiliation(s)
- Shelbi L. Russell
- Department of Molecular Cellular and Developmental Biology. University of California Santa Cruz, Santa Cruz, California, United States of America
- Department of Biomolecular Engineering. University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Evan Pepper-Tunick
- Department of Biomolecular Engineering. University of California Santa Cruz, Santa Cruz, California, United States of America
- Genomics Institute, University of California, Santa Cruz, California, United States of America
| | - Jesper Svedberg
- Department of Biomolecular Engineering. University of California Santa Cruz, Santa Cruz, California, United States of America
- Genomics Institute, University of California, Santa Cruz, California, United States of America
| | - Ashley Byrne
- Department of Molecular Cellular and Developmental Biology. University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Jennie Ruelas Castillo
- Department of Molecular Cellular and Developmental Biology. University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Christopher Vollmers
- Department of Biomolecular Engineering. University of California Santa Cruz, Santa Cruz, California, United States of America
- Genomics Institute, University of California, Santa Cruz, California, United States of America
| | - Roxanne A. Beinart
- Graduate School of Oceanography. University of Rhode Island, Narragansett, Rhode Island, United States of America
| | - Russell Corbett-Detig
- Department of Biomolecular Engineering. University of California Santa Cruz, Santa Cruz, California, United States of America
- Genomics Institute, University of California, Santa Cruz, California, United States of America
| |
Collapse
|
12
|
Oren A, Garrity GM, Parker CT, Chuvochina M, Trujillo ME. Lists of names of prokaryotic Candidatus taxa. Int J Syst Evol Microbiol 2020; 70:3956-4042. [DOI: 10.1099/ijsem.0.003789] [Citation(s) in RCA: 782] [Impact Index Per Article: 156.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We here present annotated lists of names of Candidatus taxa of prokaryotes with ranks between subspecies and class, proposed between the mid-1990s, when the provisional status of Candidatus taxa was first established, and the end of 2018. Where necessary, corrected names are proposed that comply with the current provisions of the International Code of Nomenclature of Prokaryotes and its Orthography appendix. These lists, as well as updated lists of newly published names of Candidatus taxa with additions and corrections to the current lists to be published periodically in the International Journal of Systematic and Evolutionary Microbiology, may serve as the basis for the valid publication of the Candidatus names if and when the current proposals to expand the type material for naming of prokaryotes to also include gene sequences of yet-uncultivated taxa is accepted by the International Committee on Systematics of Prokaryotes.
Collapse
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - George M. Garrity
- NamesforLife, LLC, PO Box 769, Okemos MI 48805-0769, USA
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| | | | - Maria Chuvochina
- Australian Centre for Ecogenomics, University of Queensland, St. Lucia QLD 4072, Brisbane, Australia
| | - Martha E. Trujillo
- Departamento de Microbiología y Genética, Campus Miguel de Unamuno, Universidad de Salamanca, 37007, Salamanca, Spain
| |
Collapse
|
13
|
Guz N, Arshad M, Cagatay NS, Dageri A, Ullah MI. Detection of Wolbachia (Rickettsiales: Anaplasmataceae) and Candidatus Liberibacter asiaticus (Rhizobiales: Rhizobiaceae) Associated With Diaphorina citri (Hemiptera: Liviidae) Collected From Citrus reticulata (Sapindales: Rutaceae) and Alternate Host, Cordia myxa (Boraginales: Boraginaceae). JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:1486-1492. [PMID: 32207826 DOI: 10.1093/jee/toaa043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Indexed: 06/10/2023]
Abstract
The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), is an important insect pest of the citrus crop worldwide. It vectors the pathogen 'Candidatus Liberibacter asiaticus' (CLas) that causes a serious disease known as citrus greening. Here, we tested the infection frequency of Wolbachia and CLas from 100 D. citri individuals collected from two host plants belonging to families Rutaceae (Citrus reticulata Blanco) and Boraginaceae (Cordia myxa L.) using molecular methods. The following trend of endosymbionts infection in adult D. citri was found; 85.4% (35/41) by Wolbachia, and 19.5% (8/41) by CLas collected from C. reticulata plants and 65.4% (17/26) by Wolbachia, and 15.4% (4/26) by CLas in case of C. myxa plant. However, 61.5% (8/13) nymphs collected from C. reticulata and 20.0% (4/20) collected from C. myxa plants were infected by Wolbachia, while no nymph was infected by CLas collected from either host plants. Findings from this work represent the first report of CLas presence in D. citri feeding on C. myxa plants. By studying the presence of CLas with other endosymbiotic bacteria, future basic and applied research to develop control strategies can be prioritized.
Collapse
Affiliation(s)
- Nurper Guz
- Molecular Entomology Lab, Department of Plant Protection, Faculty of Agriculture, Ankara University, Dıskapi, Ankara, Turkey
| | - Muhammad Arshad
- Molecular Entomology Lab, Department of Plant Protection, Faculty of Agriculture, Ankara University, Dıskapi, Ankara, Turkey
- Department of Entomology, University of Sargodha, Sargodha, Pakistan
| | - Naciye Sena Cagatay
- Molecular Entomology Lab, Department of Plant Protection, Faculty of Agriculture, Ankara University, Dıskapi, Ankara, Turkey
| | - Asli Dageri
- Department of Molecular Biology and Genetics, Necmettin Erbakan University, Meram, Konya, Turkey
| | | |
Collapse
|
14
|
Abstract
Most scale insects, like many other plant sap-sucking hemipterans, harbor obligate symbionts of bacterial or fungal origin, which synthesize and provide the host with substances missing in their restricted diet. Histological, ultrastructural, and molecular analyses have revealed that scale insects differ in the type of symbionts, the localization of symbionts in the host body, and the mode of transmission of symbionts from one generation to the next. Symbiotic microorganisms may be distributed in the cells of the fat body, midgut epithelium, inside the cells of other symbionts, or the specialized cells of a mesodermal origin, termed bacteriocytes. In most scale insects, their symbiotic associates are inherited transovarially, wherein the mode of transmission may have a different course-the symbionts may invade larval ovaries containing undifferentiated germ cells or ovaries of adult females containing vitellogenic or choriogenic oocytes.
Collapse
|
15
|
Michalik A, Michalik K, Grzywacz B, Kalandyk-Kołodziejczyk M, Szklarzewicz T. Molecular characterization, ultrastructure, and transovarial transmission of Tremblaya phenacola in six mealybugs of the Phenacoccinae subfamily (Insecta, Hemiptera, Coccomorpha). PROTOPLASMA 2019; 256:1597-1608. [PMID: 31250115 PMCID: PMC6820616 DOI: 10.1007/s00709-019-01405-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 06/15/2019] [Indexed: 06/09/2023]
Abstract
Mealybugs (Hemiptera, Coccomorpha: Pseudococcidae) are plant sap-sucking insects which require close association with nutritional microorganisms for their proper development and reproduction. Here, we present the results of histological, ultrastructural, and molecular analyses of symbiotic systems of six mealybugs belonging to the Phenacoccinae subfamily: Phenacoccus aceris, Rhodania porifera, Coccura comari, Mirococcus clarus, Peliococcus calluneti, and Ceroputo pilosellae. Molecular analyses based on bacterial 16S rRNA genes have revealed that all the investigated species of Phenacoccinae are host to only one type of symbiotic bacteria-a large pleomorphic betaproteobacteria-Tremblaya phenacola. In all the species examined, bacteria are localized in the specialized cells of the host-insect termed bacteriocytes and are transovarially transmitted between generations. The mode of transovarial transmission is similar in all of the species investigated. Infection takes place in the neck region of the ovariole, between the tropharium and vitellarium. The co-phylogeny between mealybugs and bacteria Tremblaya has been also analyzed.
