1
|
Aluja M, Zamora-Briseño JA, Pérez-Brocal V, Altúzar-Molina A, Guillén L, Desgarennes D, Vázquez-Rosas-Landa M, Ibarra-Laclette E, Alonso-Sánchez AG, Moya A. Metagenomic Survey of the Highly Polyphagous Anastrepha ludens Developing in Ancestral and Exotic Hosts Reveals the Lack of a Stable Microbiota in Larvae and the Strong Influence of Metamorphosis on Adult Gut Microbiota. Front Microbiol 2021; 12:685937. [PMID: 34413837 PMCID: PMC8367737 DOI: 10.3389/fmicb.2021.685937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/21/2021] [Indexed: 12/17/2022] Open
Abstract
We studied the microbiota of a highly polyphagous insect, Anastrepha ludens (Diptera: Tephritidae), developing in six of its hosts, including two ancestral (Casimiroa edulis and C. greggii), three exotic (Mangifera indica cv. Ataulfo, Prunus persica cv. Criollo, and Citrus x aurantium) and one occasional host (Capsicum pubescens cv. Manzano), that is only used when extreme drought conditions limit fruiting by the common hosts. One of the exotic hosts (“criollo” peach) is rife with polyphenols and the occasional host with capsaicinoids exerting high fitness costs on the larvae. We pursued the following questions: (1) How is the microbial composition of the larval food related to the composition of the larval and adult microbiota, and what does this tell us about transience and stability of this species’ gut microbiota? (2) How does metamorphosis affect the adult microbiota? We surveyed the microbiota of the pulp of each host fruit, as well as the gut microbiota of larvae and adult flies and found that the gut of A. ludens larvae lacks a stable microbiota, since it was invariably associated with the composition of the pulp microbiota of the host plant species studied and was also different from the microbiota of adult flies indicating that metamorphosis filters out much of the microbiota present in larvae. The microbiota of adult males and females was similar between them, independent of host plant and was dominated by bacteria within the Enterobacteriaceae. We found that in the case of the “toxic” occasional host C. pubescens the microbiota is enriched in potentially deleterious genera that were much less abundant in the other hosts. In contrast, the pulp of the ancestral host C. edulis is enriched in several bacterial groups that can be beneficial for larval development. We also report for the first time the presence of bacteria within the Arcobacteraceae family in the gut microbiota of A. ludens stemming from C. edulis. Based on our findings, we conclude that changes in the food-associated microbiota dictate major changes in the larval microbiota, suggesting that most larval gut microbiota is originated from the food.
Collapse
Affiliation(s)
- Martín Aluja
- Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología, AC-INECOL, Clúster Científico y Tecnológico BioMimic®, Xalapa, Mexico
| | - Jesús Alejandro Zamora-Briseño
- Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología, AC-INECOL, Clúster Científico y Tecnológico BioMimic®, Xalapa, Mexico
| | - Vicente Pérez-Brocal
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain
| | - Alma Altúzar-Molina
- Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología, AC-INECOL, Clúster Científico y Tecnológico BioMimic®, Xalapa, Mexico
| | - Larissa Guillén
- Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología, AC-INECOL, Clúster Científico y Tecnológico BioMimic®, Xalapa, Mexico
| | - Damaris Desgarennes
- Red de Biodiversidad y Sistemática, Instituto de Ecología, AC-INECOL, Clúster Científico y Tecnológico BioMimic®, Xalapa, Mexico
| | - Mirna Vázquez-Rosas-Landa
- Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología, AC-INECOL, Clúster Científico y Tecnológico BioMimic®, Xalapa, Mexico
| | - Enrique Ibarra-Laclette
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, AC-INECOL, Clúster Científico y Tecnológico BioMimic®, Xalapa, Mexico
| | - Alexandro G Alonso-Sánchez
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, AC-INECOL, Clúster Científico y Tecnológico BioMimic®, Xalapa, Mexico
| | - Andrés Moya
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain.,Instituto de Biología Integrativa de Sistemas (I2Sysbio), Universidad de Valencia-CSIC, Valencia, Spain
| |
Collapse
|
2
|
Garber AI, Kupper M, Laetsch DR, Weldon SR, Ladinsky MS, Bjorkman PJ, McCutcheon JP. The Evolution of Interdependence in a Four-Way Mealybug Symbiosis. Genome Biol Evol 2021; 13:evab123. [PMID: 34061185 PMCID: PMC8331144 DOI: 10.1093/gbe/evab123] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2021] [Indexed: 01/03/2023] Open
Abstract
Mealybugs are insects that maintain intracellular bacterial symbionts to supplement their nutrient-poor plant sap diets. Some mealybugs have a single betaproteobacterial endosymbiont, a Candidatus Tremblaya species (hereafter Tremblaya) that alone provides the insect with its required nutrients. Other mealybugs have two nutritional endosymbionts that together provision these same nutrients, where Tremblaya has gained a gammaproteobacterial partner that resides in its cytoplasm. Previous work had established that Pseudococcus longispinus mealybugs maintain not one but two species of gammaproteobacterial endosymbionts along with Tremblaya. Preliminary genomic analyses suggested that these two gammaproteobacterial endosymbionts have large genomes with features consistent with a relatively recent origin as insect endosymbionts, but the patterns of genomic complementarity between members of the symbiosis and their relative cellular locations were unknown. Here, using long-read sequencing and various types of microscopy, we show that the two gammaproteobacterial symbionts of P. longispinus are mixed together within Tremblaya cells, and that their genomes are somewhat reduced in size compared with their closest nonendosymbiotic relatives. Both gammaproteobacterial genomes contain thousands of pseudogenes, consistent with a relatively recent shift from a free-living to an endosymbiotic lifestyle. Biosynthetic pathways of key metabolites are partitioned in complex interdependent patterns among the two gammaproteobacterial genomes, the Tremblaya genome, and horizontally acquired bacterial genes that are encoded on the mealybug nuclear genome. Although these two gammaproteobacterial endosymbionts have been acquired recently in evolutionary time, they have already evolved codependencies with each other, Tremblaya, and their insect host.
Collapse
Affiliation(s)
- Arkadiy I Garber
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Biodesign Center for Mechanisms of Evolution and School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Maria Kupper
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Biodesign Center for Mechanisms of Evolution and School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Dominik R Laetsch
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephanie R Weldon
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Mark S Ladinsky
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Pamela J Bjorkman
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - John P McCutcheon
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Biodesign Center for Mechanisms of Evolution and School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
3
|
Waneka G, Vasquez YM, Bennett GM, Sloan DB. Mutational Pressure Drives Differential Genome Conservation in Two Bacterial Endosymbionts of Sap-Feeding Insects. Genome Biol Evol 2020; 13:6020258. [PMID: 33275136 PMCID: PMC7952229 DOI: 10.1093/gbe/evaa254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2020] [Indexed: 11/16/2022] Open
Abstract
Compared with free-living bacteria, endosymbionts of sap-feeding insects have tiny and rapidly evolving genomes. Increased genetic drift, high mutation rates, and relaxed selection associated with host control of key cellular functions all likely contribute to genome decay. Phylogenetic comparisons have revealed massive variation in endosymbiont evolutionary rate, but such methods make it difficult to partition the effects of mutation versus selection. For example, the ancestor of Auchenorrhynchan insects contained two obligate endosymbionts, Sulcia and a betaproteobacterium (BetaSymb; called Nasuia in leafhoppers) that exhibit divergent rates of sequence evolution and different propensities for loss and replacement in the ensuing ∼300 Ma. Here, we use the auchenorrhynchan leafhopper Macrosteles sp. nr. severini, which retains both of the ancestral endosymbionts, to test the hypothesis that differences in evolutionary rate are driven by differential mutagenesis. We used a high-fidelity technique known as duplex sequencing to measure and compare low-frequency variants in each endosymbiont. Our direct detection of de novode novo mutations reveals that the rapidly evolving endosymbiont (Nasuia) has a much higher frequency of single-nucleotide variants than the more stable endosymbiont (Sulcia) and a mutation spectrum that is potentially even more AT-biased than implied by the 83.1% AT content of its genome. We show that indels are common in both endosymbionts but differ substantially in length and distribution around repetitive regions. Our results suggest that differences in long-term rates of sequence evolution in Sulcia versus BetaSymb, and perhaps the contrasting degrees of stability of their relationships with the host, are driven by differences in mutagenesis.
