1
|
Horinouchi M, Hayashi T. Comprehensive summary of steroid metabolism in Comamonas testosteroni TA441: entire degradation process of basic four rings and removal of C12 hydroxyl group. Appl Environ Microbiol 2023; 89:e0014323. [PMID: 37815361 PMCID: PMC10654043 DOI: 10.1128/aem.00143-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/02/2023] [Indexed: 10/11/2023] Open
Abstract
Comamonas testosteroni is one of the representative aerobic steroid-degrading bacteria. We previously revealed the mechanism of steroidal A,B,C,D-ring degradation by C. testosteroni TA441. The corresponding genes are located in two clusters at both ends of a mega-cluster of steroid degradation genes. ORF7 and ORF6 are the only two genes in these clusters, whose function has not been determined. Here, we characterized ORF7 as encoding the dehydrase responsible for converting the C12β hydroxyl group to the C10(12) double bond on the C-ring (SteC), and ORF6 as encoding the hydrogenase responsible for converting the C10(12) double bond to a single bond (SteD). SteA and SteB, encoded just upstream of SteC and SteD, are in charge of oxidizing the C12α hydroxyl group to a ketone group and of reducing the latter to the C12β hydroxyl group, respectively. Therefore, the C12α hydroxyl group in steroids is removed with SteABCD via the C12 ketone and C12β hydroxyl groups. Given the functional characterization of ORF6 and ORF7, we disclose the entire pathway of steroidal A,B,C,D-ring breakdown by C. testosteroni TA441.IMPORTANCEStudies on bacterial steroid degradation were initiated more than 50 years ago, primarily to obtain materials for steroid drugs. Now, their implications for the environment and humans, especially in relation to the infection and the brain-gut-microbiota axis, are attracting increasing attention. Comamonas testosteroni TA441 is the leading model of bacterial aerobic steroid degradation with the ability to break down cholic acid, the main component of bile acids. Bile acids are known for their variety of physiological activities according to their substituent group(s). In this study, we identified and functionally characterized the genes for the removal of C12 hydroxyl groups and provided a comprehensive summary of the entire A,B,C,D-ring degradation pathway by C. testosteroni TA441 as the representable bacterial aerobic degradation process of the steroid core structure.
Collapse
Affiliation(s)
- Masae Horinouchi
- Environmental Molecular Biology Laboratory, RIKEN, Saitama, Japan
- Surface and Interface Science Laboratory, RIKEN, Saitama, Japan
| | - Toshiaki Hayashi
- Environmental Molecular Biology Laboratory, RIKEN, Saitama, Japan
| |
Collapse
|
2
|
Horinouchi M, Hayashi T. Identification of "missing links" in C- and D-ring cleavage of steroids by Comamonas testosteroni TA441. Appl Environ Microbiol 2023; 89:e0105023. [PMID: 37815342 PMCID: PMC10654042 DOI: 10.1128/aem.01050-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/18/2023] [Indexed: 10/11/2023] Open
Abstract
Comamonas testosteroni TA441 is capable of aerobically degrading steroids through the aromatization and cleavage of the A- and B-rings, followed by D- and C-ring cleavage via β-oxidation. While most of the degradation steps have been previously characterized, a few intermediate compounds remained unidentified. In this study, we proposed that the cleavage of the D-ring at C13-17 required the ScdY hydratase, followed by C-ring cleavage via the ScdL1L2 transferase. The anticipated reaction was expected to yield 6-methyl-3,7-dioxo-decane-1,10-dioic acid-coenzyme A (CoA) ester. To confirm this hypothesis, we constructed a plasmid enabling the induction of targeted genes in TA441 mutant strains. Induction experiments of ScdL1L2 revealed that the major product was 3-hydroxy-6-methyl-7-oxo-decane-1,10-dioic acid-CoA ester. Similarly, induction experiments of ScdY demonstrated that the substrate of ScdY was a geminal diol, 17-dihydroxy-9-oxo-1,2,3,4,5,6,10,19-octanorandrost-8(14)-en-7-oic acid-CoA ester. These findings suggest that ScdY catalyzes the addition of a water molecule at C14 of 17-dihydroxy-9-oxo-1,2,3,4,5,6,10,19-octanorandrost-8(14)-en-7-oic acid-CoA ester, leading to D-ring cleavage at C13-17. Subsequently, the C9 ketone of the D-ring cleavage product is converted to a hydroxyl group, followed by C-ring cleavage, resulting in the production of 3-hydroxy-6-methyl-7-oxo-decane-1,10-dioic acid-CoA ester.IMPORTANCEStudies on bacterial steroid degradation were initiated more than 50 years ago primarily to obtain substrates for steroid drugs. In recent years, the role of steroid-degrading bacteria in relation to human health has gained significant attention, as emerging evidence suggests that the intestinal microflora plays a crucial role in human health. Furthermore, cholic acid, a major component of bile acid secreted in the intestines, is closely associated with the gut microbiota. While Comamonas testosteroni TA441 is recognized as the leading bacterial model for aerobic steroid degradation, the involvement of aerobic steroid degradation in the intestinal microflora remains largely unexplored. Nonetheless, the presence of C. testosteroni in the cecum suggests the potential influence of aerobic steroid degradation on gut microbiota. To establish essential information about the role of these bacteria, here, we identified the missing compounds and propose more details of C-, and D-ring cleavage, which have remained unclear until now.
Collapse
Affiliation(s)
- Masae Horinouchi
- Environmental Molecular Biology Laboratory, RIKEN, Saitama, Japan
- Surface and Interface Science Laboratory, RIKEN, Saitama, Japan
| | - Toshiaki Hayashi
- Environmental Molecular Biology Laboratory, RIKEN, Saitama, Japan
| |
Collapse
|
3
|
Identification of the Coenzyme A (CoA) Ester Intermediates and Genes Involved in the Cleavage and Degradation of the Steroidal C-Ring by Comamonas testosteroni TA441. Appl Environ Microbiol 2021; 87:e0110221. [PMID: 34232729 DOI: 10.1128/aem.01102-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Comamonas testosteroni TA441 degrades steroids aerobically via aromatization of the A-ring accompanied by B-ring cleavage, followed by D- and C-ring cleavage. We previously revealed major enzymes and intermediate compounds in A,B-ring cleavage, the β-oxidation cycle of the cleaved B-ring, and partial C,D-ring cleavage. Here, we elucidate the C-ring cleavage and the β-oxidation cycle that follows. ScdL1L2, a 3-ketoacid coenzyme A (CoA) transferase which belongs to the SugarP_isomerase superfamily, was thought to cleave the C-ring of 9-oxo-1,2,3,4,5,6,10,19-octanor-13,17-secoandrost-8(14)-ene-7,17-dioic acid-CoA ester, the key intermediate compound in the degradation of 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid (3aα-H-4α [3'-propionic acid]-7aβ-methylhexahydro-1,5-indanedione; HIP)-CoA ester in our previous study; however, the present study suggested that ScdL1L2 is the isomerase of the derivative with a hydroxyl group at C-14 which cleaves the C-ring. The subsequent ring-cleaved product was indicated to be converted to 4-methyl-5-oxo-octane-1,8-dioic acid-CoA ester mainly by ORF33-encoded CoA-transferase (named ScdJ), followed by dehydrogenation by ORF21- and 22-encoded acyl-CoA dehydrogenase (named ScdM1M2). Then, a water molecule is added by ScdN for further degradation by β-oxidation. ScdN is proposed to catalyze the last reaction in C,D-ring degradation by the enzymes encoded in the steroid degradation gene cluster tesB to tesR. IMPORTANCE Studies on bacterial steroid degradation were initiated more than 50 years ago primarily to obtain materials for steroid drugs. Steroid-degrading bacteria are globally distributed, and the role of bacterial steroid degradation in the environment, as well as in humans, is attracting attention. The overall degradation process of the four steroidal rings has been proposed; however, there is still much to be revealed to understand the complete degradation pathway. This study aimed to uncover the whole steroid degradation process in C. testosteroni, which is one of the most studied representative steroid-degrading bacteria and is suitable for exploring the degradation pathway because the involvement of degradation-related genes can be determined by gene disruption.
Collapse
|
4
|
Feller FM, Holert J, Yücel O, Philipp B. Degradation of Bile Acids by Soil and Water Bacteria. Microorganisms 2021; 9:1759. [PMID: 34442838 PMCID: PMC8399759 DOI: 10.3390/microorganisms9081759] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/22/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023] Open
Abstract
Bile acids are surface-active steroid compounds with a C5 carboxylic side chain at the steroid nucleus. They are produced by vertebrates, mainly functioning as emulsifiers for lipophilic nutrients, as signaling compounds, and as an antimicrobial barrier in the duodenum. Upon excretion into soil and water, bile acids serve as carbon- and energy-rich growth substrates for diverse heterotrophic bacteria. Metabolic pathways for the degradation of bile acids are predominantly studied in individual strains of the genera Pseudomonas, Comamonas, Sphingobium, Azoarcus, and Rhodococcus. Bile acid degradation is initiated by oxidative reactions of the steroid skeleton at ring A and degradation of the carboxylic side chain before the steroid nucleus is broken down into central metabolic intermediates for biomass and energy production. This review summarizes the current biochemical and genetic knowledge on aerobic and anaerobic degradation of bile acids by soil and water bacteria. In addition, ecological and applied aspects are addressed, including resistance mechanisms against the toxic effects of bile acids.