Collapse
Affiliation(s)
- Anna Michalik
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland.
| | - Katarzyna Michalik
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| | - Beata Grzywacz
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016, Kraków, Poland
| | | | - Teresa Szklarzewicz
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| |
Collapse
|
16
|
Bublitz DC, Chadwick GL, Magyar JS, Sandoz KM, Brooks DM, Mesnage S, Ladinsky MS, Garber AI, Bjorkman PJ, Orphan VJ, McCutcheon JP. Peptidoglycan Production by an Insect-Bacterial Mosaic. Cell 2019; 179:703-712.e7. [PMID: 31587897 PMCID: PMC6838666 DOI: 10.1016/j.cell.2019.08.054] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/06/2019] [Accepted: 08/28/2019] [Indexed: 01/19/2023]
Abstract
Peptidoglycan (PG) is a defining feature of bacteria, involved in cell division, shape, and integrity. We previously reported that several genes related to PG biosynthesis were horizontally transferred from bacteria to the nuclear genome of mealybugs. Mealybugs are notable for containing a nested bacteria-within-bacterium endosymbiotic structure in specialized insect cells, where one bacterium, Moranella, lives in the cytoplasm of another bacterium, Tremblaya. Here we show that horizontally transferred genes on the mealybug genome work together with genes retained on the Moranella genome to produce a PG layer exclusively at the Moranella cell periphery. Furthermore, we show that an insect protein encoded by a horizontally transferred gene of bacterial origin is transported into the Moranella cytoplasm. These results provide a striking parallel to the genetic and biochemical mosaicism found in organelles, and prove that multiple horizontally transferred genes can become integrated into a functional pathway distributed between animal and bacterial endosymbiont genomes. Mealybugs have two bacterial endosymbionts; one symbiont lives inside the other The mealybug genome has acquired some bacterial peptidoglycan (PG)-related genes This insect-symbiont mosaic pathway produces a PG layer at the innermost symbiont Endosymbionts and organelles have evolved similar levels of biochemical integration
Collapse
Affiliation(s)
- DeAnna C Bublitz
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Grayson L Chadwick
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - John S Magyar
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Kelsi M Sandoz
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Diane M Brooks
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Stéphane Mesnage
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Mark S Ladinsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Arkadiy I Garber
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - John P McCutcheon
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA.
| |
Collapse
|
17
|
Michalik K, Szklarzewicz T, Kalandyk-Kołodziejczyk M, Michalik A. Bacterial associates of Orthezia urticae, Matsucoccus pini, and Steingelia gorodetskia - scale insects of archaeoccoid families Ortheziidae, Matsucoccidae, and Steingeliidae (Hemiptera, Coccomorpha). PROTOPLASMA 2019; 256:1205-1215. [PMID: 31001690 PMCID: PMC6713686 DOI: 10.1007/s00709-019-01377-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
The biological nature, ultrastructure, distribution, and mode of transmission between generations of the microorganisms associated with three species (Orthezia urticae, Matsucoccus pini, Steingelia gorodetskia) of primitive families (archaeococcoids = Orthezioidea) of scale insects were investigated by means of microscopic and molecular methods. In all the specimens of Orthezia urticae and Matsucoccus pini examined, bacteria Wolbachia were identified. In some examined specimens of O. urticae, apart from Wolbachia, bacteria Sodalis were detected. In Steingelia gorodetskia, the bacteria of the genus Sphingomonas were found. In contrast to most plant sap-sucking hemipterans, the bacterial associates of O. urticae, M. pini, and S. gorodetskia are not harbored in specialized bacteriocytes, but are dispersed in the cells of different organs. Ultrastructural observations have shown that bacteria Wolbachia in O. urticae and M. pini, Sodalis in O. urticae, and Sphingomonas in S. gorodetskia are transovarially transmitted from mother to progeny.
Collapse
Affiliation(s)
- Katarzyna Michalik
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Teresa Szklarzewicz
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | | | - Anna Michalik
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| |
Collapse
|
18
|
Yoshida K, Sanada‐Morimura S, Huang S, Tokuda M. Influences of two coexisting endosymbionts, CI-inducing Wolbachia and male-killing Spiroplasma, on the performance of their host Laodelphax striatellus (Hemiptera: Delphacidae). Ecol Evol 2019; 9:8214-8224. [PMID: 31380084 PMCID: PMC6662331 DOI: 10.1002/ece3.5392] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/06/2019] [Accepted: 05/19/2019] [Indexed: 11/06/2022] Open
Abstract
The small brown planthopper Laodelphax striatellus (Hemiptera: Delphacidae) is reported to have the endosymbiont Wolbachia, which shows a strong cytoplasmic incompatibility (CI) between infected males and uninfected females. In the 2000s, female-biased L. striatellus populations were found in Taiwan, and this sex ratio distortion was the result of male-killing induced by the infection of another endosymbiont, Spiroplasma. Spiroplasma infection is considered to negatively affect both L. striatellus and Wolbachia because the male-killing halves the offspring of L. striatellus and hinders the spread of Wolbachia infection via CI. Spiroplasma could have traits that increase the fitness of infected L. striatellus and/or coexisting organisms because the coinfection rates of Wolbachia and Spiroplasma were rather high in some areas. In this study, we investigated the influences of the infection of these two endosymbionts on the development, reproduction, and insecticide resistance of L. striatellus in the laboratory. Our results show that the single-infection state of Spiroplasma had a negative influence on the fertility of L. striatellus, while the double-infection state had no significant influence. At late nymphal and adult stages, the abundance of Spiroplasma was lower in the double-infection state than in the single-infection state. In the double-infection state, the reduction of Spiroplasma density may be caused by competition between the two endosymbionts, and the negative influence of Spiroplasma on the fertility of host may be relieved. The resistance of L. striatellus to four insecticides was compared among different infection states of endosymbionts, but Spiroplasma infection did not contribute to increase insecticide resistance. Because positive influences of Spiroplasma infection were not found in terms of the development, reproduction, and insecticide resistance of L. striatellus, other factors improving the fitness of Spiroplasma-infected L. striatellus may be related to the high frequency of double infection in some L. striatellus populations.
Collapse
Affiliation(s)
- Kazuki Yoshida
- Faculty of AgricultureSaga UniversitySagaJapan
- Kyushu Okinawa Agricultural Research CenterNAROKumamotoJapan
| | | | - Shou‐Horng Huang
- Chiayi Agricultural Experiment Station, Taiwan Agricultural Research InstituteCouncil of AgricultureChiayiTaiwan
| | | |
Collapse
|
19
|
Gil R, Latorre A. Unity Makes Strength: A Review on Mutualistic Symbiosis in Representative Insect Clades. Life (Basel) 2019; 9:E21. [PMID: 30823538 PMCID: PMC6463088 DOI: 10.3390/life9010021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/11/2019] [Accepted: 02/19/2019] [Indexed: 12/14/2022] Open
Abstract
Settled on the foundations laid by zoologists and embryologists more than a century ago, the study of symbiosis between prokaryotes and eukaryotes is an expanding field. In this review, we present several models of insect⁻bacteria symbioses that allow for the detangling of most known features of this distinctive way of living, using a combination of very diverse screening approaches, including molecular, microscopic, and genomic techniques. With the increasing the amount of endosymbiotic bacteria genomes available, it has been possible to develop evolutionary models explaining the changes undergone by these bacteria in their adaptation to the intracellular host environment. The establishment of a given symbiotic system can be a root cause of substantial changes in the partners' way of life. Furthermore, symbiont replacement and/or the establishment of bacterial consortia are two ways in which the host can exploit its interaction with environmental bacteria for endosymbiotic reinvigoration. The detailed study of diverse and complex symbiotic systems has revealed a great variety of possible final genomic products, frequently below the limit considered compatible with cellular life, and sometimes with unanticipated genomic and population characteristics, raising new questions that need to be addressed in the near future through a wider exploration of new models and empirical observations.
Collapse
Affiliation(s)
- Rosario Gil
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València/CSIC. Calle Catedrático Agustín Escardino, 9, 46980 Paterna (Valencia), Spain.
- Departament de Genètica, Universitat de València. Calle Dr. Moliner, 50, 46100 Burjassot (València), Spain.
- Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO). Avenida de Cataluña 21, 46020 València, Spain.
| | - Amparo Latorre
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València/CSIC. Calle Catedrático Agustín Escardino, 9, 46980 Paterna (Valencia), Spain.
- Departament de Genètica, Universitat de València. Calle Dr. Moliner, 50, 46100 Burjassot (València), Spain.
- Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO). Avenida de Cataluña 21, 46020 València, Spain.
| |
Collapse
|
20
|
lin D, Zhang L, Shao W, Li X, Liu X, Wu H, Rao Q. Phylogenetic analyses and characteristics of the microbiomes from five mealybugs (Hemiptera: Pseudococcidae). Ecol Evol 2019; 9:1972-1984. [PMID: 30847086 PMCID: PMC6392364 DOI: 10.1002/ece3.4889] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 10/10/2018] [Accepted: 10/22/2018] [Indexed: 11/28/2022] Open
Abstract
Associations between Sternorrhyncha insects and intracellular bacteria are common in nature. Mealybugs are destructive pests that seriously threaten the production of agriculture and forestry. Mealybugs have evolved intimate endosymbiotic relationships with bacteria, which provide them with essential amino acids, vitamins, and other nutrients. In this study, the divergence of five mealybugs was analyzed based up the sequences of the mitochondrial cytochrome oxidase I (mtCOI). Meanwhile, the distinct regions of the 16S rRNA gene of primary symbionts in the mealybugs were sequenced. Finally, high-throughput sequencing (HTS) techniques were used to study the microbial abundance and diversity in mealybugs. Molecular phylogenetic analyses revealed that these five mealybugs were subdivided into two different clusters. One cluster of mealybugs (Dysmicoccus neobrevipes, Pseudococcus comstocki, and Planococcus minor) harbored the primary endosymbiont "Candidatus Tremblaya princeps," and another cluster (Phenacoccus solenopsis and Phenacoccus solani) harbored "Ca. Tremblaya phenacola." The mtCOI sequence divergence between the two clusters was similar to the 16S rRNA sequence divergence between T. princeps and T. phenacola. Thus, we concluded that the symbiont phylogeny was largely concordant with the host phylogeny. The HTS showed that the microbial abundance and diversity within P. solani and P. solenopsis were highly similar, and there was lower overall species richness compared to the other mealybugs. Among the five mealybugs, we also found significant differences in Shannon diversity and observed species. These results provide a theoretical basis for further research on the coevolution of mealybugs and their symbiotic microorganisms. These findings are also useful for research on the effect of symbiont diversity on the pest status of mealybugs in agricultural systems.
