1
|
Zhao X, Cheng X, Cai X, Wang S, Li J, Dai Y, Jiang L, Luo C, Zhang G. SIP-metagenomics reveals key drivers of rhizospheric Benzo[a]pyrene bioremediation via bioaugmentation with indigenous soil microbes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124620. [PMID: 39067741 DOI: 10.1016/j.envpol.2024.124620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Rhizoremediation and bioaugmentation have proven effective in promoting benzo[a]pyrene (BaP) degradation in contaminated soils. However, the mechanism underlying bioaugmented rhizospheric BaP degradation with native microbes is poorly understood. In this study, an indigenous BaP degrader (Stenotrophomonas BaP-1) isolated from petroleum-contaminated soil was introduced into ryegrass rhizosphere to investigate the relationship between indigenous degraders and rhizospheric BaP degradation. Stable isotope probing and 16S rRNA gene amplicon sequencing subsequently revealed 15 BaP degraders, 8 of which were directly associated with BaP degradation including Bradyrhizobium and Streptomyces. Bioaugmentation with strain BaP-1 significantly enhanced rhizospheric BaP degradation and shaped the microbial community structure. A correlation of BaP degraders, BaP degradation efficiency, and functional genes identified active degraders and genes encoding polycyclic aromatic hydrocarbon-ring hydroxylating dioxygenase (PAH-RHD) genes as the primary drivers of rhizospheric BaP degradation. Furthermore, strain BaP-1 was shown to not only engage in BaP metabolism but also to increase the abundance of other BaP degraders and PAH-RHD genes, resulting in enhanced rhizospheric BaP degradation. Metagenomic and correlation analyses indicated a significant positive relationship between glyoxylate and dicarboxylate metabolism and BaP degradation, suggesting a role for these pathways in rhizospheric BaP biodegradation. By identifying BaP degraders and characterizing their metabolic characteristics within intricate microbial communities, our study offers valuable insights into the mechanisms of bioaugmented rhizoremediation with indigenous bacteria for high-molecular-weight PAHs in petroleum-contaminated soils.
Collapse
Affiliation(s)
- Xuan Zhao
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; College of Architecture and Civil Engineering, Kunming University, Kunming, 650214, China
| | - Xianghui Cheng
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xixi Cai
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Shuang Wang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, 611730, China
| | - Jibing Li
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100039, China.
| | - Yeliang Dai
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Longfei Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Chunling Luo
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100039, China.
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| |
Collapse
|
2
|
Venkatachalam J, Mohan H, Seralathan KK. Significance of Herbaspirillum sp. in biodegradation and biodetoxification of herbicides, pesticides, hydrocarbons and heavy metals - A review. ENVIRONMENTAL RESEARCH 2023; 239:117367. [PMID: 37827364 DOI: 10.1016/j.envres.2023.117367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
In today's industrialized world, contamination of soil and water with various substances has emerged as a pressing concern. Bioremediation, with its advantages of degradation or detoxification, non-polluting nature, and cost-effectiveness, has become a promising method due to technological advancements. Among the bioremediation agents, bacteria have been highly explored and documented as a productive organism. Recently, few studies have reported on the significance of Herbaspirillum sp., a Gram-negative bacterium, in bioremediating herbicides, pesticides, polycyclic aromatic hydrocarbons, metalloids, and heavy metals, as well as its role in augmenting phytoremediation efforts. Herbaspirillum sp. GW103 leached 66% of Cu from ore materials and significantly enhanced the phytoaccumulation of Pb and Zn in plumule and radical tissues of Zea mays L. plants. Additionally, Herbaspirillum sp. WT00C reduced Se6+ into Se0, resulting in an increased Se0 content in tea plants. Also, Herbaspirillum sp. proved effective in degrading 0.6 mM of 4-chlorophenol, 92.8% of pyrene, 77.4% of fluoranthene, and 16.4% of trifluralin from aqueous solution and soil-water system. Considering these findings, this review underscores the need for further exploration into the pathways of pollutant degradation, the enzymes pivotal in the degradation or detoxification processes, the influence of abiotic factors and pollutants on crucial gene expression, and the potential toxicity of intermediate products generated during the degradation process. This perspective reframes the numerical data to underscore the underutilized potential of Herbaspirillum sp. within the broader context of addressing a significant research gap. This shift in emphasis aligns more closely with the problem-necessity for solution-existing unexplored solution framework.
Collapse
Affiliation(s)
- Janaki Venkatachalam
- PG and Research Department of Chemistry, Sri Sarada College for Women, Salem, 636016, Tamil Nadu, India
| | - Harshavardhan Mohan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, South Korea
| | - Kamala-Kannan Seralathan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, South Korea.
| |
Collapse
|
3
|
Li S, Shen W, Lian S, Wu Y, Qu Y, Deng Y. DARHD: A sequence database for aromatic ring-hydroxylating dioxygenase analysis and primer evaluation. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129230. [PMID: 35739750 DOI: 10.1016/j.jhazmat.2022.129230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Biodegradation of aromatic compounds is ubiquitous in the environment and important for controlling organic pollutants. Aromatic ring-hydroxylating dioxygenases (ARHDs) are responsible for the first and rate-limiting step of aerobic biodegradation of aromatic compounds. The ARHD α subunit is a good biomarker for studying functional microorganisms in the environment, however their diversity and corresponding primer coverage are unclear, both of which require a comprehensive sequence database for the ARHD α subunit. Here amino acid sequences of the ARHD α subunit were collected, and a total of 103 sequences were selected as seed sequences that were distributed in 72 bacterial genera with 34 gene names. Based on both homolog search and keyword confirmation against the GenBank, a sequence database of ARHD (DARHD) has been established and 6367 highly credible sequences were retrieved. DARHD contained 407 bacterial genera capable of degrading 38 aromatic substrates, and intricate relationships among the gene name, aromatic substrate and microbial taxa were observed. Thereafter, a total of 136 pairs of primers were collected and assessed. Results showed coverages of most published primers were low. Our research provides new insights for understanding the diversity of ARHD α subunit, and gives guidance on the design and application of primers in the future.
Collapse
Affiliation(s)
- Shuzhen Li
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Wenli Shen
- Institute for Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Shengyang Lian
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yueni Wu
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuanyuan Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ye Deng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute for Marine Science and Technology, Shandong University, Qingdao 266237, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Zhao X, Li J, Zhang D, Huang Z, Luo C, Jiang L, Huang D, Zhang G. Mechanism of salicylic acid in promoting the rhizosphere benzo[a]pyrene biodegradation as revealed by DNA-stable isotope probing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152202. [PMID: 34890682 DOI: 10.1016/j.scitotenv.2021.152202] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
Benzo[a]pyrene (BaP) is a typical high-molecular-weight PAH with carcinogenicity. Rhizoremediation is commonly applied to remove soil BaP, but its mechanism remains unclear. The role of inducers in root exudates in BaP rhizoremediation is rarely studied. Here, to address this problem, we firstly investigated the effect of the inducer salicylic acid on BaP rhizoremediation, rhizosphere BaP degraders, and PAH degradation-related genes by combining DNA-stable-isotope-probing, high-throughput sequencing, and gene function prediction. BaP removal in the rhizosphere was significantly increased by stimulation with salicylic acid, and the rhizosphere BaP-degrading microbial community structure was significantly changed. Fourteen microbes were responsible for the BaP metabolism, and most degraders, e.g. Aeromicrobium and Myceligenerans, were firstly linked with BaP biodegradation. The enrichment of the PAH-ring hydroxylating dioxygenase (PAH-RHD) gene in the heavy fractions of all 13C-treatments further indicated their involvement in the BaP biodegradation, which was also confirmed by the enrichment of dominant PAH degradation-related genes (e.g. PAH dioxygenase and protocatechuate 3,4-dioxygenase genes) based on gene function prediction. Overall, our study demonstrates that salicylic acid can enhance the rhizosphere BaP biodegradation by altering the community structure of rhizosphere BaP-degrading bacteria and the abundance of PAH degradation-related genes, which provides new insights into BaP rhizoremediation mechanisms in petroleum-contaminated sites.