Collapse
Affiliation(s)
- Gus Waneka
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Yumary M Vasquez
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
| | - Gordon M Bennett
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
4
|
Gil R, Latorre A. Unity Makes Strength: A Review on Mutualistic Symbiosis in Representative Insect Clades. Life (Basel) 2019; 9:E21. [PMID: 30823538 PMCID: PMC6463088 DOI: 10.3390/life9010021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/11/2019] [Accepted: 02/19/2019] [Indexed: 12/14/2022] Open
Abstract
Settled on the foundations laid by zoologists and embryologists more than a century ago, the study of symbiosis between prokaryotes and eukaryotes is an expanding field. In this review, we present several models of insect⁻bacteria symbioses that allow for the detangling of most known features of this distinctive way of living, using a combination of very diverse screening approaches, including molecular, microscopic, and genomic techniques. With the increasing the amount of endosymbiotic bacteria genomes available, it has been possible to develop evolutionary models explaining the changes undergone by these bacteria in their adaptation to the intracellular host environment. The establishment of a given symbiotic system can be a root cause of substantial changes in the partners' way of life. Furthermore, symbiont replacement and/or the establishment of bacterial consortia are two ways in which the host can exploit its interaction with environmental bacteria for endosymbiotic reinvigoration. The detailed study of diverse and complex symbiotic systems has revealed a great variety of possible final genomic products, frequently below the limit considered compatible with cellular life, and sometimes with unanticipated genomic and population characteristics, raising new questions that need to be addressed in the near future through a wider exploration of new models and empirical observations.
Collapse
Affiliation(s)
- Rosario Gil
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València/CSIC. Calle Catedrático Agustín Escardino, 9, 46980 Paterna (Valencia), Spain.
- Departament de Genètica, Universitat de València. Calle Dr. Moliner, 50, 46100 Burjassot (València), Spain.
- Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO). Avenida de Cataluña 21, 46020 València, Spain.
| | - Amparo Latorre
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València/CSIC. Calle Catedrático Agustín Escardino, 9, 46980 Paterna (Valencia), Spain.
- Departament de Genètica, Universitat de València. Calle Dr. Moliner, 50, 46100 Burjassot (València), Spain.
- Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO). Avenida de Cataluña 21, 46020 València, Spain.
| |
Collapse
|
5
|
lin D, Zhang L, Shao W, Li X, Liu X, Wu H, Rao Q. Phylogenetic analyses and characteristics of the microbiomes from five mealybugs (Hemiptera: Pseudococcidae). Ecol Evol 2019; 9:1972-1984. [PMID: 30847086 PMCID: PMC6392364 DOI: 10.1002/ece3.4889] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 10/10/2018] [Accepted: 10/22/2018] [Indexed: 11/28/2022] Open
Abstract
Associations between Sternorrhyncha insects and intracellular bacteria are common in nature. Mealybugs are destructive pests that seriously threaten the production of agriculture and forestry. Mealybugs have evolved intimate endosymbiotic relationships with bacteria, which provide them with essential amino acids, vitamins, and other nutrients. In this study, the divergence of five mealybugs was analyzed based up the sequences of the mitochondrial cytochrome oxidase I (mtCOI). Meanwhile, the distinct regions of the 16S rRNA gene of primary symbionts in the mealybugs were sequenced. Finally, high-throughput sequencing (HTS) techniques were used to study the microbial abundance and diversity in mealybugs. Molecular phylogenetic analyses revealed that these five mealybugs were subdivided into two different clusters. One cluster of mealybugs (Dysmicoccus neobrevipes, Pseudococcus comstocki, and Planococcus minor) harbored the primary endosymbiont "Candidatus Tremblaya princeps," and another cluster (Phenacoccus solenopsis and Phenacoccus solani) harbored "Ca. Tremblaya phenacola." The mtCOI sequence divergence between the two clusters was similar to the 16S rRNA sequence divergence between T. princeps and T. phenacola. Thus, we concluded that the symbiont phylogeny was largely concordant with the host phylogeny. The HTS showed that the microbial abundance and diversity within P. solani and P. solenopsis were highly similar, and there was lower overall species richness compared to the other mealybugs. Among the five mealybugs, we also found significant differences in Shannon diversity and observed species. These results provide a theoretical basis for further research on the coevolution of mealybugs and their symbiotic microorganisms. These findings are also useful for research on the effect of symbiont diversity on the pest status of mealybugs in agricultural systems.
Collapse
Affiliation(s)
- Dan lin
- School of Agriculture and Food ScienceZhejiang A & F UniversityHangzhouChina
| | - Li Zhang
- School of Agriculture and Food ScienceZhejiang A & F UniversityHangzhouChina
| | - Weidong Shao
- Zhoushan Entry‐exit Inspection and Quarantine BreauNingboChina
| | - Xuelian Li
- Ningbo Entry‐exit Inspection and Quarantine BureauNingboChina
| | - Xunyue Liu
- School of Agriculture and Food ScienceZhejiang A & F UniversityHangzhouChina
| | - Huiming Wu
- School of Agriculture and Food ScienceZhejiang A & F UniversityHangzhouChina
| | - Qiong Rao
- School of Agriculture and Food ScienceZhejiang A & F UniversityHangzhouChina
| |
Collapse
|
6
|
Brahmachari V, Kohli S, Gulati P. In praise of mealybugs. J Genet 2018; 97:379-389. [PMID: 29932057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The fascinating chromosomal cycle leading to facultative heterochromatization in the mealybugs has been a challenging system for mechanistic understanding of the phenomenon of genomic imprinting and epigenetics. The elegant cytological dissection of the various processes reported in the literature is equally fascinating for the researchers of current molecular age. Presently, a two way approach is being pursued; continued efforts of utilizing elegant cytology, in combination with the molecular probes to decipher molecular correlates on one hand and on the other, the de novo biochemical/molecular analysis for the identification of the molecular players using genomic tools. The hope is to uncover novel players in genomic imprinting and epigenetic regulation in the mealybug system which shows differential regulation of the entire genome, with 50% of its genome being transcriptionally inactivated in a parental-origin-specific and sex specific manner. In addition to being a model for epigenetic regulation, the mealybugs are being utilized for the analysis of radiation resistance as well as metabolic interactions between the microbiome and the host. The overview presented here is an attempt to bring out some of the work carried out in these directions. We also discuss the areas that remain poorly explored in this system, such as the role/involvement of noncoding RNA in male-specific inactivation and the molecular dissection of heterochromatin, the cytological manifestation of the inactive state of genes and chromosome.
Collapse
Affiliation(s)
- Vani Brahmachari
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110 007, India.
| | | | | |
Collapse
|
7
|
|
8
|
Ivens ABF, Gadau A, Kiers ET, Kronauer DJC. Can social partnerships influence the microbiome? Insights from ant farmers and their trophobiont mutualists. Mol Ecol 2018; 27:1898-1914. [PMID: 29411455 PMCID: PMC5935579 DOI: 10.1111/mec.14506] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/21/2017] [Accepted: 11/28/2017] [Indexed: 01/02/2023]
Abstract
Mutualistic interactions with microbes have played a crucial role in the evolution and ecology of animal hosts. However, it is unclear what factors are most important in influencing particular host–microbe associations. While closely related animal species may have more similar microbiota than distantly related species due to phylogenetic contingencies, social partnerships with other organisms, such as those in which one animal farms another, may also influence an organism's symbiotic microbiome. We studied a mutualistic network of Brachymyrmex and Lasius ants farming several honeydew‐producing Prociphilus aphids and Rhizoecus mealybugs to test whether the mutualistic microbiomes of these interacting insects are primarily correlated with their phylogeny or with their shared social partnerships. Our results confirm a phylogenetic signal in the microbiomes of aphid and mealybug trophobionts, with each species harbouring species‐specific endosymbiont strains of Buchnera (aphids), Tremblaya and Sodalis (mealybugs), and Serratia (both mealybugs and aphids) despite being farmed by the same ants. This is likely explained by strict vertical transmission of trophobiont endosymbionts between generations. In contrast, our results show the ants’ microbiome is possibly shaped by their social partnerships, with ants that farm the same trophobionts also sharing strains of sugar‐processing Acetobacteraceae bacteria, known from other honeydew‐feeding ants and which likely reside extracellularly in the ants’ guts. These ant–microbe associations are arguably more “open” and subject to horizontal transmission or social transmission within ant colonies. These findings suggest that the role of social partnerships in shaping a host's symbiotic microbiome can be variable and is likely dependent on how the microbes are transmitted across generations.
Collapse
Affiliation(s)
- Aniek B F Ivens
- Animal Ecology Section, Department of Ecological Science, Faculty of Science, Vrije Universiteit, Amsterdam, The Netherlands.,Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA
| | - Alice Gadau
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA
| | - E Toby Kiers
- Animal Ecology Section, Department of Ecological Science, Faculty of Science, Vrije Universiteit, Amsterdam, The Netherlands
| | - Daniel J C Kronauer
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA
| |
Collapse
|
9
|
Gil R, Vargas-Chavez C, López-Madrigal S, Santos-García D, Latorre A, Moya A. Tremblaya phenacola PPER: an evolutionary beta-gammaproteobacterium collage. THE ISME JOURNAL 2018; 12:124-135. [PMID: 28914880 PMCID: PMC5739004 DOI: 10.1038/ismej.2017.144] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 05/31/2017] [Accepted: 07/28/2017] [Indexed: 02/07/2023]
Abstract
Many insects rely on bacterial endosymbionts to obtain nutrients that are scarce in their highly specialized diets. The most surprising example corresponds to the endosymbiotic system found in mealybugs from subfamily Pseudococcinae in which two bacteria, the betaproteobacterium 'Candidatus Tremblaya princeps' and a gammaproteobacterium, maintain a nested endosymbiotic consortium. In the sister subfamily Phenacoccinae, however, a single beta-endosymbiont, 'Candidatus Tremblaya phenacola', has been described. In a previous study, we detected a trpB gene of gammaproteobacterial origin in 'Ca. Tremblaya phenacola' from two Phenacoccus species, apparently indicating an unusual case of horizontal gene transfer (HGT) in a bacterial endosymbiont. What we found by sequencing the genome of 'Ca. Tremblaya phenacola' PPER, single endosymbiont of Phenacoccus peruvianus, goes beyond a HGT phenomenon. It rather represents a genome fusion between a beta and a gammaproteobacterium, followed by massive rearrangements and loss of redundant genes, leading to an unprecedented evolutionary collage. Mediated by the presence of several repeated sequences, there are many possible genome arrangements, and different subgenomic sequences might coexist within the same population.