Collapse
Affiliation(s)
- Dan lin
- School of Agriculture and Food ScienceZhejiang A & F UniversityHangzhouChina
| | - Li Zhang
- School of Agriculture and Food ScienceZhejiang A & F UniversityHangzhouChina
| | - Weidong Shao
- Zhoushan Entry‐exit Inspection and Quarantine BreauNingboChina
| | - Xuelian Li
- Ningbo Entry‐exit Inspection and Quarantine BureauNingboChina
| | - Xunyue Liu
- School of Agriculture and Food ScienceZhejiang A & F UniversityHangzhouChina
| | - Huiming Wu
- School of Agriculture and Food ScienceZhejiang A & F UniversityHangzhouChina
| | - Qiong Rao
- School of Agriculture and Food ScienceZhejiang A & F UniversityHangzhouChina
| |
Collapse
|
21
|
Bolaños LM, Rosenblueth M, Manrique de Lara A, Migueles-Lozano A, Gil-Aguillón C, Mateo-Estrada V, González-Serrano F, Santibáñez-López CE, García-Santibáñez T, Martínez-Romero E. Cophylogenetic analysis suggests cospeciation between the Scorpion Mycoplasma Clade symbionts and their hosts. PLoS One 2019; 14:e0209588. [PMID: 30625167 PMCID: PMC6326461 DOI: 10.1371/journal.pone.0209588] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 12/08/2018] [Indexed: 11/19/2022] Open
Abstract
Scorpions are predator arachnids of ancient origin and worldwide distribution. Two scorpion species, Vaejovis smithi and Centruroides limpidus, were found to harbor two different Mollicutes phylotypes: a Scorpion Mycoplasma Clade (SMC) and Scorpion Group 1 (SG1). Here we investigated, using a targeted gene sequencing strategy, whether these Mollicutes were present in 23 scorpion morphospecies belonging to the Vaejovidae, Carboctonidae, Euscorpiidae, Diplocentridae, and Buthidae families. Our results revealed that SMC is found in a species-specific association with Vaejovidae and Buthidae, whereas SG1 is uniquely found in Vaejovidae. SMC and SG1 co-occur only in Vaejovis smithi where 43% of the individuals host both phylotypes. A phylogenetic analysis of Mollicutes 16S rRNA showed that SMC and SG1 constitute well-delineated phylotypes. Additionally, we found that SMC and scorpion phylogenies are significantly congruent, supporting the observation that a cospeciation process may have occurred. This study highlights the phylogenetic diversity of the scorpion associated Mollicutes through different species revealing a possible cospeciation pattern.
Collapse
Affiliation(s)
- Luis M. Bolaños
- Laboratorio de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mor, Mexico
| | - Mónica Rosenblueth
- Laboratorio de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mor, Mexico
| | - Amaranta Manrique de Lara
- Laboratorio de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mor, Mexico
| | - Analí Migueles-Lozano
- Laboratorio de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mor, Mexico
| | - Citlali Gil-Aguillón
- Laboratorio de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mor, Mexico
| | - Valeria Mateo-Estrada
- Laboratorio de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mor, Mexico
| | - Francisco González-Serrano
- Laboratorio de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mor, Mexico
| | - Carlos E. Santibáñez-López
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor, Mexico
| | - Tonalli García-Santibáñez
- Laboratorio de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mor, Mexico
| | - Esperanza Martínez-Romero
- Laboratorio de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mor, Mexico
| |
Collapse
|
22
|
Kasbekar DP. A cross-eyed geneticist's view II. Riddles, wrapped in mysteries, inside … mealybugs. J Biosci 2018; 43:819-822. [PMID: 30541943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- Durgadas P Kasbekar
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad 500 039, India,
| |
Collapse
|
23
|
KASBEKAR DURGADASP. A cross-eyed geneticist’s view II. Riddles, wrapped in mysteries, inside … mealybugs. J Biosci 2018. [DOI: 10.1007/s12038-018-9806-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
24
|
Kobiałka M, Michalik A, Walczak M, Szklarzewicz T. Dual "Bacterial-Fungal" Symbiosis in Deltocephalinae Leafhoppers (Insecta, Hemiptera, Cicadomorpha: Cicadellidae). MICROBIAL ECOLOGY 2018; 75:771-782. [PMID: 28939987 PMCID: PMC5856902 DOI: 10.1007/s00248-017-1075-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 09/14/2017] [Indexed: 05/31/2023]
Abstract
The symbiotic systems (types of symbionts, their distribution in the host insect body, and their transovarial transmission between generations) of four Deltocephalinae leafhoppers: Fieberiella septentrionalis, Graphocraerus ventralis, Orientus ishidae, and Cicadula quadrinotata have been examined by means of histological, ultrastructural, and molecular techniques. In all four species, two types of symbionts are present: bacterium Sulcia (phylum Bacteroidetes) and yeast-like symbionts closely related to the entomopathogenic fungi (phylum Ascomycota, class Sordariomycetes). Sulcia bacteria are always harbored in giant bacteriocytes, which are grouped into large organs termed "bacteriomes." In F. septentrionalis, G. ventralis, and O. ishidae, numerous yeast-like microorganisms are localized in cells of the fat body, whereas in C. quadrinotata, they occupy the cells of midgut epithelium in large number. Additionally, in C. quadrinotata, a small amount of yeast-like microorganisms occurs intracellularly in the fat body cells and, extracellularly, in the hemolymph. Sulcia bacteria in F. septentrionalis, G. ventralis, O. ishidae, and C. quadrinotata, and the yeast-like symbionts residing in the fat body of F. septentrionalis, G. ventralis, and O. ishidae are transovarially transmitted; i.e., they infect the ovarioles which constitute the ovaries.
Collapse
Affiliation(s)
- Michał Kobiałka
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| | - Anna Michalik
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| | - Marcin Walczak
- Department of Zoology, Faculty of Biology and Environmental Protection, University of Silesia, Bankowa 9, 40-007, Katowice, Poland
| | - Teresa Szklarzewicz
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland.
| |
Collapse
|
25
|
Michalik A, Schulz F, Michalik K, Wascher F, Horn M, Szklarzewicz T. Coexistence of novel gammaproteobacterial and Arsenophonus symbionts in the scale insect Greenisca brachypodii (Hemiptera, Coccomorpha: Eriococcidae). Environ Microbiol 2018; 20:1148-1157. [PMID: 29393559 DOI: 10.1111/1462-2920.14057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 01/25/2018] [Indexed: 11/30/2022]
Abstract
Scale insects are commonly associated with obligate, intracellular microorganisms which play important roles in complementing their hosts with essential nutrients. Here we characterized the symbiotic system of Greenisca brachypodii, a member of the family Eriococcidae. Histological and ultrastructural analyses have indicated that G. brachypodii is stably associated with coccoid and rod-shaped bacteria. Phylogenetic analyses have revealed that the coccoid bacteria represent a sister group to the secondary symbiont of the mealybug Melanococcus albizziae, whereas the rod-shaped symbionts are close relatives of Arsenophonus symbionts in insects - to our knowledge, this is the first report of the presence of Arsenophonus bacterium in scale insects. As a comparison of 16S and 23S rRNA genes sequences of the G. brachypodii coccoid symbiont with other gammaprotebacterial sequences showed only low similarity (∼90%), we propose the name 'Candidatus Kotejella greeniscae' for its tentative classification. Both symbionts are transovarially transmitted from one generation to the next. The infection takes place in the neck region of the ovariole. The bacteria migrate between follicular cells, as well as through the cytoplasm of those cells to the perivitelline space, where they form a characteristic 'symbiont ball'. Our findings provide evidence for a polyphyletic origin of symbionts of Eriococcidae.