Collapse
Affiliation(s)
- Xuan Zhao
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jibing Li
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Zilin Huang
- Joint Institute of Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China
| | - Chunling Luo
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; Joint Institute of Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China.
| | - Longfei Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Deyin Huang
- Guangdong Institute of Eco-environmental and Soil sciences, Guangdong Academy of Sciences, Guangzhou 510650, Guangdong, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| |
Collapse
|
5
|
Vanwijnsberghe S, Peeters C, De Ridder E, Dumolin C, Wieme AD, Boon N, Vandamme P. Genomic Aromatic Compound Degradation Potential of Novel Paraburkholderia Species: Paraburkholderia domus sp. nov., Paraburkholderia haematera sp. nov. and Paraburkholderia nemoris sp. nov. Int J Mol Sci 2021; 22:ijms22137003. [PMID: 34209778 PMCID: PMC8268980 DOI: 10.3390/ijms22137003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 11/16/2022] Open
Abstract
We performed a taxonomic and comparative genomics analysis of 67 novel Paraburkholderia isolates from forest soil. Phylogenetic analysis of the recA gene revealed that these isolates formed a coherent lineage within the genus Paraburkholderia that also included Paraburkholderiaaspalathi, Paraburkholderiamadseniana, Paraburkholderiasediminicola, Paraburkholderiacaffeinilytica, Paraburkholderiasolitsugae and Paraburkholderiaelongata and four unidentified soil isolates from earlier studies. A phylogenomic analysis, along with orthoANIu and digital DNA–DNA hybridization calculations revealed that they represented four different species including three novel species and P. aspalathi. Functional genome annotation of the strains revealed several pathways for aromatic compound degradation and the presence of mono- and dioxygenases involved in the degradation of the lignin-derived compounds ferulic acid and p-coumaric acid. This co-occurrence of multiple Paraburkholderia strains and species with the capacity to degrade aromatic compounds in pristine forest soil is likely caused by the abundant presence of aromatic compounds in decomposing plant litter and may highlight a diversity in micro-habitats or be indicative of synergistic relationships. We propose to classify the isolates representing novel species as Paraburkholderia domus with LMG 31832T (=CECT 30334) as the type strain, Paraburkholderia nemoris with LMG 31836T (=CECT 30335) as the type strain and Paraburkholderia haematera with LMG 31837T (=CECT 30336) as the type strain and provide an emended description of Paraburkholderia sediminicola Lim et al. 2008.
Collapse
Affiliation(s)
- Sarah Vanwijnsberghe
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium; (S.V.); (C.P.); (E.D.R.); (C.D.); (A.D.W.)
| | - Charlotte Peeters
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium; (S.V.); (C.P.); (E.D.R.); (C.D.); (A.D.W.)
| | - Emmelie De Ridder
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium; (S.V.); (C.P.); (E.D.R.); (C.D.); (A.D.W.)
| | - Charles Dumolin
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium; (S.V.); (C.P.); (E.D.R.); (C.D.); (A.D.W.)
| | - Anneleen D. Wieme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium; (S.V.); (C.P.); (E.D.R.); (C.D.); (A.D.W.)
| | - Nico Boon
- Center for Microbial Ecology and Technology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium;
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium; (S.V.); (C.P.); (E.D.R.); (C.D.); (A.D.W.)
- Correspondence:
| |
Collapse
|
6
|
Galitskaya P, Biktasheva L, Kuryntseva P, Selivanovskaya S. Response of soil bacterial communities to high petroleum content in the absence of remediation procedures. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:9610-9627. [PMID: 33155112 DOI: 10.1007/s11356-020-11290-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
Oil spills are events that frequently lead to petroleum pollution. This pollution may cause stress to microbial communities, which require long adaption periods. Soil petroleum pollution is currently considered one of the most serious environmental problems. In the present work, processes occurring in the bacterial communities of three soil samples with different physicochemical characteristics, artificially polluted with 12% of crude oil, were investigated in 120-day laboratory experiment. It was found that the total petroleum hydrocarbon content did not decrease during this time; however, the proportion of petroleum fractions was altered. Petroleum pollution led to a short-term decrease in the bacterial 16S rRNA gene copy number. On the basis of amplicon sequencing analysis, it was concluded that bacterial community successions were similar in the three soils investigated. Thus, the phyla Actinobacteria and Proteobacteria and candidate TM7 phylum (Saccaribacteria) were predominant with relative abundances ranging from 35 to 58%, 25 to 30%, and 15 to 35% in different samples, respectively. The predominant operational taxonomic units (OTUs) after pollution belonged to the genera Rhodococcus and Mycobacterium, families Nocardioidaceae and Sinobacteraceae, and candidate class ТМ7-3. Genes from the alkIII group encoding monoxygenases were the most abundant compared with other catabolic genes from the alkI, alkII, GN-PAH, and GP-PAH groups, and their copy number significantly increased after pollution. The copy numbers of expressed genes involved in the horizontal transfer of catabolic genes, FlgC, TraG, and OmpF, also increased after pollution by 11-33, 16-63, and 11-71 times, respectively. The bacterial community structure after a high level of petroleum pollution changed because of proliferation of the cells that initially were able to decompose hydrocarbons, and in the second place, because proliferation of the cells that received these catabolic genes through horizontal transfer.
Collapse
Affiliation(s)
- Polina Galitskaya
- Institute of Environmental Sciences, Kazan Federal University, Kazan, Russia, 420008
| | - Liliya Biktasheva
- Institute of Environmental Sciences, Kazan Federal University, Kazan, Russia, 420008.
| | - Polina Kuryntseva
- Institute of Environmental Sciences, Kazan Federal University, Kazan, Russia, 420008
| | | |
Collapse
|
7
|
Brusetti L, Ciccazzo S, Borruso L, Bellucci M, Zaccone C, Beneduce L. Metataxonomy and functionality of wood-tar degrading microbial consortia. JOURNAL OF HAZARDOUS MATERIALS 2018; 353:108-117. [PMID: 29655090 DOI: 10.1016/j.jhazmat.2018.03.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 02/24/2018] [Accepted: 03/21/2018] [Indexed: 06/08/2023]
Abstract
Wood-tar is a liquid material obtained by wood gasification process, and comprises several polycyclic aromatic hydrocarbons (PAH). Tar biodegradation is a very challenging task, due to its toxicity and to its complex chemistry. The 'microbial resource management' concerns the use of environmental microbial communities potentially able to provide us services. We applied this concept in tar biodegradation. Tar composed by several PAH (including phenanthrene, acenaphthylene and fluorene) was subjected to a biodegradation process in triplicate microcosms spiked with a microbial community collected from PAH-rich soils. In 20 days, 98.9% of tar was mineralized or adsorbed to floccules, while negative controls showed poor PAH reduction. The dynamics of fungal and bacterial communities was assessed through Automated Ribosomal Intergenic Spacer Analysis (ARISA), 454 pyrosequencing of the fungal ITS and of the bacterial 16S rRNA. Quantification of the degrading bacterial communities was performed via quantitative Real Time PCR of the 16S rRNA genes and of the cathecol 2,3-dioxygenase genes. Results showed the importance of fungal tar-degrading populations in the first period of incubation, followed by a complex bacterial dynamical growth ruled by co-feeding behaviors.
