1
|
Kim J, Kim YJ, Lee SH, Kim J, Joun WT, Ha SW, Lee S, Ryu JH, Jeen SW, Lee KK. Seasonal variation of groundwater quality and potential risks in U-bearing formations revealed from hydrogeological-microbiological investigation. ENVIRONMENTAL RESEARCH 2025; 276:121544. [PMID: 40187392 DOI: 10.1016/j.envres.2025.121544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/24/2025] [Accepted: 04/03/2025] [Indexed: 04/07/2025]
Abstract
This study investigates the influence of hydrological and microbial conditions on uranium (U) mobility, water quality, and associated health risks in U-bearing formations near a lake in South Korea. Since 2021, natural analogue studies have been conducted to ensure the safety of geological disposal of spent nuclear fuels. The study site experiences two distinct seasons: dry and wet. Using a combination of radon, strontium isotopes, noble gases, microbial community analysis, and flow system modeling, the study examines seasonal variations in groundwater characteristics. Results show that U concentrations are low in subsurface environments under reduced conditions, which is supported by low dissolved oxygen levels and the presence of Pseudomonas and Clostridium genera. In deeper wells, radiogenic 4He was detected, indicating the decay of 238U. The 87Sr/86Sr and 234U/238U activity ratios suggest mixing between water bodies at shallow depths during the wet season, along with longer residence times indicated by radon. Flow velocity was higher during the wet season. Health risks from U exposure were generally low due to limited U mobility, but shallow groundwater was classified as undrinkable, especially during the wet season. The study demonstrates that U mobility is seasonally controlled by hydrological and microbial conditions, highlighting the importance of dual indices-groundwater quality and health risks-for effective water management. These findings are crucial for evaluating the safety of geological disposal of radionuclides under varying hydrological conditions.
Collapse
Affiliation(s)
- Jaeyeon Kim
- School of Earth and Environmental Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ye Ji Kim
- School of Earth and Environmental Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Suh-Ho Lee
- School of Earth and Environmental Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jiyoon Kim
- School of Earth and Environmental Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Won-Tak Joun
- Disposal Performance Demonstration R&D Division, Korea Atomic Energy Research Institute, Daejeon, Republic of Korea
| | - Seung-Wook Ha
- School of Earth and Environmental Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sanghoon Lee
- Disposal Performance Demonstration R&D Division, Korea Atomic Energy Research Institute, Daejeon, Republic of Korea
| | - Ji-Hun Ryu
- Disposal Performance Demonstration R&D Division, Korea Atomic Energy Research Institute, Daejeon, Republic of Korea
| | - Sung-Wook Jeen
- Department of Earth and Environmental Sciences & The Earth and Environmental Science System Research Center, Jeonbuk National University, Jeonju, Republic of Korea; Department of Environment and Energy, Jeonbuk National University, Jeonju, Republic of Korea
| | - Kang-Kun Lee
- School of Earth and Environmental Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
2
|
Tan JP, Clyde CW, Ng CC, Yeap SK, Yong CY. Advancements in microbial-mediated radioactive waste bioremediation: A review. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2024; 280:107530. [PMID: 39378736 DOI: 10.1016/j.jenvrad.2024.107530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 10/10/2024]
Abstract
The global production of radioactive wastes is expected to increase in the coming years as more countries have resorted to adopting nuclear power to decrease their reliance on fossil-fuel-generated energy. Discoveries of remediation methods that can remove radionuclides from radioactive wastes, including those discharged to the environment, are therefore vital to reduce risks-upon-exposure radionuclides posed to humans and wildlife. Among various remediation approaches available, microbe-mediated radionuclide remediation have limited reviews regarding their advances. This review provides an overview of the sources and existing classification of radioactive wastes, followed by a brief introduction to existing radionuclide remediation (physical, chemical, and electrochemical) approaches. Microbe-mediated radionuclide remediation (bacterial, myco-, and phycoremediation) is then extensively discussed. Bacterial remediation involves biological processes like bioreduction, biosorption, and bioprecipitation. Bioreduction involves the reduction of water-soluble, mobile radionuclides to water-insoluble, immobile lower oxidation states by ferric iron-reducing, sulfate-reducing, and certain extremophilic bacteria, and in situ remediation has become possible by adding electron donors to contaminated waters to enrich indigenous iron- and sulfate-reducing bacteria populations. In biosorption, radionuclides are associated with functional groups on the microbial cell surface, followed by getting reduced to immobilized forms or precipitated intracellularly or extracellularly. Myco- and phycoremediation often involve processes like biosorption and bioaccumulation, where the former is influenced by pH and cell concentration. A Strengths, Weaknesses, Opportunities, and Threats (SWOT) analysis on microbial remediation is also performed. It is suggested that two research directions: genetic engineering of radiation-resistant microorganisms and co-application of microbe-mediated remediation with other remediation methods could potentially result in the discovery of in situ or ex situ microbe-involving radioactive waste remediation applications with high practicability. Finally, a comparison between the strengths and weaknesses of each approach is provided.
Collapse
Affiliation(s)
- Jin Ping Tan
- China-ASEAN College of Marine Sciences (CAMS), Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor Darul Ehsan, Malaysia
| | - Christal Winona Clyde
- China-ASEAN College of Marine Sciences (CAMS), Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor Darul Ehsan, Malaysia
| | - Chuck Chuan Ng
- China-ASEAN College of Marine Sciences (CAMS), Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor Darul Ehsan, Malaysia.
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences (CAMS), Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor Darul Ehsan, Malaysia
| | - Chean Yeah Yong
- China-ASEAN College of Marine Sciences (CAMS), Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
3
|
Khuong NQ, Sakpirom J, Oanh TO, Thuc LV, Thu LTM, Xuan DT, Quang LT, Xuan LNT. Isolation and characterization of novel potassium-solubilizing purple nonsulfur bacteria from acidic paddy soils using culture-dependent and culture-independent techniques. Braz J Microbiol 2023; 54:2333-2348. [PMID: 37507640 PMCID: PMC10484875 DOI: 10.1007/s42770-023-01069-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
The current research as aimed (i) to isolate and select the purple nonsulfur bacteria (PNSB) possessing the potassium-solubilizing ability from acid paddy fields and (ii) to evaluate the ability to release the plant growth-promoting substances (PGPS) of selected PNSB. A total of 35 acid sulfate (AS) soil samples were collected in An Giang province, Vietnam. Then, 70 PNSB strains were isolated from the AS soil samples. In the current study, the isolated strains were screened and selected according to their tolerability to acidic conditions, ability to solubilize potassium, and characteristics of a plant growth promoter on basic isolation media with various incubation conditions. Therein, three strains, TT07.4, AN05.1, and AC04.1, presented the highest potassium solubilization under the microaerobic light (11.8-17.7 mg L-1) and aerobic dark (16.4-24.7 mg L-1) conditions and stresses from Al3+, Fe2+, and Mn2+ toxicity. The selected strains were identified as Rhodopseudomonas pentothenatexigens by the 16S rDNA sequence, with 99% similarity. The selected acidic-resistant strains possessed the traits of biofertilizers under both microaerobic light and aerobic dark conditions, with abilities to fix nitrogen (0.17-6.24; 7.93-11.2 mg L-1); solubilize phosphorus from insoluble compounds with 3.22-49.9 and 9.49-11.2 mg L-1 for Al-P, 21.9-25.8 and 20.2-25.1 mg L-1 for Ca-P, and 10.1-29.8 and 18.9-23.2 mg L-1 for Fe-P; produce 5-aminolevulinic acid (0.63-3.01; 1.19-6.39 mg L-1), exopolymeric substances (0.14-0.76; 0.21-0.86 mg L-1), indole-3-acetic acid (12.9-32.6; 13.6-17.8 mg L-1), and siderophores (28.4-30.3; 6.15-10.3%). The selected potassium-solubilizing strains have a great potential to apply in liquid form into rice seed and solid form in AS soils to supply nutrients and PGPS for enhancing rice growth and grain yield.
Collapse
Affiliation(s)
- Nguyen Quoc Khuong
- Faculty of Crop Science, College of Agriculture, Can Tho University, Can Tho, Vietnam
| | - Jakkapan Sakpirom
- Department of Science, Demonstration School of Phetchaburi Rajabhat University, Phetchaburi Rajabhat University, Phetchaburi, Thailand
| | - Truong Oanh Oanh
- Institute of Food and Biotechnology, Can Tho University, Can Tho, Vietnam
| | - Le Vinh Thuc
- Faculty of Crop Science, College of Agriculture, Can Tho University, Can Tho, Vietnam
| | - Le Thi My Thu
- Faculty of Crop Science, College of Agriculture, Can Tho University, Can Tho, Vietnam
| | - Do Thi Xuan
- Institute of Food and Biotechnology, Can Tho University, Can Tho, Vietnam
| | - Le Thanh Quang
- Institute of Food and Biotechnology, Can Tho University, Can Tho, Vietnam
| | - Ly Ngoc Thanh Xuan
- Experimental and Practical Area, An Giang University, An Giang, Vietnam; Vietnam National University, Ho Chi Minh City, Vietnam
| |
Collapse
|
4
|
Hilpmann S, Rossberg A, Steudtner R, Drobot B, Hübner R, Bok F, Prieur D, Bauters S, Kvashnina KO, Stumpf T, Cherkouk A. Presence of uranium(V) during uranium(VI) reduction by Desulfosporosinus hippei DSM 8344 T. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162593. [PMID: 36889400 DOI: 10.1016/j.scitotenv.2023.162593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Microbial U(VI) reduction influences uranium mobility in contaminated subsurface environments and can affect the disposal of high-level radioactive waste by transforming the water-soluble U(VI) to less mobile U(IV). The reduction of U(VI) by the sulfate-reducing bacterium Desulfosporosinus hippei DSM 8344T, a close phylogenetic relative to naturally occurring microorganism present in clay rock and bentonite, was investigated. D. hippei DSM 8344T showed a relatively fast removal of uranium from the supernatants in artificial Opalinus Clay pore water, but no removal in 30 mM bicarbonate solution. Combined speciation calculations and luminescence spectroscopic investigations showed the dependence of U(VI) reduction on the initial U(VI) species. Scanning transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy showed uranium-containing aggregates on the cell surface and some membrane vesicles. By combining different spectroscopic techniques, including UV/Vis spectroscopy, as well as uranium M4-edge X-ray absorption near-edge structure recorded in high-energy-resolution fluorescence-detection mode and extended X-ray absorption fine structure analysis, the partial reduction of U(VI) could be verified, whereby the formed U(IV) product has an unknown structure. Furthermore, the U M4 HERFD-XANES showed the presence of U(V) during the process. These findings offer new insights into U(VI) reduction by sulfate-reducing bacteria and contribute to a comprehensive safety concept for a repository for high-level radioactive waste.
Collapse
Affiliation(s)
- Stephan Hilpmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - André Rossberg
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany; Rossendorf Beamline (BM20-ROBL), European Synchrotron Radiation Facility, Grenoble, France
| | - Robin Steudtner
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Björn Drobot
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - René Hübner
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Dresden, Germany
| | - Frank Bok
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Damien Prieur
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany; Rossendorf Beamline (BM20-ROBL), European Synchrotron Radiation Facility, Grenoble, France
| | - Stephen Bauters
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany; Rossendorf Beamline (BM20-ROBL), European Synchrotron Radiation Facility, Grenoble, France
| | - Kristina O Kvashnina
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany; Rossendorf Beamline (BM20-ROBL), European Synchrotron Radiation Facility, Grenoble, France
| | - Thorsten Stumpf
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Andrea Cherkouk
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany.
| |
Collapse
|
5
|
Ruiz-Fresneda MA, Martinez-Moreno MF, Povedano-Priego C, Morales-Hidalgo M, Jroundi F, Merroun ML. Impact of microbial processes on the safety of deep geological repositories for radioactive waste. Front Microbiol 2023; 14:1134078. [PMID: 37007474 PMCID: PMC10062484 DOI: 10.3389/fmicb.2023.1134078] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
To date, the increasing production of radioactive waste due to the extensive use of nuclear power is becoming a global environmental concern for society. For this reason, many countries have been considering the use of deep geological repositories (DGRs) for the safe disposal of this waste in the near future. Several DGR designs have been chemically, physically, and geologically well characterized. However, less is known about the influence of microbial processes for the safety of these disposal systems. The existence of microorganisms in many materials selected for their use as barriers for DGRs, including clay, cementitious materials, or crystalline rocks (e.g., granites), has previously been reported. The role that microbial processes could play in the metal corrosion of canisters containing radioactive waste, the transformation of clay minerals, gas production, and the mobility of the radionuclides characteristic of such residues is well known. Among the radionuclides present in radioactive waste, selenium (Se), uranium (U), and curium (Cm) are of great interest. Se and Cm are common components of the spent nuclear fuel residues, mainly as 79Se isotope (half-life 3.27 × 105 years), 247Cm (half-life: 1.6 × 107 years) and 248Cm (half-life: 3.5 × 106 years) isotopes, respectively. This review presents an up-to-date overview about how microbes occurring in the surroundings of a DGR may influence their safety, with a particular focus on the radionuclide-microbial interactions. Consequently, this paper will provide an exhaustive understanding about the influence of microorganisms in the safety of planned radioactive waste repositories, which in turn might improve their implementation and efficiency.