Collapse
Affiliation(s)
- Anna Michalik
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Frederik Schulz
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Althanstr. 14, A-1090 Vienna, Austria
| | - Katarzyna Michalik
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Florian Wascher
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Althanstr. 14, A-1090 Vienna, Austria
| | - Matthias Horn
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Althanstr. 14, A-1090 Vienna, Austria
| | - Teresa Szklarzewicz
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| |
Collapse
|
26
|
Pringle EG, Moreau CS. Community analysis of microbial sharing and specialization in a Costa Rican ant-plant-hemipteran symbiosis. Proc Biol Sci 2018; 284:rspb.2016.2770. [PMID: 28298351 DOI: 10.1098/rspb.2016.2770] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 01/17/2017] [Indexed: 01/03/2023] Open
Abstract
Ants have long been renowned for their intimate mutualisms with trophobionts and plants and more recently appreciated for their widespread and diverse interactions with microbes. An open question in symbiosis research is the extent to which environmental influence, including the exchange of microbes between interacting macroorganisms, affects the composition and function of symbiotic microbial communities. Here we approached this question by investigating symbiosis within symbiosis. Ant-plant-hemipteran symbioses are hallmarks of tropical ecosystems that produce persistent close contact among the macroorganism partners, which then have substantial opportunity to exchange symbiotic microbes. We used metabarcoding and quantitative PCR to examine community structure of both bacteria and fungi in a Neotropical ant-plant-scale-insect symbiosis. Both phloem-feeding scale insects and honeydew-feeding ants make use of microbial symbionts to subsist on phloem-derived diets of suboptimal nutritional quality. Among the insects examined here, Cephalotes ants and pseudococcid scale insects had the most specialized bacterial symbionts, whereas Azteca ants appeared to consume or associate with more fungi than bacteria, and coccid scale insects were associated with unusually diverse bacterial communities. Despite these differences, we also identified apparent sharing of microbes among the macro-partners. How microbial exchanges affect the consumer-resource interactions that shape the evolution of ant-plant-hemipteran symbioses is an exciting question that awaits further research.
Collapse
Affiliation(s)
- Elizabeth G Pringle
- Department of Biology, Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV 89557, USA .,Michigan Society of Fellows, University of Michigan, Ann Arbor, MI 48109, USA
| | - Corrie S Moreau
- Department of Science and Education, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL 60605, USA
| |
Collapse
|
27
|
Podsiadło E, Michalik K, Michalik A, Szklarzewicz T. Yeast-like microorganisms in the scale insect Kermes quercus (Insecta, Hemiptera, Coccomorpha: Kermesidae). Newly acquired symbionts? ARTHROPOD STRUCTURE & DEVELOPMENT 2018; 47:56-63. [PMID: 29126983 DOI: 10.1016/j.asd.2017.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 06/07/2023]
Abstract
Scale insects, like other plant sap-consumers, are host to symbiotic microorganisms which provide them with the substances missing from their diet. In contrast to most scale insects, Kermes quercus (Linnaeus) was regarded as asymbiotic. Our histological and ultrastructural observations show that in the body of the feeding stages of K. quercus collected in two locations (Warsaw and Cracow), numerous yeast-like microorganisms occur. These microorganisms were localized in the cytoplasm of fat body cells. The yeast-like microorganisms were observed neither in other organs of the host insect nor in the eggs. These microorganisms did not cause any damage to the structure of the ovaries and the course of oogenesis of the host insect. The females infected by them produced about 1300 larvae. The lack of these microorganisms in the cytoplasm of eggs indicates that they are not transmitted transovarially from mother to offspring. Molecular analyses indicated that the microorganisms which reside in the body of K. quercus are closely related to the entomopathogenic fungi Cordyceps and Ophiocordyceps, which belong to the Sordariomycetes class within the Ascomycota. The role of yeast-like microorganisms to their host insects remains unknown; however, it has been suggested that they may represent newly acquired symbionts.
Collapse
Affiliation(s)
- Elżbieta Podsiadło
- Department of Zoology, Warsaw University of Life Sciences - SGGW, Ciszewskiego 8, 02-786 Warszawa, Poland
| | - Katarzyna Michalik
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Anna Michalik
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Teresa Szklarzewicz
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland.
| |
Collapse
|
28
|
Szklarzewicz T, Kalandyk-Kołodziejczyk M, Michalik K, Jankowska W, Michalik A. Symbiotic microorganisms in Puto superbus (Leonardi, 1907) (Insecta, Hemiptera, Coccomorpha: Putoidae). PROTOPLASMA 2018; 255:129-138. [PMID: 28667411 PMCID: PMC5756284 DOI: 10.1007/s00709-017-1135-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/08/2017] [Indexed: 06/01/2023]
Abstract
The scale insect Puto superbus (Putoidae) lives in mutualistic symbiotic association with bacteria. Molecular phylogenetic analyses have revealed that symbionts of P. superbus belong to the gammaproteobacterial genus Sodalis. In the adult females, symbionts occur both in the bacteriocytes constituting compact bacteriomes and in individual bacteriocytes, which are dispersed among ovarioles. The bacteriocytes also house a few small, rod-shaped Wolbachia bacteria in addition to the numerous large, elongated Sodalis-allied bacteria. The symbiotic microorganisms are transovarially transmitted from generation to generation. In adult females which have choriogenic oocytes in the ovarioles, the bacteriocytes gather around the basal part of the tropharium. Next, the entire bacteriocytes pass through the follicular epithelium surrounding the neck region of the ovariole and enter the space between oocyte and follicular epithelium (perivitelline space). In the perivitelline space, the bacteriocytes assemble extracellularly in the deep depression of the oolemma at the anterior pole of the oocyte, forming a "symbiont ball".
Collapse
Affiliation(s)
- Teresa Szklarzewicz
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | | | - Katarzyna Michalik
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Władysława Jankowska
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Anna Michalik
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| |
Collapse
|
29
|
López-Madrigal S, Gil R. Et tu, Brute? Not Even Intracellular Mutualistic Symbionts Escape Horizontal Gene Transfer. Genes (Basel) 2017; 8:genes8100247. [PMID: 28961177 PMCID: PMC5664097 DOI: 10.3390/genes8100247] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/14/2017] [Accepted: 09/22/2017] [Indexed: 01/21/2023] Open
Abstract
Many insect species maintain mutualistic relationships with endosymbiotic bacteria. In contrast to their free-living relatives, horizontal gene transfer (HGT) has traditionally been considered rare in long-term endosymbionts. Nevertheless, meta-omics exploration of certain symbiotic models has unveiled an increasing number of bacteria-bacteria and bacteria-host genetic transfers. The abundance and function of transferred loci suggest that HGT might play a major role in the evolution of the corresponding consortia, enhancing their adaptive value or buffering detrimental effects derived from the reductive evolution of endosymbionts’ genomes. Here, we comprehensively review the HGT cases recorded to date in insect-bacteria mutualistic consortia, and discuss their impact on the evolutionary success of these associations.
Collapse
Affiliation(s)
- Sergio López-Madrigal
- Biologie Fonctionnelle Insectes et Interactions, UMR203 BF2I, INRA, INSA-Lyon, Université de Lyon, 69100 Villeurbanne, France.
| | - Rosario Gil
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València/CSIC, 46980 Paterna (València), Spain.
- Departament de Genètica, Universitat de València, Dr. Moliner, 50, 46100 Burjassot (València), Spain.
| |
Collapse
|
30
|
Abstract
Endosymbiosis is an idea that provided a remarkable amount of explanatory power about the origins of eukaryotic organelles. But it also promoted a number of assumptions that have also been influential, but are less well-examined. Here we look at two of these to see whether or not they fit current evidence. The assumption we first address is that endosymbiotic relationships such as nutritional symbioses and eukaryotic organelles are mutualisms. We argue instead that they are more one-sided associations that can be regarded as context-dependent power struggles like any other ecological interaction. The second assumption is that during endosymbiotic interactions (such as the origin of organelles), the host genomes will acquire a great many genes from endosymbionts that assume functions in host systems (as opposed to the well-documented genes whose products are simply targeted back to the endosymbiont or organelle). The idea that these genes exist in large numbers has been influential in a number of hypotheses about organelle evolution and distribution, but in the most carefully-examined systems no such mass migration of genes is evident. Overall, we argue that both the nature and impact of endosymbiosis need to be constantly re-evaluated to fully understand what roles it really plays in both cell biology and evolution.