Collapse
Affiliation(s)
- Franziska Maria Feller
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstr. 3, 48149 Münster, Germany; (F.M.F.); (J.H.); (O.Y.)
| | - Johannes Holert
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstr. 3, 48149 Münster, Germany; (F.M.F.); (J.H.); (O.Y.)
| | - Onur Yücel
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstr. 3, 48149 Münster, Germany; (F.M.F.); (J.H.); (O.Y.)
| | - Bodo Philipp
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstr. 3, 48149 Münster, Germany; (F.M.F.); (J.H.); (O.Y.)
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Auf dem Aberg 1, 57392 Schmallenberg, Germany
| |
Collapse
|
5
|
Harthern-Flint SL, Dolfing J, Mrozik W, Meynet P, Eland LE, Sim M, Davenport RJ. Experimental and Genomic Evaluation of the Oestrogen Degrading Bacterium Rhodococcus equi ATCC13557. Front Microbiol 2021; 12:670928. [PMID: 34276604 PMCID: PMC8281962 DOI: 10.3389/fmicb.2021.670928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
Rhodococcus equi ATCC13557 was selected as a model organism to study oestrogen degradation based on its previous ability to degrade 17α-ethinylestradiol (EE2). Biodegradation experiments revealed that R. equi ATCC13557 was unable to metabolise EE2. However, it was able to metabolise E2 with the major metabolite being E1 with no further degradation of E1. However, the conversion of E2 into E1 was incomplete, with 11.2 and 50.6% of E2 degraded in mixed (E1-E2-EE2) and E2-only conditions, respectively. Therefore, the metabolic pathway of E2 degradation by R. equi ATCC13557 may have two possible pathways. The genome of R. equi ATCC13557 was sequenced, assembled, and mapped for the first time. The genome analysis allowed the identification of genes possibly responsible for the observed biodegradation characteristics of R. equi ATCC13557. Several genes within R. equi ATCC13557 are similar, but not identical in sequence, to those identified within the genomes of other oestrogen degrading bacteria, including Pseudomonas putida strain SJTE-1 and Sphingomonas strain KC8. Homologous gene sequences coding for enzymes potentially involved in oestrogen degradation, most commonly a cytochrome P450 monooxygenase (oecB), extradiol dioxygenase (oecC), and 17β-hydroxysteroid dehydrogenase (oecA), were identified within the genome of R. equi ATCC13557. These searches also revealed a gene cluster potentially coding for enzymes involved in steroid/oestrogen degradation; 3-carboxyethylcatechol 2,3-dioxygenase, 2-hydroxymuconic semialdehyde hydrolase, 3-alpha-(or 20-beta)-hydroxysteroid dehydrogenase, 3-(3-hydroxy-phenyl)propionate hydroxylase, cytochrome P450 monooxygenase, and 3-oxosteroid 1-dehydrogenase. Further, the searches revealed steroid hormone metabolism gene clusters from the 9, 10-seco pathway, therefore R. equi ATCC13557 also has the potential to metabolise other steroid hormones such as cholesterol.
Collapse
Affiliation(s)
| | - Jan Dolfing
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom.,Faculty Engineering and Environment, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Wojciech Mrozik
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom.,Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland
| | - Paola Meynet
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lucy E Eland
- School of Computing Science, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Martin Sim
- School of Computing Science, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Russell J Davenport
- School of Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
6
|
Chiang Y, Wei ST, Wang P, Wu P, Yu C. Microbial degradation of steroid sex hormones: implications for environmental and ecological studies. Microb Biotechnol 2020; 13:926-949. [PMID: 31668018 PMCID: PMC7264893 DOI: 10.1111/1751-7915.13504] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/09/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022] Open
Abstract
Steroid hormones modulate development, reproduction and communication in eukaryotes. The widespread occurrence and persistence of steroid hormones have attracted public attention due to their endocrine-disrupting effects on both wildlife and human beings. Bacteria are responsible for mineralizing steroids from the biosphere. Aerobic degradation of steroid hormones relies on O2 as a co-substrate of oxygenases to activate and to cleave the recalcitrant steroidal core ring. To date, two oxygen-dependent degradation pathways - the 9,10-seco pathway for androgens and the 4,5-seco pathways for oestrogens - have been characterized. Under anaerobic conditions, denitrifying bacteria adopt the 2,3-seco pathway to degrade different steroid structures. Recent meta-omics revealed that microorganisms able to degrade steroids are highly diverse and ubiquitous in different ecosystems. This review also summarizes culture-independent approaches using the characteristic metabolites and catabolic genes to monitor steroid biodegradation in various ecosystems.
Collapse
Affiliation(s)
- Yin‐Ru Chiang
- Biodiversity Research CenterAcademia SinicaTaipei115Taiwan
| | | | - Po‐Hsiang Wang
- Biodiversity Research CenterAcademia SinicaTaipei115Taiwan
- Present address:
Earth‐Life Science InstituteTokyo Institute of TechnologyTokyoJapan
| | - Pei‐Hsun Wu
- Graduate Institute of Environmental EngineeringNational Taiwan UniversityTaipei106Taiwan
| | - Chang‐Ping Yu
- Graduate Institute of Environmental EngineeringNational Taiwan UniversityTaipei106Taiwan
| |
Collapse
|
7
|
Steroid Degradation in Comamonas testosteroni TA441: Identification of the Entire β-Oxidation Cycle of the Cleaved B Ring. Appl Environ Microbiol 2019; 85:AEM.01204-19. [PMID: 31375491 DOI: 10.1128/aem.01204-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/28/2019] [Indexed: 11/20/2022] Open
Abstract
Comamonas testosteroni TA441 degrades steroids via aromatization of the A ring, followed by degradation of 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid, mainly by β-oxidation. In this study, we revealed that 7β,9α-dihydroxy-17-oxo-1,2,3,4,10,19-hexanorandrostanoic acid-coenzyme A (CoA) ester is dehydrogenated by (3S)-3-hydroxylacyl CoA-dehydrogenase, encoded by scdE (ORF27), and then the resultant 9α-hydroxy-7,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid-CoA ester is converted by 3-ketoacyl-CoA transferase, encoded by scdF (ORF23). With these results, the whole cycle of β-oxidation on the side chain at C-8 of 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid is clarified; 9-hydroxy-17-oxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid-CoA ester is dehydrogenated at C-6 by ScdC1C2, followed by hydration by ScdD. 7β,9α-Dihydroxy-17-oxo-1,2,3,4,10,19-hexanorandrostanoic acid-CoA ester then is dehydrogenated by ScdE to be converted to 9α-hydroxy-17-oxo-1,2,3,4,5,6,10,19-octanorandrostan-7-oic acid-CoA ester and acetyl-CoA by ScdF. ScdF is an ortholog of FadA6 in Mycobacterium tuberculosis H37Rv, which was reported as a 3-ketoacyl-CoA transferase involved in C ring cleavage. We also obtained results suggesting that ScdF is also involved in C ring cleavage, but further investigation is required for confirmation. ORF25 and ORF26, located between scdF and scdE, encode enzymes belonging to the amidase superfamily. Disrupting either ORF25 or ORF26 did not affect steroid degradation. Among the bacteria having gene clusters similar to those of tesB to tesR, some have both ORF25- and ORF26-like proteins or only an ORF26-like protein, but others do not have either ORF25- or ORF26-like proteins. ORF25 and ORF26 are not crucial for steroid degradation, yet they might provide clues to elucidate the evolution of bacterial steroid degradation clusters.IMPORTANCE Studies on bacterial steroid degradation were initiated more than 50 years ago primarily to obtain materials for steroid drugs. Steroid-degrading bacteria are globally distributed, and the role of bacterial steroid degradation in the environment as well as in relation to human health is attracting attention. The overall aerobic degradation of the four basic steroidal rings has been proposed; however, there is still much to be revealed to understand the complete degradation pathway. This study aims to uncover the whole steroid degradation process in Comamonas testosteroni TA441 as a model of steroid-degrading bacteria. C. testosteroni is one of the most studied representative steroid-degrading bacteria and is suitable for exploring the degradation pathway, because the involvement of degradation-related genes can be determined by gene disruption. Here, we elucidated the entire β-oxidation cycle of the cleaved B ring. This cycle is essential for the following C and D ring cleavage.
Collapse
|
8
|
Olivera ER, Luengo JM. Steroids as Environmental Compounds Recalcitrant to Degradation: Genetic Mechanisms of Bacterial Biodegradation Pathways. Genes (Basel) 2019; 10:E512. [PMID: 31284586 PMCID: PMC6678751 DOI: 10.3390/genes10070512] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 12/29/2022] Open
Abstract
Steroids are perhydro-1,2-cyclopentanophenanthrene derivatives that are almost exclusively synthesised by eukaryotic organisms. Since the start of the Anthropocene, the presence of these molecules, as well as related synthetic compounds (ethinylestradiol, dexamethasone, and others), has increased in different habitats due to farm and municipal effluents and discharge from the pharmaceutical industry. In addition, the highly hydrophobic nature of these molecules, as well as the absence of functional groups, makes them highly resistant to biodegradation. However, some environmental bacteria are able to modify or mineralise these compounds. Although steroid-metabolising bacteria have been isolated since the beginning of the 20th century, the genetics and catabolic pathways used have only been characterised in model organisms in the last few decades. Here, the metabolic alternatives used by different bacteria to metabolise steroids (e.g., cholesterol, bile acids, testosterone, and other steroid hormones), as well as the organisation and conservation of the genes involved, are reviewed.