Collapse
|
6
|
Wang G, Liu Y, Wang J, Xiang J, Zeng T, Li S, Song J, Zhang Z, Liu J. The remediation of uranium-contaminated groundwater via bioreduction coupled to biomineralization with different pH and electron donors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:23096-23109. [PMID: 36316554 DOI: 10.1007/s11356-022-23902-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Stimulating indigenous microbes to reduce aqueous U(VI) to insoluble U(IV) by adding an electron donor has been applied as an applicable strategy to remediate uranium-contaminated groundwater in situ. However, biogenic U(IV) minerals are susceptible to oxidative remobilization after exposure to oxygen. To enhance the stability of the end product, glycerol phosphate (GP) was selected to treat artificial uranium-containing groundwater at different pH values (i.e., 7.0 and 5.0) with glycerol (GY) as the control group. The results revealed that removal ratios of uranium with GP were all higher than those with GY, and reduced crystalline U(IV)-phosphate and U(VI)-phosphate minerals (recalcitrant to oxidative remobilization) were generated in the GP groups. Although bioreduction efficiency was influenced at pH 5.0, the stability of the end product with GP was elevated significantly compared with that with GY. Mechanism analysis demonstrated that GP could activate bioreduction and biomineralization of the microbial community, and two stages were included in the GP groups. In the early stage, bioreduction and biomineralization were both involved in the immobilization process. Subsequently, part of the U(VI) precipitate was gradually reduced to U(IV) precipitate by microorganisms. This work implied that the formation of U-phosphate minerals via bioreduction coupled with biomineralization potentially offers a more effective strategy for remediating uranium-contaminated groundwater with long-term stability.
Collapse
Affiliation(s)
- Guohua Wang
- Hunan Provincial Key Laboratory of Pollution Control and Resources Technology, University of South China, Hengyang, 421001, China
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, China
| | - Ying Liu
- Hunan Provincial Key Laboratory of Pollution Control and Resources Technology, University of South China, Hengyang, 421001, China
| | - Jiali Wang
- Hunan Provincial Key Laboratory of Pollution Control and Resources Technology, University of South China, Hengyang, 421001, China
| | - Jinjing Xiang
- Hunan Provincial Key Laboratory of Pollution Control and Resources Technology, University of South China, Hengyang, 421001, China
| | - Taotao Zeng
- Hunan Provincial Key Laboratory of Pollution Control and Resources Technology, University of South China, Hengyang, 421001, China
| | - Shiyou Li
- Hunan Provincial Key Laboratory of Pollution Control and Resources Technology, University of South China, Hengyang, 421001, China
| | - Jian Song
- Hunan Provincial Key Laboratory of Pollution Control and Resources Technology, University of South China, Hengyang, 421001, China
| | - Zhiyue Zhang
- Hunan Provincial Key Laboratory of Pollution Control and Resources Technology, University of South China, Hengyang, 421001, China
| | - Jinxiang Liu
- Hunan Provincial Key Laboratory of Pollution Control and Resources Technology, University of South China, Hengyang, 421001, China.
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, China.
| |
Collapse
|
7
|
Takamiya H, Kouduka M, Furutani H, Mukai H, Nakagawa K, Yamamoto T, Kato S, Kodama Y, Tomioka N, Ito M, Suzuki Y. Copper-Nanocoated Ultra-Small Cells in Grain Boundaries Inside an Extinct Vent Chimney. Front Microbiol 2022; 13:864205. [PMID: 35747369 PMCID: PMC9209642 DOI: 10.3389/fmicb.2022.864205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/09/2022] [Indexed: 11/18/2022] Open
Abstract
Chemosynthetic organisms flourish around deep-sea hydrothermal vents where energy-rich fluids are emitted from metal sulfide chimneys. However, microbial life hosted in mineral assemblages in extinct chimneys lacking fluid venting remains largely unknown. The interior of extinct chimneys remains anoxic where the percolation of oxygenated seawater is limited within tightly packed metal sulfide grains. Given the scarcity of photosynthetic organics in deep seawater, anaerobic microbes might inhabit the grain boundaries energetically depending on substrates derived from rock-water interactions. In this study, we reported ultra-small cells directly visualized in grain boundaries of CuFeS2 inside an extinct metal sulfide chimney from the southern Mariana Trough. Nanoscale solid analyses reveal that ultra-small cells are coated with Cu2O nanocrystals in grain boundaries enriched with C, N, and P. In situ spectroscopic and spectrometric characterizations demonstrate the distribution of organics with amide groups and a large molecular organic compound in the grain boundaries. We inferred that the ultra-small cells are anaerobes because of the fast dissolution of Cu2O nanocrystals in oxygenated solution. This Cu2O property also excludes the possibility of microbial contamination from ambient seawater during sampling. It is shown by 16S rRNA gene sequence analysis that the chimney interior is dominated by Pacearchaeota known to have anaerobic metabolisms and ultra-small cells. Our results support the potential existence of photosynthesis-independent microbial ecosystems in grain boundaries in submarine metal sulfides deposits on the early Earth.
Collapse
Affiliation(s)
- Hinako Takamiya
- Department of Earth and Planetary Science, The University of Tokyo, Bunkyo City, Japan
| | - Mariko Kouduka
- Department of Earth and Planetary Science, The University of Tokyo, Bunkyo City, Japan
| | - Hitoshi Furutani
- Department of Earth and Planetary Science, The University of Tokyo, Bunkyo City, Japan
| | - Hiroki Mukai
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kaoru Nakagawa
- Solutions COE, Analytical & Measuring Instruments Division, Shimadzu Corporation, Kyoto, Japan
| | - Takushi Yamamoto
- Solutions COE, Analytical & Measuring Instruments Division, Shimadzu Corporation, Kyoto, Japan
| | - Shingo Kato
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center, Tsukuba, Japan
| | | | - Naotaka Tomioka
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Japan
| | - Motoo Ito
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Japan
| | - Yohey Suzuki
- Department of Earth and Planetary Science, The University of Tokyo, Bunkyo City, Japan
| |
Collapse
|
8
|
Nayak T, Basak S, Deb A, Dhal PK. A systematic review on groundwater radon distribution with human health consequences and probable mitigation strategy. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2022; 247:106852. [PMID: 35305305 DOI: 10.1016/j.jenvrad.2022.106852] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Groundwater radon contamination is a serious global concern for its eco-toxicological effects. The major health hazard occurs due to toxic indoor air inhalation and consumption of contaminated drinking water supplied from different distribution systems, especially groundwater. There are fragmented reports on the measurement of radon contamination and their health consequences with physical radon removal strategies as well as characterization of inhabitant microbial communities. As it concerned with human health, collective information is much essential on their groundwater distribution, their physicochemical properties and possible mitigation strategies, not done so far. In such prospect, this review summarizes the physicochemical properties of radon, their sources, global as well as Indian groundwater radon contamination scenario, health effects and inhabitant microbes along with their survival strategies. It also summarizes the physical radon removal techniques and especially emphasizes the microbes based bioremediation process as well as a combination of both as a future effective radon remediation process.
Collapse
Affiliation(s)
- Tilak Nayak
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, 700032, India
| | - Sohom Basak
- Department of Biotechnology, Bengal Institute of Technology, Kolkata, 700091, India
| | - Argha Deb
- School of Studies in Environmental Radiation and Archaeological Sciences & Department of Physics, Jadavpur University, Kolkata, 700032, India
| | - Paltu Kumar Dhal
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
9
|
You W, Peng W, Tian Z, Zheng M. Uranium bioremediation with U(VI)-reducing bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149107. [PMID: 34325147 DOI: 10.1016/j.scitotenv.2021.149107] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Uranium (U) pollution is an environmental hazard caused by the development of the nuclear industry. Microbial reduction of hexavalent uranium (U(VI)) to tetravalent uranium (U(IV)) reduces U solubility and mobility and has been proposed as an effective method to remediate uranium contamination. In this review, U(VI) remediation with respect to U(VI)-reducing bacteria, mechanisms, influencing factors, products, and reoxidation are systematically summarized. Reportedly, some metal- and sulfate-reducing bacteria possess excellent U(VI) reduction capability through mechanisms involving c-type cytochromes, extracellular pili, electron shuttle, or thioredoxin reduction. In situ remediation has been demonstrated as an ideal strategy for large-scale degradation of uranium contaminants than ex situ. However, U(VI) reduction efficiency can be affected by various factors, including pH, temperature, bicarbonate, electron donors, and coexisting metal ions. Furthermore, it is noteworthy that the reduction products could be reoxidized when exposed to oxygen and nitrate, inevitably compromising the remediation effects, especially for non-crystalline U(IV) with weak stability.
Collapse
Affiliation(s)
- Wenbo You
- Key Laboratory of Regional Energy Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Wanting Peng
- Key Laboratory of Regional Energy Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zhichao Tian
- Key Laboratory of Regional Energy Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Maosheng Zheng
- Key Laboratory of Regional Energy Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
10
|
Lopez‐Fernandez M, Jroundi F, Ruiz‐Fresneda MA, Merroun ML. Microbial interaction with and tolerance of radionuclides: underlying mechanisms and biotechnological applications. Microb Biotechnol 2021; 14:810-828. [PMID: 33615734 PMCID: PMC8085914 DOI: 10.1111/1751-7915.13718] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 11/26/2022] Open
Abstract
Radionuclides (RNs) generated by nuclear and civil industries are released in natural ecosystems and may have a hazardous impact on human health and the environment. RN-polluted environments harbour different microbial species that become highly tolerant of these elements through mechanisms including biosorption, biotransformation, biomineralization and intracellular accumulation. Such microbial-RN interaction processes hold biotechnological potential for the design of bioremediation strategies to deal with several contamination problems. This paper, with its multidisciplinary approach, provides a state-of-the-art review of most research endeavours aimed to elucidate how microbes deal with radionuclides and how they tolerate ionizing radiations. In addition, the most recent findings related to new biotechnological applications of microbes in the bioremediation of radionuclides and in the long-term disposal of nuclear wastes are described and discussed.
Collapse
Affiliation(s)
- Margarita Lopez‐Fernandez
- Department of MicrobiologyUniversity of GranadaAvenida Fuentenueva s/nGranada18071Spain
- Present address:
Institute of Resource EcologyHelmholtz‐Zentrum Dresden‐RossendorfBautzner Landstraße 400Dresden01328Germany
| | - Fadwa Jroundi
- Department of MicrobiologyUniversity of GranadaAvenida Fuentenueva s/nGranada18071Spain
| | - Miguel A. Ruiz‐Fresneda
- Department of MicrobiologyUniversity of GranadaAvenida Fuentenueva s/nGranada18071Spain
- Present address:
Departamento de Cristalografía y Biología EstructuralCentro Superior de Investigaciones Científicas (CSIC)Instituto de Química‐Física Rocasolano (IQFR)Calle Serrano 119Madrid28006Spain
| | - Mohamed L. Merroun
- Department of MicrobiologyUniversity of GranadaAvenida Fuentenueva s/nGranada18071Spain
| |
Collapse
|
11
|
Hoffmann TD, Reeksting BJ, Gebhard S. Bacteria-induced mineral precipitation: a mechanistic review. MICROBIOLOGY (READING, ENGLAND) 2021; 167:001049. [PMID: 33881981 PMCID: PMC8289221 DOI: 10.1099/mic.0.001049] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/15/2021] [Indexed: 11/18/2022]
Abstract
Micro-organisms contribute to Earth's mineral deposits through a process known as bacteria-induced mineral precipitation (BIMP). It is a complex phenomenon that can occur as a result of a variety of physiological activities that influence the supersaturation state and nucleation catalysis of mineral precipitation in the environment. There is a good understanding of BIMP induced by bacterial metabolism through the control of metal redox states and enzyme-mediated reactions such as ureolysis. However, other forms of BIMP often cannot be attributed to a single pathway but rather appear to be a passive result of bacterial activity, where minerals form as a result of metabolic by-products and surface interactions within the surrounding environment. BIMP from such processes has formed the basis of many new innovative biotechnologies, such as soil consolidation, heavy metal remediation, restoration of historic buildings and even self-healing concrete. However, these applications to date have primarily incorporated BIMP-capable bacteria sampled from the environment, while detailed investigations of the underpinning mechanisms have been lagging behind. This review covers our current mechanistic understanding of bacterial activities that indirectly influence BIMP and highlights the complexity and connectivity between the different cellular and metabolic processes involved. Ultimately, detailed insights will facilitate the rational design of application-specific BIMP technologies and deepen our understanding of how bacteria are shaping our world.