Collapse
|
31
|
von Dohlen CD, Spaulding U, Patch KB, Weglarz KM, Foottit RG, Havill NP, Burke GR. Dynamic Acquisition and Loss of Dual-Obligate Symbionts in the Plant-Sap-Feeding Adelgidae (Hemiptera: Sternorrhyncha: Aphidoidea). Front Microbiol 2017; 8:1037. [PMID: 28659877 PMCID: PMC5468457 DOI: 10.3389/fmicb.2017.01037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 05/23/2017] [Indexed: 11/29/2022] Open
Abstract
Sap-sucking insects typically engage in obligate relationships with symbiotic bacteria that play nutritional roles in synthesizing nutrients unavailable or in scarce supply from the plant-sap diets of their hosts. Adelgids are sap-sucking insects with complex life cycles that involve alternation between conifer tree species. While all adelgid species feed on spruce during the sexual phase of their life cycle, each adelgid species belongs to a major lineage that feeds on a distinct genus of conifers as their alternate host. Previous work on adelgid symbionts had discovered pairs of symbionts within each host species, and unusual diversity across the insect family, but left several open questions regarding the status of bacterial associates. Here, we explored the consistency of symbionts within and across adelgid lineages, and sought evidence for facultative vs. obligate symbiont status. Representative species were surveyed for symbionts using 16S ribosomal DNA gene sequencing, confirming that different symbiont pairs were consistently present within each major adelgid lineage. Several approaches were used to establish whether symbionts exhibited characteristics of long-term, obligate mutualists. Patterns of symbiont presence across adelgid species and diversification with host insects suggested obligate relationships. Fluorescent in situ hybridization and electron microscopy localized symbionts to bacteriocyte cells within the bacteriome of each species (with one previously known exception), and detection of symbionts in eggs indicated their vertical transmission. Common characteristics of long-term obligate symbionts, such as nucleotide compositional bias and pleomorphic symbiont cell shape were also observed. Superimposing microbial symbionts on the adelgid phylogeny revealed a dynamic pattern of symbiont gains and losses over a relatively short period of time compared to other symbionts associated with sap-sucking insects, with each adelgid species possessing an older, “senior” symbiont and a younger “junior” symbiont. A hypothesis relating adelgid life cycles to relaxed constraints on symbionts is proposed, with the degradation of senior symbionts and repeated acquisition of more junior symbionts creating opportunities for repeated colonization of new alternate-conifer hosts by adelgids.
Collapse
Affiliation(s)
| | - Usha Spaulding
- Department of Biology, Utah State University, LoganUT, United States
| | - Kistie B Patch
- Department of Biology, Utah State University, LoganUT, United States
| | - Kathryn M Weglarz
- Department of Biology, Utah State University, LoganUT, United States
| | | | - Nathan P Havill
- United States Forest Service, Northern Research Station, HamdenCT, United States
| | - Gaelen R Burke
- Department of Entomology, University of Georgia, AthensGA, United States
| |
Collapse
|
32
|
Morrow JL, Hall AAG, Riegler M. Symbionts in waiting: the dynamics of incipient endosymbiont complementation and replacement in minimal bacterial communities of psyllids. MICROBIOME 2017; 5:58. [PMID: 28587661 PMCID: PMC5461708 DOI: 10.1186/s40168-017-0276-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 05/15/2017] [Indexed: 05/12/2023]
Abstract
BACKGROUND Obligate bacterial primary (P-) endosymbionts that are maternally inherited and codiverge with hosts are widespread across insect lineages with nutritionally restricted diets. Secondary (S-) endosymbionts are mostly facultative, but in some hosts, they complement P-endosymbiont function and therefore become obligate. Phylogenetic evidence exists for host switching and replacement of S-endosymbionts. The community dynamics that precede endosymbiont replacement and complementation have been little studied across host species, yet they are fundamental to the evolution of endosymbiosis. RESULTS We performed bacterial 16S rRNA gene amplicon sequencing of 25 psyllid species (Hemiptera, Psylloidea) across different developmental stages and ecological niches by focusing on the characterisation of the bacteria other than the universally present P-endosymbiont Carsonella (Gammaproteobacteria). Most species harboured only one dominant representative of diverse gammaproteobacterial S-endosymbionts that was consistently detected across all host individuals and populations (Arsenophonus in eight species, Sodalis or Sodalis-like bacteria in four species, unclassified Enterobacteriaceae in eight species). The identity of this dominant obligate S-endosymbiont varied across closely related host species. Unexpectedly, five psyllid species had two or three co-occurring endosymbiont species other than Carsonella within all host individuals, including a Rickettsiella-like bacterium (Gammaproteobacteria) in one psyllid species. Based on standard and quantitative PCR, all psyllids carried Carsonella, at higher titres than their dominant S-endosymbionts. Some psyllids also had Alphaproteobacteria (Lariskella, Rickettsia, Wolbachia) at varying prevalence. Incidence of other bacteria, including known plant pathogens, was low. Ecological niche of gall-forming, lerp-forming and free-living psyllid species did not impact endosymbiont communities. Two flush-feeding psyllid species had population-specific differences, and this was attributable to the higher endosymbiont diversity in native ranges and the absence of some endosymbionts in invasive ranges. CONCLUSIONS Our data support the hypothesis of strict vertical transmission of minimal core communities of bacteria in psyllids. We also found evidence for S-endosymbiont replacement across closely related psyllid species. Multiple dominant S-endosymbionts present in some host species, including at low titre, constitute potential examples of incipient endosymbiont complementation or replacement. Our multiple comparisons of deep-sequenced minimal insect bacterial communities exposed the dynamics involved in shaping insect endosymbiosis.
Collapse
Affiliation(s)
- Jennifer L. Morrow
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751 Australia
| | - Aidan A. G. Hall
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751 Australia
- Current address: Department of Agriculture and Water Resources, 1 Crewe Place, Rosebery, NSW 2018 Australia
| | - Markus Riegler
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751 Australia
| |
Collapse
|
33
|
Oren A. A plea for linguistic accuracy - also for Candidatus taxa. Int J Syst Evol Microbiol 2017; 67:1085-1094. [PMID: 27926819 DOI: 10.1099/ijsem.0.001715] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
While all names of new taxa submitted to the International Journal of Systematic and Evolutionary Microbiology, either in direct submissions or in validation requests for names effectively published elsewhere, are subject to nomenclatural review to ensure that they are acceptable based on the rules of the International Code of Nomenclature of Prokaryotes, the names of Candidatus taxa have not been subjected to such a review. Formally, this was not necessary because the rank of Candidatus is not covered by the Code, and the names lack the priority afforded validly published names. However, many Candidatus taxa of different ranks are widely discussed in the scientific literature, and a proposal to incorporate the nomenclature of uncultured prokaryotes under the provisions of the Code is currently pending. Therefore, an evaluation of the names of Candidatus taxa published thus far is very timely. Out of the ~400 Candidatus names found in the literature, 120 contradict the current rules of the Code or are otherwise problematic. A list of those names of Candidatus taxa that need correction is presented here and alternative names that agree with the provisions of the Code are proposed.
Collapse
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 91904 Jerusalem, Israel
| |
Collapse
|
34
|
Szklarzewicz T, Michalik A. Transovarial Transmission of Symbionts in Insects. Results Probl Cell Differ 2017; 63:43-67. [PMID: 28779313 DOI: 10.1007/978-3-319-60855-6_3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Many insects, on account of their unbalanced diet, live in obligate symbiotic associations with microorganisms (bacteria or yeast-like symbionts), which provide them with substances missing in the food they consume. In the body of host insect, symbiotic microorganisms may occur intracellularly (e.g., in specialized cells of mesodermal origin termed bacteriocytes, in fat body cells, in midgut epithelium) or extracellularly (e.g., in hemolymph, in midgut lumen). As a rule, symbionts are vertically transmitted to the next generation. In most insects, symbiotic microorganisms are transferred from mother to offspring transovarially within female germ cells. The results of numerous ultrastructural and molecular studies on symbiotic systems in different groups of insects have shown that they have a large diversity of symbiotic microorganisms and different strategies of their transmission from one generation to the next. This chapter reviews the modes of transovarial transmission of symbionts between generations in insects.
Collapse
Affiliation(s)
- Teresa Szklarzewicz
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland.
| | - Anna Michalik
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| |
Collapse
|
35
|
Convergent patterns in the evolution of mealybug symbioses involving different intrabacterial symbionts. ISME JOURNAL 2016; 11:715-726. [PMID: 27983719 PMCID: PMC5322300 DOI: 10.1038/ismej.2016.148] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 09/10/2016] [Accepted: 09/13/2016] [Indexed: 01/16/2023]
Abstract
Mealybugs (Insecta: Hemiptera: Pseudococcidae) maintain obligatory relationships with bacterial symbionts, which provide essential nutrients to their insect hosts. Most pseudococcinae mealybugs harbor a unique symbiosis setup with enlarged betaproteobacterial symbionts (‘Candidatus Tremblaya princeps'), which themselves contain gammaproteobacterial symbionts. Here we investigated the symbiosis of the manna mealybug, Trabutina mannipara, using a metagenomic approach. Phylogenetic analyses revealed that the intrabacterial symbiont of T. mannipara represents a novel lineage within the Gammaproteobacteria, for which we propose the tentative name ‘Candidatus Trabutinella endobia'. Combining our results with previous data available for the nested symbiosis of the citrus mealybug Planococcus citri, we show that synthesis of essential amino acids and vitamins and translation-related functions partition between the symbiotic partners in a highly similar manner in the two systems, despite the distinct evolutionary origin of the intrabacterial symbionts. Bacterial genes found in both mealybug genomes and complementing missing functions in both symbioses were likely integrated in ancestral mealybugs before T. mannipara and P. citri diversified. The high level of correspondence between the two mealybug systems and their highly intertwined metabolic pathways are unprecedented. Our work contributes to a better understanding of the only known intracellular symbiosis between two bacteria and suggests that the evolution of this unique symbiosis included the replacement of intrabacterial symbionts in ancestral mealybugs.