Collapse
Affiliation(s)
- Elías R Olivera
- Departamento Biología Molecular (Área Bioquímica y Biología Molecular), Universidad de León, 24007 León, Spain.
| | - José M Luengo
- Departamento Biología Molecular (Área Bioquímica y Biología Molecular), Universidad de León, 24007 León, Spain
| |
Collapse
|
9
|
Rohman A, Dijkstra BW. The role and mechanism of microbial 3-ketosteroid Δ 1-dehydrogenases in steroid breakdown. J Steroid Biochem Mol Biol 2019; 191:105366. [PMID: 30991094 DOI: 10.1016/j.jsbmb.2019.04.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/26/2019] [Accepted: 04/12/2019] [Indexed: 02/08/2023]
Abstract
3-Ketosteroid Δ1-dehydrogenases are FAD-dependent enzymes that catalyze the introduction of a double bond between the C1 and C2 atoms of the A-ring of 3-ketosteroid substrates. These enzymes are found in a large variety of microorganisms, especially in bacteria belonging to the phylum Actinobacteria. They play a critical role in the early steps of the degradation of the steroid core. 3-Ketosteroid Δ1-dehydrogenases are of particular interest for the etiology of some infectious diseases, for the production of starting materials for the pharmaceutical industry, and for environmental bioremediation applications. Here we summarize and discuss the biochemical and enzymological properties of these enzymes, their microbial sources, and their natural diversity. The three-dimensional structure of a 3-ketosteroid Δ1-dehydrogenase in connection with the enzyme mechanism is highlighted.
Collapse
Affiliation(s)
- Ali Rohman
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia; The Laboratory of Proteomics, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60115, Indonesia; The Laboratory of Biophysical Chemistry, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Bauke W Dijkstra
- The Laboratory of Biophysical Chemistry, University of Groningen, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
10
|
Yücel O, Borgert SR, Poehlein A, Niermann K, Philipp B. The 7α-hydroxysteroid dehydratase Hsh2 is essential for anaerobic degradation of the steroid skeleton of 7α-hydroxyl bile salts in the novel denitrifying bacterium Azoarcus sp. strain Aa7. Environ Microbiol 2019; 21:800-813. [PMID: 30680854 DOI: 10.1111/1462-2920.14508] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/14/2018] [Accepted: 12/14/2018] [Indexed: 12/24/2022]
Abstract
Bile salts are steroid compounds from the digestive tract of vertebrates and enter the environment via defecation. Many aerobic bile-salt degrading bacteria are known but no bacteria that completely degrade bile salts under anoxic conditions have been isolated so far. In this study, the facultatively anaerobic Betaproteobacterium Azoarcus sp. strain Aa7 was isolated that grew with bile salts as sole carbon source under anoxic conditions with nitrate as electron acceptor. Phenotypic and genomic characterization revealed that strain Aa7 used the 2,3-seco pathway for the degradation of bile salts as found in other denitrifying steroid-degrading bacteria such as Sterolibacterium denitrificans. Under oxic conditions strain Aa7 used the 9,10-seco pathway as found in, for example, Pseudomonas stutzeri Chol1. Metabolite analysis during anaerobic growth indicated a reductive dehydroxylation of 7α-hydroxyl bile salts. Deletion of the gene hsh2 Aa7 encoding a 7-hydroxysteroid dehydratase led to strongly impaired growth with cholate and chenodeoxycholate but not with deoxycholate lacking a hydroxyl group at C7. The hsh2 Aa7 deletion mutant degraded cholate and chenodeoxycholate to the corresponding C19 -androstadienediones only while no phenotype change was observed during aerobic degradation of cholate. These results showed that removal of the 7α-hydroxyl group was essential for cleavage of the steroid skeleton under anoxic conditions.
Collapse
Affiliation(s)
- Onur Yücel
- Westfälische Wilhelms-Universität Münster, Institut für Molekulare Mikrobiologie und Biotechnologie, Corrensstr. 3, 48149Münster, Germany
| | - Sebastian Roman Borgert
- Westfälische Wilhelms-Universität Münster, Institut für Molekulare Mikrobiologie und Biotechnologie, Corrensstr. 3, 48149Münster, Germany
| | - Anja Poehlein
- Georg-August-University Goettingen, Institute of Microbiology and Genetics, Department of Genomic and Applied Microbiology and Goettingen Genomics Laboratory, Grisebachstr. 8, 37077, Goettingen, Germany
| | - Karin Niermann
- Westfälische Wilhelms-Universität Münster, Institut für Molekulare Mikrobiologie und Biotechnologie, Corrensstr. 3, 48149Münster, Germany
| | - Bodo Philipp
- Westfälische Wilhelms-Universität Münster, Institut für Molekulare Mikrobiologie und Biotechnologie, Corrensstr. 3, 48149Münster, Germany
| |
Collapse
|
11
|
Horinouchi M, Malon M, Hirota H, Hayashi T. Identification of 4-methyl-5-oxo-octane-1,8-dioic acid and the derivatives as metabolites of steroidal C,D-ring degradation in Comamonas testosteroni TA441. J Steroid Biochem Mol Biol 2019; 185:277-286. [PMID: 30026063 DOI: 10.1016/j.jsbmb.2018.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 10/28/2022]
Abstract
Comamonas testosteroni TA441 degrades steroids via 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid, which is presumed to be further degraded by β-oxidation. In the β-oxidation process, Coenzyme A (CoA)-ester of 9-oxo-1,2,3,4,5,6,10,19-octanor-13,17-secoandrost-8(14)-ene-7,17-dioic acid is produced and converted by β-ketoacyl-CoA-transferase encoded by ORF1 and ORF2 (scdL1L2) to cleave the remaining C-ring. In this study, we isolated and identified 4-methyl-5-oxo-octane-1,8-dioic acid and 4-methyl-5-oxo-3-octene-1,8-dioic acid from the culture of the ORF3 (scdN)-null mutant as metabolites of steroid degradation (ADD and cholic acid analogues; cholic acid, chenodeoxycholic acid, deoxycholic acid, and lithocholic acid). In addition of these compounds, UHPLC/MS analysis of the culture of the scdN-null mutant revealed significant accumulation of another compound, which was detected as a dominant peak of m/z 155 ([M-CO2]-) accompanied by a small peak of parental ion (m/z 199 [M-]). On the bases of experimental data, this compound was presumed to be 4-methyl-5-oxo-2-octene-1,8-dioic acid, whose CoA-ester was indicated to be converted by scdN-encoded CoA-hydratase into the CoA-ester of 3-hydroxy-4-methyl-5-oxooctan-1,7-carboxylic acid.
Collapse
Affiliation(s)
- Masae Horinouchi
- Environmental Molecular Biology Laboratory, RIKEN, Saitama, 351-0198 Japan.
| | - Michal Malon
- Molecular Characterization Team, RIKEN, Saitama, 351-0198 Japan
| | | | - Toshiaki Hayashi
- Environmental Molecular Biology Laboratory, RIKEN, Saitama, 351-0198 Japan
| |
Collapse
|
12
|
Horinouchi M, Koshino H, Malon M, Hirota H, Hayashi T. Identification of 9-oxo-1,2,3,4,5,6,10,19-octanor-13,17-secoandrost-8(14)-ene-7,17-dioic acid as a metabolite of steroid degradation in Comamonas testosteroni TA441 and the genes involved in the conversion. J Steroid Biochem Mol Biol 2019; 185:268-276. [PMID: 30026062 DOI: 10.1016/j.jsbmb.2018.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 05/30/2018] [Accepted: 07/10/2018] [Indexed: 11/23/2022]
Abstract
Comamonas testosteroni TA441 degrades steroid compounds via aromatization of the A-ring to produce 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid (a metabolite with C- and D-rings), which is presumed to be further degraded via β-oxidation. In elucidating the complete steroid degradation process in C. testosteroni, we isolated 9-oxo-1,2,3,4,5,6,10,19-octanor-13,17-secoandrost-8(14)-ene-7,17-dioic acid and several other metabolites containing only C-ring. For conversion of the CoA-ester of this compound, a two-subunit β -ketoacyl-CoA-transferase encoded by ORF1 and ORF2 was shown to be indispensable. ORF1 and ORF2 are located just after tesB, the meta-cleavage enzyme gene in one of the two major steroid degradation gene clusters of strain TA441. Conversion by the CoA-transferase leads to cleavage of the remaining C-ring, and the product was suggested to be further degraded by β-oxidation involving other genes in the cluster. ORF1 and ORF2 are considered orthologues of ipdAB gene in Mycobacterium tuberculosis H37Rv, which is recently reported as the CoA-transferase of 9-oxo-1,2,3,4,5,6,10,19-octanor-13,17-secoandrost-8(14)-ene-7,17-dioic acid (Crowe AM, Casabon I, Brown KL, Liu J, Lian J, Rogalski JC, Hurst TE, Snieckus V, Foster LJ, Eltis LD. 2017. MBio 8).