Collapse
Affiliation(s)
- Timothy D. Hoffmann
- Department of Biology and Biochemistry, Milner Centre for Evolution, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Bianca J. Reeksting
- Department of Biology and Biochemistry, Milner Centre for Evolution, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Susanne Gebhard
- Department of Biology and Biochemistry, Milner Centre for Evolution, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| |
Collapse
|
12
|
Flett L, McLeod CL, McCarty JL, Shaulis BJ, Fain JJ, Krekeler MPS. Monitoring uranium mine pollution on Native American lands: Insights from tree bark particulate matter on the Spokane Reservation, Washington, USA. ENVIRONMENTAL RESEARCH 2021; 194:110619. [PMID: 33378700 DOI: 10.1016/j.envres.2020.110619] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
The uranium boom in the United States from the 1940's to the 1980's was a period of extensive uranium mining on Native American lands. However, detailed environmental investigations of the resulting uranium pollution are sparse and typically ignore contributions from airborne particulate matter. The Midnite Mine is a 350-acre inactive open pit uranium mine located on the Spokane Indian Reservation in eastern Washington that operated from 1954 to 1981. Approximately 2.4 million tons of ore and 33 million tons of waste rock were left behind in stockpiles and have also been utilized as gravel on access and haul roads. Although the Midnite Mine is now a Superfund Site, and governmental investigations of water and soil contamination have been done, no investigations of airborne particulate matter pollution have been conducted. This study applies tree bark from 31 Pinus ponderosa trees as a biomonitor of this airborne particulate matter. Bulk trace elemental analyses via inductively coupled plasma - mass spectrometry (ICP-MS) of tree bark show that U is the most abundant trace element of interest present up to 232 ppb. Other metals that are of potential human health concern include Th, Pb, and As which are present at 20 ppb, 104 ppb, and 20 ppb respectively. Calculated geoaccumulation indices determine these metals to be at high (U), moderate (Th), and low (Pb and As) levels of contamination. Detailed scanning electron microscopy (SEM) investigations of particulate matter from the surface of tree bark confirm that U and Th-bearing particulate matter exist in the <PM10 size fraction while geospatial analyses indicate that uranium, thorium, and arsenic contamination are centralized along the Midnite Mine access road and at the nearby Dawn Mill where ore was further processed. Combined, these findings indicate that the nature and distribution of historic airborne particulate matter from the Midnite Mine and Dawn Mill provide context for potentially understanding past and current illness on the reservation. In addition, much needed context for future health and environmental studies for both local and national Native American populations is provided.
Collapse
Affiliation(s)
- Lonnie Flett
- Department of Geology and Environmental Earth Science, Shideler Hall, Miami University, Oxford, OH, 45056, USA
| | - Claire L McLeod
- Department of Geology and Environmental Earth Science, Shideler Hall, Miami University, Oxford, OH, 45056, USA.
| | - Jessica L McCarty
- Department of Geography, Shideler Hall, Miami University, Oxford, OH, 45056, USA
| | - Barry J Shaulis
- Trace Element and Radiogenic Isotope Laboratory (TRAIL), University of Arkansas, Fayetteville, AR, 72701, USA
| | - Justin J Fain
- Department of Geography, Shideler Hall, Miami University, Oxford, OH, 45056, USA
| | - Mark P S Krekeler
- Department of Geology and Environmental Earth Science, Shideler Hall, Miami University, Oxford, OH, 45056, USA; Department of Mathematical and Physical Sciences, Miami University Regionals, Hamilton, OH, 45011, USA
| |
Collapse
|
13
|
Khare D, Kumar R, Acharya C. Genomic and functional insights into the adaptation and survival of Chryseobacterium sp. strain PMSZPI in uranium enriched environment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 191:110217. [PMID: 32001422 DOI: 10.1016/j.ecoenv.2020.110217] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/11/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Metal enriched areas represent important and dynamic microbiological ecosystems. In this study, the draft genome of a uranium (U) tolerant bacterium, Chryseobacterium sp. strain PMSZPI, isolated from the subsurface soil of Domiasiat uranium ore deposit in Northeast India, was analyzed. The strain revealed a genome size of 3.8 Mb comprising of 3346 predicted protein-coding genes. The analysis indicated high abundance of genes associated with metal resistance and efflux, transporters, phosphatases, antibiotic resistance, polysaccharide synthesis, motility, protein secretion systems, oxidoreductases and DNA repair. Comparative genomics with other closely related Chryseobacterium strains led to the identification of unique inventory of genes which were of adaptive significance in PMSZPI. Consistent with the genome analysis, PMSZPI showed superior tolerance to uranium and other heavy metals. The metal exposed cells exhibited transcriptional induction of metal translocating PIB ATPases suggestive of their involvement in metal resistance. Efficient U binding (~90% of 100 μM U) and U bioprecipitation (~93-94% of 1 mM U at pH 5, 7 and 9) could be attributed as uranium tolerance strategies in PMSZPI. The strain demonstrated resistance to a large number of antibiotics which was in agreement with in silico prediction. Reduced gliding motility in the presence of cadmium and uranium, enhanced biofilm formation on uranium exposure and tolerance to 1.5 kGy of 60Co gamma radiation were perceived as adaptive responses in PMSZPI. Overall, the positive correlation observed between uranium/metal tolerance abilities predicted using genome analysis and the functional characterization reinforced the multifaceted adaptation strategies employed by PMSZPI for its survival in the soil of uranium ore deposit comprising of high concentrations of uranium and other heavy metals.
Collapse
Affiliation(s)
- Devanshi Khare
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Rakshak Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
| | - Celin Acharya
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
14
|
Nitrate-Utilizing Microorganisms Resistant to Multiple Metals from the Heavily Contaminated Oak Ridge Reservation. Appl Environ Microbiol 2019; 85:AEM.00896-19. [PMID: 31253673 DOI: 10.1128/aem.00896-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/20/2019] [Indexed: 11/20/2022] Open
Abstract
Contamination of environments with nitrate generated by industrial processes and the use of nitrogen-containing fertilizers is a growing problem worldwide. While nitrate can be removed from contaminated areas by microbial denitrification, nitrate frequently occurs with other contaminants, such as heavy metals, that have the potential to impede the process. Here, nitrate-reducing microorganisms were enriched and isolated from both groundwater and sediments at the Oak Ridge Reservation (ORR) using concentrations of nitrate and metals (Al, Mn, Fe, Co, Ni, Cu, Cd, and U) similar to those observed in a contaminated environment at ORR. Seven new metal-resistant, nitrate-reducing strains were characterized, and their distribution across both noncontaminated and contaminated areas at ORR was examined. While the seven strains have various pH ranges for growth, carbon source preferences, and degrees of resistance to individual and combinations of metals, all were able to reduce nitrate at similar rates both in the presence and absence of the mixture of metals found in the contaminated ORR environment. Four strains were identified in groundwater samples at different ORR locations by exact 16S RNA sequence variant analysis, and all four were found in both noncontaminated and contaminated areas. By using environmentally relevant metal concentrations, we successfully isolated multiple organisms from both ORR noncontaminated and contaminated environments that are capable of reducing nitrate in the presence of extreme mixed-metal contamination.IMPORTANCE Nitrate contamination is a global issue that affects groundwater quality. In some cases, cocontamination of groundwater with nitrate and mixtures of heavy metals could decrease microbially mediated nitrate removal, thereby increasing the duration of nitrate contamination. Here, we used metal and nitrate concentrations that are present in a contaminated site at the Oak Ridge Reservation to isolate seven metal-resistant strains. All were able to reduce nitrate in the presence of high concentrations of a mixture of heavy metals. Four of seven strains were located in pristine as well as contaminated sites at the Oak Ridge Reservation. Further study of these nitrate-reducing strains will uncover mechanisms of resistance to multiple metals that will increase our understanding of the effect of nitrate and metal contamination on groundwater microbial communities.
Collapse
|
15
|
Chandwadkar P, Misra HS, Acharya C. Uranium biomineralization induced by a metal tolerant Serratia strain under acid, alkaline and irradiated conditions. Metallomics 2019; 10:1078-1088. [PMID: 29999065 DOI: 10.1039/c8mt00061a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It has become increasingly apparent that the environmental microorganisms residing in uranium (U) enriched sites offer the possibility of understanding the biological mechanisms catalyzing the processes important for uranium bioremediation. Here, we present the results of uranium biomineralization over a wide pH range by a metal tolerant Serratia sp. strain OT II 7 isolated from the subsurface soil of a U ore deposit at Domiasiat in India. The Serratia cells actively expressed acid and alkaline phosphatase enzymes which hydrolyzed differential amounts of phosphate from an organophosphate substrate in the presence of uranium between pH 5 to 9. These cells precipitated ∼91% uranium from aqueous solutions supplemented with 1 mM uranyl nitrate at pH 5 within 120 h. More rapid precipitation was observed at pH 7 and 9 wherein the cells removed ∼93-94% of uranium from solutions containing 1 mM uranyl carbonate within 24 h. The aqueous uranyl speciation prevalent under the studied pH conditions influenced the localization of crystalline uranyl phosphate precipitates, which in turn, impacted the cell viability to a great extent. Furthermore, the cells tolerated up to ∼1.6 kGy 60Co gamma radiation and their uranium precipitation abilities at pH 5, 7 and 9 were uncompromised even after exposure to a high dose of ionizing radiation. Overall, this study establishes the ecological adaptation of a natural strain like Serratia in a uranium enriched environment and corroborates its contribution towards uranium immobilization in contaminated subsurfaces through the formation of stable uranyl phosphate minerals over a wide pH range.
Collapse
Affiliation(s)
- Pallavi Chandwadkar
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400 085, India.
| | | | | |
Collapse
|
16
|
Abstract
Neptunium and uranium are important radionuclides in many aspects of the nuclear fuel cycle and are often present in radioactive wastes which require long term management. Understanding the environmental behaviour and mobility of these actinides is essential in underpinning remediation strategies and safety assessments for wastes containing these radionuclides. By combining state-of-the-art X-ray techniques (synchrotron-based Grazing Incidence XAS, and XPS) with wet chemistry techniques (ICP-MS, liquid scintillation counting and UV-Vis spectroscopy), we determined that contrary to uranium(VI), neptunium(V) interaction with magnetite is not significantly affected by the presence of bicarbonate. Uranium interactions with a magnetite surface resulted in XAS and XPS signals dominated by surface complexes of U(VI), while neptunium on the surface of magnetite was dominated by Np(IV) species. UV-Vis spectroscopy on the aqueous Np(V) species before and after interaction with magnetite showed different speciation due to the presence of carbonate. Interestingly, in the presence of bicarbonate after equilibration with magnetite, an unknown aqueous NpO2+ species was detected using UV-Vis spectroscopy, which we postulate is a ternary complex of Np(V) with carbonate and (likely) an iron species. Regardless, the Np speciation in the aqueous phase (Np(V)) and on the magnetite (111) surfaces (Np(IV)) indicate that with and without bicarbonate the interaction of Np(V) with magnetite proceeds via a surface mediated reduction mechanism. Overall, the results presented highlight the differences between uranium and neptunium interaction with magnetite, and reaffirm the potential importance of bicarbonate present in the aqueous phase.