Collapse
|
36
|
Liu LJ, Martinez-Sañudo I, Mazzon L, Prabhakar CS, Girolami V, Deng YL, Dai Y, Li ZH. Bacterial communities associated with invasive populations of Bactrocera dorsalis (Diptera: Tephritidae) in China. BULLETIN OF ENTOMOLOGICAL RESEARCH 2016; 106:718-728. [PMID: 27600786 DOI: 10.1017/s0007485316000390] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The oriental fruit fly Bactrocera dorsalis (Hendel) is a destructive insect pest of a wide range of fruits and vegetables. This pest is an invasive species and is currently distributed in some provinces of China. To recover the symbiotic bacteria of B. dorsalis from different invasion regions in China, we researched the bacterial diversity of this fruit fly among one laboratory colony (Guangdong, China) and 15 wild populations (14 sites in China and one site in Thailand) using DNA-based approaches. The construction of 16S rRNA gene libraries allowed the identification of 24 operational taxonomic units of associated bacteria at the 3% distance level, and these were affiliated with 3 phyla, 5 families, and 13 genera. The higher bacterial diversity was recovered in wild populations compared with the laboratory colony and in samples from early term invasion regions compared with samples from late term invasion regions. Moreover, Klebsiella pneumoniae and Providencia sp. were two of the most frequently recovered bacteria, present in flies collected from three different regions in China where B. dorsalis is invasive. This study for the first time provides a systemic investigation of the symbiotic bacteria of B. dorsalis from different invasion regions in China.
Collapse
Affiliation(s)
- L J Liu
- Department of Entomology,College of Plant Protection, China Agricultural University,Beijing,China
| | - I Martinez-Sañudo
- Dipartimento di Agronomia Ambientale e Produzioni Vegetali,Università di Padova - Agripolis, Viale dell'Università,Legnaro,Padova,Italy
| | - L Mazzon
- Dipartimento di Agronomia Ambientale e Produzioni Vegetali,Università di Padova - Agripolis, Viale dell'Università,Legnaro,Padova,Italy
| | - C S Prabhakar
- Department of Entomology,College of Plant Protection, China Agricultural University,Beijing,China
| | - V Girolami
- Dipartimento di Agronomia Ambientale e Produzioni Vegetali,Università di Padova - Agripolis, Viale dell'Università,Legnaro,Padova,Italy
| | - Y L Deng
- Xishuangbanna Entry-Exit Inspection and Quarantine Bureau,Xishuangbanna,Yunnan,China
| | - Y Dai
- Department of Entomology,College of Plant Protection, China Agricultural University,Beijing,China
| | - Z H Li
- Department of Entomology,College of Plant Protection, China Agricultural University,Beijing,China
| |
Collapse
|
37
|
Latorre A, Manzano-Marín A. Dissecting genome reduction and trait loss in insect endosymbionts. Ann N Y Acad Sci 2016; 1389:52-75. [DOI: 10.1111/nyas.13222] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 08/02/2016] [Accepted: 08/08/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Amparo Latorre
- Institut Cavanilles de Biodiversitat I Biologia Evolutiva; Universitat de Valencia; C/Catedrático José Beltrán Paterna Valencia Spain
- Área de Genómica y Salud de la Fundación para el fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO)-Salud Pública; València Spain
| | - Alejandro Manzano-Marín
- Institut Cavanilles de Biodiversitat I Biologia Evolutiva; Universitat de Valencia; C/Catedrático José Beltrán Paterna Valencia Spain
| |
Collapse
|
38
|
Repeated replacement of an intrabacterial symbiont in the tripartite nested mealybug symbiosis. Proc Natl Acad Sci U S A 2016; 113:E5416-24. [PMID: 27573819 DOI: 10.1073/pnas.1603910113] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Stable endosymbiosis of a bacterium into a host cell promotes cellular and genomic complexity. The mealybug Planococcus citri has two bacterial endosymbionts with an unusual nested arrangement: the γ-proteobacterium Moranella endobia lives in the cytoplasm of the β-proteobacterium Tremblaya princeps These two bacteria, along with genes horizontally transferred from other bacteria to the P. citri genome, encode gene sets that form an interdependent metabolic patchwork. Here, we test the stability of this three-way symbiosis by sequencing host and symbiont genomes for five diverse mealybug species and find marked fluidity over evolutionary time. Although Tremblaya is the result of a single infection in the ancestor of mealybugs, the γ-proteobacterial symbionts result from multiple replacements of inferred different ages from related but distinct bacterial lineages. Our data show that symbiont replacement can happen even in the most intricate symbiotic arrangements and that preexisting horizontally transferred genes can remain stable on genomes in the face of extensive symbiont turnover.
Collapse
|
39
|
The Cosmic Zoo: The (Near) Inevitability of the Evolution of Complex, Macroscopic Life. Life (Basel) 2016; 6:life6030025. [PMID: 27376334 PMCID: PMC5041001 DOI: 10.3390/life6030025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 06/17/2016] [Accepted: 06/22/2016] [Indexed: 12/31/2022] Open
Abstract
Life on Earth provides a unique biological record from single-cell microbes to technologically intelligent life forms. Our evolution is marked by several major steps or innovations along a path of increasing complexity from microbes to space-faring humans. Here we identify various major key innovations, and use an analytical toolset consisting of a set of models to analyse how likely each key innovation is to occur. Our conclusion is that once the origin of life is accomplished, most of the key innovations can occur rather readily. The conclusion for other worlds is that if the origin of life can occur rather easily, we should live in a cosmic zoo, as the innovations necessary to lead to complex life will occur with high probability given sufficient time and habitat. On the other hand, if the origin of life is rare, then we might live in a rather empty universe.
Collapse
|
40
|
Tabata J, Ichiki RT, Tanaka H, Kageyama D. Sexual versus Asexual Reproduction: Distinct Outcomes in Relative Abundance of Parthenogenetic Mealybugs following Recent Colonization. PLoS One 2016; 11:e0156587. [PMID: 27322381 PMCID: PMC4920589 DOI: 10.1371/journal.pone.0156587] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/17/2016] [Indexed: 01/17/2023] Open
Abstract
Asexual reproduction, including parthenogenesis in which embryos develop within a female without fertilization, is assumed to confer advantages over sexual reproduction, which includes a “cost of males.” Sexual reproduction largely predominates in animals, however, indicating that this cost is outweighed by the genetic and/or ecological benefits of sexuality, including the acquisition of advantageous mutations occurring in different individuals and the elimination of deleterious mutations. But the evolution of sexual reproduction remains unclear, because we have limited examples that demonstrate the relative success of sexual lineages in the face of competition from asexual lineages in the same environment. Here we investigated a sympatric occurrence of sexual and asexual reproduction in the pineapple mealybug, Dysmicoccus brevipes. This pest invaded southwestern Japan, including Okinawa and Ishigaki Islands, in the 1930s in association with imported pineapple plants. Our recent censuses demonstrated that on Okinawa sexually reproducing individuals can coexist with and even dominate asexual individuals in the presence of habitat and resource competition, which is considered to be severe for this nearly immobile insect. Molecular phylogeny based on partial DNA sequences in the mitochondrial and nuclear genomes, as well as the endosymbiotic bacterial genome, revealed that the asexual lineage diverged from a common sexual ancestor in the relatively recent past. In contrast, only the asexual lineage exhibiting obligate apomictic thelytoky was discovered on Ishigaki. Co-existence of the two lineages cannot be explained by the results of laboratory experiments, which showed that the intrinsic rate of increase in the sexual lineage was not obviously superior to that of the asexual lineage. Differences in biotic and/or abiotic selective forces operating on the two islands might be the cause of this discrepancy. This biological system offers a unique opportunity to assess the relative success of sexual versus asexual lineages with an unusual morphology and life cycle.
Collapse
Affiliation(s)
- Jun Tabata
- National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Ibaraki 305–8604, Japan
- * E-mail:
| | - Ryoko T. Ichiki
- Japan International Research Center for Agricultural Sciences, 1–1 Ohwashi, Tsukuba, Ibaraki 305–8686, Japan
| | - Hirotaka Tanaka
- Tottori Prefectural Museum, 2–124 Higashi-machi, Tottori, Tottori 680–0011, Japan
| | - Daisuke Kageyama
- National Institute of Agrobiological Sciences, 1–2 Ohwashi, Tsukuba, Ibaraki 305–8634, Japan
| |
Collapse
|
41
|
Michalik K, Szklarzewicz T, Kalandyk-Kołodziejczyk M, Jankowska W, Michalik A. Bacteria belonging to the genus Burkholderia are obligatory symbionts of the eriococcids Acanthococcus aceris Signoret, 1875 and Gossyparia spuria (Modeer, 1778) (Insecta, Hemiptera, Coccoidea). ARTHROPOD STRUCTURE & DEVELOPMENT 2016; 45:265-72. [PMID: 27109514 DOI: 10.1016/j.asd.2016.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/11/2016] [Accepted: 04/11/2016] [Indexed: 05/15/2023]
Abstract
In the fat body cells of the scale insects, Gossyparia spuria and Acanthococcus aceris, numerous rod-shaped symbiotic bacteria occur. Molecular analyses have revealed that these microorganisms are closely related to the widely distributed bacterium Burkholderia. Ultrastructural observations have revealed that the bacteria are transovarially (vertically) transmitted from the mother to offspring. The microorganisms leave the fat body cells and invade ovarioles containing vitellogenic oocytes. They pass through the follicular epithelium in the neck region of the ovariole and enter the perivitelline space. Next, the symbionts infest the anterior region of the oocyte.