Collapse
Affiliation(s)
- Masae Horinouchi
- Environmental Molecular Biology Laboratory, RIKEN, Saitama, 351-0198, Japan.
| | | | - Michal Malon
- Molecular Characterization Team,RIKEN, Saitama, 351-0198, Japan
| | | | - Toshiaki Hayashi
- Environmental Molecular Biology Laboratory, RIKEN, Saitama, 351-0198, Japan
| |
Collapse
|
13
|
Steroid Degradation in Comamonas testosteroni TA441: Identification of Metabolites and the Genes Involved in the Reactions Necessary before D-Ring Cleavage. Appl Environ Microbiol 2018; 84:AEM.01324-18. [PMID: 30194104 DOI: 10.1128/aem.01324-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/23/2018] [Indexed: 12/21/2022] Open
Abstract
Bacterial steroid degradation has been studied mainly with Rhodococcus equi (Nocardia restrictus) and Comamonas testosteroni as representative steroid degradation bacteria for more than 50 years. The primary purpose was to obtain materials for steroid drugs, but recent studies showed that many genera of bacteria (Mycobacterium, Rhodococcus, Pseudomonas, etc.) degrade steroids and that steroid-degrading bacteria are globally distributed and found particularly in wastewater treatment plants, the soil, plant rhizospheres, and the marine environment. The role of bacterial steroid degradation in the environment is, however, yet to be revealed. To uncover the whole steroid degradation process in a representative steroid-degrading bacterium, C. testosteroni, to provide basic information for further studies on the role of bacterial steroid degradation, we elucidated the two indispensable oxidative reactions and hydration before D-ring cleavage in C. testosteroni TA441. In bacterial oxidative steroid degradation, A- and B-rings of steroids are cleaved to produce 2-hydroxyhexa-2,4-dienoic acid and 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid. The latter compound was revealed to be degraded to the coenzyme A (CoA) ester of 9α-hydroxy-17-oxo-1,2,3,4,5,6,10,19-octanorandrostan-7-oic acid, which is converted to the CoA ester of 9,17-dioxo-1,2,3,4,5,6,10,19-octanorandrostan-7-oic acid by ORF31-encoded hydroxylacyl dehydrogenase (ScdG), followed by conversion to the CoA ester of 9,17-dioxo-1,2,3,4,5,6,10,19-octanorandrost-8(14)-en-7-oic acid by ORF4-encoded acyl-CoA dehydrogenase (ScdK). Then, a water molecule is added by the ORF5-encoded enoyl-CoA hydratase (ScdY), which leads to the cleavage of the D-ring. The conversion by ScdG is presumed to be a reversible reaction. The elucidated pathway in C. testosteroni TA441 is different from the corresponding pathways in Mycobacterium tuberculosis H37Rv.IMPORTANCE Studies on representative steroid degradation bacteria Rhodococcus equi (Nocardia restrictus) and Comamonas testosteroni were initiated more than 50 years ago primarily to obtain materials for steroid drugs. A recent study showed that steroid-degrading bacteria are globally distributed and found particularly in wastewater treatment plants, the soil, plant rhizospheres, and the marine environment, but the role of bacterial steroid degradation in the environment is yet to be revealed. This study aimed to uncover the whole steroid degradation process in C. testosteroni TA441, in which major enzymes for steroidal A- and B-ring cleavage were elucidated, to provide basic information for further studies on bacterial steroid degradation. C. testosteroni is suitable for exploring the degradation pathway because the involvement of degradation-related genes can be determined by gene disruption. We elucidated the two indispensable oxidative reactions and hydration before D-ring cleavage, which appeared to differ from those present in Mycobacterium tuberculosis H37Rv.
Collapse
|
14
|
Fernández-Cabezón L, Galán B, García JL. Unravelling a new catabolic pathway of C-19 steroids in Mycobacterium smegmatis. Environ Microbiol 2018; 20:1815-1827. [PMID: 29611894 DOI: 10.1111/1462-2920.14114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/22/2018] [Indexed: 11/27/2022]
Abstract
In this work, we have characterized the C-19+ gene cluster (MSMEG_2851 to MSMEG_2901) of Mycobacterium smegmatis. By in silico analysis, we have identified the genes encoding enzymes involved in the modification of the A/B steroid rings during the catabolism of C-19 steroids in certain M. smegmatis mutants mapped in the PadR-like regulator (MSMEG_2868), that constitutively express the C-19+ gene cluster. By using gene complementation assays, resting-cell biotransformations and deletion mutants, we have characterized the most critical genes of the cluster, that is, kstD2, kstD3, kshA2, kshB2, hsaA2, hsaC2 and hsaD2. These results have allowed us to propose a new catabolic route named C-19+ pathway for the mineralization of C-19 steroids in M. smegmatis. Our data suggest that the deletion of the C-19+ gene cluster may be useful to engineer more robust and efficient M. smegmatis strains to produce C-19 steroids from sterols. Moreover, the new KshA2, KshB2, KstD2 and KstD3 isoenzymes may be useful to design new microbial cell factories for the 9α-hydroxylation and/or Δ1-dehydrogenation of 3-ketosteroids.
Collapse
Affiliation(s)
- Lorena Fernández-Cabezón
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, Madrid 28040, Spain
| | - Beatriz Galán
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, Madrid 28040, Spain
| | - José L García
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, Madrid 28040, Spain
| |
Collapse
|
15
|
Liu L, Zhu W, Cao Z, Xu B, Wang G, Luo M. High correlation between genotypes and phenotypes of environmental bacteria Comamonas testosteroni strains. BMC Genomics 2015; 16:110. [PMID: 25766446 PMCID: PMC4344759 DOI: 10.1186/s12864-015-1314-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 02/03/2015] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Members of Comamonas testosteroni are environmental microorganisms that are usually found in polluted environment samples. They utilize steroids and aromatic compounds but rarely sugars, and show resistance to multiple heavy metals and multiple drugs. However, comprehensive genomic analysis among the C. testosteroni strains is lacked. RESULTS To understand the genome bases of the features of C. testosteroni, we sequenced 10 strains of this species and analyzed them together with other related published genome sequences. The results revealed that: 1) the strains of C. testosteroni have genome sizes ranging from 5.1 to 6.0 Mb and G + C contents ranging from 61.1% to 61.8%. The pan-genome contained 10,165 gene families and the core genome contained 3,599 gene families. Heap's law analysis indicated that the pan-genome of C. testosteroni may be open (α = 0.639); 2) by analyzing 31 phenotypes of 11 available C. testosteroni strains, 99.4% of the genotypes (putative genes) were found to be correlated to the phenotypes, indicating a high correlation between phenotypes and genotypes; 3) gene clusters for nitrate reduction, steroids degradation and metal and multi-drug resistance were found and were highly conserved among all the genomes of this species; 4) the genome similarity of C. testosteroni may be related to the geographical distances. CONCLUSIONS This work provided an overview on the genomes of C. testosteroni and new genome resources that would accelerate the further investigations of this species. Importantly, this work focused on the analysis of potential genetic determinants for the typical characters and found high correlation between the phenotypes and their corresponding genotypes.
Collapse
Affiliation(s)
- Lin Liu
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.
| | - Wentao Zhu
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.
| | - Zhan Cao
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.
| | - Biao Xu
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.
| | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.
| | - Meizhong Luo
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.
| |
Collapse
|
16
|
Horinouchi M, Hayashi T, Koshino H, Malon M, Hirota H, Kudo T. Identification of 9α-hydroxy-17-oxo-1,2,3,4,10,19-hexanorandrost-6-en-5-oic acid and β-oxidation products of the C-17 side chain in cholic acid degradation by Comamonas testosteroni TA441. J Steroid Biochem Mol Biol 2014; 143:306-22. [PMID: 24810629 DOI: 10.1016/j.jsbmb.2014.04.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 04/04/2014] [Accepted: 04/28/2014] [Indexed: 10/25/2022]
Abstract
Comamonas testosteroni degrades testosterone into 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid and 2-hydroxyhexa-2,4-dienoic acid via aromatization of the A-ring. The former compound is suggested to be degraded further by β-oxidation, but the details of the process remain unclear. In this study, we identified 9α-hydroxy-17-oxo-1,2,3,4,10,19-hexanorandrost-6-en-5-oic acid as an intermediate compound in the β-oxidation of this compound. ORF32, located in one of the two main steroid degradation gene clusters, was shown to be indispensable for the conversion of this compound. A homology search indicated that ORF32 encodes a hydratase for the CoA-ester, suggesting that ORF32 encodes a hydratase that adds a water molecule to a double bond at C-6 of the CoA-ester of 9α-hydroxy-17-oxo-1,2,3,4,10,19-hexanorandrost-6-en-5-oic acid. From the culture of an ORF32-disrupted mutant incubated with cholic acid for a short period (around two days, when a considerable number of intermediate compounds were detected by HPLC), 7α,12α-dihydroxy-3-oxochola-1,4-dien-24-oic acid, 7α,12α-dihydroxy-3-oxochol-4-en-24-oic acid, 12α-hydroxy-3-oxochola-4,6-dien-24-oic acid, 7α,12α-dihydroxy-3-oxopregna-1,4-diene-20-carboxylic acid, 12α-hydroxy-3-oxopregna-4,6-diene-20-carboxylic acid, 7α,12α-dihydroxy-3-oxopregn-4-ene-20-carboxylic acid, 12α-hydroxy-3-oxopregna-4,6-diene-20-carboxylic acid, 7α-hydroxy-3-oxopregna-4,17(20)-diene-20-carboxylic acid, and 3-oxopregna-4,6,17(20)-triene-20-carboxylic acid were isolated as intermediate compounds of C-17 side-chain degradation. The presence of these compounds implies that the process of degradation of the C-17 side chain in C. testosteroni will be similar to the process in Pseudomonas. The final two compounds, which have a double bond at the C-17(20) position, are here identified for the first time, to the best of our knowledge, as intermediate compounds in bacterial steroid degradation; their composition suggests that the remaining three carbons at the C-17 position would be removed oxidatively as a propionic acid derivative.