Collapse
Affiliation(s)
- Rosario Gil
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva (ICBiBE), Universitat de València, Valencia, Spain
- Evolutionary Systems Biology of Symbionts Research Program, Institute for Integrative Systems Biology, Universitat de València/CSIC, Paterna (Valencia), Spain
| | - Carlos Vargas-Chavez
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva (ICBiBE), Universitat de València, Valencia, Spain
- Evolutionary Systems Biology of Symbionts Research Program, Institute for Integrative Systems Biology, Universitat de València/CSIC, Paterna (Valencia), Spain
| | - Sergio López-Madrigal
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva (ICBiBE), Universitat de València, Valencia, Spain
| | - Diego Santos-García
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva (ICBiBE), Universitat de València, Valencia, Spain
| | - Amparo Latorre
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva (ICBiBE), Universitat de València, Valencia, Spain
- Evolutionary Systems Biology of Symbionts Research Program, Institute for Integrative Systems Biology, Universitat de València/CSIC, Paterna (Valencia), Spain
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana, Valencia, Spain
| | - Andrés Moya
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva (ICBiBE), Universitat de València, Valencia, Spain
- Evolutionary Systems Biology of Symbionts Research Program, Institute for Integrative Systems Biology, Universitat de València/CSIC, Paterna (Valencia), Spain
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana, Valencia, Spain
| |
Collapse
|
10
|
Michalik K, Szklarzewicz T, Kalandyk-Kołodziejczyk M, Jankowska W, Michalik A. Bacteria belonging to the genus Burkholderia are obligatory symbionts of the eriococcids Acanthococcus aceris Signoret, 1875 and Gossyparia spuria (Modeer, 1778) (Insecta, Hemiptera, Coccoidea). ARTHROPOD STRUCTURE & DEVELOPMENT 2016; 45:265-72. [PMID: 27109514 DOI: 10.1016/j.asd.2016.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/11/2016] [Accepted: 04/11/2016] [Indexed: 05/15/2023]
Abstract
In the fat body cells of the scale insects, Gossyparia spuria and Acanthococcus aceris, numerous rod-shaped symbiotic bacteria occur. Molecular analyses have revealed that these microorganisms are closely related to the widely distributed bacterium Burkholderia. Ultrastructural observations have revealed that the bacteria are transovarially (vertically) transmitted from the mother to offspring. The microorganisms leave the fat body cells and invade ovarioles containing vitellogenic oocytes. They pass through the follicular epithelium in the neck region of the ovariole and enter the perivitelline space. Next, the symbionts infest the anterior region of the oocyte.
Collapse
Affiliation(s)
- Katarzyna Michalik
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Teresa Szklarzewicz
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | | | - Władysława Jankowska
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Anna Michalik
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland.
| |
Collapse
|
11
|
Kobiałka M, Michalik A, Walczak M, Junkiert Ł, Szklarzewicz T. Sulcia symbiont of the leafhopper Macrosteles laevis (Ribaut, 1927) (Insecta, Hemiptera, Cicadellidae: Deltocephalinae) harbors Arsenophonus bacteria. PROTOPLASMA 2016; 253:903-912. [PMID: 26188921 PMCID: PMC4819937 DOI: 10.1007/s00709-015-0854-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/03/2015] [Indexed: 05/15/2023]
Abstract
The leafhopper Macrosteles laevis, like other plant sap-feeding hemipterans, lives in obligate symbiotic association with microorganisms. The symbionts are harbored in the cytoplasm of large cells termed bacteriocytes, which are integrated into huge organs termed bacteriomes. Morphological and molecular investigations have revealed that in the bacteriomes of M. laevis, two types of bacteriocytes are present which are as follows: bacteriocytes with bacterium Sulcia and bacteriocytes with Nasuia symbiont. We observed that in bacteriocytes with Sulcia, some cells of this bacterium contain numerous cells of the bacterium Arsenophonus. All types of symbionts are transmitted transovarially between generations. In the mature female, the bacteria Nasuia, bacteria Sulcia, and Sulcia with Arsenophonus inside are released from the bacteriocytes and start to assemble around the terminal oocytes. Next, the bacteria enter the cytoplasm of follicular cells surrounding the posterior pole of the oocyte. After passing through the follicular cells, the symbionts enter the space between the oocyte and follicular epithelium, forming a characteristic "symbiont ball."
Collapse
Affiliation(s)
- Michał Kobiałka
- />Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Anna Michalik
- />Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Marcin Walczak
- />Department of Zoology, Faculty of Biology and Environmental Protection, University of Silesia, Bankowa 9, 40-007 Katowice, Poland
| | - Łukasz Junkiert
- />Department of Zoology, Faculty of Biology and Environmental Protection, University of Silesia, Bankowa 9, 40-007 Katowice, Poland
| | - Teresa Szklarzewicz
- />Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| |
Collapse
|
12
|
Nitrogen hurdle of host alternation for a polyphagous aphid and the associated changes of endosymbionts. Sci Rep 2016; 6:24781. [PMID: 27094934 PMCID: PMC4837378 DOI: 10.1038/srep24781] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 03/31/2016] [Indexed: 02/02/2023] Open
Abstract
Low proportion of essential amino acids (EAAs) is one of the barriers for animals to use phloem as a diet. Endosymbionts with EAAs synthesis functions are considered crucial for ameliorating the lack of EAAs in insects’ diets. In this study, we transferred the insects from a cabbage-reared Myzus persicae population onto 3 new plant species including eggplant, tobacco and spinach. The performance on these plants was evaluated and the dynamics of endosymbionts in relation to this host alternation were recorded. We found that the EAAs ratio in phloem was largely determined by the concentrations of non-essential amino acids and the higher proportion of EAAs seemed to favor the population establishment on new plant species and the growth of primary endosymbionts inside insects, which indicated that nitrogen quality was an important factor for aphids to infest and spread on new plant hosts.
Collapse
|
13
|
Parkinson JF, Gobin B, Hughes WOH. Heritability of symbiont density reveals distinct regulatory mechanisms in a tripartite symbiosis. Ecol Evol 2016; 6:2053-60. [PMID: 27099709 PMCID: PMC4831439 DOI: 10.1002/ece3.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/10/2016] [Accepted: 01/18/2016] [Indexed: 01/08/2023] Open
Abstract
Beneficial eukaryotic–bacterial partnerships are integral to animal and plant evolution. Understanding the density regulation mechanisms behind bacterial symbiosis is essential to elucidating the functional balance between hosts and symbionts. Citrus mealybugs, Planococcus citri (Risso), present an excellent model system for investigating the mechanisms of symbiont density regulation. They contain two obligate nutritional symbionts, Moranella endobia, which resides inside Tremblaya princeps, which has been maternally transmitted for 100–200 million years. We investigate whether host genotype may influence symbiont density by crossing mealybugs from two inbred laboratory‐reared populations that differ substantially in their symbiont density to create hybrids. The density of the M. endobia symbiont in the hybrid hosts matched that of the maternal parent population, in keeping with density being determined either by the symbiont or the maternal genotype. However, the density of the T. princeps symbiont was influenced by the paternal host genotype. The greater dependency of T. princeps on its host may be due to its highly reduced genome. The decoupling of T. princeps and M. endobia densities, in spite of their intimate association, suggests that distinct regulatory mechanisms can be at work in symbiotic partnerships, even when they are obligate and mutualistic.