Collapse
Affiliation(s)
- Lorenzo Brusetti
- Faculty of Science and Technology, Free University of Bozen/Bolzano, Piazza Università 5, I-39100 Bozen/Bolzano, Italy.
| | - Sonia Ciccazzo
- Department of Agricultural Food and Environmental Science, University of Foggia, Via Napoli 25, I-71121 Foggia, Italy
| | - Luigimaria Borruso
- Faculty of Science and Technology, Free University of Bozen/Bolzano, Piazza Università 5, I-39100 Bozen/Bolzano, Italy
| | - Micol Bellucci
- Department of Agricultural Food and Environmental Science, University of Foggia, Via Napoli 25, I-71121 Foggia, Italy; Department of Civil and Environmental Engineering (DICA) Sec. Environment, Polytechnic University of Milan, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
| | - Claudio Zaccone
- Department of Agricultural Food and Environmental Science, University of Foggia, Via Napoli 25, I-71121 Foggia, Italy
| | - Luciano Beneduce
- Department of Agricultural Food and Environmental Science, University of Foggia, Via Napoli 25, I-71121 Foggia, Italy
| |
Collapse
|
8
|
Assessment of the horizontal transfer of functional genes as a suitable approach for evaluation of the bioremediation potential of petroleum-contaminated sites: a mini-review. Appl Microbiol Biotechnol 2017; 101:4341-4348. [DOI: 10.1007/s00253-017-8306-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 04/19/2017] [Accepted: 04/21/2017] [Indexed: 10/19/2022]
|
9
|
Sazonova OI, Sokolov SL, Prisyazhnaya NV, Izmalkova TY, Kosheleva IA, Boronin AM. Epiphytic microorganisms degrading aromatic hydrocarbons from the phyllosphere of urban woody plants. Microbiology (Reading) 2017. [DOI: 10.1134/s0026261717010106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
10
|
Obi CC, Adebusoye SA, Amund OO, Ugoji EO, Ilori MO, Hedman CJ, Hickey WJ. Structural dynamics of microbial communities in polycyclic aromatic hydrocarbon-contaminated tropical estuarine sediments undergoing simulated aerobic biotreatment. Appl Microbiol Biotechnol 2017; 101:4299-4314. [PMID: 28190100 DOI: 10.1007/s00253-017-8151-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 01/18/2017] [Accepted: 01/22/2017] [Indexed: 01/12/2023]
Abstract
Coastal sediments contaminated by polycyclic aromatic hydrocarbons (PAHs) can be candidates for remediation via an approach like land farming. Land farming converts naturally anaerobic sediments to aerobic environments, and the response of microbial communities, in terms of community structure alterations and corresponding effects on biodegradative activities, is unknown. A key goal of this study was to determine if different sediments exhibited common patterns in microbial community responses that might serve as indicators of PAH biodegradation. Sediments from three stations in the Lagos Lagoon (Nigeria) were used in microcosms, which were spiked with a mixture of four PAH, then examined for PAH biodegradation and for shifts in microbial community structure by analysis of diversity in PAH degradation genes and Illumina sequencing of 16S rRNA genes. PAH biodegradation was similar in all sediments, yet each exhibited unique microbiological responses and there were no microbial indicators of PAH bioremediation common to all sediments.
Collapse
Affiliation(s)
- Chioma C Obi
- Department of Microbiology, University of Lagos, Lagos, Nigeria.
- O.N. Allen Laboratory for Soil Microbiology, Department of Soil Science, University of Wisconsin-Madison, Madison, WI, USA.
| | | | | | - Esther O Ugoji
- Department of Microbiology, University of Lagos, Lagos, Nigeria
| | - Mathew O Ilori
- Department of Microbiology, University of Lagos, Lagos, Nigeria
| | | | - William J Hickey
- O.N. Allen Laboratory for Soil Microbiology, Department of Soil Science, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
11
|
Tian M, Du D, Zhou W, Zeng X, Cheng G. Phenol degradation and genotypic analysis of dioxygenase genes in bacteria isolated from sediments. Braz J Microbiol 2016; 48:305-313. [PMID: 28065387 PMCID: PMC5470458 DOI: 10.1016/j.bjm.2016.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 02/11/2016] [Indexed: 12/01/2022] Open
Abstract
The aerobic degradation of aromatic compounds by bacteria is performed by dioxygenases. To show some characteristic patterns of the dioxygenase genotype and its degradation specificities, twenty-nine gram-negative bacterial cultures were obtained from sediment contaminated with phenolic compounds in Wuhan, China. The isolates were phylogenetically diverse and belonged to 10 genera. All 29 gram-negative bacteria were able to utilize phenol, m-dihydroxybenzene and 2-hydroxybenzoic acid as the sole carbon sources, and members of the three primary genera Pseudomonas, Acinetobacter and Alcaligenes were able to grow in the presence of multiple monoaromatic compounds. PCR and DNA sequence analysis were used to detect dioxygenase genes coding for catechol 1,2-dioxygenase, catechol 2,3-dioxygenase and protocatechuate 3,4-dioxygenase. The results showed that there are 4 genotypes; most strains are either PNP (catechol 1,2-dioxygenase gene is positive, catechol 2,3-dioxygenase gene is negative, protocatechuate 3,4-dioxygenase gene is positive) or PNN (catechol 1,2-dioxygenase gene is positive, catechol 2,3-dioxygenase gene is negative, protocatechuate 3,4-dioxygenase gene is negative). The strains with two dioxygenase genes can usually grow on many more aromatic compounds than strains with one dioxygenase gene. Degradation experiments using a mixed culture representing four bacterial genotypes resulted in the rapid degradation of phenol. Determinations of substrate utilization and phenol degradation revealed their affiliations through dioxygenase genotype data.
Collapse
Affiliation(s)
- Mengyang Tian
- South-Central University for Nationalities, College of Life Science, Wuhan, PR China
| | - Dongyun Du
- South-Central University for Nationalities, College of Chemistry and Materials, Wuhan, PR China
| | - Wei Zhou
- South-Central University for Nationalities, College of Life Science, Wuhan, PR China
| | - Xiaobo Zeng
- South-Central University for Nationalities, College of Life Science, Wuhan, PR China
| | - Guojun Cheng
- South-Central University for Nationalities, College of Life Science, Wuhan, PR China.
| |
Collapse
|
12
|
Burkholderia: an update on taxonomy and biotechnological potential as antibiotic producers. Appl Microbiol Biotechnol 2016; 100:5215-29. [PMID: 27115756 DOI: 10.1007/s00253-016-7520-x] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/29/2016] [Accepted: 03/31/2016] [Indexed: 02/02/2023]
Abstract
Burkholderia is an incredibly diverse and versatile Gram-negative genus, within which over 80 species have been formally named and multiple other genotypic groups likely represent new species. Phylogenetic analysis based on the 16S rRNA gene sequence and core genome ribosomal multilocus sequence typing analysis indicates the presence of at least three major clades within the genus. Biotechnologically, Burkholderia are well-known for their bioremediation and biopesticidal properties. Within this review, we explore the ability of Burkholderia to synthesise a wide range of antimicrobial compounds ranging from historically characterised antifungals to recently described antibacterial antibiotics with activity against multiresistant clinical pathogens. The production of multiple Burkholderia antibiotics is controlled by quorum sensing and examples of quorum sensing pathways found across the genus are discussed. The capacity for antibiotic biosynthesis and secondary metabolism encoded within Burkholderia genomes is also evaluated. Overall, Burkholderia demonstrate significant biotechnological potential as a source of novel antibiotics and bioactive secondary metabolites.