Collapse
Affiliation(s)
| | | | | | - Michal Malon
- RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | | | - Toshiaki Kudo
- RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| |
Collapse
|
17
|
Identification of 9α-hydroxy-17-oxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid in steroid degradation by Comamonas testosteroni TA441 and its conversion to the corresponding 6-en-5-oyl coenzyme A (CoA) involving open reading frame 28 (ORF28)- and ORF30-encoded acyl-CoA dehydrogenases. J Bacteriol 2014; 196:3598-608. [PMID: 25092028 DOI: 10.1128/jb.01878-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Comamonas testosteroni TA441 degrades steroids via aromatization and meta-cleavage of the A ring, followed by hydrolysis, and produces 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid as an intermediate compound. Herein, we identify a new intermediate compound, 9α-hydroxy-17-oxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid. Open reading frame 28 (ORF28)- and ORF30-encoded acyl coenzyme A (acyl-CoA) dehydrogenase was shown to convert the CoA ester of 9α-hydroxy-17-oxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid to the CoA ester of 9α-hydroxy-17-oxo-1,2,3,4,10,19-hexanorandrost-6-en-5-oic acid. A homology search of the deduced amino acid sequences suggested that the ORF30-encoded protein is a member of the acyl-CoA dehydrogenase_fadE6_17_26 family, whereas the deduced amino acid sequence of ORF28 showed no significant similarity to specific acyl-CoA dehydrogenase family proteins. Possible steroid degradation gene clusters similar to the cluster of TA441 appear in bacterial genome analysis data. In these clusters, ORFs similar to ORFs 28 and 30 are often found side by side and ordered in the same manner as ORFs 28 and 30.
Collapse
|
18
|
Rohman A, van Oosterwijk N, Thunnissen AMWH, Dijkstra BW. Crystal structure and site-directed mutagenesis of 3-ketosteroid Δ1-dehydrogenase from Rhodococcus erythropolis SQ1 explain its catalytic mechanism. J Biol Chem 2013; 288:35559-68. [PMID: 24165124 DOI: 10.1074/jbc.m113.522771] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
3-Ketosteroid Δ(1)-dehydrogenases are FAD-dependent enzymes that catalyze the 1,2-desaturation of 3-ketosteroid substrates to initiate degradation of the steroid nucleus. Here we report the 2.0 Å resolution crystal structure of the 56-kDa enzyme from Rhodococcus erythropolis SQ1 (Δ(1)-KSTD1). The enzyme contains two domains: an FAD-binding domain and a catalytic domain, between which the active site is situated as evidenced by the 2.3 Å resolution structure of Δ(1)-KSTD1 in complex with the reaction product 1,4-androstadiene-3,17-dione. The active site contains four key residues: Tyr(119), Tyr(318), Tyr(487), and Gly(491). Modeling of the substrate 4-androstene-3,17-dione at the position of the product revealed its interactions with these residues and the FAD. The C1 and C2 atoms of the substrate are at reaction distance to the N5 atom of the isoalloxazine ring of FAD and the hydroxyl group of Tyr(318), respectively, whereas the C3 carbonyl group is at hydrogen bonding distance from the hydroxyl group of Tyr(487) and the backbone amide of Gly(491). Site-directed mutagenesis of the tyrosines to phenylalanines confirmed their importance for catalysis. The structural features and the kinetic properties of the mutants suggest a catalytic mechanism in which Tyr(487) and Gly(491) work in tandem to promote keto-enol tautomerization and increase the acidity of the C2 hydrogen atoms of the substrate. With assistance of Tyr(119), the general base Tyr(318) abstracts the axial β-hydrogen from C2 as a proton, whereas the FAD accepts the axial α-hydrogen from the C1 atom of the substrate as a hydride ion.
Collapse
Affiliation(s)
- Ali Rohman
- From the Department of Chemistry, Faculty of Sciences and Technology and
| | | | | | | |
Collapse
|
19
|
Zhang T, Xiong G, Maser E. Analysis and characterization of eight estradiol inducible genes and a strong promoter from the steroid degrading marine bacterial strain S19-1. Chem Biol Interact 2013; 202:159-67. [PMID: 23232150 DOI: 10.1016/j.cbi.2012.11.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 11/15/2012] [Accepted: 11/19/2012] [Indexed: 11/15/2022]
Abstract
Buttiauxella strain S19-1 is a new marine bacterium, isolated from the Baltic Sea, which can degrade steroids. In this report, a meta-genomic approach was used to isolate estradiol inducible genes from S19-1. SalI-fragments from the chromosomal DNA of S19-1 were ligated into plasmid pKEGFP2 bearing an EGFP gene as the reporter system. All resulting plasmids harboring SalI-fragments were transformed into Escherichia coli HB101 to measure the relative fluorescent units (RFU). E. coli cells showing higher RFU after estradiol induction than those without estradiol induction, were selected and the respective plasmids were sequenced. Sequences of 8 positive plasmids were analyzed and aligned by BLAST. Among the predicted genes we found similarities to the major facilitator superfamily, glycerol dehydratase activator, formate acetyltransferase activating enzyme, histidinol-phosphate/aromatic aminotransferase, ABC-transporter, transcriptional regulator nadR, lipoate-protein ligase A, and alcohol phosphatidyl-transferase. Interestingly, one of the E. coli cell clones (containing plasmid p302) showed up in green color by normal light microscopy, which indicated that a strong promoter was present in this plasmid. Sequencing and deletion-mutagenesis revealed that the putative promoter comprises a 108 bp DNA fragment within p302, from which the putative -10 and -35 regions are TTTGAT and TTGGTT, respectively. The promoter might be used to construct S19-1 mutants in which steroid degradation occurs at high levels.
Collapse
Affiliation(s)
- Tingdi Zhang
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School, Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | | | | |
Collapse
|
20
|
Uhía I, Galán B, Kendall SL, Stoker NG, García JL. Cholesterol metabolism in Mycobacterium smegmatis. ENVIRONMENTAL MICROBIOLOGY REPORTS 2012; 4:168-182. [PMID: 23757270 DOI: 10.1111/j.1758-2229.2011.00314.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The metabolism of cholesterol in Mycobacterium smegmatis mc(2) 155 has been investigated by using a microarray approach. The transcriptome of M. smegmatis growing in cholesterol was compared with that of cells growing in glycerol as the sole carbon and energy sources during the middle exponential phase. Microarray analyses revealed that only 89 genes were upregulated at least threefold during growth on cholesterol compared with growth on glycerol. The upregulated genes are scattered throughout the 7 Mb M. smegmatis genome and likely reflect a general physiological adaptation of the bacterium to grow on this highly hydrophobic polycyclic compound. Nevertheless, 39 of the catabolic genes are organized in three specific clusters. These results not only supported the role of KstR and KstR2 as auto-regulated repressors of cholesterol catabolism, and revealed some metabolic similarities and differences on actinobacteria, but more important, they have facilitated the identification of new catabolic genes, opening a research scenario that might provide important clues on the role of cholesterol in tuberculosis infection.
Collapse
Affiliation(s)
- Iria Uhía
- Departament of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain Department of Pathology and Infectious Diseases, The Royal Veterinary College, Centre for Emerging, Endemic and Exotic Disease, Hawkshead Lane, Hertfordshire AL9 7TA, UK
| | | | | | | | | |
Collapse
|
21
|
Horinouchi M, Hayashi T, Kudo T. Steroid degradation in Comamonas testosteroni. J Steroid Biochem Mol Biol 2012; 129:4-14. [PMID: 21056662 DOI: 10.1016/j.jsbmb.2010.10.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 10/22/2010] [Accepted: 10/30/2010] [Indexed: 11/22/2022]
Abstract
Steroid degradation by Comamonas testosteroni and Nocardia restrictus have been intensively studied for the purpose of obtaining materials for steroid drug synthesis. C. testosteroni degrades side chains and converts single/double bonds of certain steroid compounds to produce androsta-1,4-diene 3,17-dione or the derivative. Following 9α-hydroxylation leads to aromatization of the A-ring accompanied by cleavage of the B-ring, and aromatized A-ring is hydroxylated at C-4 position, cleaved at Δ4 by meta-cleavage, and divided into 2-hydroxyhexa-2,4-dienoic acid (A-ring) and 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid (B,C,D-ring) by hydrolysis. Reactions and the genes involved in the cleavage and the following degradation of the A-ring are similar to those for bacterial biphenyl degradation, and 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid degradation is suggested to be mainly β-oxidation. Genes involved in A-ring aromatization and degradation form a gene cluster, and the genes involved in β-oxidation of 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid also comprise a large cluster of more than 10 genes. The DNA region between these two main steroid degradation gene clusters contain 3α-hydroxysteroid dehydrogenase gene, Δ5,3-ketosteroid isomerase gene, genes for inversion of an α-oriented-hydroxyl group to a β-oriented-hydroxyl group at C-12 position of cholic acid, and genes possibly involved in the degradation of a side chain at C-17 position of cholic acid, indicating this DNA region of more than 100kb to be a steroid degradation gene hot spot of C. testosteroni. Article from a special issue on steroids and microorganisms.