Collapse
Affiliation(s)
- Katarzyna Michalik
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Teresa Szklarzewicz
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | | | - Władysława Jankowska
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Anna Michalik
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland.
| |
Collapse
|
42
|
Kobiałka M, Michalik A, Walczak M, Junkiert Ł, Szklarzewicz T. Sulcia symbiont of the leafhopper Macrosteles laevis (Ribaut, 1927) (Insecta, Hemiptera, Cicadellidae: Deltocephalinae) harbors Arsenophonus bacteria. PROTOPLASMA 2016; 253:903-912. [PMID: 26188921 PMCID: PMC4819937 DOI: 10.1007/s00709-015-0854-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/03/2015] [Indexed: 05/15/2023]
Abstract
The leafhopper Macrosteles laevis, like other plant sap-feeding hemipterans, lives in obligate symbiotic association with microorganisms. The symbionts are harbored in the cytoplasm of large cells termed bacteriocytes, which are integrated into huge organs termed bacteriomes. Morphological and molecular investigations have revealed that in the bacteriomes of M. laevis, two types of bacteriocytes are present which are as follows: bacteriocytes with bacterium Sulcia and bacteriocytes with Nasuia symbiont. We observed that in bacteriocytes with Sulcia, some cells of this bacterium contain numerous cells of the bacterium Arsenophonus. All types of symbionts are transmitted transovarially between generations. In the mature female, the bacteria Nasuia, bacteria Sulcia, and Sulcia with Arsenophonus inside are released from the bacteriocytes and start to assemble around the terminal oocytes. Next, the bacteria enter the cytoplasm of follicular cells surrounding the posterior pole of the oocyte. After passing through the follicular cells, the symbionts enter the space between the oocyte and follicular epithelium, forming a characteristic "symbiont ball."
Collapse
Affiliation(s)
- Michał Kobiałka
- />Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Anna Michalik
- />Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Marcin Walczak
- />Department of Zoology, Faculty of Biology and Environmental Protection, University of Silesia, Bankowa 9, 40-007 Katowice, Poland
| | - Łukasz Junkiert
- />Department of Zoology, Faculty of Biology and Environmental Protection, University of Silesia, Bankowa 9, 40-007 Katowice, Poland
| | - Teresa Szklarzewicz
- />Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| |
Collapse
|
43
|
Parkinson JF, Gobin B, Hughes WOH. Heritability of symbiont density reveals distinct regulatory mechanisms in a tripartite symbiosis. Ecol Evol 2016; 6:2053-60. [PMID: 27099709 PMCID: PMC4831439 DOI: 10.1002/ece3.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/10/2016] [Accepted: 01/18/2016] [Indexed: 01/08/2023] Open
Abstract
Beneficial eukaryotic–bacterial partnerships are integral to animal and plant evolution. Understanding the density regulation mechanisms behind bacterial symbiosis is essential to elucidating the functional balance between hosts and symbionts. Citrus mealybugs, Planococcus citri (Risso), present an excellent model system for investigating the mechanisms of symbiont density regulation. They contain two obligate nutritional symbionts, Moranella endobia, which resides inside Tremblaya princeps, which has been maternally transmitted for 100–200 million years. We investigate whether host genotype may influence symbiont density by crossing mealybugs from two inbred laboratory‐reared populations that differ substantially in their symbiont density to create hybrids. The density of the M. endobia symbiont in the hybrid hosts matched that of the maternal parent population, in keeping with density being determined either by the symbiont or the maternal genotype. However, the density of the T. princeps symbiont was influenced by the paternal host genotype. The greater dependency of T. princeps on its host may be due to its highly reduced genome. The decoupling of T. princeps and M. endobia densities, in spite of their intimate association, suggests that distinct regulatory mechanisms can be at work in symbiotic partnerships, even when they are obligate and mutualistic.
Collapse
Affiliation(s)
| | - Bruno Gobin
- PCS-Ornamental Plant Research Schaessestraat 18 Destelbergen 9070 Belgium
| | | |
Collapse
|
44
|
How Likely Are We? Evolution of Organismal Complexity. Evol Biol 2016. [DOI: 10.1007/978-3-319-41324-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
45
|
López-Madrigal S, Latorre A, Moya A, Gil R. The link between independent acquisition of intracellular gamma-endosymbionts and concerted evolution in Tremblaya princeps. Front Microbiol 2015; 6:642. [PMID: 26161080 PMCID: PMC4479817 DOI: 10.3389/fmicb.2015.00642] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/12/2015] [Indexed: 02/05/2023] Open
Abstract
Many insect species establish mutualistic symbiosis with intracellular bacteria that complement their unbalanced diets. The betaproteobacterium "Candidatus Tremblaya" maintains an ancient symbiosis with mealybugs (Hemiptera: Pseudococcidae), which are classified in subfamilies Phenacoccinae and Pseudococcinae. Most Phenacoccinae mealybugs have "Candidatus Tremblaya phenacola" as their unique endosymbiont, while most Pseudococcinae mealybugs show a nested symbiosis (a bacterial symbiont placed inside another one) where every "Candidatus Tremblaya princeps" cell harbors several cells of a gammaproteobacterium. Genomic characterization of the endosymbiotic consortium from Planococcus citri, composed by "Ca. Tremblaya princeps" and "Candidatus Moranella endobia," unveiled several atypical features of the former's genome, including the concerted evolution of paralogous loci. Its comparison with the genome of "Ca. Tremblaya phenacola" PAVE, single endosymbiont of Phenacoccus avenae, suggests that the atypical reductive evolution of "Ca. Tremblaya princeps" could be linked to the acquisition of "Ca. Moranella endobia," which possess an almost complete set of genes encoding proteins involved in homologous recombination. In order to test this hypothesis, we performed comparative genomics between "Ca. Tremblaya phenacola" and "Ca. Tremblaya princeps" and searched for the co-occurrence of concerted evolution and homologous recombination genes in endosymbiotic consortia from four unexplored mealybug species, Dysmicoccus boninsis, Planococcus ficus, Pseudococcus longispinus, and Pseudococcus viburni. Our results support a link between concerted evolution and nested endosymbiosis.
Collapse
Affiliation(s)
- Sergio López-Madrigal
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de ValènciaValència, Spain
| | - Amparo Latorre
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de ValènciaValència, Spain
- Área de Genómica y Salud de la Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO) – Salud PúblicaValència, Spain
| | - Andrés Moya
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de ValènciaValència, Spain
- Área de Genómica y Salud de la Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO) – Salud PúblicaValència, Spain
| | - Rosario Gil
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de ValènciaValència, Spain
| |
Collapse
|
46
|
Heritable symbiosis: The advantages and perils of an evolutionary rabbit hole. Proc Natl Acad Sci U S A 2015; 112:10169-76. [PMID: 25713367 DOI: 10.1073/pnas.1421388112] [Citation(s) in RCA: 327] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Many eukaryotes have obligate associations with microorganisms that are transmitted directly between generations. A model for heritable symbiosis is the association of aphids, a clade of sap-feeding insects, and Buchnera aphidicola, a gammaproteobacterium that colonized an aphid ancestor 150 million years ago and persists in almost all 5,000 aphid species. Symbiont acquisition enables evolutionary and ecological expansion; aphids are one of many insect groups that would not exist without heritable symbiosis. Receiving less attention are potential negative ramifications of symbiotic alliances. In the short run, symbionts impose metabolic costs. Over evolutionary time, hosts evolve dependence beyond the original benefits of the symbiosis. Symbiotic partners enter into an evolutionary spiral that leads to irreversible codependence and associated risks. Host adaptations to symbiosis (e.g., immune-system modification) may impose vulnerabilities. Symbiont genomes also continuously accumulate deleterious mutations, limiting their beneficial contributions and environmental tolerance. Finally, the fitness interests of obligate heritable symbionts are distinct from those of their hosts, leading to selfish tendencies. Thus, genes underlying the host-symbiont interface are predicted to follow a coevolutionary arms race, as observed for genes governing host-pathogen interactions. On the macroevolutionary scale, the rapid evolution of interacting symbiont and host genes is predicted to accelerate host speciation rates by generating genetic incompatibilities. However, degeneration of symbiont genomes may ultimately limit the ecological range of host species, potentially increasing extinction risk. Recent results for the aphid-Buchnera symbiosis and related systems illustrate that, whereas heritable symbiosis can expand ecological range and spur diversification, it also presents potential perils.