Collapse
|
13
|
Shahi A, Aydin S, Ince B, Ince O. Evaluation of microbial population and functional genes during the bioremediation of petroleum-contaminated soil as an effective monitoring approach. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 125:153-160. [PMID: 26685788 DOI: 10.1016/j.ecoenv.2015.11.029] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 11/18/2015] [Accepted: 11/22/2015] [Indexed: 06/05/2023]
Abstract
This study investigated the abundance and diversity of soil n-alkane and polycyclic aromatic hydrocarbon (PAH)-degrading bacterial communities. It also investigated the quantity of the functional genes, the occurrence of horizontal gene transfer (HGT) in the identified bacterial communities and the effect that such HGT can have on biostimulation process. Illumina sequencing was used to detect the microbial diversity of petroleum-polluted soil prior to the biostimulation process, and quantitative real-time PCR was used to determine changes in the bacterial community and functional genes (alkB, phnAc and nah) expressions throughout the biostimulation of petroleum-contaminated soil. The illumine results revealed that γ-proteobacteria, Chloroflexi, Firmicutes, and δ-proteobacteria were the most dominant bacterial phyla in the contaminated site, and that most of the strains were Gram-negative. The results of the gene expression results revealed that gram-negative bacteria and alkB are critical to successful bioremediation. Failure to maintain the stability of hydrocarbon-degrading bacteria and functional gene will reduce the extend to which alkanes and PAHs are degraded. According to the results of the study, the application of a C:N:P ratio of was 100:15:1 in the biodegradation experiment resulted in the highest rate at which petroleum hydrocarbons were biodegraded. The diversity of pollutant-degrading bacteria and the effective transfer of degrading genes among resident microorganisms are essential factors for the successful biostimulation of petroleum hydrocarbons. As such, screening these factors throughout the biostimulation process represents an effective monitoring approach by which the success of the biostimulation can be assessed.
Collapse
Affiliation(s)
- Aiyoub Shahi
- Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Sevcan Aydin
- Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, Turkey.
| | - Bahar Ince
- Institutes of Environmental Sciences, Bogazici University, Bebek, Istanbul, Turkey
| | - Orhan Ince
- Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, Turkey
| |
Collapse
|
14
|
Identification of benzo[a]pyrene-metabolizing bacteria in forest soils by using DNA-based stable-isotope probing. Appl Environ Microbiol 2015; 81:7368-76. [PMID: 26253666 DOI: 10.1128/aem.01983-15] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 08/02/2015] [Indexed: 01/21/2023] Open
Abstract
DNA-based stable-isotope probing (DNA-SIP) was used in this study to investigate the uncultivated bacteria with benzo[a]pyrene (BaP) metabolism capacities in two Chinese forest soils (Mt. Maoer in Heilongjiang Province and Mt. Baicaowa in Hubei Province). We characterized three different phylotypes with responsibility for BaP degradation, none of which were previously reported as BaP-degrading microorganisms by SIP. In Mt. Maoer soil microcosms, the putative BaP degraders were classified as belonging to the genus Terrimonas (family Chitinophagaceae, order Sphingobacteriales), whereas Burkholderia spp. were the key BaP degraders in Mt. Baicaowa soils. The addition of metabolic salicylate significantly increased BaP degradation efficiency in Mt. Maoer soils, and the BaP-metabolizing bacteria shifted to the microorganisms in the family Oxalobacteraceae (genus unclassified). Meanwhile, salicylate addition did not change either BaP degradation or putative BaP degraders in Mt. Baicaowa. Polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenase (PAH-RHD) genes were amplified, sequenced, and quantified in the DNA-SIP (13)C heavy fraction to further confirm the BaP metabolism. By illuminating the microbial diversity and salicylate additive effects on BaP degradation across different soils, the results increased our understanding of BaP natural attenuation and provided a possible approach to enhance the bioremediation of BaP-contaminated soils.
Collapse
|
15
|
Kim S, Krajmalnik-Brown R, Kim JO, Chung J. Remediation of petroleum hydrocarbon-contaminated sites by DNA diagnosis-based bioslurping technology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 497-498:250-259. [PMID: 25129160 DOI: 10.1016/j.scitotenv.2014.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/30/2014] [Accepted: 08/01/2014] [Indexed: 06/03/2023]
Abstract
The application of effective remediation technologies can benefit from adequate preliminary testing, such as in lab-scale and Pilot-scale systems. Bioremediation technologies have demonstrated tremendous potential with regards to cost, but they cannot be used for all contaminated sites due to limitations in biological activity. The purpose of this study was to develop a DNA diagnostic method that reduces the time to select contaminated sites that are good candidates for bioremediation. We applied an oligonucleotide microarray method to detect and monitor genes that lead to aliphatic and aromatic degradation. Further, the bioremediation of a contaminated site, selected based on the results of the genetic diagnostic method, was achieved successfully by applying bioslurping in field tests. This gene-based diagnostic technique is a powerful tool to evaluate the potential for bioremediation in petroleum hydrocarbon contaminated soil.
Collapse
Affiliation(s)
- Seungjin Kim
- Environmental Engineering Department, Samsung Engineering Co., Ltd., 500 Samsung GEC, Sangil-Dong, Gangdong-Gu, Seoul 134-728, Republic of Korea
| | - Rosa Krajmalnik-Brown
- Center for Environmental Biotechnology, Biodesign Institute at Arizona State University, 1001 South McAllister Avenue, Tempe, AZ 85287-5701, USA
| | - Jong-Oh Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seongdong-Gu, Seoul 133-791, Republic of Korea
| | - Jinwook Chung
- R&D Center, Samsung Engineering Co., Ltd., 415-10 Woncheon-Dong, Youngtong-Gu, Suwon, Gyeonggi-Do 443-823, Republic of Korea.
| |
Collapse
|
16
|
Wang J, Behr MA. Building a better bacillus: the emergence of Mycobacterium tuberculosis. Front Microbiol 2014; 5:139. [PMID: 24765091 PMCID: PMC3982062 DOI: 10.3389/fmicb.2014.00139] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 03/18/2014] [Indexed: 11/29/2022] Open
Abstract
The genus Mycobacterium is comprised of more than 150 species that reside in a wide variety of habitats. Most mycobacteria are environmental organisms that are either not associated with disease or are opportunistic pathogens that cause non-transmissible disease in immunocompromised individuals. In contrast, a small number of species, such as the tubercle bacillus, Mycobacterium tuberculosis, are host-adapted pathogens for which there is no known environmental reservoir. In recent years, gene disruption studies using the host-adapted pathogen have uncovered a number of “virulence factors,” yet genomic data indicate that many of these elements are present in non-pathogenic mycobacteria. This suggests that much of the genetic make-up that enables virulence in the host-adapted pathogen is already present in environmental members of the genus. In addition to these generic factors, we hypothesize that molecules elaborated exclusively by professional pathogens may be particularly implicated in the ability of M. tuberculosis to infect, persist, and cause transmissible pathology in its host species, Homo sapiens. One approach to identify these molecules is to employ comparative analysis of mycobacterial genomes, to define evolutionary events such as horizontal gene transfer (HGT) that contributed M. tuberculosis-specific genetic elements. Independent studies have now revealed the presence of HGT genes in the M. tuberculosis genome and their role in the pathogenesis of disease is the subject of ongoing investigations. Here we review these studies, focusing on the hypothesized role played by HGT loci in the emergence of M. tuberculosis from a related environmental species into a highly specialized human-adapted pathogen.