Collapse
Affiliation(s)
| | - Bruno Gobin
- PCS-Ornamental Plant Research Schaessestraat 18 Destelbergen 9070 Belgium
| | | |
Collapse
|
14
|
López-Madrigal S, Latorre A, Moya A, Gil R. The link between independent acquisition of intracellular gamma-endosymbionts and concerted evolution in Tremblaya princeps. Front Microbiol 2015; 6:642. [PMID: 26161080 PMCID: PMC4479817 DOI: 10.3389/fmicb.2015.00642] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/12/2015] [Indexed: 02/05/2023] Open
Abstract
Many insect species establish mutualistic symbiosis with intracellular bacteria that complement their unbalanced diets. The betaproteobacterium "Candidatus Tremblaya" maintains an ancient symbiosis with mealybugs (Hemiptera: Pseudococcidae), which are classified in subfamilies Phenacoccinae and Pseudococcinae. Most Phenacoccinae mealybugs have "Candidatus Tremblaya phenacola" as their unique endosymbiont, while most Pseudococcinae mealybugs show a nested symbiosis (a bacterial symbiont placed inside another one) where every "Candidatus Tremblaya princeps" cell harbors several cells of a gammaproteobacterium. Genomic characterization of the endosymbiotic consortium from Planococcus citri, composed by "Ca. Tremblaya princeps" and "Candidatus Moranella endobia," unveiled several atypical features of the former's genome, including the concerted evolution of paralogous loci. Its comparison with the genome of "Ca. Tremblaya phenacola" PAVE, single endosymbiont of Phenacoccus avenae, suggests that the atypical reductive evolution of "Ca. Tremblaya princeps" could be linked to the acquisition of "Ca. Moranella endobia," which possess an almost complete set of genes encoding proteins involved in homologous recombination. In order to test this hypothesis, we performed comparative genomics between "Ca. Tremblaya phenacola" and "Ca. Tremblaya princeps" and searched for the co-occurrence of concerted evolution and homologous recombination genes in endosymbiotic consortia from four unexplored mealybug species, Dysmicoccus boninsis, Planococcus ficus, Pseudococcus longispinus, and Pseudococcus viburni. Our results support a link between concerted evolution and nested endosymbiosis.
Collapse
Affiliation(s)
- Sergio López-Madrigal
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de ValènciaValència, Spain
| | - Amparo Latorre
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de ValènciaValència, Spain
- Área de Genómica y Salud de la Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO) – Salud PúblicaValència, Spain
| | - Andrés Moya
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de ValènciaValència, Spain
- Área de Genómica y Salud de la Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO) – Salud PúblicaValència, Spain
| | - Rosario Gil
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de ValènciaValència, Spain
| |
Collapse
|
15
|
Beltrà A, Addison P, Ávalos JA, Crochard D, Garcia-Marí F, Guerrieri E, Giliomee JH, Malausa T, Navarro-Campos C, Palero F, Soto A. Guiding Classical Biological Control of an Invasive Mealybug Using Integrative Taxonomy. PLoS One 2015; 10:e0128685. [PMID: 26047349 PMCID: PMC4457817 DOI: 10.1371/journal.pone.0128685] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/29/2015] [Indexed: 11/18/2022] Open
Abstract
Delottococcus aberiae De Lotto (Hemiptera: Pseudococcidae) is a mealybug of Southern African origin that has recently been introduced into Eastern Spain. It causes severe distortions on young citrus fruits and represents a growing threat to Mediterranean citrus production. So far, biological control has proven unsatisfactory due to the absence of efficient natural enemies in Spain. Hence, the management of this pest currently relies only on chemical control. The introduction of natural enemies of D. aberiae from the native area of the pest represents a sustainable and economically viable alternative to reduce the risks linked to pesticide applications. Since biological control of mealybugs has been traditionally challenged by taxonomic misidentification, an intensive survey of Delottococcus spp. and their associated parasitoids in South Africa was required as a first step towards a classical biological control programme. Combining morphological and molecular characterization (integrative taxonomy) a total of nine mealybug species were identified in this study, including three species of Delottococcus. Different populations of D. aberiae were found on wild olive trees, in citrus orchards and on plants of Chrysanthemoides monilifera, showing intra-specific divergences according to their host plants. Interestingly, the invasive mealybug populations from Spanish orchards clustered together with the population on citrus from Limpopo Province (South Africa), sharing COI haplotypes. This result pointed to an optimum location to collect natural enemies against the invasive mealybug. A total of 14 parasitoid species were recovered from Delottococcus spp. and identified to genus and species level, by integrating morphological and molecular data. A parasitoid belonging to the genus Anagyrus, collected from D. aberiae in citrus orchards in Limpopo, is proposed here as a good biological control agent to be introduced into Spain.
Collapse
Affiliation(s)
- Aleixandre Beltrà
- Institut Agroforestal Mediterrani, Universitat Politècnica de València, València, Spain
| | - Pia Addison
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
| | - Juan Antonio Ávalos
- Institut Agroforestal Mediterrani, Universitat Politècnica de València, València, Spain
| | - Didier Crochard
- INRA, Univ. Nice Sophia Antipolis, CNRS, UMR 1355–7254 Institut Sophia Agrobiotech, 06900 Sophia Antipolis, France
| | - Ferran Garcia-Marí
- Institut Agroforestal Mediterrani, Universitat Politècnica de València, València, Spain
| | - Emilio Guerrieri
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Portici, Italy
| | - Jan H. Giliomee
- Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Stellenbosch, South Africa
| | - Thibaut Malausa
- INRA, Univ. Nice Sophia Antipolis, CNRS, UMR 1355–7254 Institut Sophia Agrobiotech, 06900 Sophia Antipolis, France
| | | | - Ferran Palero
- INRA, Univ. Nice Sophia Antipolis, CNRS, UMR 1355–7254 Institut Sophia Agrobiotech, 06900 Sophia Antipolis, France
| | - Antonia Soto
- Institut Agroforestal Mediterrani, Universitat Politècnica de València, València, Spain
| |
Collapse
|
16
|
López-Madrigal S, Beltrà A, Resurrección S, Soto A, Latorre A, Moya A, Gil R. Molecular evidence for ongoing complementarity and horizontal gene transfer in endosymbiotic systems of mealybugs. Front Microbiol 2014; 5:449. [PMID: 25206351 PMCID: PMC4144094 DOI: 10.3389/fmicb.2014.00449] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 08/06/2014] [Indexed: 02/05/2023] Open
Abstract
Intracellular bacterial supply of essential amino acids is common among sap-feeding insects, thus complementing the scarcity of nitrogenous compounds in plant phloem. This is also the role of the two mealybug endosymbiotic systems whose genomes have been sequenced. In the nested endosymbiotic system from Planococcus citri (Pseudococcinae), "Candidatus Tremblaya princeps" and "Candidatus Moranella endobia" cooperate to synthesize essential amino acids, while in Phenacoccus avenae (Phenacoccinae) this function is performed by its single endosymbiont "Candidatus Tremblaya phenacola." However, little is known regarding the evolution of essential amino acid supplementation strategies in other mealybug systems. To address this knowledge gap, we screened for the presence of six selected loci involved in essential amino acid biosynthesis in five additional mealybug species. We found evidence of ongoing complementarity among endosymbionts from insects of subfamily Pseudococcinae, as well as horizontal gene transfer affecting endosymbionts from insects of family Phenacoccinae, providing a more comprehensive picture of the evolutionary history of these endosymbiotic systems. Additionally, we report two diagnostic motifs to help identify invasive mealybug species.
Collapse
Affiliation(s)
- Sergio López-Madrigal
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de ValenciaValencia, Spain
| | - Aleixandre Beltrà
- Instituto Agroforestal Mediterráneo, Universitat Politecnica de ValenciaValencia, Spain
| | - Serena Resurrección
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de ValenciaValencia, Spain
| | - Antonia Soto
- Instituto Agroforestal Mediterráneo, Universitat Politecnica de ValenciaValencia, Spain
| | - Amparo Latorre
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de ValenciaValencia, Spain
- Área de Genómica y Salud de la Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO)–Salud PúblicaValencia, Spain
| | - Andrés Moya
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de ValenciaValencia, Spain
- Área de Genómica y Salud de la Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO)–Salud PúblicaValencia, Spain
| | - Rosario Gil
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de ValenciaValencia, Spain
| |
Collapse
|
17
|
López-Madrigal S, Latorre A, Porcar M, Moya A, Gil R. Mealybugs nested endosymbiosis: going into the 'matryoshka' system in Planococcus citri in depth. BMC Microbiol 2013; 13:74. [PMID: 23548081 PMCID: PMC3620526 DOI: 10.1186/1471-2180-13-74] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 03/25/2013] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND In all branches of life there are plenty of symbiotic associations. Insects are particularly well suited to establishing intracellular symbiosis with bacteria, providing them with metabolic capabilities they lack. Essential primary endosymbionts can coexist with facultative secondary symbionts which can, eventually, establish metabolic complementation with the primary endosymbiont, becoming a co-primary. Usually, both endosymbionts maintain their cellular identity. An exception is the endosymbiosis found in mealybugs of the subfamily Pseudoccinae, such as Planococcus citri, with Moranella endobia located inside Tremblaya princeps. RESULTS We report the genome sequencing of M. endobia str. PCVAL and the comparative genomic analyses of the genomes of strains PCVAL and PCIT of both consortium partners. A comprehensive analysis of their functional capabilities and interactions reveals their functional coupling, with many cases of metabolic and informational complementation. Using comparative genomics, we confirm that both genomes have undergone a reductive evolution, although with some unusual genomic features as a consequence of coevolving in an exceptional compartmentalized organization. CONCLUSIONS M. endobia seems to be responsible for the biosynthesis of most cellular components and energy provision, and controls most informational processes for the consortium, while T. princeps appears to be a mere factory for amino acid synthesis, and translating proteins, using the precursors provided by M. endobia. In this scenario, we propose that both entities should be considered part of a composite organism whose compartmentalized scheme (somehow) resembles a eukaryotic cell.