Collapse
|
17
|
Orellana R, Macaya C, Bravo G, Dorochesi F, Cumsille A, Valencia R, Rojas C, Seeger M. Living at the Frontiers of Life: Extremophiles in Chile and Their Potential for Bioremediation. Front Microbiol 2018; 9:2309. [PMID: 30425685 PMCID: PMC6218600 DOI: 10.3389/fmicb.2018.02309] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/10/2018] [Indexed: 11/19/2022] Open
Abstract
Extremophiles are organisms capable of adjust, survive or thrive in hostile habitats that were previously thought to be adverse or lethal for life. Chile gathers a wide range of extreme environments: salars, geothermal springs, and geysers located at Altiplano and Atacama Desert, salars and cold mountains in Central Chile, and ice fields, cold lakes and fjords, and geothermal sites in Patagonia and Antarctica. The aims of this review are to describe extremophiles that inhabit main extreme biotopes in Chile, and their molecular and physiological capabilities that may be advantageous for bioremediation processes. After briefly describing the main ecological niches of extremophiles along Chilean territory, this review is focused on the microbial diversity and composition of these biotopes microbiomes. Extremophiles have been isolated in diverse zones in Chile that possess extreme conditions such as Altiplano, Atacama Desert, Central Chile, Patagonia, and Antarctica. Interesting extremophiles from Chile with potential biotechnological applications include thermophiles (e.g., Methanofollis tationis from Tatio Geyser), acidophiles (e.g., Acidithiobacillus ferrooxidans, Leptospirillum ferriphilum from Atacama Desert and Central Chile copper ores), halophiles (e.g., Shewanella sp. Asc-3 from Altiplano, Streptomyces sp. HKF-8 from Patagonia), alkaliphiles (Exiguobacterium sp. SH31 from Altiplano), xerotolerant bacteria (S. atacamensis from Atacama Desert), UV- and Gamma-resistant bacteria (Deinococcus peraridilitoris from Atacama Desert) and psychrophiles (e.g., Pseudomonas putida ATH-43 from Antarctica). The molecular and physiological properties of diverse extremophiles from Chile and their application in bioremediation or waste treatments are further discussed. Interestingly, the remarkable adaptative capabilities of extremophiles convert them into an attractive source of catalysts for bioremediation and industrial processes.
Collapse
Affiliation(s)
- Roberto Orellana
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
- Departamento de Biología, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Valparaíso, Chile
| | - Constanza Macaya
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Guillermo Bravo
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Flavia Dorochesi
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Andrés Cumsille
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Ricardo Valencia
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Claudia Rojas
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Michael Seeger
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| |
Collapse
|
18
|
Hu N, Li K, Sui Y, Ding D, Dai Z, Li D, Wang N, Zhang H. Utilization of phosphate rock as a sole source of phosphorus for uranium biomineralization mediated by Penicillium funiculosum. RSC Adv 2018; 8:13459-13465. [PMID: 35542523 PMCID: PMC9079836 DOI: 10.1039/c8ra01344f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 03/21/2018] [Indexed: 11/29/2022] Open
Abstract
In this work, uranium(vi) biomineralization by soluble ortho-phosphate from decomposition of the phosphate rock powder, a cheap and readily available material, was studied in detail. Penicillium funiculosum was effective in solubilizing P from the phosphate rock powder, and the highest concentration of the dissolved phosphate reached 220 mg L-1 (pH = 6). A yellow precipitate was immediately formed when solutions with different concentrations of uranium were treated with PO4 3--containing fermentation broth, and the precipitate was identified as chernikovite by Fourier transform infrared spectroscopy, scanning electron microscope, and X-ray powder diffraction. Our study showed that the concentrations of uranium in solutions can be decreased to the level lower than maximum contaminant limit for water (50 μg L-1) by the Environmental Protection Agency of China when Penicillium funiculosum was incubated for 22 days in the broth containing 5 g L-1 phosphate rock powder.
Collapse
Affiliation(s)
- Nan Hu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China Hengyang 421001 China
- Hunan Province Key Laboratory of Green Development Technology for Extremely Low Grade Uranium Resources Hengyang 421001 China
| | - Ke Li
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China Hengyang 421001 China
- Hunan Province Key Laboratory of Green Development Technology for Extremely Low Grade Uranium Resources Hengyang 421001 China
| | - Yang Sui
- Hunan Taohuajiang Nuclear Power Co., Ltd Yiyang China 413000
| | - Dexin Ding
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China Hengyang 421001 China
- Hunan Province Key Laboratory of Green Development Technology for Extremely Low Grade Uranium Resources Hengyang 421001 China
| | - Zhongran Dai
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China Hengyang 421001 China
- Hunan Province Key Laboratory of Green Development Technology for Extremely Low Grade Uranium Resources Hengyang 421001 China
| | - Dianxin Li
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China Hengyang 421001 China
- Hunan Province Key Laboratory of Green Development Technology for Extremely Low Grade Uranium Resources Hengyang 421001 China
| | - Nieying Wang
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China Hengyang 421001 China
- Hunan Province Key Laboratory of Green Development Technology for Extremely Low Grade Uranium Resources Hengyang 421001 China
| | - Hui Zhang
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China Hengyang 421001 China
- Hunan Province Key Laboratory of Green Development Technology for Extremely Low Grade Uranium Resources Hengyang 421001 China
| |
Collapse
|
19
|
Krawczyk-Bärsch E, Gerber U, Müller K, Moll H, Rossberg A, Steudtner R, Merroun ML. Multidisciplinary characterization of U(VI) sequestration by Acidovorax facilis for bioremediation purposes. JOURNAL OF HAZARDOUS MATERIALS 2018; 347:233-241. [PMID: 29324323 DOI: 10.1016/j.jhazmat.2017.12.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 12/04/2017] [Accepted: 12/10/2017] [Indexed: 06/07/2023]
Abstract
The contamination of the environment by U may affect plant life and consequently may have an impact on animal and human health. The present work describes U(VI) sequestration by Acidovorax facilis using a multidisciplinary approach combining wet chemistry, transmission electron microscopy, and spectroscopy methods (e.g. cryo-time resolved laser-induced fluorescence spectroscopy, extended X-ray absorption fine structure spectroscopy, and in-situ attenuated total reflection Fourier transform infrared spectroscopy). This bacterial strain is widely distributed in nature including U-contaminated sites. In kinetic batch experiments cells of A. facilis were contacted for 5 min to 48 h with 0.1 mM U(VI). The results show that the local coordination of U species associated with the cells depends upon time contact. U is bound mainly to phosphate groups of lipopolysaccharide (LPS) at the outer membrane within the first hour. And, that both, phosphoryl and carboxyl functionality groups of LPS and peptidoglycan of A. facilis cells may effectuate the removal of high U amounts from solution at 24-48 h of incubation. It is clearly demonstrated that A. facilis may play an important role in predicting the transport behaviour of U in the environment and that the results will contribute to the improvement of bioremediation methods of U-contaminated sites.
Collapse
Affiliation(s)
- E Krawczyk-Bärsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, D-01328 Dresden, Germany.
| | - U Gerber
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, D-01328 Dresden, Germany
| | - K Müller
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, D-01328 Dresden, Germany
| | - H Moll
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, D-01328 Dresden, Germany
| | - A Rossberg
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, D-01328 Dresden, Germany
| | - R Steudtner
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, D-01328 Dresden, Germany
| | - M L Merroun
- University of Granada, Department of Microbiology, Campus Fuentenueva, E-18071 Granada, Spain
| |
Collapse
|
20
|
Abstract
Contamination from anthropogenic activities has significantly impacted Earth’s biosphere. However, knowledge about how environmental contamination affects the biodiversity of groundwater microbiomes and ecosystem functioning remains very limited. Here, we used a comprehensive functional gene array to analyze groundwater microbiomes from 69 wells at the Oak Ridge Field Research Center (Oak Ridge, TN), representing a wide pH range and uranium, nitrate, and other contaminants. We hypothesized that the functional diversity of groundwater microbiomes would decrease as environmental contamination (e.g., uranium or nitrate) increased or at low or high pH, while some specific populations capable of utilizing or resistant to those contaminants would increase, and thus, such key microbial functional genes and/or populations could be used to predict groundwater contamination and ecosystem functioning. Our results indicated that functional richness/diversity decreased as uranium (but not nitrate) increased in groundwater. In addition, about 5.9% of specific key functional populations targeted by a comprehensive functional gene array (GeoChip 5) increased significantly (P < 0.05) as uranium or nitrate increased, and their changes could be used to successfully predict uranium and nitrate contamination and ecosystem functioning. This study indicates great potential for using microbial functional genes to predict environmental contamination and ecosystem functioning. Disentangling the relationships between biodiversity and ecosystem functioning is an important but poorly understood topic in ecology. Predicting ecosystem functioning on the basis of biodiversity is even more difficult, particularly with microbial biomarkers. As an exploratory effort, this study used key microbial functional genes as biomarkers to provide predictive understanding of environmental contamination and ecosystem functioning. The results indicated that the overall functional gene richness/diversity decreased as uranium increased in groundwater, while specific key microbial guilds increased significantly as uranium or nitrate increased. These key microbial functional genes could be used to successfully predict environmental contamination and ecosystem functioning. This study represents a significant advance in using functional gene markers to predict the spatial distribution of environmental contaminants and ecosystem functioning toward predictive microbial ecology, which is an ultimate goal of microbial ecology.
Collapse
|
21
|
Ontiveros-Valencia A, Zhou C, Ilhan ZE, de Saint Cyr LC, Krajmalnik-Brown R, Rittmann BE. Total electron acceptor loading and composition affect hexavalent uranium reduction and microbial community structure in a membrane biofilm reactor. WATER RESEARCH 2017; 125:341-349. [PMID: 28881210 DOI: 10.1016/j.watres.2017.08.060] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 08/26/2017] [Accepted: 08/28/2017] [Indexed: 06/07/2023]
Abstract
Molecular microbiology tools (i.e., 16S rDNA gene sequencing) were employed to elucidate changes in the microbial community structure according to the total electron acceptor loading (controlled by influent flow rate and/or medium composition) in a H2-based membrane biofilm reactor evaluated for removal of hexavalent uranium. Once nitrate, sulfate, and dissolved oxygen were replaced by U(VI) and bicarbonate and the total acceptor loading was lowered, slow-growing bacteria capable of reducing U(VI) to U(IV) dominated in the biofilm community: Replacing denitrifying bacteria Rhodocyclales and Burkholderiales were spore-producing Clostridiales and Natranaerobiales. Though potentially competing for electrons with U(VI) reducers, homo-acetogens helped attain steady U(VI) reduction, while methanogenesis inhibited U(VI) reduction. U(VI) reduction was reinstated through suppression of methanogenesis by addition of bromoethanesulfonate or by competition from SRB when sulfate was re-introduced. Predictive metagenome analysis further points out community changes in response to alterations in the electron-acceptor loading: Sporulation and homo-acetogenesis were critical factors for strengthening stable microbial U(VI) reduction. This study documents that sporulation was important to long-term U(VI) reduction, whether or not microorganisms that carry out U(VI) reduction mediated by cytochrome c3, such as SRB and ferric-iron-reducers, were inhibited.
Collapse
Affiliation(s)
- Aura Ontiveros-Valencia
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001 South McAllister Ave, Tempe, AZ 85287-5701, USA; Escuela de Ingenieria y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, NL 64849, Mexico; Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46617, USA
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001 South McAllister Ave, Tempe, AZ 85287-5701, USA.
| | - Zehra Esra Ilhan
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001 South McAllister Ave, Tempe, AZ 85287-5701, USA
| | - Louis Cornette de Saint Cyr
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001 South McAllister Ave, Tempe, AZ 85287-5701, USA; Institut Sup'Biotech de Paris, France
| | - Rosa Krajmalnik-Brown
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001 South McAllister Ave, Tempe, AZ 85287-5701, USA
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001 South McAllister Ave, Tempe, AZ 85287-5701, USA
| |
Collapse
|
22
|
Khuong NQ, Kantachote D, Onthong J, Sukhoom A. The potential of acid-resistant purple nonsulfur bacteria isolated from acid sulfate soils for reducing toxicity of Al 3+ and Fe 2+ using biosorption for agricultural application. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.10.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Zhang P, He Z, Van Nostrand JD, Qin Y, Deng Y, Wu L, Tu Q, Wang J, Schadt CW, W Fields M, Hazen TC, Arkin AP, Stahl DA, Zhou J. Dynamic Succession of Groundwater Sulfate-Reducing Communities during Prolonged Reduction of Uranium in a Contaminated Aquifer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:3609-3620. [PMID: 28300407 DOI: 10.1021/acs.est.6b02980] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
To further understand the diversity and dynamics of SRB in response to substrate amendment, we sequenced genes coding for the dissimilatory sulfite reductase (dsrA) in groundwater samples collected after an emulsified vegetable oil (EVO) amendment, which sustained U(VI)-reducing conditions for one year in a fast-flowing aquifer. EVO amendment significantly altered the composition of groundwater SRB communities. Sequences having no closely related-described species dominated (80%) the indigenous SRB communities in nonamended wells. After EVO amendment, Desulfococcus, Desulfobacterium, and Desulfovibrio, known for long-chain-fatty-acid, short-chain-fatty-acid and H2 oxidation and U(VI) reduction, became dominant accounting for 7 ± 2%, 21 ± 8%, and 55 ± 8% of the SRB communities, respectively. Succession of these SRB at different bioactivity stages based on redox substrates/products (acetate, SO4-2, U(VI), NO3-, Fe(II), and Mn(II)) was observed. Desulfovibrio and Desulfococcus dominated SRB communities at 4-31 days, whereas Desulfobacterium became dominant at 80-140 days. By the end of the experiment (day 269), the abundance of these SRB decreased but the overall diversity of groundwater SRB was still higher than non-EVO controls. Up to 62% of the SRB community changes could be explained by groundwater geochemical variables, including those redox substrates/products. A significant (P < 0.001) correlation was observed between groundwater U(VI) concentrations and Desulfovibrio abundance. Our results showed that the members of SRB and their dynamics were correlated significantly with slow EVO biodegradation, electron donor production and maintenance of U(VI)-reducing conditions in the aquifer.