Collapse
|
22
|
Kisiela M, Skarka A, Ebert B, Maser E. Hydroxysteroid dehydrogenases (HSDs) in bacteria: a bioinformatic perspective. J Steroid Biochem Mol Biol 2012; 129:31-46. [PMID: 21884790 DOI: 10.1016/j.jsbmb.2011.08.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 08/01/2011] [Accepted: 08/07/2011] [Indexed: 12/15/2022]
Abstract
Steroidal compounds including cholesterol, bile acids and steroid hormones play a central role in various physiological processes such as cell signaling, growth, reproduction, and energy homeostasis. Hydroxysteroid dehydrogenases (HSDs), which belong to the superfamily of short-chain dehydrogenases/reductases (SDR) or aldo-keto reductases (AKR), are important enzymes involved in the steroid hormone metabolism. HSDs function as an enzymatic switch that controls the access of receptor-active steroids to nuclear hormone receptors and thereby mediate a fine-tuning of the steroid response. The aim of this study was the identification of classified functional HSDs and the bioinformatic annotation of these proteins in all complete sequenced bacterial genomes followed by a phylogenetic analysis. For the bioinformatic annotation we constructed specific hidden Markov models in an iterative approach to provide a reliable identification for the specific catalytic groups of HSDs. Here, we show a detailed phylogenetic analysis of 3α-, 7α-, 12α-HSDs and two further functional related enzymes (3-ketosteroid-Δ(1)-dehydrogenase, 3-ketosteroid-Δ(4)(5α)-dehydrogenase) from the superfamily of SDRs. For some bacteria that have been previously reported to posses a specific HSD activity, we could annotate the corresponding HSD protein. The dominating phyla that were identified to express HSDs were that of Actinobacteria, Proteobacteria, and Firmicutes. Moreover, some evolutionarily more ancient microorganisms (e.g., Cyanobacteria and Euryachaeota) were found as well. A large number of HSD-expressing bacteria constitute the normal human gastro-intestinal flora. Another group of bacteria were originally isolated from natural habitats like seawater, soil, marine and permafrost sediments. These bacteria include polycyclic aromatic hydrocarbons-degrading species such as Pseudomonas, Burkholderia and Rhodococcus. In conclusion, HSDs are found in a wide variety of microorganisms including bacteria and archaea, suggesting that steroid metabolism is an evolutionarily conserved mechanism that might serve different functions such as nutrient supply and signaling. Article from a special issue on steroids and microorganisms.
Collapse
Affiliation(s)
- Michael Kisiela
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Kiel, Germany
| | | | | | | |
Collapse
|
23
|
García JL, Uhía I, Galán B. Catabolism and biotechnological applications of cholesterol degrading bacteria. Microb Biotechnol 2012; 5:679-99. [PMID: 22309478 PMCID: PMC3815891 DOI: 10.1111/j.1751-7915.2012.00331.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cholesterol is a steroid commonly found in nature with a great relevance in biology, medicine and chemistry, playing an essential role as a structural component of animal cell membranes. The ubiquity of cholesterol in the environment has made it a reference biomarker for environmental pollution analysis and a common carbon source for different microorganisms, some of them being important pathogens such as Mycobacterium tuberculosis. This work revises the accumulated biochemical and genetic knowledge on the bacterial pathways that degrade or transform this molecule, given that the characterization of cholesterol metabolism would contribute not only to understand its role in tuberculosis but also to develop new biotechnological processes that use this and other related molecules as starting or target materials.
Collapse
Affiliation(s)
- J L García
- Environmental Biology Department, Centro de Investigaciones Biológicas, CSIC, C/ Ramiro de Maeztu, 9, 28040 Madrid, Spain.
| | | | | |
Collapse
|
24
|
Yang YY, Pereyra LP, Young RB, Reardon KF, Borch T. Testosterone-mineralizing culture enriched from swine manure: characterization of degradation pathways and microbial community composition. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:6879-6886. [PMID: 21740029 DOI: 10.1021/es2013648] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Environmental releases and fate of steroid sex hormones from livestock and wastewater treatment plants are of increasing regulatory concern. Despite the detection of these hormones in manures, biosolids, and the environment, little attention has been paid to characterization of fecal bacteria capable of hormone degradation. The enrichments of (swine) manure-borne bacteria capable of aerobic testosterone degradation were prepared and the testosterone mineralization pathway was elucidated. Six DNA sequences of bacteria from the Proteobacteria phylum distributed among the genera Acinetobacter, Brevundimonas, Comamonas, Sphingomonas, Stenotrophomonas, and Rhodobacter were identified in a testosterone-degrading enriched culture with testosterone as the sole carbon source. Three degradation products of testosterone were identified as androstenedione, androstadienedione, and dehydrotestosterone using commercially available reference standards, liquid chromatography-UV diode array detection, and liquid chromatography-time-of-flight mass spectrometry (LC-TOF/MS). Three additional degradation products of testosterone were tentatively identified as 9α-hydroxytestosterone, 9α-hydroxyandrostadienedione or 3-hydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione, and 9α-hydroxydehydrotestosterone or 9α-hydroxyandrostenedione using LC-TOF/MS. When (14)C-testosterone was introduced to the enriched culture, 49-68% of the added (14)C-testosterone was mineralized to (14)CO(2) within 8 days of incubation. The mineralization of (14)C-testosterone followed pseudo-first-order reaction kinetics in the enriched culture with half-lives (t(1/2)) of 10-143 h. This work suggests that Proteobacteria play an important environmental role in degradation of steroid sex hormones and that androgens have the potential to be mineralized during aerobic manure treatment or after land application to agricultural fields by manure-borne bacteria.
Collapse
Affiliation(s)
- Yun-Ya Yang
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523-1170, USA
| | | | | | | | | |
Collapse
|
25
|
Philipp B. Bacterial degradation of bile salts. Appl Microbiol Biotechnol 2010; 89:903-15. [PMID: 21088832 DOI: 10.1007/s00253-010-2998-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 10/29/2010] [Accepted: 10/30/2010] [Indexed: 12/11/2022]
Abstract
Bile salts are surface-active steroid compounds. Their main physiological function is aiding the digestion of lipophilic nutrients in intestinal tracts of vertebrates. Many bacteria are capable of transforming and degrading bile salts in the digestive tract and in the environment. Bacterial bile salt transformation and degradation is of high ecological relevance and also essential for the biotechnological production of steroid drugs. While biotechnological aspects have been reviewed many times, the physiological, biochemical and genetic aspects of bacterial bile salt transformation have been neglected. This review provides an overview of the reaction sequence of bile salt degradation and on the respective enzymes and genes exemplified with the degradation pathway of the bile salt cholate. The physiological adaptations for coping with the toxic effects of bile salts, recent biotechnological applications and ecological aspects of bacterial bile salt metabolism are also addressed. As the pathway for bile salt degradation merges with metabolic pathways for bacterial transformation of other steroids, such as testosterone and cholesterol, this review provides helpful background information for metabolic engineering of steroid-transforming bacteria in general.
Collapse
Affiliation(s)
- Bodo Philipp
- Mikrobielle Ökologie, Fachbereich Biologie, Universität Konstanz, Fach M654, 78457 Konstanz, Germany.
| |
Collapse
|
26
|
Horinouchi M, Kurita T, Hayashi T, Kudo T. Steroid degradation genes in Comamonas testosteroni TA441: Isolation of genes encoding a Δ4(5)-isomerase and 3α- and 3β-dehydrogenases and evidence for a 100 kb steroid degradation gene hot spot. J Steroid Biochem Mol Biol 2010; 122:253-63. [PMID: 20554032 DOI: 10.1016/j.jsbmb.2010.06.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 05/31/2010] [Accepted: 06/01/2010] [Indexed: 11/21/2022]
Abstract
In previous studies, we identified two major Comamonas testosteroni TA441 gene clusters involved in steroid degradation. Because most of the genes included in these clusters were revealed to be involved in degradation of basic steroidal structures and a few were suggested to be involved in the degradation of modified steroid compounds, we investigated the spectrum of steroid compounds degradable for TA441 to better identify the genes involved in steroid degradation. TA441 degraded testosterone, progesterone, epiandrosterone, dehydroepiandrosterone, cholic acid, deoxycholic acid, chenodeoxycholic acid, and lithocholic acid. The results suggested TA441 having 3α-dehydrogenase and Δ4(5)-isomerase, and 3β-,17β-dehydrogenase gene, we isolated these genes, all of which had high homology to the corresponding genes of C. testosteroni ATCC11996. Results of gene-disruption experiments indicated that 3β,17β-dehydrogenase is a unique 3β-dehydrogenase which also acts as a 17β-dehydrogenase in TA441, and there will be at least one more enzyme with 17β-dehydrogenating activity. The 3α-dehydrogenase and Δ4(5)-isomerase genes were found adjacent in the DNA region between the two main steroid degradation gene clusters together with a number of other genes that may be involved in steroid degradation, suggesting the presence of a steroid degradation gene hot spot over 100 kb in size in TA441.
Collapse
|
27
|
Fahrbach M, Krauss M, Preiss A, Kohler HPE, Hollender J. Anaerobic testosterone degradation in Steroidobacter denitrificans--identification of transformation products. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2010; 158:2572-2581. [PMID: 20561725 DOI: 10.1016/j.envpol.2010.05.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Revised: 05/13/2010] [Accepted: 05/15/2010] [Indexed: 05/29/2023]
Abstract
The transformation of the androgenic steroid testosterone by gammaproteobacterium Steroidobacter denitrificans was studied under denitrifying conditions. For the first time, growth experiments showed that testosterone was mineralized under consumption of nitrate and concurrent biomass production. Experiments with cell suspensions using [4-(14)C]-testosterone revealed the intermediate production of several transformation products (TPs). Characterisation of ten TPs was carried out by means of HPLC coupled to high resolution mass spectrometry with atmospheric pressure chemical ionization as well as (1)H and (13)C NMR spectroscopy. 3beta-hydroxy-5alpha-androstan-17-one (trans-androsterone) was formed in the highest amount followed by 5alpha-androstan-3,17-dione. The data suggests that several dehydrogenation and hydrogenation processes take place concurrently in ring A and D because no consistent time-resolved pattern of TP peaks was observed and assays using 2 TPs as substrates resulted in essentially the same TPs. The further transformation of testosterone in S. denitrificans seems to be very efficient and fast without formation of detectable intermediates.