Collapse
Affiliation(s)
- Sergio López-Madrigal
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Apartado Postal 22085, València, 46071, Spain
| | - Amparo Latorre
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Apartado Postal 22085, València, 46071, Spain
- Área de Genómica y Salud, Centro Superior de Investigación en Salud Pública (CSISP), Avenida de Cataluña 21, Valencia, 46020, Spain
| | - Manuel Porcar
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Apartado Postal 22085, València, 46071, Spain
- Fundació General de la Universitat de València, Apartado Postal 22085, València, 46071, Spain
| | - Andrés Moya
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Apartado Postal 22085, València, 46071, Spain
- Área de Genómica y Salud, Centro Superior de Investigación en Salud Pública (CSISP), Avenida de Cataluña 21, Valencia, 46020, Spain
| | - Rosario Gil
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Apartado Postal 22085, València, 46071, Spain
| |
Collapse
|
18
|
Koga R, Nikoh N, Matsuura Y, Meng XY, Fukatsu T. Mealybugs with distinct endosymbiotic systems living on the same host plant. FEMS Microbiol Ecol 2012; 83:93-100. [PMID: 22809388 DOI: 10.1111/j.1574-6941.2012.01450.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 07/08/2012] [Accepted: 07/12/2012] [Indexed: 11/29/2022] Open
Abstract
Mealybugs (Homoptera: Coccoidea: Pseudococcidae) possess a large bacteriome consisting of a number of bacteriocytes whose cytoplasm is populated by endosymbiotic bacteria. In many mealybugs of the subfamily Pseudococcinae, a peculiar endosymbiotic configuration has been identified: within the bacteriocytes, the primary betaproteobacterial endosymbiont Tremblaya princeps endocellularly harbor secondary gammaproteobacterial endosymbionts in a nested manner. Meanwhile, some mealybugs of the subfamily Phenacoccinae are associated only with a betaproteobacterial endosymbiont, designated as Tremblaya phenacola, which constitutes a distinct sister clade of T. princeps. However, cytological configuration of the endosymbiotic system in the phenacoccine mealybugs has not been established. Here, we investigated the endosymbiotic systems of the azalea mealybugs Crisicoccus azaleae (Pseudococcinae) and Phenacoccus azaleae (Phenacoccinae) living on the same host plants. Crisicoccus azaleae possessed a nested endosymbiotic system with T. princeps within the bacteriocyte cytoplasm and itself endocellularly harboring gammaproteobacterial cells, whereas P. azaleae exhibited a simple endosymbiotic system in which T. phenacola cells are localized within the bacteriocytes without additional gammaproteobacterial associates. Considering that these mealybugs live on the identical plant phloem sap, these different endosymbiotic consortia likely play similar biological roles for their host insects. The findings presented here should be helpful for future functional and comparative genomics toward elucidating evolutionary pathways of mealybugs and their endosymbionts.
Collapse
Affiliation(s)
- Ryuichi Koga
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.
| | | | | | | | | |
Collapse
|
19
|
Beltrà A, Soto A, Malausa T. Molecular and morphological characterisation of Pseudococcidae surveyed on crops and ornamental plants in Spain. BULLETIN OF ENTOMOLOGICAL RESEARCH 2012; 102:165-172. [PMID: 22008190 DOI: 10.1017/s0007485311000514] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Mealybugs (Hemiptera: Pseudococcidae) are common invasive pests in Europe, causing major problems on crops and ornamental plants. However, very few data are available concerning the mealybug fauna of southern Europe. This lack of data and the difficulty of identifying mealybugs morphologically by traditional techniques currently limit the perspectives for efficient specific pest management. The aim of this study was to provide multi-criterion characterization of mealybugs surveyed in eastern Spain in order to facilitate their routine identification through DNA sequencing or the use of derived species-specific molecular tools. We characterised 33 mealybug populations infesting crops and ornamental plants in eastern Spain, using a combination of molecular and morphological techniques, including the sequencing of the universal barcode DNA region cytochrome c oxidase subunit I (COI). This characterisation has led to the identification of ten species and provides sequence data for three previously unsequenced species, contributing to the phylogenetic knowledge of the family Pseudococcidae. In addition, the intraspecific variations found in the populations of five mealybug species provide insight into their invasion history.
Collapse
Affiliation(s)
- A Beltrà
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Camí de Vera s/n, 46020 Valencia, Spain.
| | | | | |
Collapse
|
20
|
Gatehouse LN, Sutherland P, Forgie SA, Kaji R, Christeller JT. Molecular and histological characterization of primary (betaproteobacteria) and secondary (gammaproteobacteria) endosymbionts of three mealybug species. Appl Environ Microbiol 2012; 78:1187-97. [PMID: 22156418 PMCID: PMC3273002 DOI: 10.1128/aem.06340-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 11/23/2011] [Indexed: 11/20/2022] Open
Abstract
Microscopic localization of endosymbiotic bacteria in three species of mealybug (Pseudococcus longispinus, the long-tailed mealybug; Pseudococcus calceolariae, the citrophilus mealybug; and Pseudococcus viburni, the obscure mealybug) showed these organisms were confined to bacteriocyte cells within a bacteriome centrally located within the hemocoel. Two species of bacteria were present, with the secondary endosymbiont, in all cases, living within the primary endosymbiont. DNA from the dissected bacteriomes of all three species of mealybug was extracted for analysis. Sequence data from selected 16S rRNA genes confirmed identification of the primary endosymbiont as "Candidatus Tremblaya princeps," a betaproteobacterium, and the secondary endosymbionts as gammaproteobacteria closely related to Sodalis glossinidius. A single 16S rRNA sequence of the primary endosymbiont was found in all individuals of each mealybug species. In contrast, the presence of multiple divergent strains of secondary endosymbionts in each individual mealybug suggests different evolutionary and transmission histories of the two endosymbionts. Mealybugs are known vectors of the plant pathogen Grapevine leafroll-associated virus 3. To examine the possible role of either endosymbiont in virus transmission, an extension of the model for interaction of proteins with bacterial chaperonins, i.e., GroEL protein homologs, based on mobile-loop amino acid sequences of their GroES homologs, was developed and used for analyses of viral coat protein interactions. The data from this model are consistent with a role for the primary endosymbiont in mealybug transmission of Grapevine leafroll-associated virus 3.
Collapse
|
21
|
McCutcheon JP, Moran NA. Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol 2011; 10:13-26. [PMID: 22064560 DOI: 10.1038/nrmicro2670] [Citation(s) in RCA: 983] [Impact Index Per Article: 70.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Since 2006, numerous cases of bacterial symbionts with extraordinarily small genomes have been reported. These organisms represent independent lineages from diverse bacterial groups. They have diminutive gene sets that rival some mitochondria and chloroplasts in terms of gene numbers and lack genes that are considered to be essential in other bacteria. These symbionts have numerous features in common, such as extraordinarily fast protein evolution and a high abundance of chaperones. Together, these features point to highly degenerate genomes that retain only the most essential functions, often including a considerable fraction of genes that serve the hosts. These discoveries have implications for the concept of minimal genomes, the origins of cellular organelles, and studies of symbiosis and host-associated microbiota.
Collapse
Affiliation(s)
- John P McCutcheon
- University of Montana, Division of Biological Sciences, 32 Campus Drive, HS104, Missoula, Montana 59812, USA.
| | | |
Collapse
|
22
|
López-Madrigal S, Latorre A, Porcar M, Moya A, Gil R. Complete genome sequence of "Candidatus Tremblaya princeps" strain PCVAL, an intriguing translational machine below the living-cell status. J Bacteriol 2011; 193:5587-5588. [PMID: 21914892 PMCID: PMC3187454 DOI: 10.1128/jb.05749-11] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 07/25/2011] [Indexed: 02/07/2023] Open
Abstract
The sequence of the genome of "Candidatus Tremblaya princeps" strain PCVAL, the primary endosymbiont of the citrus mealybug Planococcus citri, has been determined. "Ca. Tremblaya princeps" presents an unusual nested endosymbiosis and harbors a gammaproteobacterial symbiont within its cytoplasm in all analyzed mealybugs. The genome sequence reveals that "Ca. Tremblaya princeps" cannot be considered an independent organism but that the consortium with its gammaproteobacterial symbiotic associate represents a new composite living being.