Collapse
Affiliation(s)
- Ping Zhang
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Zhili He
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Joy D Van Nostrand
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Yujia Qin
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Ye Deng
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma , Norman, Oklahoma 73019, United States
- Research Center for Eco-Environmental Science, Chinese Academy of Sciences , Beijing 100085, China
| | - Liyou Wu
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Qichao Tu
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma , Norman, Oklahoma 73019, United States
- Department of Marine Sciences, Ocean College, Zhejiang University , Zhejiang, China
| | - Jianjun Wang
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma , Norman, Oklahoma 73019, United States
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences , Nanjing 210008, China
| | - Christopher W Schadt
- Biosciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Matthew W Fields
- Center for Biofilm Engineering, Montana State University , Bozeman, Montana 59717, United States
| | - Terry C Hazen
- Biosciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
- Department of Civil and Environmental Engineering, University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Adam P Arkin
- Physical Biosciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - David A Stahl
- Department of Civil and Environmental Engineering, University of Washington , Seattle, Washington 98105, United States
| | - Jizhong Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of Oklahoma , Norman, Oklahoma 73019, United States
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University , Beijing 100084, China
| |
Collapse
|
24
|
Kitahara K, Numako C, Terada Y, Nitta K, Shimada Y, Homma-Takeda S. Uranium XAFS analysis of kidney from rats exposed to uranium. JOURNAL OF SYNCHROTRON RADIATION 2017; 24:456-462. [PMID: 28244440 PMCID: PMC5330292 DOI: 10.1107/s1600577517001850] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 02/02/2017] [Indexed: 05/04/2023]
Abstract
The kidney is the critical target of uranium exposure because uranium accumulates in the proximal tubules and causes tubular damage, but the chemical nature of uranium in kidney, such as its chemical status in the toxic target site, is poorly understood. Micro-X-ray absorption fine-structure (µXAFS) analysis was used to examine renal thin sections of rats exposed to uranyl acetate. The U LIII-edge X-ray absorption near-edge structure spectra of bulk renal specimens obtained at various toxicological phases were similar to that of uranyl acetate: their edge position did not shift compared with that of uranyl acetate (17.175 keV) although the peak widths for some kidney specimens were slightly narrowed. µXAFS measurements of spots of concentrated uranium in the micro-regions of the proximal tubules showed that the edge jump slightly shifted to lower energy. The results suggest that most uranium accumulated in kidney was uranium (VI) but a portion might have been biotransformed in rats exposed to uranyl acetate.
Collapse
Affiliation(s)
- Keisuke Kitahara
- Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Chiya Numako
- Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Yasuko Terada
- Japan Synchrotron Radiation Research Institute, Mikazuki, Hyogo 679-5198, Japan
| | - Kiyohumi Nitta
- Japan Synchrotron Radiation Research Institute, Mikazuki, Hyogo 679-5198, Japan
| | - Yoshiya Shimada
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Shino Homma-Takeda
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
25
|
Li D, Hu N, Sui Y, Ding D, Li K, Li G, Wang Y. Influence of bicarbonate on the abundance of microbial communities capable of reducing U(vi) in groundwater. RSC Adv 2017. [DOI: 10.1039/c7ra09795f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
7 experiments amended with 0, 5, 10, 15, 20, 25 and 30 mM initial concentrations of bicarbonate were conducted to investigate the influence of different concentrations of bicarbonate on the abundance of microbial communities capable of reducing U(vi) in groundwater.
Collapse
Affiliation(s)
- Dianxin Li
- Key Discipline Laboratory for National Defence for Biotechnology in Uranium Mining and Hydrometallurgy
- University of South China
- 421001 Hengyang
- China
| | - Nan Hu
- Key Discipline Laboratory for National Defence for Biotechnology in Uranium Mining and Hydrometallurgy
- University of South China
- 421001 Hengyang
- China
| | - Yang Sui
- Key Discipline Laboratory for National Defence for Biotechnology in Uranium Mining and Hydrometallurgy
- University of South China
- 421001 Hengyang
- China
| | - Dexin Ding
- Key Discipline Laboratory for National Defence for Biotechnology in Uranium Mining and Hydrometallurgy
- University of South China
- 421001 Hengyang
- China
| | - Ke Li
- Key Discipline Laboratory for National Defence for Biotechnology in Uranium Mining and Hydrometallurgy
- University of South China
- 421001 Hengyang
- China
| | - Guangyue Li
- Key Discipline Laboratory for National Defence for Biotechnology in Uranium Mining and Hydrometallurgy
- University of South China
- 421001 Hengyang
- China
| | - Yongdong Wang
- Key Discipline Laboratory for National Defence for Biotechnology in Uranium Mining and Hydrometallurgy
- University of South China
- 421001 Hengyang
- China
| |
Collapse
|
26
|
Chen A, Shang C, Shao J, Zhang J, Huang H. The application of iron-based technologies in uranium remediation: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 575:1291-1306. [PMID: 27720254 DOI: 10.1016/j.scitotenv.2016.09.211] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/25/2016] [Accepted: 09/26/2016] [Indexed: 06/06/2023]
Abstract
Remediating uranium contamination is of worldwide interest because of the increasing release of uranium from mining and processing, nuclear power leaks, depleted uranium components in weapons production and disposal, and phosphate fertilizer in agriculture activities. Iron-based technologies are attractive because they are highly efficient, inexpensive, and readily available. This paper provides an overview of the current literature that addresses the application of iron-based technologies in the remediation of sites with elevated uranium levels. The application of iron-based materials, the current remediation technologies and mechanisms, and the effectiveness and environmental safety considerations of these approaches were discussed. Because uranium can be reduced and reoxidized in the environment, the review also proposes strategies for long-term in situ remediation of uranium. Unfortunately, iron-based materials (nanoscale zerovalent iron and iron oxides) can be toxic to microorganisms. As such, further studies exploring the links among the fates, ecological impacts, and other environmentally relevant factors are needed to better understand the constraints on using iron-based technologies for remediation.
Collapse
Affiliation(s)
- Anwei Chen
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Cui Shang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Jihai Shao
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China.
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Hongli Huang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| |
Collapse
|
27
|
Sánchez-Castro I, Amador-García A, Moreno-Romero C, López-Fernández M, Phrommavanh V, Nos J, Descostes M, Merroun ML. Screening of bacterial strains isolated from uranium mill tailings porewaters for bioremediation purposes. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2017; 166:130-141. [PMID: 27068793 DOI: 10.1016/j.jenvrad.2016.03.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 03/07/2016] [Accepted: 03/21/2016] [Indexed: 06/05/2023]
Abstract
The present work characterizes at different levels a number of bacterial strains isolated from porewaters sampled in the vicinity of two French uranium tailing repositories. The 16S rRNA gene from 33 bacterial isolates, corresponding to the different morphotypes recovered, was almost fully sequenced. The resulting sequences belonged to 13 bacterial genera comprised in the phyla Firmicutes, Actinobacteria and Proteobacteria. Further characterization at physiological level and metals/metalloid tolerance provided evidences for an appropriate selection of bacterial strains potentially useful for immobilization of uranium and other common contaminants. By using High Resolution Transmission Electron Microscope (HRTEM), this potential ability to immobilize uranium as U phosphate mineral phases was confirmed for the bacterial strains Br3 and Br5 corresponding to Arthrobacter sp. and Microbacterium oxydans, respectively. Scanning Transmission Electron Microscope- High-Angle Annular Dark-Field (STEM-HAADF) analysis showed U accumulates on the surface and within bacterial cytoplasm, in addition to the extracellular space. Energy Dispersive X-ray (EDX) element-distribution maps demonstrated the presence of U and P within these accumulates. These results indicate the potential of certain bacterial strains isolated from porewaters of U mill tailings for immobilizing uranium, likely as uranium phosphates. Some of these bacterial isolates might be considered as promising candidates in the design of uranium bioremediation strategies.
Collapse
Affiliation(s)
- Iván Sánchez-Castro
- Departamento de Microbiología, Campus de Fuentenueva, Universidad de Granada, 18071, Granada, Spain.
| | - Ahinara Amador-García
- Departamento de Microbiología, Campus de Fuentenueva, Universidad de Granada, 18071, Granada, Spain
| | - Cristina Moreno-Romero
- Departamento de Microbiología, Campus de Fuentenueva, Universidad de Granada, 18071, Granada, Spain
| | | | | | - Jeremy Nos
- R&D Department, AREVA Mines, La Défense, 92084, Paris, France
| | | | - Mohamed L Merroun
- Departamento de Microbiología, Campus de Fuentenueva, Universidad de Granada, 18071, Granada, Spain
| |
Collapse
|
28
|
Mardanov AV, Panova IA, Beletsky AV, Avakyan MR, Kadnikov VV, Antsiferov DV, Banks D, Frank YA, Pimenov NV, Ravin NV, Karnachuk OV. Genomic insights into a new acidophilic, copper-resistantDesulfosporosinusisolate from the oxidized tailings area of an abandoned gold mine. FEMS Microbiol Ecol 2016; 92:fiw111. [DOI: 10.1093/femsec/fiw111] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2016] [Indexed: 11/15/2022] Open
|
29
|
The Role of Bacterial Spores in Metal Cycling and Their Potential Application in Metal Contaminant Bioremediation. Microbiol Spectr 2016; 4. [DOI: 10.1128/microbiolspec.tbs-0018-2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
ABSTRACT
Bacteria are one of the premier biological forces that, in combination with chemical and physical forces, drive metal availability in the environment. Bacterial spores, when found in the environment, are often considered to be dormant and metabolically inactive, in a resting state waiting for favorable conditions for them to germinate. However, this is a highly oversimplified view of spores in the environment. The surface of bacterial spores represents a potential site for chemical reactions to occur. Additionally, proteins in the outer layers (spore coats or exosporium) may also have more specific catalytic activity. As a consequence, bacterial spores can play a role in geochemical processes and may indeed find uses in various biotechnological applications. The aim of this review is to introduce the role of bacteria and bacterial spores in biogeochemical cycles and their potential use as toxic metal bioremediation agents.
Collapse
|
30
|
Suzuki Y, Mukai H, Ishimura T, Yokoyama TD, Sakata S, Hirata T, Iwatsuki T, Mizuno T. Formation and Geological Sequestration of Uranium Nanoparticles in Deep Granitic Aquifer. Sci Rep 2016; 6:22701. [PMID: 26948389 PMCID: PMC4780221 DOI: 10.1038/srep22701] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/22/2016] [Indexed: 11/09/2022] Open
Abstract
The stimulation of bacterial activities that convert hexavalent uranium, U(VI), to tetravalent uranium, U(IV), appears to be feasible for cost-effective remediation of contaminated aquifers. However, U(VI) reduction typically results in the precipitation of U(IV) particles less than 5 nanometers in diameter, except for environmental conditions enriched with iron. Because these tiny particles are mobile and susceptible to oxidative dissolution after the termination of nutrient injection, in situ bioremediation remains to be impractical. Here we show that U(IV) nanoparticles of coffinite (U(SiO4)1-x(OH)4x) formed in fracture-filling calcium carbonate in a granitic aquifer. In situ U-Pb isotope dating demonstrates that U(IV) nanoparticles have been sequestered in the calcium carbonate for at least 1 million years. As the microbiologically induced precipitation of calcium carbonate in aquifer systems worldwide is extremely common, we anticipate simultaneous stimulation of microbial activities for precipitation reactions of calcium carbonate and U(IV) nanoparticles, which leads to long-term sequestration of uranium and other radionuclides in contaminated aquifers and deep geological repositories.