Collapse
Affiliation(s)
- Michael Fahrbach
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Uberlandstrasse 133, CH-8600 Dübendorf, Switzerland.
| | | | | | | | | |
Collapse
|
28
|
Yam KC, van der Geize R, Eltis LD. Catabolism of Aromatic Compounds and Steroids by Rhodococcus. BIOLOGY OF RHODOCOCCUS 2010. [DOI: 10.1007/978-3-642-12937-7_6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Wang FQ, Zhang CG, Li B, Wei DZ, Tong WY. New microbiological transformations of steroids by Streptomyces virginiae IBL-14. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:5967-5974. [PMID: 19731705 DOI: 10.1021/es900585w] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A bacterium Streptomyces virginiae IBL-14 capable of effective degradation of diosgenin was isolated from activated sludge for treatment of waste from a steroidal drug factory. From the culture broth of diosgenin degradation, 11 compounds were purified and then identified, eight of which were previously unidentified compounds including 1-dehydroisonuatigenone [VI], nuatigenone [VIII], 1-dehydronuatigenone [X], 26-acetyl-nuatigenone [XII], 6-methoxy-6-dehydrodiosgenone [XIII], 6-methoxy-6-dehydroisonuatigenone [XIV], 6-methoxy-6-dehydronuatigenone [XV], and 6-dimethoxy-7alpha-hydroxyldiosgenone [XVI]. Additionally, two important microbial transformations of diosgenin (6-methoxylation and C25-tertiary carbon hydroxylation) were found. Two valuable chemical reactions of the steroids (structural rearrangement and esterification)were also confirmed. As a result, a new metabolic pathway of diosgenin metabolism was postulated.
Collapse
Affiliation(s)
- Feng-Qing Wang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | | | | | | | | |
Collapse
|
30
|
Linares M, Pruneda-Paz JL, Reyna L, Genti-Raimondi S. Regulation of testosterone degradation in Comamonas testosteroni. J Steroid Biochem Mol Biol 2008; 112:145-50. [PMID: 18852046 DOI: 10.1016/j.jsbmb.2008.09.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 09/11/2008] [Accepted: 09/15/2008] [Indexed: 10/21/2022]
Abstract
Recently, we have identified a gene encoding a LuxR-type factor, TeiR (Testosterone-inducible Regulator), which positively regulates steroid degradation in Comamonas testosteroni. Herein, we demonstrate that TeiR interacts in vivo with steroid catabolic gene promoters. The presence of testosterone induces a significant TeiR protein increase at the early logarithmic phase of growth. Interestingly, it is not until the early stationary phase where the activation of a steroid-inducible gene promoter is observed, indicating that testosterone might not be the true inductor of the steroid degradation pathway. In addition, beta-galactosidase expression driven by a testosterone-inducible promoter is prematurely activated in cells cultured in medium supplemented with ethyl acetate extracts obtained from the early stationary phase cell-free supernatants of C. testosteroni grown in presence of testosterone. Complementation experiments of C. testosteroni wild type performed with teiR deletion constructs indicate that extra-copies of deleted-TeiR exert a dominant negative effect on the wild-type TeiR protein. While, when C. testosteroni teiR mutants were used to carry out complementation assays only the full length gene can overcome the teiR mutant phenotype. Altogether these findings indicate that TeiR regulates steroid catabolic genes interacting with their promoters and suggest that this interaction requires the presence of a testosterone-derived metabolite to induce the system.
Collapse
Affiliation(s)
- Mauricio Linares
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Córdoba, Argentina
| | | | | | | |
Collapse
|
31
|
Identification of genes involved in inversion of stereochemistry of a C-12 hydroxyl group in the catabolism of cholic acid by Comamonas testosteroni TA441. J Bacteriol 2008; 190:5545-54. [PMID: 18539741 DOI: 10.1128/jb.01080-07] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Comamonas testosteroni TA441 degrades steroids such as testosterone via aromatization of the A ring, followed by meta-cleavage of the ring. In the DNA region upstream of the meta-cleavage enzyme gene tesB, two genes required during cholic acid degradation for the inversion of an alpha-oriented hydroxyl group on C-12 were identified. A dehydrogenase, SteA, converts 7 alpha,12 alpha-dihydroxyandrosta-1,4-diene-3,17-dione to 7 alpha-hydroxyandrosta-1,4-diene-3,12,17-trione, and a hydrogenase, SteB, converts the latter to 7 alpha,12 beta-dihydroxyandrosta-1,4-diene-3,17-dione. Both enzymes are members of the short-chain dehydrogenase/reductase superfamily. The transformation of 7 alpha,12 alpha-dihydroxyandrosta-1,4-diene-3,17-dione to 7 alpha,12 beta-dihydroxyandrosta-1,4-diene-3,17-dione is carried out far more effectively when both SteA and SteB are involved together. These two enzymes are encoded by two adjacent genes and are presumed to be expressed together. Inversion of the hydroxyl group at C-12 is indispensable for the subsequent effective B-ring cleavage of the androstane compound. In addition to the compounds already mentioned, 12 alpha-hydroxyandrosta-1,4,6-triene-3,17-dione and 12 beta-hydroxyandrosta-1,4,6-triene-3,17-dione were identified as minor intermediate compounds in cholic acid degradation by C. testosteroni TA441.
Collapse
|
32
|
Göhler A, Xiong G, Paulsen S, Trentmann G, Maser E. Testosterone-inducible regulator is a kinase that drives steroid sensing and metabolism in Comamonas testosteroni. J Biol Chem 2008; 283:17380-90. [PMID: 18424443 DOI: 10.1074/jbc.m710166200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The mechanism of gene regulation by steroids in bacteria is still a mystery. We use steroid-inducible 3alpha-hydroxysteroid dehydrogenase/carbonyl reductase (3alpha-HSD/CR) as a reporter system to study steroid signaling in Comamonas testosteroni. In previous investigations we cloned and characterized the 3alpha-HSD/CR-encoding gene, hsdA. In addition, we identified two negative regulator genes (repA and repB) in the vicinity of hsdA, the protein products which repress hsdA expression on the level of transcription and translation, respectively. Recently, a positive regulator of hsdA expression, TeiR (testosterone-inducible regulator), was found by transposon mutagenesis, but the mode of its action remained obscure. In the present work we produced a TeiR-green fluorescent fusion protein and showed that TeiR is a membrane protein with asymmetrical localization at one of the cell poles of C. testosteroni. Knock-out mutants of the teiR gene revealed that TeiR provides swimming and twitching motility of C. testosteroni to the steroid substrate source. TeiR also mediated an induced expression of 3alpha-HSD/CR which was paralleled by an enhanced catabolism of testosterone. We also found that TeiR responds to a variety of different steroids other than testosterone. Biochemical analysis with several deletion mutants of the teiR gene revealed TeiR to consist of three different functional domains, an N-terminal domain important for membrane association, a central steroid binding site, and a C-terminal part mediating TeiR function. Finally, we could demonstrate that TeiR works as a kinase in the steroid signaling chain in C. testosteroni. Overall, we provide evidence that TeiR mediates steroid sensing and metabolism in C. testosteroni via its steroid binding and kinase activity.
Collapse
Affiliation(s)
- André Göhler
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Campus Kiel, Brunswiker Strasse 10, 24105 Kiel, Germany
| | | | | | | | | |
Collapse
|
33
|
Kim YU, Han J, Lee SS, Shimizu K, Tsutsumi Y, Kondo R. Steroid 9α-Hydroxylation during Testosterone Degradation by RestingRhodococcus equiCells. Arch Pharm (Weinheim) 2007; 340:209-14. [PMID: 17351967 DOI: 10.1002/ardp.200600175] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The conversion pathway of testosterone to androst-4-ene-3,17-dione and 9alpha-hydroxy androstane metabolites, 9alpha-hydroxyandrost-4-ene-3,17-dione and 9alpha,17beta-dihydroxyandrost-4-en-3-one was proposed for the ring degradation in steroids by a minimal liquid medium (NMMP)-dispersed Rhodococcus equi ATCC 14887. The microorganism produced 9alpha-hydroxy androstane metabolites from testosterone at high conversion ratio without the addition of ring degradation inhibitory agents. Several NMMP-based media showed the similar effect on the microbial transformation, in which the respective molar yields of 9alpha-hydroxyandrost-4-ene-3,17-dione and 9alpha,17beta-dihydroxyandrost-4-en-3-one were approx. 3 to 47% and approx. 3 to 11%, respectively, whereas nutrient broth, a rich medium, basically showed no accumulation. On the basis of this evidence, magnesium sulfate and casamino acids among the components of NMMP were found to compromise the determinant for the production of the 9alpha-hydroxy androstane metabolites without appreciable decomposition of the steroid ring system.
Collapse
Affiliation(s)
- Yong-ung Kim
- Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Horinouchi M, Hayashi T, Koshino H, Kudo T. ORF18-disrupted mutant of Comamonas testosteroni TA441 accumulates significant amounts of 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid and its derivatives after incubation with steroids. J Steroid Biochem Mol Biol 2006; 101:78-84. [PMID: 16891113 DOI: 10.1016/j.jsbmb.2006.06.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In a steroid degradation gene cluster of Comamonas testosteroni TA441 consisting of ORF18, 17 and tesIHA2A1DEFG, ORF18 was implicated in encoding a CoA-transferase by database searches, but the matching substrate was not clear. In this study, ORF18 was shown to be necessary for conversion of 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid, a product of hydrolysis of 4,5-9,10-diseco-3-hydroxy-5,9,17-trioxoandrosta-1(10),2-dien-4-oic acid in steroid degradation by TA441. The ORF18-disrupted mutant accumulates 7-hydroxy-9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid and 7,12-dihydroxy-9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid when incubated with chenodeoxycholic acid and cholic acid, respectively.