Collapse
Affiliation(s)
- Sergio López-Madrigal
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Apartado Postal 22085, 46071 València, Spain
- Departament de Genètica, Universitat de València, Dr. Moliner, 50, 46100 Burjassot (València), Spain
| | - Amparo Latorre
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Apartado Postal 22085, 46071 València, Spain
- Departament de Genètica, Universitat de València, Dr. Moliner, 50, 46100 Burjassot (València), Spain
- Área de Genómica y Salud, Centro Superior de Investigación en Salud Pública (CSISP), Avenida de Cataluña 21, 46020 Valencia, Spain
| | - Manuel Porcar
- Fundació General de la Universitat de València. Apartado Postal 22085, 46071 València, Spain
| | - Andrés Moya
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Apartado Postal 22085, 46071 València, Spain
- Departament de Genètica, Universitat de València, Dr. Moliner, 50, 46100 Burjassot (València), Spain
- Área de Genómica y Salud, Centro Superior de Investigación en Salud Pública (CSISP), Avenida de Cataluña 21, 46020 Valencia, Spain
| | - Rosario Gil
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Apartado Postal 22085, 46071 València, Spain
- Departament de Genètica, Universitat de València, Dr. Moliner, 50, 46100 Burjassot (València), Spain
| |
Collapse
|
23
|
McCutcheon JP, von Dohlen CD. An interdependent metabolic patchwork in the nested symbiosis of mealybugs. Curr Biol 2011; 21:1366-72. [PMID: 21835622 DOI: 10.1016/j.cub.2011.06.051] [Citation(s) in RCA: 244] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 05/23/2011] [Accepted: 06/21/2011] [Indexed: 11/28/2022]
Abstract
Highly reduced genomes of 144-416 kilobases have been described from nutrient-provisioning bacterial symbionts of several insect lineages [1-5]. Some host insects have formed stable associations with pairs of bacterial symbionts that live in specialized cells and provide them with essential nutrients; genomic data from these systems have revealed remarkable levels of metabolic complementarity between the symbiont pairs [3, 4, 6, 7]. The mealybug Planococcus citri (Hemiptera: Pseudococcidae) contains dual bacterial symbionts existing with an unprecedented organization: an unnamed gammaproteobacteria, for which we propose the name Candidatus Moranella endobia, lives inside the betaproteobacteria Candidatus Tremblaya princeps [8]. Here we describe the complete genomes and metabolic contributions of these unusual nested symbionts. We show that whereas there is little overlap in retained genes involved in nutrient production between symbionts, several essential amino acid pathways in the mealybug assemblage require a patchwork of interspersed gene products from Tremblaya, Moranella, and possibly P. citri. Furthermore, although Tremblaya has the smallest cellular genome yet described, it contains a genomic inversion present in both orientations in individual insects, starkly contrasting with the extreme structural stability typical of highly reduced bacterial genomes [4, 9, 10].
Collapse
Affiliation(s)
- John P McCutcheon
- Center for Insect Science, University of Arizona, Tucson, AZ 85721, USA.
| | | |
Collapse
|
24
|
|
25
|
Shanchez-Contreras M, Vlisidou I. The diversity of insect-bacteria interactions and its applications for disease control. Biotechnol Genet Eng Rev 2011; 25:203-43. [PMID: 21412357 DOI: 10.5661/bger-25-203] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Prokaryotic microorganisms are widespread in all environments on Earth, establishing diverse interactions with many eukaryotic taxa, including insects. These associations may be symbiotic, pathogenic and vectoring. Independently of the type of interaction, each association starts with the adhesion of the microorganism to the host, entry and "invasion" of the host, then progresses to establishment and dissemination within the host, by avoiding host immune responses, and concludes with transmission back to the environment or to a new host. Advances in genomics and genetics have allowed the dissection of these processes and provided important information on the elements driving the shaping of the members of each association. Furthermore, many mechanisms involved in the establishment of the associations have been scrutinised, along with the development of new methods for the management of insect populations.
Collapse
|
26
|
Ivanov IP, Firth AE, Michel AM, Atkins JF, Baranov PV. Identification of evolutionarily conserved non-AUG-initiated N-terminal extensions in human coding sequences. Nucleic Acids Res 2011; 39:4220-34. [PMID: 21266472 PMCID: PMC3105428 DOI: 10.1093/nar/gkr007] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In eukaryotes, it is generally assumed that translation initiation occurs at the AUG codon closest to the messenger RNA 5' cap. However, in certain cases, initiation can occur at codons differing from AUG by a single nucleotide, especially the codons CUG, UUG, GUG, ACG, AUA and AUU. While non-AUG initiation has been experimentally verified for a handful of human genes, the full extent to which this phenomenon is utilized--both for increased coding capacity and potentially also for novel regulatory mechanisms--remains unclear. To address this issue, and hence to improve the quality of existing coding sequence annotations, we developed a methodology based on phylogenetic analysis of predicted 5' untranslated regions from orthologous genes. We use evolutionary signatures of protein-coding sequences as an indicator of translation initiation upstream of annotated coding sequences. Our search identified novel conserved potential non-AUG-initiated N-terminal extensions in 42 human genes including VANGL2, FGFR1, KCNN4, TRPV6, HDGF, CITED2, EIF4G3 and NTF3, and also affirmed the conservation of known non-AUG-initiated extensions in 17 other genes. In several instances, we have been able to obtain independent experimental evidence of the expression of non-AUG-initiated products from the previously published literature and ribosome profiling data.
Collapse
Affiliation(s)
- Ivaylo P Ivanov
- BioSciences Institute, University College Cork, Cork, Ireland.
| | | | | | | | | |
Collapse
|
27
|
Pérez-Brocal V, Latorre A, Moya A. Symbionts and pathogens: what is the difference? Curr Top Microbiol Immunol 2011; 358:215-43. [PMID: 22076025 DOI: 10.1007/82_2011_190] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The ecological relationships that organisms establish with others can be considered as broad and diverse as the forms of life that inhabit and interact in our planet. Those interactions can be considered as a continuum spectrum, ranging from beneficial to detrimental outcomes. However, this picture has revealed as more complex and dynamic than previously thought, involving not only factors that affect the two or more members that interact, but also external forces, with chance playing a crucial role in this interplay. Thus, defining a particular symbiont as mutualist or pathogen in an exclusive way, based on simple rules of classification is increasingly challenging if not unfeasible, since new methodologies are providing more evidences that depict exceptions, reversions and transitions within either side of this continuum, especially evident at early stages of symbiotic associations. This imposes a wider and more dynamic view of a complex landscape of interactions.
Collapse
Affiliation(s)
- Vicente Pérez-Brocal
- Área de Genómica y Salud, Centro Superior de Investigación en Salud Pública, Valencia, Spain.
| | | | | |
Collapse
|
28
|
Clark EL, Karley AJ, Hubbard SF. Insect endosymbionts: manipulators of insect herbivore trophic interactions? PROTOPLASMA 2010; 244:25-51. [PMID: 20495935 DOI: 10.1007/s00709-010-0156-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 04/22/2010] [Indexed: 05/29/2023]
Abstract
Throughout their evolutionary history, insects have formed multiple relationships with bacteria. Although many of these bacteria are pathogenic, with deleterious effects on the fitness of infected insects, there are also numerous examples of symbiotic bacteria that are harmless or even beneficial to their insect host. Symbiotic bacteria that form obligate or facultative associations with insects and that are located intracellularly in the host insect are known as endosymbionts. Endosymbiosis can be a strong driving force for evolution when the acquisition and maintenance of a microorganism by the insect host results in the formation of novel structures or changes in physiology and metabolism. The complex evolutionary dynamics of vertically transmitted symbiotic bacteria have led to distinctive symbiont genome characteristics that have profound effects on the phenotype of the host insect. Symbiotic bacteria are key players in insect-plant interactions influencing many aspects of insect ecology and playing a key role in shaping the diversification of many insect groups. In this review, we discuss the role of endosymbionts in manipulating insect herbivore trophic interactions focussing on their impact on plant utilisation patterns and parasitoid biology.
Collapse
Affiliation(s)
- Emily L Clark
- Environment Plant Interactions Programme, Scottish Crop Research Institute, Invergowrie, DD2 5DA, Scotland, UK.
| | | | | |
Collapse
|
29
|
Gosalbes MJ, Latorre A, Lamelas A, Moya A. Genomics of intracellular symbionts in insects. Int J Med Microbiol 2010; 300:271-278. [PMID: 20093081 DOI: 10.1016/j.ijmm.2009.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Revised: 12/03/2009] [Accepted: 12/20/2009] [Indexed: 02/07/2023] Open
Abstract
Endosymbiotic bacteria play a vital role in the evolution of many insect species. For instance, endosymbionts have evolved metabolically to complement their host's natural diet, thereby enabling them to explore new habitats. In this paper, we will review and give some examples of the nature of the metabolic coupling of different primary and secondary endosymbionts that have evolved in hosts with different nutritional diets (i.e., phloem, xylem, blood, omnivores, and grain). Particular emphasis is given to the evolutionary functional convergence of phylogenetically distant endosymbionts, which are evolving in hosts with similar diets.