Collapse
Affiliation(s)
- Yohey Suzuki
- Graduate School of Science, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroki Mukai
- Graduate School of Science, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toyoho Ishimura
- National Institute of Technology, Ibaraki College, 866 Nakane, Hitachinaka-shi, Ibaraki 312-8508, Japan
| | - Takaomi D Yokoyama
- Graduate School of Science, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shuhei Sakata
- Division of Earth &Planetary Sciences, Kyoto University, Kitashirakawa Oiwakesho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Takafumi Hirata
- Division of Earth &Planetary Sciences, Kyoto University, Kitashirakawa Oiwakesho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Teruki Iwatsuki
- Japan Atomic Energy Agency (JAEA), 1-64 Yamanouchi, Akeyo-cho, Mizunami, Gifu 509-6132, Japan
| | - Takashi Mizuno
- Japan Atomic Energy Agency (JAEA), 1-64 Yamanouchi, Akeyo-cho, Mizunami, Gifu 509-6132, Japan
| |
Collapse
|
31
|
Otwell AE, Callister SJ, Zink EM, Smith RD, Richardson RE. Comparative Proteomic Analysis of Desulfotomaculum reducens MI-1: Insights into the Metabolic Versatility of a Gram-Positive Sulfate- and Metal-Reducing Bacterium. Front Microbiol 2016; 7:191. [PMID: 26925055 PMCID: PMC4759654 DOI: 10.3389/fmicb.2016.00191] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 02/03/2016] [Indexed: 11/30/2022] Open
Abstract
The proteomes of the metabolically versatile and poorly characterized Gram-positive bacterium Desulfotomaculum reducens MI-1 were compared across four cultivation conditions including sulfate reduction, soluble Fe(III) reduction, insoluble Fe(III) reduction, and pyruvate fermentation. Collectively across conditions, we observed at high confidence ~38% of genome-encoded proteins. Here, we focus on proteins that display significant differential abundance on conditions tested. To the best of our knowledge, this is the first full-proteome study focused on a Gram-positive organism cultivated either on sulfate or metal-reducing conditions. Several proteins with uncharacterized function encoded within heterodisulfide reductase (hdr)-containing loci were upregulated on either sulfate (Dred_0633-4, Dred_0689-90, and Dred_1325-30) or Fe(III)-citrate-reducing conditions (Dred_0432-3 and Dred_1778-84). Two of these hdr-containing loci display homology to recently described flavin-based electron bifurcation (FBEB) pathways (Dred_1325-30 and Dred_1778-84). Additionally, we propose that a cluster of proteins, which is homologous to a described FBEB lactate dehydrogenase (LDH) complex, is performing lactate oxidation in D. reducens (Dred_0367-9). Analysis of the putative sulfate reduction machinery in D. reducens revealed that most of these proteins are constitutively expressed across cultivation conditions tested. In addition, peptides from the single multiheme c-type cytochrome (MHC) in the genome were exclusively observed on the insoluble Fe(III) condition, suggesting that this MHC may play a role in reduction of insoluble metals.
Collapse
Affiliation(s)
- Anne E Otwell
- Department of Microbiology, Cornell University Ithaca, NY, USA
| | - Stephen J Callister
- Pacific Northwest National Laboratory, Biological Sciences Division Richland, WA, USA
| | - Erika M Zink
- Pacific Northwest National Laboratory, Biological Sciences Division Richland, WA, USA
| | - Richard D Smith
- Pacific Northwest National Laboratory, Biological Sciences Division Richland, WA, USA
| | - Ruth E Richardson
- Department of Civil and Environmental Engineering, Cornell University Ithaca, NY, USA
| |
Collapse
|
32
|
Srivastava S, Bhainsa KC. Evaluation of uranium removal by Hydrilla verticillata (L.f.) Royle from low level nuclear waste under laboratory conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 167:124-129. [PMID: 26618901 DOI: 10.1016/j.jenvman.2015.11.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 11/03/2015] [Accepted: 11/08/2015] [Indexed: 06/05/2023]
Abstract
The present study evaluated uranium (U) removal ability and tolerance to low level nuclear waste (LLNW) of an aquatic weed Hydrilla verticillata. Plants were screened for growth in 10%-50% waste treatments up to 3 d. Treatments of 20% and 50% waste imposed increasing toxicity with duration assessed in terms of change in fresh weight and in the levels of photosynthetic pigments and thiobarbituric acid-reactive substances. U concentration, however, did not show a progressive increase and was about 42 μg g(-1) dw from 20% to 50% waste at 3 d. This suggested that a saturation stage was reached with respect to U removal due to increasing toxicity. However, in another experiment with 10% waste and 10% waste+10 ppm U treatments, plants showed an increase in U concentration with the maximum level approaching 426 μg g(-1) dw at 3 d without showing any toxicity as compared to that at 20% and 50% waste treatments. Hence, plants possessed significant potential to take up U and toxicity of LLNW limited their U removal ability. This implies that the use of Hydrilla plants for U removal from LLNW is feasible at low concentrations and would require repeated harvesting at short intervals.
Collapse
Affiliation(s)
- Sudhakar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India.
| | - K C Bhainsa
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| |
Collapse
|
33
|
Lai CY, Wen LL, Zhang Y, Luo SS, Wang QY, Luo YH, Chen R, Yang X, Rittmann BE, Zhao HP. Autotrophic antimonate bio-reduction using hydrogen as the electron donor. WATER RESEARCH 2016; 88:467-474. [PMID: 26519630 DOI: 10.1016/j.watres.2015.10.042] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 10/09/2015] [Accepted: 10/19/2015] [Indexed: 06/05/2023]
Abstract
Antimony (Sb), a toxic metalloid, is soluble as antimonate (Sb(V)). While bio-reduction of Sb(V) is an effective Sb-removal approach, its bio-reduction has been coupled to oxidation of only organic electron donors. In this study, we demonstrate, for the first time, the feasibility of autotrophic microbial Sb(V) reduction using hydrogen gas (H2) as the electron donor without extra organic carbon source. SEM and EDS analysis confirmed the production of the mineral precipitate Sb2O3. When H2 was utilized as the electron donor, the consortium was able to fully reduce 650 μM of Sb(V) to Sb(III) in 10 days, a rate comparable to the culture using lactate as the electron donor. The H2-fed culture directed a much larger fraction of it donor electrons to Sb(V) reduction than did the lactate-fed culture. While 98% of the electrons from H2 were used to reduce Sb(V) by the H2-fed culture, only 12% of the electrons from lactate was used to reduce Sb(V) by the lactate-fed culture. The rest of the electrons from lactate went to acetate and propionate through fermentation, to methane through methanogenesis, and to biomass synthesis. High-throughput sequencing confirmed that the microbial community for the lactate-fed culture was much more diverse than that for the H2-fed culture, which was dominated by a short rod-shaped phylotype of Rhizobium (α-Protobacteria) that may have been active in Sb(V) reduction.
Collapse
Affiliation(s)
- Chun-Yu Lai
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Li-Lian Wen
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Yin Zhang
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Shan-Shan Luo
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Qing-Ying Wang
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Yi-Hao Luo
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Ran Chen
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoe Yang
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Bruce E Rittmann
- Swette Center for Environmental Biotechnology, Biodesign Institute at Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701 USA
| | - He-Ping Zhao
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
34
|
Assunção A, Costa MC, Carlier JD. Application of urea-agarose gel electrophoresis to select non-redundant 16S rRNAs for taxonomic studies: palladium(II) removal bacteria. Appl Microbiol Biotechnol 2015; 100:2721-35. [PMID: 26590590 DOI: 10.1007/s00253-015-7163-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/30/2015] [Accepted: 11/07/2015] [Indexed: 11/26/2022]
Abstract
The 16S ribosomal RNA (rRNA) gene has been the most commonly used sequence to characterize bacterial communities. The classical approach to obtain gene sequences to study bacterial diversity implies cloning amplicons, selecting clones, and Sanger sequencing cloned fragments. A more recent approach is direct sequencing of millions of genes using massive parallel technologies, allowing a large-scale biodiversity analysis of many samples simultaneously. However, currently, this technique is still expensive when applied to few samples; therefore, the classical approach is still used. Recently, we found a community able to remove 50 mg/L Pd(II). In this work, aiming to identify the bacteria potentially involved in Pd(II) removal, the separation of urea/heat-denatured DNA fragments by urea-agarose gel electrophoresis was applied for the first time to select 16S rRNA-cloned amplicons for taxonomic studies. The major raise in the percentage of bacteria belonging to genus Clostridium sensu stricto from undetected to 21 and 41 %, respectively, for cultures without, with 5 and 50 mg/L Pd(II) accompanying Pd(II) removal point to this taxa as a potential key agent for the bio-recovery of this metal. Despite sulfate-reducing bacteria were not detected, the hypothesis of Pd(II) removal by activity of these bacteria cannot be ruled out because a slight decrease of sulfate concentration of the medium was verified and the formation of PbS precipitates seems to occur. This work also contributes with knowledge about suitable partial 16S rRNA gene regions for taxonomic studies and shows that unidirectional sequencing is enough when Sanger sequencing cloned 16S rRNA genes for taxonomic studies to genus level.
Collapse
Affiliation(s)
- Ana Assunção
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Maria Clara Costa
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Jorge Dias Carlier
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| |
Collapse
|
35
|
Li Z, Kim DD, Nelson OD, Otwell AE, Richardson RE, Callister SJ, Lin H. Molecular dissection of a putative iron reductase from Desulfotomaculum reducens MI-1. Biochem Biophys Res Commun 2015; 467:503-8. [PMID: 26454174 DOI: 10.1016/j.bbrc.2015.10.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 10/04/2015] [Indexed: 12/01/2022]
Abstract
Desulfotomaculum reducens MI-1 is a Firmicute strain capable of reducing a variety of heavy metal ions and has a great potential in heavy metal bioremediation. We recently identified Dred_2421 as a potential iron reductase through proteomic study of D. reducens. The current study examines its iron-reduction mechanism. Dred_2421, like its close homolog from Escherichia coli (2, 4-dienoyl-CoA reductase), has an FMN-binding N-terminal domain (NTD), an FAD-binding C-terminal domain (CTD), and a 4Fe-4S cluster between the two domains. To understand the mechanism of the iron-reduction activity and the role of each domain, we generated a series of variants for each domain and investigated their iron-reduction activity. Our results suggest that CTD is the main contributor of the iron-reduction activity, and that NTD and the 4Fe-4S cluster are not directly involved in such activity. This study provides a mechanistic understanding of the iron-reductase activity of Dred_2421 and may also help to elucidate other physiological activities this enzyme may have.
Collapse
Affiliation(s)
- Zhi Li
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - David D Kim
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Ornella D Nelson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Anne E Otwell
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - Ruth E Richardson
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | | | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA; Howard Hughes Medical Institute, USA.
| |
Collapse
|
36
|
Karnachuk OV, Kurganskaya IA, Avakyan MR, Frank YA, Ikkert OP, Filenko RA, Danilova EV, Pimenov NV. An acidophilic Desulfosporosinus isolated from the oxidized mining wastes in the Transbaikal area. Microbiology (Reading) 2015. [DOI: 10.1134/s0026261715050112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
37
|
Otwell AE, Sherwood RW, Zhang S, Nelson OD, Li Z, Lin H, Callister SJ, Richardson RE. Identification of proteins capable of metal reduction from the proteome of the Gram-positive bacterium Desulfotomaculum reducens MI-1 using an NADH-based activity assay. Environ Microbiol 2015; 17:1977-90. [PMID: 25389064 DOI: 10.1111/1462-2920.12673] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 10/14/2014] [Indexed: 12/14/2022]
Abstract
Understanding of microbial metal reduction is based almost solely on studies of Gram-negative organisms. In this study, we focus on Desulfotomaculum reducens MI-1, a Gram-positive metal reducer whose genome lacks genes with similarity to any characterized metal reductase. Using non-denaturing separations and mass spectrometry identification, in combination with a colorimetric screen for chelated Fe(III)-NTA reduction with NADH as electron donor, we have identified proteins from the D. reducens proteome not previously characterized as iron reductases. Their function was confirmed by heterologous expression in Escherichia coli. Furthermore, we show that these proteins have the capability to reduce soluble Cr(VI) and U(VI) with NADH as electron donor. The proteins identified are NADH : flavin oxidoreductase (Dred_2421) and a protein complex composed of oxidoreductase flavin adenine dinucleotide/NAD(P)-binding subunit (Dred_1685) and dihydroorotate dehydrogenase 1B (Dred_1686). Dred_2421 was identified in the soluble proteome and is predicted to be a cytoplasmic protein. Dred_1685 and Dred_1686 were identified in both the soluble as well as the insoluble protein fraction, suggesting a type of membrane association, although PSORTb predicts both proteins are cytoplasmic. This study is the first functional proteomic analysis of D. reducens and one of the first analyses of metal and radionuclide reduction in an environmentally relevant Gram-positive bacterium.