Collapse
Affiliation(s)
- Joyce Wang
- Department of Microbiology and Immunology, McGill University Montreal, QC, Canada
| | - Marcel A Behr
- Department of Microbiology and Immunology, McGill University Montreal, QC, Canada ; Department of Medicine, McGill University Montreal, QC, Canada ; McGill International TB Centre Montreal, QC, Canada
| |
Collapse
|
17
|
Niepceron M, Beguet J, Portet-Koltalo F, Martin-Laurent F, Quillet L, Bodilis J. Low impact of phenanthrene dissipation on the bacterial community in grassland soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:2977-2987. [PMID: 24170505 DOI: 10.1007/s11356-013-2258-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 10/17/2013] [Indexed: 06/02/2023]
Abstract
The effect of phenanthrene on the bacterial community was studied on permanent grassland soil historically presenting low contamination (i.e. less than 1 mg kg(-1)) by polycyclic aromatic hydrocarbons (PAHs). Microcosms of soil were spiked with phenanthrene at 300 mg kg(-1). After 30 days of incubation, the phenanthrene concentration decreased rapidly until its total dissipation within 90 days. During this incubation period, significant changes of the total bacterial community diversity were observed, as assessed by automated-ribosomal intergenic spacer analysis fingerprinting. In order to get a deeper view of the effect of phenanthrene on the bacterial community, the abundances of ten phyla and classes (Actinobacteria, Acidobacteria, Bacteroidetes, Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Firmicutes, Verrucomicrobiales, Gemmatimonadetes, and Planctomycetes) were monitored by quantitative polymerase chain reaction performed on soil DNA extracts. Interestingly, abundances of some bacterial taxa significantly changed as compared with controls. Moreover, among these bacterial groups impacted by phenanthrene spiking, some of them presented the potential of phenanthrene degradation, as assessed by PAH-ring hydroxylating dioxygenase (PAH-RHDα) gene detection. However, neither the abundance nor the diversity of the PAH-RHDα genes was significantly impacted by phenanthrene spiking, highlighting the low impact of this organic contaminant on the functional bacterial diversities in grassland soil.
Collapse
Affiliation(s)
- Maïté Niepceron
- Laboratoire de Microbiologie Signaux et Microenvironnement, Université de Rouen, EA 4312, 76821, Mont Saint Aignan, France
| | | | | | | | | | | |
Collapse
|
18
|
Vandamme P, De Brandt E, Houf K, Salles JF, Dirk van Elsas J, Spilker T, LiPuma JJ. Burkholderia humi sp. nov., Burkholderia choica sp. nov., Burkholderia telluris sp. nov., Burkholderia terrestris sp. nov. and Burkholderia udeis sp. nov.: Burkholderia glathei-like bacteria from soil and rhizosphere soil. Int J Syst Evol Microbiol 2013; 63:4707-4718. [PMID: 23959831 DOI: 10.1099/ijs.0.048900-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Analysis of partial gyrB gene sequences revealed six taxa in a group of 17 Burkholderia glathei-like isolates which were further examined by (GTG)5-PCR fingerprinting, 16S rRNA gene sequence analysis, DNA-DNA hybridizations, determination of the DNA G+C content, whole-cell fatty acid analysis and an analysis of cell and colony morphology and more than 180 biochemical characteristics. The results demonstrated that one taxon consisting of three human clinical isolates represented Burkholderia zhejiangensis, a recently described methyl-parathion-degrading bacterium isolated from a wastewater-treatment system in China. The remaining taxa represented five novel species isolated from soil or rhizosphere soil samples, and could be distinguished by both genotypic and phenotypic characteristics. We therefore propose to formally classify these bacteria as Burkholderia humi sp. nov. (type strain, LMG 22934(T) = CCUG 63059(T)), Burkholderia choica sp. nov. (type strain, LMG 22940(T) = CCUG 63063(T)), Burkholderia telluris sp. nov. (type strain, LMG 22936(T) = CCUG 63060(T)), Burkholderia udeis sp. nov. (type strain, LMG 27134(T) = CCUG 63061(T)) and Burkholderia terrestris sp. nov. (type strain, LMG 22937(T) = CCUG 63062(T)).
Collapse
Affiliation(s)
- Peter Vandamme
- Laboratorium voor Microbiologie, Vakgroep Biochemie en microbiologie, Faculteit Wetenschappen, Universiteit Gent, Gent, Belgium
| | - Evie De Brandt
- Laboratorium voor Microbiologie, Vakgroep Biochemie en microbiologie, Faculteit Wetenschappen, Universiteit Gent, Gent, Belgium
| | - Kurt Houf
- Vakgroep Veterinaire Volksgezondheid en Voedselveiligheid, Faculteit Diergeneeskunde, Universiteit Gent, Gent, Belgium
| | - Joana Falcão Salles
- Department of Microbial Ecology, Center for Life Sciences, University of Groningen, The Netherlands
| | - Jan Dirk van Elsas
- Department of Microbial Ecology, Center for Life Sciences, University of Groningen, The Netherlands
| | - Theodore Spilker
- Department of Pediatrics and Communicable Disease, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - John J LiPuma
- Department of Pediatrics and Communicable Disease, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
19
|
Izmalkova TY, Sazonova OI, Kosheleva IA, Boronin AM. Phylogenetic analysis of the genes for naphthalene and phenanthrene degradation in Burkholderia sp. strains. RUSS J GENET+ 2013. [DOI: 10.1134/s1022795413060033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Bengtsson G, Törneman N, De Lipthay JR, Sørensen SJ. Microbial diversity and PAH catabolic genes tracking spatial heterogeneity of PAH concentrations. MICROBIAL ECOLOGY 2013; 65:91-100. [PMID: 22940734 DOI: 10.1007/s00248-012-0112-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 08/10/2012] [Indexed: 06/01/2023]
Abstract
We analyzed the within-site spatial heterogeneity of microbial community diversity, polyaromatic hydrocarbon (PAH) catabolic genotypes, and physiochemical soil properties at a creosote contaminated site. Genetic diversity and community structure were evaluated from an analysis of denaturant gradient gel electrophoresis (DGGE) of polymerase chain reaction (PCR)-amplified sequences of 16S rRNA gene. The potential PAH degradation capability was determined from PCR amplification of a suit of aromatic dioxygenase genes. Microbial diversity, evenness, and PAH genotypes were patchily distributed, and hot and cold spots of their distribution coincided with hot and cold spots of the PAH distribution. The analyses revealed a positive covariation between microbial diversity, biomass, evenness, and PAH concentration, implying that the creosote contamination at this site promotes diversity and abundance. Three patchily distributed PAH-degrading genotypes, NAH, phnA, and pdo1, were identified, and their abundances were positively correlated with the PAH concentration and the fraction of soil organic carbon. The covariation of the PAH concentration with the number and spatial distribution of catabolic genotypes suggests that a field site capacity to degrade PAHs may vary with the extent of contamination.
Collapse
Affiliation(s)
- Göran Bengtsson
- Department of Ecology, Lund University, Sölvegatan 37, SE, 223 62, Lund, Sweden.
| | | | | | | |
Collapse
|
21
|
Li YN, Porter A, Mumford A, Zhao XH, Young L. Bacterial community structure and bamA gene diversity in anaerobic degradation of toluene and benzoate under denitrifying conditions. J Appl Microbiol 2012; 112:269-79. [DOI: 10.1111/j.1365-2672.2011.05213.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Comparison of the specificities and efficacies of primers for aromatic dioxygenase gene analysis of environmental samples. Appl Environ Microbiol 2011; 77:3551-7. [PMID: 21498766 DOI: 10.1128/aem.00331-11] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aromatic dioxygenase genes have long been of interest for bioremediation and aromatic carbon cycling studies. To date, 115 primers and probes have been designed and used to analyze dioxygenase gene diversities in environmental samples. Here we analyze those primers' specificities, coverages, and PCR product lengths compared to known aromatic dioxygenase genes based on in silico analysis as well as summarize their differing advantages or effectiveness from over 50 reported experimental studies. We also provide some guidance for primer use in future studies.