Collapse
Affiliation(s)
- María José Gosalbes
- Unidad Mixta de Investigación en Genómica y Salud Centro Superior de Investigación en Salud Pública (CSISP), Institut Cavanilles de Biodiversitat i Biologia Evolutiva (Universitat de València), Apartado Postal 22085, 46071 Valencia, Spain
| | | | | | | |
Collapse
|
30
|
Gil R, Latorre A, Moya A. Evolution of Prokaryote-Animal Symbiosis from a Genomics Perspective. (ENDO)SYMBIOTIC METHANOGENIC ARCHAEA 2010. [DOI: 10.1007/978-3-642-13615-3_11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Castillo DM, Pawlowska TE. Molecular Evolution in Bacterial Endosymbionts of Fungi. Mol Biol Evol 2009; 27:622-36. [DOI: 10.1093/molbev/msp280] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
32
|
Mazzon L, Piscedda A, Simonato M, Martinez-Sanudo I, Squartini A, Girolami V. Presence of specific symbiotic bacteria in flies of the subfamily Tephritinae (Diptera Tephritidae) and their phylogenetic relationships: proposal of 'Candidatus Stammerula tephritidis'. Int J Syst Evol Microbiol 2008; 58:1277-87. [DOI: 10.1099/ijs.0.65287-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
33
|
Infection dynamics of coexisting beta- and gammaproteobacteria in the nested endosymbiotic system of mealybugs. Appl Environ Microbiol 2008; 74:4175-84. [PMID: 18469124 DOI: 10.1128/aem.00250-08] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the infection dynamics of endosymbiotic bacteria in the developmental course of the mealybugs Planococcus kraunhiae and Pseudococcus comstocki. Molecular phylogenetic analyses identified a betaproteobacterium and a gammaproteobacterium from each of the mealybug species. The former bacterium was related to the beta-endosymbionts of other mealybugs, i.e., "Candidatus Tremblaya princeps," and formed a compact clade in the Betaproteobacteria. Meanwhile, the latter bacterium was related to the gamma-endosymbionts of other mealybugs but belonged to distinct clades in the Gammaproteobacteria. Whole-mount in situ hybridization confirmed the peculiar nested formation in the endosymbiotic system of the mealybugs: the beta-endosymbiont cells were present in the cytoplasm of the bacteriocytes, and the gamma-endosymbiont cells were located in the beta-endosymbiont cells. In nymphal and female development, a large oval bacteriome consisting of a number of bacteriocytes was present in the abdomen, wherein the endosymbionts were harbored. In male development, strikingly, the bacteriome progressively degenerated in prepupae and pupae and became almost unrecognizable in adult males. In the degeneration process, the gamma-endosymbionts disappeared more rapidly than the beta-endosymbionts did. Quantitative PCR analyses revealed that (i) the population dynamics of the endosymbionts in female development reflected the reproductive activity of the insects, (ii) the population dynamics of the endosymbionts were strikingly different between female development and male development, (iii) the endosymbiont populations drastically decreased in male development, and (iv) the gamma-endosymbiont populations decreased more rapidly than the beta-endosymbiont populations in male development. Possible mechanisms underlying the uncoupled regulation of the beta- and gamma-endosymbiont populations are discussed in relation to the establishment and evolution of this unique prokaryote-prokaryote endosymbiotic system.
Collapse
|
34
|
Douglas AE. Symbiotic microorganisms: untapped resources for insect pest control. Trends Biotechnol 2007; 25:338-42. [PMID: 17576018 DOI: 10.1016/j.tibtech.2007.06.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2007] [Revised: 04/16/2007] [Accepted: 06/04/2007] [Indexed: 10/23/2022]
Abstract
Symbiotic microorganisms offer one route to meet the anticipated heightened demand for novel insect pest management strategies created by growing human populations and global climate change. Two approaches have particular potential: the disruption of microbial symbionts required by insect pests, and manipulation of microorganisms with major impacts on insect traits contributing to their pest status (e.g. capacity to vector diseases, natural enemy resistance). Specific research priorities addressed in this article include identification of molecular targets against which highly specific antagonists can be designed or discovered, and management strategies to manipulate the incidence and properties of facultative microorganisms that influence insect pest traits. Collaboration with practitioners in pest management will ensure that the research agenda is married to agricultural and public health needs.
Collapse
Affiliation(s)
- Angela E Douglas
- Department of Biology, University of York, PO Box 373, York, UK, YO10 5YW.
| |
Collapse
|
35
|
Abstract
Psyllids, whiteflies, aphids, and mealybugs are members of the suborder Sternorrhyncha and share a common property, namely the utilization of plant sap as their food source. Each of these insect groups has an obligatory association with a different prokaryotic endosymbiont, and the association is the result of a single infection followed by maternal, vertical transmission of the endosymbionts. The result of this association is the domestication of the free-living bacterium to serve the purposes of the host, namely the synthesis of essential amino acids. This domestication is probably in all cases accompanied by a major reduction in genome size. The different properties of the genomes and fragments of the genomes of these endosymbionts suggest that there are different constraints on the permissible evolutionary changes that are probably a function of the gene repertoire of the endosymbiont ancestor and the gene losses that occurred during the reduction of genome size.
Collapse
Affiliation(s)
- Paul Baumann
- Microbiology Section, University of California, Davis, California 95616,USA.
| |
Collapse
|
36
|
Douglas AE. Phloem-sap feeding by animals: problems and solutions. JOURNAL OF EXPERIMENTAL BOTANY 2006; 57:747-54. [PMID: 16449374 DOI: 10.1093/jxb/erj067] [Citation(s) in RCA: 345] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The incidence of phloem sap feeding by animals appears paradoxical. Although phloem sap is nutrient-rich compared with many other plant products and generally lacking in toxins and feeding deterrents, it is consumed as the dominant or sole diet by a very restricted range of animals, exclusively insects of the order Hemiptera. These insects display two sets of adaptations. First, linked to the high ratio of non-essential:essential amino acids in phloem sap, these insects contain symbiotic micro-organisms which provide them with essential amino acids. For example, bacteria of the genus Buchnera contribute up to 90% of the essential amino acids required by the pea aphid Acyrthosiphon pisum feeding on Vicia faba. Second, the insect tolerance of the very high sugar content and osmotic pressure of phloem sap is promoted by their possession in the gut of sucrase-transglucosidase activity, which transforms excess ingested sugar into long-chain oligosaccharides voided via honeydew. Various other animals consume phloem sap by proxy, through feeding on the honeydew of phloem-feeding hemipterans. Honeydew is physiologically less extreme than phloem sap, with a higher essential:non-essential amino acid ratio and lower osmotic pressure. Even so, ant species strongly dependent on honeydew as food may benefit from nutrients derived from their symbiotic bacteria Blochmannia.
Collapse
Affiliation(s)
- A E Douglas
- Department of Biology, University of York, PO Box 373, York YO10 5YW, UK.
| |
Collapse
|
37
|
Sacchi L, Bigliardi E, Corona S, Beninati T, Lo N, Franceschi A. A symbiont of the tick Ixodes ricinus invades and consumes mitochondria in a mode similar to that of the parasitic bacterium Bdellovibrio bacteriovorus. Tissue Cell 2004; 36:43-53. [PMID: 14729452 DOI: 10.1016/j.tice.2003.08.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have recently performed molecular characterisation of an intracellular alpha-proteobacterium, named IricES1, which resides in the ovarian tissue of female Ixodes ricinus ticks from Italy. A unique characteristic of this bacterium is its ability to invade the mitochondria of the cells in which it resides. Although some ultrastructural studies have been performed on close relatives of this bacterium from I. ricinus in England and Switzerland, a number of questions remain about its movement within ovarian tissues and mitochondria. We have performed the first detailed ultrastructural examination of IricES1 in engorged female adult I. ricinus. Among our findings was that the bacterium enters mitochondria in a similar way to that employed by the 'predatory' bacterium Bdellovibro bacteriovorus, that is, between the inner and outer membranes. It then appears to multiply, with the new 'colony' consuming the mitochondrial matrix. Despite having many of their mitochondria consumed, oocytes appear to develop normally, and the bacteria are likely to be vertically transferred to all eggs.
Collapse
Affiliation(s)
- L Sacchi
- Dipartimento di Biologia Animale, Università di Pavia, Piazza Botta 9, 27100 Pavia, Italy.
| | | | | | | | | | | |
Collapse
|
38
|
Gueneau de Novoa P, Williams KP. The tmRNA website: reductive evolution of tmRNA in plastids and other endosymbionts. Nucleic Acids Res 2004; 32:D104-8. [PMID: 14681369 PMCID: PMC308836 DOI: 10.1093/nar/gkh102] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
tmRNA combines tRNA- and mRNA-like properties and ameliorates problems arising from stalled ribosomes. Research on the mechanism, structure and biology of tmRNA is served by the tmRNA website (http://www.indiana.edu/~ tmrna), a collection of sequences, alignments, secondary structures and other information. Because many of these sequences are not in GenBank, a BLAST server has been added; another new feature is an abbreviated alignment for the tRNA-like domain only. Many tmRNA sequences from plastids have been added, five found in public sequence data and another 10 generated by direct sequencing; detection in early-branching members of the green plastid lineage brings coverage to all three primary plastid lineages. The new sequences include the shortest known tmRNA sequence. While bacterial tmRNAs usually have a lone pseudoknot upstream of the mRNA segment and a string of three or four pseudoknots downstream, plastid tmRNAs collectively show loss of pseudoknots at both postions. The pseudoknot-string region is also too short to contain the usual pseudoknot number in another new entry, the tmRNA sequence from a bacterial endosymbiont of insect cells, Tremblaya princeps. Pseudoknots may optimize tmRNA function in free-living bacteria, yet become dispensible when the endosymbiotic lifestyle relaxes selective pressure for fast growth.