Collapse
Affiliation(s)
| | - Robert W Sherwood
- Department of Proteomics and Mass Spectrometry Facility, Cornell University, Ithaca, NY, USA
| | - Sheng Zhang
- Department of Proteomics and Mass Spectrometry Facility, Cornell University, Ithaca, NY, USA
| | - Ornella D Nelson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Zhi Li
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | | | - Ruth E Richardson
- Department of Civil and Environmental Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
38
|
Wang H, Ren ZJ. Bioelectrochemical metal recovery from wastewater: a review. WATER RESEARCH 2014; 66:219-232. [PMID: 25216302 DOI: 10.1016/j.watres.2014.08.013] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 07/02/2014] [Accepted: 08/12/2014] [Indexed: 05/05/2023]
Abstract
Metal contaminated wastewater posts great health and environmental concerns, but it also provides opportunities for precious metal recovery, which may potentially make treatment processes more cost-effective and sustainable. Conventional metal recovery technologies include physical, chemical and biological methods, but they are generally energy and chemical intensive. The recent development of bioelectrochemical technology provides a new approach for efficient metal recovery, because it offers a flexible platform for both oxidation and reduction reaction oriented processes. While dozens of recent studies demonstrated the feasibility of the bioelectrochemical metal recovery concept, the mechanisms have been different and confusing. This study provides a review that summarizes and discusses the different fundamental mechanisms of metal conversion, with the aim of facilitating the scientific understanding and technology development. While the general approach of bioelectrochemical metal recovery is using metals as the electron acceptor in the cathode chamber and organic waste as the electron donor in the anode chamber, there are so far four mechanisms that have been reported: (1) direct metal recovery using abiotic cathodes; (2) metal recovery using abiotic cathodes supplemented by external power sources; (3) metal conversion using bio-cathodes; and (4) metal conversion using bio-cathodes supplemented by external power sources.
Collapse
Affiliation(s)
- Heming Wang
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Zhiyong Jason Ren
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
39
|
Gao W, Francis AJ. Fermentation and hydrogen metabolism affect uranium reduction by clostridia. ISRN BIOTECHNOLOGY 2013; 2013:657160. [PMID: 25937978 PMCID: PMC4393052 DOI: 10.5402/2013/657160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 01/19/2013] [Indexed: 11/23/2022]
Abstract
Previously, it has been shown that not only is uranium reduction under fermentation condition common among clostridia species, but also the strains differed in the extent of their capability and the pH of the culture significantly affected uranium(VI) reduction. In this study, using HPLC and GC techniques, metabolic properties of those clostridial strains active in uranium reduction under fermentation conditions have been characterized and their effects on capability variance of uranium reduction discussed. Then, the relationship between hydrogen metabolism and uranium reduction has been further explored and the important role played by hydrogenase in uranium(VI) and iron(III) reduction by clostridia demonstrated. When hydrogen was provided as the headspace gas, uranium(VI) reduction occurred in the presence of whole cells of clostridia. This is in contrast to that of nitrogen as the headspace gas. Without clostridia cells, hydrogen alone could not result in uranium(VI) reduction. In alignment with this observation, it was also found that either copper(II) addition or iron depletion in the medium could compromise uranium reduction by clostridia. In the end, a comprehensive model was proposed to explain uranium reduction by clostridia and its relationship to the overall metabolism especially hydrogen (H2) production.
Collapse
Affiliation(s)
- Weimin Gao
- Center for Biosignatures Discovery Automation, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Arokiasamy J. Francis
- Division of Advanced Nuclear Engineering, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
- Environmental Sciences Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
40
|
|
41
|
Aluminum and sulphate removal by a highly Al-resistant dissimilatory sulphate-reducing bacteria community. Biodegradation 2012; 23:693-703. [DOI: 10.1007/s10532-012-9545-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 02/08/2012] [Indexed: 12/21/2022]
|
42
|
Assunção A, Martins M, Silva G, Lucas H, Coelho MR, Costa MC. Bromate removal by anaerobic bacterial community: mechanism and phylogenetic characterization. JOURNAL OF HAZARDOUS MATERIALS 2011; 197:237-243. [PMID: 21982540 DOI: 10.1016/j.jhazmat.2011.09.076] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 09/19/2011] [Accepted: 09/21/2011] [Indexed: 05/31/2023]
Abstract
A highly bromate resistant bacterial community and with ability for bromate removal was obtained from a sulphate-reducing bacteria enrichment consortium. This community was able to remove 96% of bromate and 99% of sulphate from an aqueous solution containing 40 μM bromate and 10 mM sulphate. Moreover, 93% of bromate was removed in the absence of sulphate. Under this condition bromate was reduced stoichiometrically to bromide. However, in the presence of sulphate only 88% of bromate was reduced to bromide. Although, bromate removal was not affected by the absence of sulphate, this anion promoted a modification on the structure of the bacterial community. Phylogenetic analysis of 16S rRNA gene showed that the community grown in the presence of bromate and sulphate was mainly composed by bacteria closely to Clostridium and Citrobacter genera, while the community grown in the absence of sulphate was predominantly composed by Clostridium genus. It is the first time that Clostridium and Citrobacter genera are reported as having bromate removal ability. Furthermore, bromate removal by the consortium predominantly composed by Clostridium and Citrobacter genera occurred by enzymatic reduction and by extracellular metabolic products, while the enzymatic process was the only mechanism involved in bromate removal by the consortium mainly composed by Clostridium genus.
Collapse
Affiliation(s)
- Ana Assunção
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Faculdade de Ciências e de Tecnologia, Departamento de Química e Farmácia, Faro, Portugal.
| | | | | | | | | | | |
Collapse
|
43
|
Mondani L, Benzerara K, Carrière M, Christen R, Mamindy-Pajany Y, Février L, Marmier N, Achouak W, Nardoux P, Berthomieu C, Chapon V. Influence of uranium on bacterial communities: a comparison of natural uranium-rich soils with controls. PLoS One 2011; 6:e25771. [PMID: 21998695 PMCID: PMC3187815 DOI: 10.1371/journal.pone.0025771] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 09/11/2011] [Indexed: 11/30/2022] Open
Abstract
This study investigated the influence of uranium on the indigenous bacterial community structure in natural soils with high uranium content. Radioactive soil samples exhibiting 0.26% - 25.5% U in mass were analyzed and compared with nearby control soils containing trace uranium. EXAFS and XRD analyses of soils revealed the presence of U(VI) and uranium-phosphate mineral phases, identified as sabugalite and meta-autunite. A comparative analysis of bacterial community fingerprints using denaturing gradient gel electrophoresis (DGGE) revealed the presence of a complex population in both control and uranium-rich samples. However, bacterial communities inhabiting uraniferous soils exhibited specific fingerprints that were remarkably stable over time, in contrast to populations from nearby control samples. Representatives of Acidobacteria, Proteobacteria, and seven others phyla were detected in DGGE bands specific to uraniferous samples. In particular, sequences related to iron-reducing bacteria such as Geobacter and Geothrix were identified concomitantly with iron-oxidizing species such as Gallionella and Sideroxydans. All together, our results demonstrate that uranium exerts a permanent high pressure on soil bacterial communities and suggest the existence of a uranium redox cycle mediated by bacteria in the soil.
Collapse
Affiliation(s)
- Laure Mondani
- CEA, DSV, IBEB, Laboratoire Interactions Protéine Métal, Saint-Paul-lez-Durance, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Martins M, Faleiro ML, da Costa AMR, Chaves S, Tenreiro R, Matos AP, Costa MC. Mechanism of uranium (VI) removal by two anaerobic bacterial communities. JOURNAL OF HAZARDOUS MATERIALS 2010; 184:89-96. [PMID: 20832165 DOI: 10.1016/j.jhazmat.2010.08.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 07/05/2010] [Accepted: 08/04/2010] [Indexed: 05/29/2023]
Abstract
The mechanism of uranium (VI) removal by two anaerobic bacterial consortia, recovered from an uncontaminated site (consortium A) and other from an uranium mine (consortium U), was investigated. The highest efficiency of U (VI) removal by both consortia (97%) occurred at room temperature and at pH 7.2. Furthermore, it was found that U (VI) removal by consortium A occurred by enzymatic reduction and bioaccumulation, while the enzymatic process was the only mechanism involved in metal removal by consortium U. FTIR analysis suggested that after U (VI) reduction, U (IV) could be bound to carboxyl, phosphate and amide groups of bacterial cells. Phylogenetic analysis of 16S rRNA showed that community A was mainly composed by bacteria closely related to Sporotalea genus and Rhodocyclaceae family, while community U was mainly composed by bacteria related to Clostridium genus and Rhodocyclaceae family.
Collapse
Affiliation(s)
- Mónica Martins
- Centro de Ciências do Mar, Universidade do Algarve, FCT-DQF (edifício 8), Campus de Gambelas, 8005-139 Faro, Portugal
| | - Maria Leonor Faleiro
- IBB - Centro de Biomedicina Molecular e Estrutural, Universidade do Algarve, FCT, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Ana M Rosa da Costa
- Centro de Investigação em Química do Algarve, Universidade do Algarve, FCT, DQF, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Sandra Chaves
- Universidade de Lisboa, Faculdade de Ciências, Centro de Biodiversidade, Genómica Integrativa e Funcional (BioFIG), Campus de FCUL, Campo Grande, 1749-016 Lisboa, Portugal
| | - Rogério Tenreiro
- Universidade de Lisboa, Faculdade de Ciências, Centro de Biodiversidade, Genómica Integrativa e Funcional (BioFIG), Campus de FCUL, Campo Grande, 1749-016 Lisboa, Portugal
| | | | - Maria Clara Costa
- Centro de Ciências do Mar, Universidade do Algarve, FCT-DQF (edifício 8), Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
45
|
Zhang F, Wu WM, Parker JC, Mehlhorn T, Kelly SD, Kemner KM, Zhang G, Schadt C, Brooks SC, Criddle CS, Watson DB, Jardine PM. Kinetic analysis and modeling of oleate and ethanol stimulated uranium (VI) bio-reduction in contaminated sediments under sulfate reduction conditions. JOURNAL OF HAZARDOUS MATERIALS 2010; 183:482-489. [PMID: 20702039 DOI: 10.1016/j.jhazmat.2010.07.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 05/29/2010] [Accepted: 07/12/2010] [Indexed: 05/29/2023]
Abstract
Microcosm tests with uranium contaminated sediments were performed to explore the feasibility of using oleate as a slow-release electron donor for U(VI) reduction in comparison to ethanol. Oleate degradation proceeded more slowly than ethanol with acetate produced as an intermediate for both electron donors under a range of initial sulfate concentrations. A kinetic microbial reduction model was developed and implemented to describe and compare the reduction of sulfate and U(VI) with oleate or ethanol. The reaction path model considers detailed oleate/ethanol degradation and the production and consumption of intermediates, acetate and hydrogen. Although significant assumptions are made, the model tracked the major trend of sulfate and U(VI) reduction and describes the successive production and consumption of acetate, concurrent with microbial reduction of aqueous sulfate and U(VI) species. The model results imply that the overall rate of U(VI) bioreduction is influenced by both the degradation rate of organic substrates and consumption rate of intermediate products.