Collapse
|
35
|
Brzostek A, Śliwiński T, Rumijowska-Galewicz A, Korycka-Machała M, Dziadek J. Identification and targeted disruption of the gene encoding the main 3-ketosteroid dehydrogenase in Mycobacterium smegmatis. MICROBIOLOGY-SGM 2005; 151:2393-2402. [PMID: 16000729 DOI: 10.1099/mic.0.27953-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The catabolic potential for sterol degradation of fast-growing mycobacteria is well known. However, no genes or enzymes responsible for the steroid degradation process have been identified as yet in these species. One of the key enzymes required for degradation of the steroid ring structure is 3-ketosteroid Delta(1)-dehydrogenase (KsdD). The recent annotation of the Mycobacterium smegmatis genome (TIGR database) revealed six KsdD homologues. Targeted disruption of the MSMEG5898 (ksdD-1) gene, but not the MSMEG4855 (ksdD-2) gene, resulted in partial inactivation of the cholesterol degradation pathway and accumulation of the intermediate 4-androstene-3,17-dione. This effect was reversible by the introduction of the wild-type ksdD-1 gene into M. smegmatis DeltaksdD-1 or overexpression of ksdD-2. The data indicate that KsdD1 is the main KsdD in M. smegmatis, but that KsdD2 is able to perform the cholesterol degradation process when overproduced.
Collapse
Affiliation(s)
- Anna Brzostek
- Medical Biology Centre, Polish Academy of Sciences, Lodowa 106, 93-232 Łodz, Poland
| | - Tomasz Śliwiński
- Department of Biotechnology and Food Science, Technical University of Łodz, Wolczanska 171/173, 90-924 Łodz, Poland
| | | | | | - Jarosław Dziadek
- Medical Biology Centre, Polish Academy of Sciences, Lodowa 106, 93-232 Łodz, Poland
| |
Collapse
|
36
|
Horinouchi M, Hayashi T, Koshino H, Kurita T, Kudo T. Identification of 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid, 4-hydroxy-2-oxohexanoic acid, and 2-hydroxyhexa-2,4-dienoic acid and related enzymes involved in testosterone degradation in Comamonas testosteroni TA441. Appl Environ Microbiol 2005; 71:5275-81. [PMID: 16151114 PMCID: PMC1214608 DOI: 10.1128/aem.71.9.5275-5281.2005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Comamonas testosteroni TA441 utilizes testosterone via aromatization of the A ring followed by meta-cleavage of the ring. The product of the meta-cleavage reaction, 4,5-9,10-diseco-3-hydroxy-5,9,17-trioxoandrosta-1(10),2-dien-4-oic acid, is degraded by a hydrolase, TesD. We directly isolated and identified two products of TesD as 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid and (2Z,4Z)-2-hydroxyhexa-2,4-dienoic acid. The latter was a pure 4Z isomer. 2-Hydroxyhexa-2,4-dienoic acid was converted by a hydratase, TesE, and the product isolated from the reaction solution was identified as 2-hydroxy-4-hex-2-enolactone, indicating the direct product of TesE to be 4-hydroxy-2-oxohexanoic acid.
Collapse
|
37
|
Horinouchi M, Kurita T, Yamamoto T, Hatori E, Hayashi T, Kudo T. Steroid degradation gene cluster of Comamonas testosteroni consisting of 18 putative genes from meta-cleavage enzyme gene tesB to regulator gene tesR. Biochem Biophys Res Commun 2004; 324:597-604. [PMID: 15474469 DOI: 10.1016/j.bbrc.2004.09.096] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Indexed: 11/17/2022]
Abstract
Steroid degradation genes of Comamonas testosteroni TA441 are encoded in at least two gene clusters: one containing the meta-cleavage enzyme gene tesB and ORF1, 2, 3; and another consisting of ORF18, 17, tesI, H, A2, and tesA1, D, E, F, G (tesA2 to ORF18 and tesA1 to tesG are encoded in opposite directions). Analysis of transposon mutants with low steroid degradation revealed 13 ORFs and a gene (ORF4, 5, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, and tesR) involved in steroid degradation in the downstream region of ORF3. TesR, which is almost identical to that of TeiR, a positive regulator of Delta1-dehydrogenase (corresponds to TesH in TA441) and 3alpha-dehydrogenase (currently not identified in TA441), in C. testosteroni ATCC11996 (Pruneda-Paz, 2004), was shown to be necessary for induction of the steroid degradation gene clusters identified in TA441, tesB to tesR, tesA1 to tesG, and tesA2 to ORF18. At least some of the ORFs from ORF3 to ORF33 were suggested to be involved in 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid degradation.
Collapse
|
38
|
Horinouchi M, Hayashi T, Kudo T. The genes encoding the hydroxylase of 3-hydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione in steroid degradation in Comamonas testosteroni TA441. J Steroid Biochem Mol Biol 2004; 92:143-54. [PMID: 15555908 DOI: 10.1016/j.jsbmb.2004.09.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Steroid degradation genes of Comamonas testosteroni TA441 are encoded in at least two gene clusters: one containing the meta-cleavage enzyme gene tesB; and another consisting of ORF18, 17, tesI, H, ORF11, 12, and tesDEFG. TesH and I are, respectively, the Delta(1)- and Delta(4)(5alpha)-dehydrogenase of the 3-ketosteroid, TesD is the hydrolase for the product of meta-cleavage reaction, and TesEFG degrade one of the product of TesD. In this report, we describe the identification of the function of ORF11 (tesA2) and 12 (tesA1). The TesA1- and TesA2-disrupted mutant accumulated two characteristic intermediate compounds, which were identified as 3-hydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione (3-HSA) and its hydroxylated derivative, 3,17-dihydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione by MS and NMR analysis. A complementation experiment using a broad-host range plasmid showed that both TesA1 and A2 are necessary for hydroxylation of 3-HSA to 3,4-dihydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione (3,4-DHSA).
Collapse
|
39
|
Pruneda-Paz JL, Linares M, Cabrera JE, Genti-Raimondi S. TeiR, a LuxR-type transcription factor required for testosterone degradation in Comamonas testosteroni. J Bacteriol 2004; 186:1430-7. [PMID: 14973025 PMCID: PMC344414 DOI: 10.1128/jb.186.5.1430-1437.2004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have identified a new steroid-inducible gene (designated teiR [testosterone-inducible regulator]) in Comamonas testosteroni that is required for testosterone degradation. Nucleotide sequence analysis of teiR predicts a 391-amino-acid protein which shows homology between residues 327 and 380 (C-terminal domain) to the LuxR helix-turn-helix DNA binding domain and between residues 192 and 227 to the PAS sensor domain. This domain distribution resembles that described for TraR, a specific transcriptional regulator involved in quorum sensing in Agrobacterium tumefaciens. Analysis of the gene expression indicated that teiR is tightly controlled at the transcriptional level by the presence of testosterone in the culture medium. A teiR-disrupted mutant strain was completely unable to use testosterone as the sole carbon and energy source. In addition, the expression of several steroid-inducible genes was abolished in this mutant. Northern blot assays revealed that teiR is required for full expression of sip48-beta-HSD gene mRNA (encoding a steroid-inducible protein of 48 kDa and 3beta-17beta-hydroxysteroid dehydrogenase) and also of other steroid degradation genes, including those encoding 3alpha-hydroxysteroid dehydrogenase, Delta(5)-3-ketoisomerase, 3-oxo-steroid Delta(1)-dehydrogenase, and 3-oxo-steroid Delta(4)-(5alpha)-dehydrogenase enzymes. Moreover, when teiR was provided to the teiR-disrupted strain in trans, the transcription level of these genes was restored. These results indicate that TeiR positively regulates the transcription of genes involved in the initial enzymatic steps of steroid degradation in C. testosteroni.
Collapse
Affiliation(s)
- José Luis Pruneda-Paz
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
| | | | | | | |
Collapse
|
40
|
Horinouchi M, Hayashi T, Yamamoto T, Kudo T. A new bacterial steroid degradation gene cluster in Comamonas testosteroni TA441 which consists of aromatic-compound degradation genes for seco-steroids and 3-ketosteroid dehydrogenase genes. Appl Environ Microbiol 2003; 69:4421-30. [PMID: 12902225 PMCID: PMC169130 DOI: 10.1128/aem.69.8.4421-4430.2003] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Comamonas testosteroni TA441, testosterone is degraded via aromatization of the A ring, which is cleaved by the meta-cleavage enzyme TesB, and further degraded by TesD, the hydrolase for the product of TesB. TesEFG, encoded downstream of TesD, are probably hydratase, aldolase, and dehydrogenase for degradation of 2-oxohex-4-enoicacid, one of the products of TesD. Here we present a new and unique steroid degradation gene cluster in TA441, which consists of ORF18, ORF17, tesI, tesH, ORF11, ORF12, and tesDEFG. TesH and TesI are 3-ketosteroid-Delta(1)-dehydrogenase and 3-ketosteroid-Delta(4)(5alpha)-dehydrogenase, respectively, which work in the early steps of steroid degradation. ORF17 probably encodes the reductase component of 9alpha-hydroxylase for 1,4-androstadiene-3,17-dione, which is the product of TesH in testosterone degradation. Gene disruption experiments showed that these genes are necessary for steroid degradation and do not have any isozymes in TA441. By Northern blot analysis, these genes were shown to be induced when TA441 was incubated with steroids (testosterone and cholic acid) but not with aromatic compounds [phenol, biphenyl, and 3-(3-hydroxyphenyl)propionic acid], indicating that these genes function exclusively in steroid degradation.
Collapse
|