Collapse
|
23
|
Phn and Nag-like dioxygenases metabolize polycyclic aromatic hydrocarbons in Burkholderia sp. C3. Biodegradation 2011; 22:1119-33. [DOI: 10.1007/s10532-011-9468-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Accepted: 02/22/2011] [Indexed: 10/18/2022]
|
24
|
Staats M, Braster M, Röling WF. Molecular diversity and distribution of aromatic hydrocarbon-degrading anaerobes across a landfill leachate plume. Environ Microbiol 2011; 13:1216-27. [DOI: 10.1111/j.1462-2920.2010.02421.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Gomes NC, Flocco CG, Costa R, Junca H, Vilchez R, Pieper DH, Krögerrecklenfort E, Paranhos R, Mendonça-Hagler LC, Smalla K. Mangrove microniches determine the structural and functional diversity of enriched petroleum hydrocarbon-degrading consortia. FEMS Microbiol Ecol 2010. [DOI: 10.1111/j.1574-6941.2010.00962.x 276-290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
26
|
Gomes NCM, Flocco CG, Costa R, Junca H, Vilchez R, Pieper DH, Krögerrecklenfort E, Paranhos R, Mendonça-Hagler LCS, Smalla K. Mangrove microniches determine the structural and functional diversity of enriched petroleum hydrocarbon-degrading consortia. FEMS Microbiol Ecol 2010; 74:276-90. [PMID: 20812953 DOI: 10.1111/j.1574-6941.2010.00962.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
In this study, the combination of culture enrichments and molecular tools was used to identify bacterial guilds, plasmids and functional genes potentially important in the process of petroleum hydrocarbon (PH) decontamination in mangrove microniches (rhizospheres and bulk sediment). In addition, we aimed to recover PH-degrading consortia (PHDC) for future use in remediation strategies. The PHDC were enriched with petroleum from rhizosphere and bulk sediment samples taken from a mangrove chronically polluted with oil hydrocarbons. Southern blot hybridization (SBH) assays of PCR amplicons from environmental DNA before enrichments resulted in weak positive signals for the functional gene types targeted, suggesting that PH-degrading genotypes and plasmids were in low abundance in the rhizosphere and bulk sediments. However, after enrichment, these genes were detected and strong microniche-dependent differences in the abundance and composition of hydrocarbonoclastic bacterial populations, plasmids (IncP-1α, IncP-1β, IncP-7 and IncP-9) and functional genes (naphthalene, extradiol and intradiol dioxygenases) were revealed by in-depth molecular analyses [PCR-denaturing gradient gel electrophoresis and hybridization (SBH and microarray)]. Our results suggest that, despite the low abundance of PH-degrading genes and plasmids in the environmental samples, the original bacterial composition of the mangrove microniches determined the structural and functional diversity of the PHDC enriched.
Collapse
Affiliation(s)
- Newton C M Gomes
- CESAM and Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Leveau JHJ, Uroz S, de Boer W. The bacterial genusCollimonas: mycophagy, weathering and other adaptive solutions to life in oligotrophic soil environments. Environ Microbiol 2010; 12:281-92. [DOI: 10.1111/j.1462-2920.2009.02010.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
28
|
Panicker G, Mojib N, Aislabie J, Bej AK. Detection, expression and quantitation of the biodegradative genes in Antarctic microorganisms using PCR. Antonie van Leeuwenhoek 2009; 97:275-87. [PMID: 20043207 DOI: 10.1007/s10482-009-9408-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 12/16/2009] [Indexed: 11/29/2022]
Abstract
In this study, 28 hydrocarbon-degrading bacterial isolates from oil-contaminated Antarctic soils were screened for the presence of biodegradative genes such as alkane hydroxylase (alks), the ISPalpha subunit of naphthalene dioxygenase (ndoB), catechol 2,3-dioxygenase (C23DO) and toluene/biphenyl dioxygenase (todC1/bphA1) by using polymerase chain reaction (PCR) methods. All naphthalene degrading bacterial isolates exhibited the presence of a 648 bp amplicon that shared 97% identity to a known ndoB sequence from Pseudomonas putida. Twenty-two out of the twenty-eight isolates screened were positive for one, two or all three different regions of the C23DO gene. For alkane hydroxylase, all 6 Rhodococcus isolates were PCR-positive for a 194 bp and a 552 bp segment of the alkB gene, but exhibited variable results with primers located at different segments of this gene. Three Pseudomonas spp. 4/101, 19/1, 30/3 amplified 552 bp segment of alkB. Only two Pseudomonas sp. 7/156 and 4/101 amplified a segment of alkB exhibiting 89-94% nucleotide sequence identity with the existing sequence of alkB in the GenBank sequence database. Transcripts of three genes, alkB2, C23DO and ndoB, that were amplified by DNA-PCR in three different bacterial isolates also exhibited positive amplification by reverse transcriptase PCR (RT-PCR) method confirming that these genes are functional. A competitive PCR (cPCR) method was developed for a quantitative estimation of ndoB from pure cultures of the naphthalene-degrading Pseudomonas sp. 30/2. A minimum of 1 x 10(7) copies of the ndoB gene was detected based on the comparison of the intensities of the competitor and target DNA bands. It is expected that the identification and characterization of the biodegradative genes will provide a better understanding of the catabolic pathways in Antarctic psychrotolerant bacteria, and thereby help support bioremediation strategies for oil-contaminated Antarctic soils.
Collapse
Affiliation(s)
- Gitika Panicker
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294-1170, USA
| | | | | | | |
Collapse
|
29
|
Diversity, abundance, and consistency of microbial oxygenase expression and biodegradation in a shallow contaminated aquifer. Appl Environ Microbiol 2009; 75:6478-87. [PMID: 19700556 DOI: 10.1128/aem.01091-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The diversity of Rieske dioxygenase genes and short-term temporal variability in the abundance of two selected dioxygenase gene sequences were examined in a naphthalene-rich, coal tar waste-contaminated subsurface study site. Using a previously published PCR-based approach (S. M. Ní Chadhain, R. S. Norman, K. V. Pesce, J. J. Kukor, and G. J. Zylstra, Appl. Environ. Microbiol. 72:4078-4087, 2006) a broad suite of genes was detected, ranging from dioxygenase sequences associated with Rhodococcus and Sphingomonas to 32 previously uncharacterized Rieske gene sequence clone groups. The nag genes appeared frequently (20% of the total) in two groundwater monitoring wells characterized by low ( approximately 10(2) ppb; approximately 1 muM) ambient concentrations of naphthalene. A quantitative competitive PCR assay was used to show that abundances of nag genes (and archetypal nah genes) fluctuated substantially over a 9-month period. To contrast short-term variation with long-term community stability, in situ community gene expression (dioxygenase mRNA) and biodegradation potential (community metabolism of naphthalene in microcosms) were compared to measurements from 6 years earlier. cDNA sequences amplified from total RNA extracts revealed that nah- and nag-type genes were expressed in situ, corresponding well with structural gene abundances. Despite evidence for short-term (9-month) shifts in dioxygenase gene copy number, agreement in field gene expression (dioxygenase mRNA) and biodegradation potential was observed in comparisons to equivalent assays performed 6 years earlier. Thus, stability in community biodegradation characteristics at the hemidecadal time frame has been documented for these subsurface microbial communities.