Collapse
Affiliation(s)
- Fan Zhang
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
U(VI) reduction by spores of Clostridium acetobutylicum. Res Microbiol 2010; 161:765-71. [DOI: 10.1016/j.resmic.2010.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 08/31/2010] [Indexed: 11/19/2022]
|
47
|
Shao Y, Harrison EM, Bi D, Tai C, He X, Ou HY, Rajakumar K, Deng Z. TADB: a web-based resource for Type 2 toxin-antitoxin loci in bacteria and archaea. Nucleic Acids Res 2010; 39:D606-11. [PMID: 20929871 PMCID: PMC3013778 DOI: 10.1093/nar/gkq908] [Citation(s) in RCA: 201] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
TADB (http://bioinfo-mml.sjtu.edu.cn/TADB/) is an integrated database that provides comprehensive information about Type 2 toxin-antitoxin (TA) loci, genetic features that are richly distributed throughout bacterial and archaeal genomes. Two-gene and much less frequently three-gene Type 2 TA loci code for cognate partners that have been hypothesized or demonstrated to play key roles in stress response, bacterial physiology and stabilization of horizontally acquired genetic elements. TADB offers a unique compilation of both predicted and experimentally supported Type 2 TA loci-relevant data and currently contains 10,753 Type 2 TA gene pairs identified within 1240 prokaryotic genomes, and details of over 240 directly relevant scientific publications. A broad range of similarity search, sequence alignment, genome context browser and phylogenetic tools are readily accessible via TADB. We propose that TADB will facilitate efficient, multi-disciplinary and innovative exploration of the bacteria and archaea Type 2 TA space, better defining presently recognized TA-related phenomena and potentially even leading to yet-to-be envisaged frontiers. The TADB database, envisaged as a one-stop shop for Type 2 TA-related research, will be maintained, updated and improved regularly to ensure its ongoing maximum utility to the research community.
Collapse
Affiliation(s)
- Yucheng Shao
- Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai 200030, PR China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Significant association between sulfate-reducing bacteria and uranium-reducing microbial communities as revealed by a combined massively parallel sequencing-indicator species approach. Appl Environ Microbiol 2010; 76:6778-86. [PMID: 20729318 DOI: 10.1128/aem.01097-10] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Massively parallel sequencing has provided a more affordable and high-throughput method to study microbial communities, although it has mostly been used in an exploratory fashion. We combined pyrosequencing with a strict indicator species statistical analysis to test if bacteria specifically responded to ethanol injection that successfully promoted dissimilatory uranium(VI) reduction in the subsurface of a uranium contamination plume at the Oak Ridge Field Research Center in Tennessee. Remediation was achieved with a hydraulic flow control consisting of an inner loop, where ethanol was injected, and an outer loop for flow-field protection. This strategy reduced uranium concentrations in groundwater to levels below 0.126 μM and created geochemical gradients in electron donors from the inner-loop injection well toward the outer loop and downgradient flow path. Our analysis with 15 sediment samples from the entire test area found significant indicator species that showed a high degree of adaptation to the three different hydrochemical-created conditions. Castellaniella and Rhodanobacter characterized areas with low pH, heavy metals, and low bioactivity, while sulfate-, Fe(III)-, and U(VI)-reducing bacteria (Desulfovibrio, Anaeromyxobacter, and Desulfosporosinus) were indicators of areas where U(VI) reduction occurred. The abundance of these bacteria, as well as the Fe(III) and U(VI) reducer Geobacter, correlated with the hydraulic connectivity to the substrate injection site, suggesting that the selected populations were a direct response to electron donor addition by the groundwater flow path. A false-discovery-rate approach was implemented to discard false-positive results by chance, given the large amount of data compared.
Collapse
|
49
|
Martins M, Faleiro ML, Chaves S, Tenreiro R, Costa MC. Effect of uranium (VI) on two sulphate-reducing bacteria cultures from a uranium mine site. THE SCIENCE OF THE TOTAL ENVIRONMENT 2010; 408:2621-2628. [PMID: 20334901 DOI: 10.1016/j.scitotenv.2010.02.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 02/12/2010] [Accepted: 02/19/2010] [Indexed: 05/29/2023]
Abstract
This work was conducted to assess the impact of uranium (VI) on sulphate-reducing bacteria (SRB) communities obtained from environmental samples collected on the Portuguese uranium mining area of Urgeiriça. Culture U was obtained from a sediment, while culture W was obtained from sludge from the wetland of that mine. Temperature gradient gel electrophoresis (TGGE) was used to monitor community changes under uranium stress conditions. TGGE profiles of dsrB gene fragment demonstrated that the initial cultures were composed of SRB species affiliated with Desulfovibrio desulfuricans, Desulfovibrio vulgaris and Desulfomicrobium spp. (sample U), and by species related to D. desulfuricans (sample W). A drastic change in SRB communities was observed as a result of uranium (VI) exposure. Surprisingly, SRB were not detected in the uranium removal communities. Such findings emphasize the need of monitoring the dominant populations during bio-removal studies. TGGE and phylogenetic analysis of the 16S rRNA gene fragment revealed that the uranium removal consortia are composed by strains affiliated to Clostridium genus, Caulobacteraceae and Rhodocyclaceae families. Therefore, these communities can be attractive candidates for environmental biotechnological applications associated to uranium removal.
Collapse
Affiliation(s)
- Mónica Martins
- Centro de Ciências do Mar, Faculdade de Ciências e Tecnologia, DQF, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | | | | | | | | |
Collapse
|
50
|
Sitte J, Akob DM, Kaufmann C, Finster K, Banerjee D, Burkhardt EM, Kostka JE, Scheinost AC, Büchel G, Küsel K. Microbial links between sulfate reduction and metal retention in uranium- and heavy metal-contaminated soil. Appl Environ Microbiol 2010; 76:3143-52. [PMID: 20363796 PMCID: PMC2869125 DOI: 10.1128/aem.00051-10] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 03/23/2010] [Indexed: 11/20/2022] Open
Abstract
Sulfate-reducing bacteria (SRB) can affect metal mobility either directly by reductive transformation of metal ions, e.g., uranium, into their insoluble forms or indirectly by formation of metal sulfides. This study evaluated in situ and biostimulated activity of SRB in groundwater-influenced soils from a creek bank contaminated with heavy metals and radionuclides within the former uranium mining district of Ronneburg, Germany. In situ activity of SRB, measured by the (35)SO(4)(2-) radiotracer method, was restricted to reduced soil horizons with rates of < or =142 +/- 20 nmol cm(-3) day(-1). Concentrations of heavy metals were enriched in the solid phase of the reduced horizons, whereas pore water concentrations were low. X-ray absorption near-edge structure (XANES) measurements demonstrated that approximately 80% of uranium was present as reduced uranium but appeared to occur as a sorbed complex. Soil-based dsrAB clone libraries were dominated by sequences affiliated with members of the Desulfobacterales but also the Desulfovibrionales, Syntrophobacteraceae, and Clostridiales. [(13)C]acetate- and [(13)C]lactate-biostimulated soil microcosms were dominated by sulfate and Fe(III) reduction. These processes were associated with enrichment of SRB and Geobacteraceae; enriched SRB were closely related to organisms detected in soils by using the dsrAB marker. Concentrations of soluble nickel, cobalt, and occasionally zinc declined < or =100% during anoxic soil incubations. In contrast to results in other studies, soluble uranium increased in carbon-amended treatments, reaching < or =1,407 nM in solution. Our results suggest that (i) ongoing sulfate reduction in contaminated soil resulted in in situ metal attenuation and (ii) the fate of uranium mobility is not predictable and may lead to downstream contamination of adjacent ecosystems.
Collapse
Affiliation(s)
- Jana Sitte
- Institute of Ecology, Friedrich Schiller University Jena, D-07743 Jena, Germany, Department of Oceanography, Florida State University, Tallahassee, Florida 32306, Department of Microbial Ecology, Institute for Biological Sciences, DK-8000 Aarhus C, Denmark, Institute of Radiochemistry, Forschungszentrum Dresden-Rossendorf, D-01314 Dresden, Germany, and The Rossendorf Beamline at ESRF, F-38043 Grenoble, France, Institute of Earth Science, Friedrich Schiller University, D-07749 Jena, Germany
| | - Denise M. Akob
- Institute of Ecology, Friedrich Schiller University Jena, D-07743 Jena, Germany, Department of Oceanography, Florida State University, Tallahassee, Florida 32306, Department of Microbial Ecology, Institute for Biological Sciences, DK-8000 Aarhus C, Denmark, Institute of Radiochemistry, Forschungszentrum Dresden-Rossendorf, D-01314 Dresden, Germany, and The Rossendorf Beamline at ESRF, F-38043 Grenoble, France, Institute of Earth Science, Friedrich Schiller University, D-07749 Jena, Germany
| | - Christian Kaufmann
- Institute of Ecology, Friedrich Schiller University Jena, D-07743 Jena, Germany, Department of Oceanography, Florida State University, Tallahassee, Florida 32306, Department of Microbial Ecology, Institute for Biological Sciences, DK-8000 Aarhus C, Denmark, Institute of Radiochemistry, Forschungszentrum Dresden-Rossendorf, D-01314 Dresden, Germany, and The Rossendorf Beamline at ESRF, F-38043 Grenoble, France, Institute of Earth Science, Friedrich Schiller University, D-07749 Jena, Germany
| | - Kai Finster
- Institute of Ecology, Friedrich Schiller University Jena, D-07743 Jena, Germany, Department of Oceanography, Florida State University, Tallahassee, Florida 32306, Department of Microbial Ecology, Institute for Biological Sciences, DK-8000 Aarhus C, Denmark, Institute of Radiochemistry, Forschungszentrum Dresden-Rossendorf, D-01314 Dresden, Germany, and The Rossendorf Beamline at ESRF, F-38043 Grenoble, France, Institute of Earth Science, Friedrich Schiller University, D-07749 Jena, Germany
| | - Dipanjan Banerjee
- Institute of Ecology, Friedrich Schiller University Jena, D-07743 Jena, Germany, Department of Oceanography, Florida State University, Tallahassee, Florida 32306, Department of Microbial Ecology, Institute for Biological Sciences, DK-8000 Aarhus C, Denmark, Institute of Radiochemistry, Forschungszentrum Dresden-Rossendorf, D-01314 Dresden, Germany, and The Rossendorf Beamline at ESRF, F-38043 Grenoble, France, Institute of Earth Science, Friedrich Schiller University, D-07749 Jena, Germany
| | - Eva-Maria Burkhardt
- Institute of Ecology, Friedrich Schiller University Jena, D-07743 Jena, Germany, Department of Oceanography, Florida State University, Tallahassee, Florida 32306, Department of Microbial Ecology, Institute for Biological Sciences, DK-8000 Aarhus C, Denmark, Institute of Radiochemistry, Forschungszentrum Dresden-Rossendorf, D-01314 Dresden, Germany, and The Rossendorf Beamline at ESRF, F-38043 Grenoble, France, Institute of Earth Science, Friedrich Schiller University, D-07749 Jena, Germany
| | - Joel E. Kostka
- Institute of Ecology, Friedrich Schiller University Jena, D-07743 Jena, Germany, Department of Oceanography, Florida State University, Tallahassee, Florida 32306, Department of Microbial Ecology, Institute for Biological Sciences, DK-8000 Aarhus C, Denmark, Institute of Radiochemistry, Forschungszentrum Dresden-Rossendorf, D-01314 Dresden, Germany, and The Rossendorf Beamline at ESRF, F-38043 Grenoble, France, Institute of Earth Science, Friedrich Schiller University, D-07749 Jena, Germany
| | - Andreas C. Scheinost
- Institute of Ecology, Friedrich Schiller University Jena, D-07743 Jena, Germany, Department of Oceanography, Florida State University, Tallahassee, Florida 32306, Department of Microbial Ecology, Institute for Biological Sciences, DK-8000 Aarhus C, Denmark, Institute of Radiochemistry, Forschungszentrum Dresden-Rossendorf, D-01314 Dresden, Germany, and The Rossendorf Beamline at ESRF, F-38043 Grenoble, France, Institute of Earth Science, Friedrich Schiller University, D-07749 Jena, Germany
| | - Georg Büchel
- Institute of Ecology, Friedrich Schiller University Jena, D-07743 Jena, Germany, Department of Oceanography, Florida State University, Tallahassee, Florida 32306, Department of Microbial Ecology, Institute for Biological Sciences, DK-8000 Aarhus C, Denmark, Institute of Radiochemistry, Forschungszentrum Dresden-Rossendorf, D-01314 Dresden, Germany, and The Rossendorf Beamline at ESRF, F-38043 Grenoble, France, Institute of Earth Science, Friedrich Schiller University, D-07749 Jena, Germany
| | - Kirsten Küsel
- Institute of Ecology, Friedrich Schiller University Jena, D-07743 Jena, Germany, Department of Oceanography, Florida State University, Tallahassee, Florida 32306, Department of Microbial Ecology, Institute for Biological Sciences, DK-8000 Aarhus C, Denmark, Institute of Radiochemistry, Forschungszentrum Dresden-Rossendorf, D-01314 Dresden, Germany, and The Rossendorf Beamline at ESRF, F-38043 Grenoble, France, Institute of Earth Science, Friedrich Schiller University, D-07749 Jena, Germany
| |
Collapse
|