Collapse
Affiliation(s)
- Pulcherie Gueneau de Novoa
- Centro de Biofisica y Bioquimica, Instituto Venezolano de Investigaciones Cientificas, Altos de Pipe, MI, Venezuela
| | | |
Collapse
|
39
|
Abstract
The gamma-proteobacterial symbionts of insects are a model group for comparative studies of genome reduction. The phylogenetic proximity of these reduced genomes to the larger genomes of well-studied free-living bacteria has enabled reconstructions of the process by which genes and DNA are lost. Three genome sequences are now available for Buchnera aphidicola. Analyses of Buchnera genomes in comparison with those of related enteric bacteria suggest that extensive changes including large deletions, repetitive element proliferation and chromosomal rearrangements occurred initially, followed by extreme stasis in gene order and slow decay of additional genes. This pattern appears to be characteristic of symbiont evolution.
Collapse
Affiliation(s)
- Nancy A Moran
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
40
|
Wernegreen JJ, Degnan PH, Lazarus AB, Palacios C, Bordenstein SR. Genome evolution in an insect cell: distinct features of an ant-bacterial partnership. THE BIOLOGICAL BULLETIN 2003; 204:221-231. [PMID: 12700158 DOI: 10.2307/1543563] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Bacteria that live exclusively within eukaryotic host cells include not only well-known pathogens, but also obligate mutualists, many of which occur in diverse insect groups such as aphids, psyllids, tsetse flies, and the ant genus Camponotus (Buchner, 1965; Douglas, 1998; Moran and Telang, 1998; Baumann et al., 2000; Moran and Baumann, 2000). In contrast to intracellular pathogens, these primary (P) endosymbionts of insects are required for the survival and reproduction of the host, exist within specialized host cells called bacteriocytes, and undergo stable maternal transmission through host lineages (Buchner, 1965; McLean and Houk, 1973). Due to their long-term host associations and close phylogenetic relationship with well-characterized enterobacteria (Fig. 1), P-endosymbionts of insects are ideal model systems to examine changes in genome content and architecture that occur in the context of beneficial, intracellular associations. Since these bacteria have not been cultured outside of the host cell, they are difficult to study with traditional genetic or physiological approaches. However, in recent years, molecular and computational approaches have provided important insights into their genetic diversity and ecological significance. This review describes some recent insights into the evolutionary genetics of obligate insect-bacteria symbioses, with a particular focus on an intriguing association between the bacterial endosymbiont Blochmannia and its ant hosts.
Collapse
Affiliation(s)
- Jennifer J Wernegreen
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, 7 MBL Street, Woods Hole, Massachusetts 02543, USA.
| | | | | | | | | |
Collapse
|
41
|
Gross R, Hacker J, Goebel W. The Leopoldina international symposium on parasitism, commensalism and symbiosis--common themes, different outcome. Mol Microbiol 2003; 47:1749-58. [PMID: 12622826 DOI: 10.1046/j.1365-2958.2003.03443.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The development of new methods, including genomics, which can even be applied to unculturable microorganisms, has significantly increased our knowledge about bacterial pathogenesis and symbiosis and, in consequence, is profoundly modifying our views on the evolution and the genetic and physiological basis of bacteria-host interactions. The presentations at this symposium revealed conceptual links between bacterial pathogenesis and symbiosis. The close co-operation of experts in both fields will result in significant synergy and new insights into basic mechanisms of bacteria-host interactions and their evolution. The meeting provided fascinating news about the genetic and metabolic consequences that the change in their lifestyle had for bacteria that developed from free-living to permanent host-associated organisms exemplified by intracellular pathogens or symbionts. In addition, surprising similarities but also striking differences between the strategies involved in the establishment of a symbiotic versus a parasitic lifestyle can be noted. In the long run, the characterization of such differences might lead to lifestyle prediction or to an evaluation of the pathogenic potential of newly isolated bacteria via the definition of genetic and/or metabolic signatures characteristic for pathogenic or symbiotic organisms. Moreover, it is expected that these investigations will lead to new strategies for the treatment or prevention of bacterial infections, or the avoidance of pathogen transmission.
Collapse
Affiliation(s)
- Roy Gross
- Lehrstuhl für Mikrobiologie, Theodor-Boveri-Institut, Biozentrum, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| | | | | |
Collapse
|
42
|
Moran NA, Dale C, Dunbar H, Smith WA, Ochman H. Intracellular symbionts of sharpshooters (Insecta: Hemiptera: Cicadellinae) form a distinct clade with a small genome. Environ Microbiol 2003; 5:116-26. [PMID: 12558594 DOI: 10.1046/j.1462-2920.2003.00391.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The leafhoppers (Insecta: Hemiptera: Cicadellidae) are the most species-rich group of invertebrates in which intracellular symbionts are usual. Here we present the first molecular characterization of bacteriome-associates in the leafhoppers, with focus on the subfamily Cicadellinae (sharpshooters). Phylogenetic analyses of 16S rDNA sequences from intracellular symbionts residing in the bacteriomes of five host species indicate that these symbionts form a well-defined clade within the gamma-3 Proteobacteria, consistent with an ancient colonization and strict vertical transmission. More extensive gene sequence information is reported for the symbiont of Homalodisca coagulata (Say). The genome size, as determined by pulsed field gel electrophoresis, is approximately 680 kb. This finding, when combined with published results for symbionts of aphids, ants, psyllids and tsetse flies, adds to an emerging pattern which suggests that bacteriome associates often descend from ancient infections by gamma Proteobacteria, and that these lineages have undergone pronounced genome reduction. A new genus and species name, 'Candidatus Baumannia cicadellinicola' (sp. nov.) is proposed for this newly characterized clade of symbiotic bacteria.
Collapse
Affiliation(s)
- Nancy A Moran
- Department of Ecology and Evolutionary Biology, Biological Sciences West 310, University of Arizona, Tucson 85721, USA.
| | | | | | | | | |
Collapse
|
43
|
Abstract
Many insect species rely on intracellular bacterial symbionts for their viability and fecundity. Large-scale DNA-sequence analyses are revealing the forces that shape the evolution of these bacterial associates and the genetic basis of their specialization to an intracellular lifestyle. The full genome sequences of two obligate mutualists, Buchnera aphidicola of aphids and Wigglesworthia glossinidia of tsetse flies, reveal substantial gene loss and an integration of host and symbiont metabolic functions. Further genomic comparisons should reveal the generality of these features among bacterial mutualists and the extent to which they are shared with other intracellular bacteria, including obligate pathogens.
Collapse
Affiliation(s)
- Jennifer J Wernegreen
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA.
| |
Collapse
|
44
|
Thao ML, Gullan PJ, Baumann P. Secondary (gamma-Proteobacteria) endosymbionts infect the primary (beta-Proteobacteria) endosymbionts of mealybugs multiple times and coevolve with their hosts. Appl Environ Microbiol 2002; 68:3190-7. [PMID: 12088994 PMCID: PMC126777 DOI: 10.1128/aem.68.7.3190-3197.2002] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2002] [Accepted: 04/19/2002] [Indexed: 11/20/2022] Open
Abstract
Mealybugs (Hemiptera, Coccoidea, Pseudococcidae) are plant sap-sucking insects that have within their body cavities specialized cells containing prokaryotic primary endosymbionts (P-endosymbionts). The P-endosymbionts have the unusual property of containing within their cytoplasm prokaryotic secondary endosymbionts (S-endosymbionts) [C. D. von Dohlen, S. Kohler, S. T. Alsop, and W. R. McManus, Nature (London) 412:433-436, 2001]. Four-kilobase fragments containing 16S-23S ribosomal DNA (rDNA) were obtained from the P-endosymbionts of 22 mealybug species and the S-endosymbionts of 12 representative species. Phylogenetic analyses of the P-endosymbionts indicated that they have a monophyletic origin and are members of the beta-subdivision of the Proteobacteria; these organisms were subdivided into five different clusters. The S-endosymbionts were members of the gamma-subdivision of the Proteobacteria and were grouped into clusters similar to those observed with the P-endosymbionts. The S-endosymbiont clusters were distinct from each other and from other insect-associated bacteria. The similarity of the clusters formed by the P- and S-endosymbionts suggests that the P-endosymbionts of mealybugs were infected multiple times with different precursors of the S-endosymbionts and once the association was established, the P- and S-endosymbionts were transmitted together. The lineage consisting of the P-endosymbionts of mealybugs was given the designation "Candidatus Tremblaya" gen. nov., with a single species, "Candidatus Tremblaya princeps" sp. nov. The results of phylogenetic analyses of mitochondrial DNA fragments encoding cytochrome oxidase subunits I and II from four representative mealybug species were in agreement with the results of 16S-23S rDNA analyses, suggesting that relationships among strains of "Candidatus T. princeps" are useful in inferring the phylogeny of their mealybug hosts.
Collapse
Affiliation(s)
- MyLo Ly Thao
- Microbiology Section, University of California-Davis, Davis, CA 95616-8665, USA
| | | | | |
Collapse
|