Collapse
|
30
|
Flocco CG, Gomes NCM, Mac Cormack W, Smalla K. Occurrence and diversity of naphthalene dioxygenase genes in soil microbial communities from the Maritime Antarctic. Environ Microbiol 2009; 11:700-14. [PMID: 19278452 DOI: 10.1111/j.1462-2920.2008.01858.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The diversity of naphthalene dioxygenase genes (ndo) in soil environments from the Maritime Antarctic was assessed, dissecting as well the influence of the two vascular plants that grow in the Antarctic: Deschampsia antarctica and Colobanthus quitensis. Total community DNA was extracted from bulk and rhizosphere soil samples from Jubany station and Potter Peninsula, South Shetland Islands. ndo genes were amplified by a nested PCR and analysed by denaturant gradient gel electrophoresis approach (PCR-DGGE) and cloning and sequencing. The ndo-DGGE fingerprints of oil-contaminated soil samples showed even and reproducible patterns, composed of four dominant bands. The presence of vascular plants did not change the relative abundance of ndo genotypes compared with bulk soil. For non-contaminated sites, amplicons were not obtained for all replicates and the variability among the fingerprints was comparatively higher, likely reflecting a lower abundance of ndo genes. The phylogenetic analyses showed that all sequences were affiliated to the nahAc genes closely related to those described for Pseudomonas species and related mobile genetic elements. This study revealed that a microdiversity of nahAc-like genes exists in microbial communities of Antarctic soils and quantitative PCR indicated that their relative abundance was increased in response to anthropogenic sources of pollution.
Collapse
Affiliation(s)
- Cecilia G Flocco
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants (JKI), Braunschweig, Germany.
| | | | | | | |
Collapse
|
31
|
Schönmann S, Loy A, Wimmersberger C, Sobek J, Aquino C, Vandamme P, Frey B, Rehrauer H, Eberl L. 16S rRNA gene-based phylogenetic microarray for simultaneous identification of members of the genus Burkholderia. Environ Microbiol 2009; 11:779-800. [PMID: 19396938 DOI: 10.1111/j.1462-2920.2008.01800.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
For cultivation-independent and highly parallel analysis of members of the genus Burkholderia, an oligonucleotide microarray (phylochip) consisting of 131 hierarchically nested 16S rRNA gene-targeted oligonucleotide probes was developed. A novel primer pair was designed for selective amplification of a 1.3 kb 16S rRNA gene fragment of Burkholderia species prior to microarray analysis. The diagnostic performance of the microarray for identification and differentiation of Burkholderia species was tested with 44 reference strains of the genera Burkholderia, Pandoraea, Ralstonia and Limnobacter. Hybridization patterns based on presence/absence of probe signals were interpreted semi-automatically using the novel likelihood-based strategy of the web-tool Phylo- Detect. Eighty-eight per cent of the reference strains were correctly identified at the species level. The evaluated microarray was applied to investigate shifts in the Burkholderia community structure in acidic forest soil upon addition of cadmium, a condition that selected for Burkholderia species. The microarray results were in agreement with those obtained from phylogenetic analysis of Burkholderia 16S rRNA gene sequences recovered from the same cadmiumcontaminated soil, demonstrating the value of the Burkholderia phylochip for determinative and environmental studies.
Collapse
Affiliation(s)
- Susan Schönmann
- Institute of Plant Biology, Department of Microbiology, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Long RM, Lappin-Scott HM, Stevens JR. Enrichment and identification of polycyclic aromatic compound-degrading bacteria enriched from sediment samples. Biodegradation 2009; 20:521-31. [PMID: 19132328 DOI: 10.1007/s10532-008-9241-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Accepted: 12/04/2008] [Indexed: 10/21/2022]
Abstract
The degradation of polycyclic aromatic compounds (PACs) has been widely studied. Knowledge of the degradation of PACs by microbial populations can be utilized in the remediation of contaminated sites. To isolate and identify PAC-degrading bacteria for potential use in future bioremediation programmes, we established a series of PAC enrichments under the same experimental conditions from a single sediment sample taken from a highly polluted estuarine site. Enrichment cultures were established using the pollutants: anthracene, phenanthrene and dibenzothiophene as a sole carbon source. The shift in microbial community structure on each of these carbon sources was monitored by analysis of a time series of samples from each culture using 16S rRNA polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Significantly, our findings demonstrate that shifts in the constituent species within each degradative community are directly attributable to enrichment with different PACs. Subsequently, we characterized the microorganisms comprising the degradative communities within each enrichment using 16S rRNA sequence data. Our findings demonstrate that the ability to degrade PACs is present in five divisions of the Proteobacteria and Actinobacteria. By determining the precise identity of the PAC-degrading bacterial species isolated from a single sediment sample, and by comparing our findings with previously published research, we demonstrate how bacteria with similar PAC degrading capabilities and 16S rRNA signatures are found in similarly polluted environments in geographically very distant locations, e.g., China, Italy, Japan and Hawaii. Such a finding suggests that geographical barriers do not limit the distribution of key PAC-degrading bacteria; this finding is in accordance with the Baas-Becking hypothesis "everything is everywhere; the environment selects" and may have significant consequences for the global distribution of PAC-degrading bacteria and their use in bioremediation.
Collapse
Affiliation(s)
- Rachel M Long
- School of Biosciences, University of Exeter, Exeter, Devon, UK.
| | | | | |
Collapse
|
33
|
Abstract
The horizontal transfer of genes encoded on mobile genetic elements (MGEs) such as plasmids and phage and their associated hitchhiking elements (transposons, integrons, integrative and conjugative elements, and insertion sequences) rapidly accelerate genome diversification of microorganisms, thereby affecting their physiology, metabolism, pathogenicity,and ecological character. The analyses of completed prokaryotic genomes reveal that horizontal gene transfer (HGT) continues to be an important factor contributing to the innovation of microbial genomes. Indeed, microbial genomes are remarkably dynamic and a considerable amount of genetic information is inserted or deleted by HGT mechanisms. Thus, HGT and the vast pool of MGEs provide microbial communities with an unparalleled means by which to respond rapidly to changing environmental conditions and exploit new ecological niches. Metals and radionuclide contamination in soils, the subsurface, and aquifers poses a serious challenge to microbial growth and survival because these contaminants cannot be transformed or biodegraded into non-toxic forms as often occurs with organic xenobiotic contaminants. In this chapter we present cases in which HGT has been demonstrated to contribute to the dissemination of genes that provide adaptation to contaminant stress (i.e., toxic heavy metals and radionuclides). In addition, we present directions for future studies that could provide even greater insights into the contributions of HGT to adaptation for survival in mixed waste sites.
Collapse
|
34
|
Edlund A, Jansson JK. Use of bromodeoxyuridine immunocapture to identify psychrotolerant phenanthrene-degrading bacteria in phenanthrene-enriched polluted Baltic Sea sediments. FEMS Microbiol Ecol 2008; 65:513-25. [DOI: 10.1111/j.1574-6941.2008.00513.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
35
|
Fritsche K, de Boer W, Gerards S, van den Berg M, van Veen JA, Leveau JHJ. Identification and characterization of genes underlying chitinolysis in Collimonas fungivorans Ter331. FEMS Microbiol Ecol 2008; 66:123-35. [PMID: 18671744 DOI: 10.1111/j.1574-6941.2008.00547.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Through a combinatorial approach of plasposon mutagenesis, genome mining, and heterologous expression, we identified genes contributing to the chitinolytic phenotype of bacterium Collimonas fungivorans Ter331. One of five mutants with abolished ability to hydrolyze colloidal chitin carried its plasposon in the chiI gene coding for an extracellular endochitinase. Two mutants were affected in the promoter of chiP-II coding for an outer-membrane transporter of chitooligosaccharides. The remaining two mutations were linked to chitobiose/N-acetylglucosamine uptake. Thus, our model for the Collimonas chitinolytic system assumes a positive feedback regulation of chitinase activity by chitin degradation products. A second chitinase gene, chiII, coded for an exochitinase that preferentially released chitobiose from chitin analogs. Genes hexI and hexII showed coding resemblance to N-acetylglucosaminidases, and the activity of purified HexI protein towards chitin analogs suggested its role in converting chitobiose to N-acetylglucosamine. The hexI gene clustered with chiI, chiII, and chiP-II in one locus, while chitobiose/N-acetylglucosamine uptake genes colocalized in another. Both loci contained genes for conversion of N-acetylglucosamine to fructose-6-phosphate, confirming that C. fungivorans Ter331 features a complete chitin pathway. No link could be established between chitinolysis and antifungal activity of C. fungivorans Ter331, suggesting that the bacterium's reported antagonism towards fungi relies on other mechanisms.