Collapse
|
47
|
Reingold V, Luria N, Robichon A, Dombrovsky A. Adenine methylation may contribute to endosymbiont selection in a clonal aphid population. BMC Genomics 2014; 15:999. [PMID: 25406741 PMCID: PMC4246565 DOI: 10.1186/1471-2164-15-999] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 11/04/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The pea aphid Acyrthosiphon pisum has two modes of reproduction: parthenogenetic during the spring and summer and sexual in autumn. This ability to alternate between reproductive modes and the emergence of clonal populations under favorable conditions make this organism an interesting model for genetic and epigenetic studies. The pea aphid hosts different types of endosymbiotic bacteria within bacteriocytes which help the aphids survive and adapt to new environmental conditions and habitats. The obligate endosymbiont Buchnera aphidicola has a drastically reduced and stable genome, whereas facultative endosymbionts such as Regiella insecticola have large and dynamic genomes due to phages, mobile elements and high levels of genetic recombination. In previous work, selection toward cold adaptation resulted in the appearance of parthenogenetic A. pisum individuals characterized by heavier weights and remarkable green pigmentation. RESULTS Six adenine-methylated DNA fragments were isolated from genomic DNA (gDNA) extracted from the cold-induced green variant of A. pisum using deoxyadenosine methylase (Dam) by digesting the gDNA with the restriction enzymes DpnI and DpnII, which recognize the methylated and unmethylated GATC sites, respectively. The six resultant fragments did not match any sequence in the A. pisum or Buchnera genomes, implying that they came from facultative endosymbionts. The A1 fragment encoding a putative transposase and the A6 fragment encoding a putative helicase were selected for further comparison between the two A. pisum variants (green and orange) based on Dam analysis followed by PCR amplification. An association between adenine methylation and the two A. pisum variants was demonstrated by higher adenine methylation levels on both genes in the green variant as compared to the orange one. CONCLUSION Temperature selection may affect the secondary endosymbiont and the sensitive Dam involved in the survival and adaptation of aphids to cold temperatures. There is a high degree of adenine methylation at the GATC sites of the endosymbiont genes at 8°C, an effect that disappears at 22°C. We suggest that endosymbionts can be modified or selected to increase host fitness under unfavorable climatic conditions, and that the phenotype of the newly adapted aphids can be inherited.
Collapse
Affiliation(s)
| | | | | | - Aviv Dombrovsky
- INRA/CNRS/UNSA University Nice Sophia Antipolis, 400 routes de Chappes, BP 167, Sophia Antipolis 06903, France.
| |
Collapse
|
48
|
Hooper SL, Burstein HJ. Minimization of extracellular space as a driving force in prokaryote association and the origin of eukaryotes. Biol Direct 2014; 9:24. [PMID: 25406691 PMCID: PMC4289276 DOI: 10.1186/1745-6150-9-24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 11/03/2014] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Internalization-based hypotheses of eukaryotic origin require close physical association of host and symbiont. Prior hypotheses of how these associations arose include chance, specific metabolic couplings between partners, and prey-predator/parasite interactions. Since these hypotheses were proposed, it has become apparent that mixed-species, close-association assemblages (biofilms) are widespread and predominant components of prokaryotic ecology. Which forces drove prokaryotes to evolve the ability to form these assemblages are uncertain. Bacteria and archaea have also been found to form membrane-lined interconnections (nanotubes) through which proteins and RNA pass. These observations, combined with the structure of the nuclear envelope and an energetic benefit of close association (see below), lead us to propose a novel hypothesis of the driving force underlying prokaryotic close association and the origin of eukaryotes. RESULTS Respiratory proton transport does not alter external pH when external volume is effectively infinite. Close physical association decreases external volume. For small external volumes, proton transport decreases external pH, resulting in each transported proton increasing proton motor force to a greater extent. We calculate here that in biofilms this effect could substantially decrease how many protons need to be transported to achieve a given proton motor force. Based as it is solely on geometry, this energetic benefit would occur for all prokaryotes using proton-based respiration. CONCLUSIONS This benefit may be a driving force in biofilm formation. Under this hypothesis a very wide range of prokaryotic species combinations could serve as eukaryotic progenitors. We use this observation and the discovery of prokaryotic nanotubes to propose that eukaryotes arose from physically distinct, functionally specialized (energy factory, protein factory, DNA repository/RNA factory), obligatorily symbiotic prokaryotes in which the protein factory and DNA repository/RNA factory cells were coupled by nanotubes and the protein factory ultimately internalized the other two. This hypothesis naturally explains many aspects of eukaryotic physiology, including the nuclear envelope being a folded single membrane repeatedly pierced by membrane-bound tubules (the nuclear pores), suggests that species analogous or homologous to eukaryotic progenitors are likely unculturable as monocultures, and makes a large number of testable predictions. REVIEWERS This article was reviewed by Purificación López-García and Toni Gabaldón.
Collapse
Affiliation(s)
- Scott L Hooper
- Department of Biological Sciences, Ohio University, Athens, OH 45701 USA
| | - Helaine J Burstein
- Department of Biological Sciences, Ohio University, Athens, OH 45701 USA
| |
Collapse
|
49
|
Michalik A, Jankowska W, Kot M, Gołas A, Szklarzewicz T. Symbiosis in the green leafhopper, Cicadella viridis (Hemiptera, Cicadellidae). Association in statu nascendi? ARTHROPOD STRUCTURE & DEVELOPMENT 2014; 43:579-87. [PMID: 25102427 DOI: 10.1016/j.asd.2014.07.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/14/2014] [Accepted: 07/27/2014] [Indexed: 05/15/2023]
Abstract
The green leafhopper, Cicadella viridis lives in symbiotic association with microorganisms. The ultrastructural and molecular analyses have shown that in the body of the C. viridis two types of bacteriocyte endosymbionts are present. An amplification and sequencing of 16S rRNA genes revealed that large, pleomorphic bacteria display a high similarity (94-100%) to the endosymbiont 'Candidatus Sulcia muelleri' (phylum Bacteroidetes), whereas long, rod-shaped microorganisms are closely related to the γ-proteobacterial symbiont Sodalis (97-99% similarity). Both endosymbionts may be harbored in their own bacteriocytes as well as may co-reside in the same bacteriocytes. The ultrastructural observations have revealed that the Sodalis-like bacteria harboring the same bacteriocytes as bacterium Sulcia may invade the cells of the latter. Bacteria Sulcia and Sodalis-like endosymbionts are transovarially transmitted from one generation to the next. However, Sodalis-like endosymbionts do not invade the ovaries individually, but only inside Sulcia cells. Apart from bacteriocyte endosymbionts, in the body of C. viridis small, rod-shaped bacteria have been detected, and have been identified as being closely related to γ-proteobacterial microorganism Pectobacterium (98-99% similarity). The latter are present in the sheath cells of the bacteriomes containing bacterium Sulcia as well as in fat body cells.
Collapse
Affiliation(s)
- Anna Michalik
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Władysława Jankowska
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Marta Kot
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Aniela Gołas
- Department of Genetics and Evolution, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Teresa Szklarzewicz
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland.
| |
Collapse
|
50
|
Van Leuven JT, Meister RC, Simon C, McCutcheon JP. Sympatric speciation in a bacterial endosymbiont results in two genomes with the functionality of one. Cell 2014; 158:1270-1280. [PMID: 25175626 DOI: 10.1016/j.cell.2014.07.047] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/18/2014] [Accepted: 07/07/2014] [Indexed: 10/24/2022]
Abstract
Mutualisms that become evolutionarily stable give rise to organismal interdependencies. Some insects have developed intracellular associations with communities of bacteria, where the interdependencies are manifest in patterns of complementary gene loss and retention among members of the symbiosis. Here, using comparative genomics and microscopy, we show that a three-member symbiotic community has become a four-way assemblage through a novel bacterial lineage-splitting event. In some but not all cicada species of the genus Tettigades, the endosymbiont Candidatus Hodgkinia cicadicola has split into two new cytologically distinct but metabolically interdependent species. Although these new bacterial genomes are partitioned into discrete cell types, the intergenome patterns of gene loss and retention are almost perfectly complementary. These results defy easy classification: they show genomic patterns consistent with those observed after both speciation and whole-genome duplication. We suggest that our results highlight the potential power of nonadaptive forces in shaping organismal complexity.
Collapse
Affiliation(s)
- James T Van Leuven
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Russell C Meister
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Chris Simon
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - John P McCutcheon
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA; Canadian Institute for Advanced Research, CIFAR Program in Integrated Microbial Biodiversity, Toronto, ON M5G 1Z8, Canada.
| |
Collapse
|