Collapse
Affiliation(s)
- Kathrin Fritsche
- Netherlands Institute of Ecology (NIOO-KNAW), Heteren, The Netherlands
| | | | | | | | | | | |
Collapse
|
36
|
Paul D, Rastogi N, Krauss U, Schlomann M, Pandey G, Pandey J, Ghosh A, Jain RK. Diversity of 'benzenetriol dioxygenase' involved in p-nitrophenol degradation in soil bacteria. Indian J Microbiol 2008; 48:279-86. [PMID: 23100721 DOI: 10.1007/s12088-008-0038-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Accepted: 01/08/2008] [Indexed: 10/21/2022] Open
Abstract
Ring hydroxylating dioxygenases (RHDOs) are one of the most important classes of enzymes featuring in the microbial metabolism of several xenobiotic aromatic compounds. One such RHDO is benzenetriol dioxygenase (BtD) which constitutes the metabolic machinery of microbial degradation of several mono- phenolic and biphenolic compounds including nitrophenols. Assessment of the natural diversity of benzenetriol dioxygenase (btd) gene sequence is of great significance from basic as well as applied study point of view. In the present study we have evaluated the gene sequence variations amongst the partial btd genes that were retrieved from microorganisms enriched for PNP degradation from pesticide contaminated agriculture soils. The gene sequence analysis was also supplemented with an in silico restriction digestion analysis. Furthermore, a phylogenetic analysis based on the deduced amino acid sequence(s) was performed wherein the evolutionary relatedness of BtD enzyme with similar aromatic dioxygenases was determined. The results obtained in this study indicated that this enzyme has probably undergone evolutionary divergence which largely corroborated with the taxonomic ranks of the host microorganisms.
Collapse
Affiliation(s)
- Debarati Paul
- Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Sipilä TP, Keskinen AK, Åkerman ML, Fortelius C, Haahtela K, Yrjälä K. High aromatic ring-cleavage diversity in birch rhizosphere: PAH treatment-specific changes of I.E.3 group extradiol dioxygenases and 16S rRNA bacterial communities in soil. ISME JOURNAL 2008; 2:968-81. [DOI: 10.1038/ismej.2008.50] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
38
|
Doyle E, Muckian L, Hickey AM, Clipson N. Microbial PAH Degradation. ADVANCES IN APPLIED MICROBIOLOGY 2008; 65:27-66. [DOI: 10.1016/s0065-2164(08)00602-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
39
|
Ben Said O, Goñi-Urriza MS, El Bour M, Dellali M, Aissa P, Duran R. Characterization of aerobic polycyclic aromatic hydrocarbon-degrading bacteria from Bizerte lagoon sediments, Tunisia. J Appl Microbiol 2007; 104:987-97. [PMID: 17973912 DOI: 10.1111/j.1365-2672.2007.03621.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS To characterize polycyclic aromatic hydrocarbon (PAH)-degrading bacteria from sediments of the Bizerte lagoon, and to determine their ability to resist other pollutants such as antibiotics and heavy metals. METHODS AND RESULTS More than 100 strains were isolated for their ability to use fluoranthene as the sole carbon and energy source. Most of them showed antibiotic and heavy metal resistance; 20 representative strains were selected for further analysis. 16S rRNA coding sequences analysis showed that the majority of the selected bacteria (75%) were affiliated to the Gammaproteobacteria. The selected strains also utilized high molecular weight PAHs containing up to four benzene rings and showed different profiles of PAH substrate usage suggesting different PAH degradation pathways. These results are consistent with the fact that nah-like genes and idoA-like genes, involved in PAH degradation, were detected in 6 and 1 strains respectively. CONCLUSIONS The Bizerte lagoon, polluted by many human activities, leads to the co-selection of strains able to cope with multiple contaminants. SIGNIFICANCE AND IMPACT OF THE STUDY Polluted areas are often characterized by the concomitant presence of organic pollutants, heavy metals and antibiotics. This study is one of the first showing bacterial strains adapted to multiple contaminants, a promising potential for the development of bioremediation processes.
Collapse
Affiliation(s)
- O Ben Said
- Equipe Environnement et Microbiologie, IPREM UMR 5254, IBEAS, Université de Pau et des Pays de l'Adour, Pau Cedex, France
| | | | | | | | | | | |
Collapse
|
40
|
Hwang HM, Hu X, Zhao X. Enhanced bioremediation of polycyclic aromatic hydrocarbons by environmentally friendly techniques. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2007; 25:313-352. [PMID: 18000785 DOI: 10.1080/10590500701704011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are recognized as a worldwide environmental contamination problem because of their intrinsic chemical stability, high resistance to various transformation processes, and toxicity property. Because of the wide distribution of the PAHs in the environment, human exposure to the PAHs is likely to occur from dermal contact, ingestion of particles, inhalation of airborne dust, or bioaccumulation in the food chains. Therefore, their remediation is considered indispensable for environmental clean up and human health. The objective of this article is to provide a quick review on toxicity of PAHs, biodegradation of PAHs, influence of selected environmental factors on PAHs biodegradation, selected techniques for enhancing biodegradation of PAHs, and a detailed description of two environmentally friendly techniques used in our laboratory for PAHs enhanced bioremediation. Finally, an overview on the green chemistry concept and its relevance to development of several environmental fingerprinting tools for predicting successful PAHs detoxification are discussed.
Collapse
Affiliation(s)
- Huey-Min Hwang
- Department of Biology, Jackson State University, Jackson, Mississippi 39217, USA.
| | | | | |
Collapse
|
41
|
Gomes NCM, Borges LR, Paranhos R, Pinto FN, Krögerrecklenfort E, Mendonça-Hagler LCS, Smalla K. Diversity of ndo genes in mangrove sediments exposed to different sources of polycyclic aromatic hydrocarbon pollution. Appl Environ Microbiol 2007; 73:7392-9. [PMID: 17905873 PMCID: PMC2168229 DOI: 10.1128/aem.01099-07] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polycyclic aromatic hydrocarbon (PAH) pollutants originating from oil spills and wood and fuel combustion are pollutants which are among the major threats to mangrove ecosystems. In this study, the composition and relative abundance in the sediment bacterial communities of naphthalene dioxygenase (ndo) genes which are important for bacterial adaptation to environmental PAH contamination were investigated. Three urban mangrove sites which had characteristic compositions and levels of PAH compounds in the sediments were selected. The diversity and relative abundance of ndo genes in total community DNA were assessed by a newly developed ndo denaturing gradient gel electrophoresis (DGGE) approach and by PCR amplification with primers targeting ndo genes with subsequent Southern blot hybridization analyses. Bacterial populations inhabiting sediments of urban mangroves under the impact of different sources of PAH contamination harbor distinct ndo genotypes. Sequencing of cloned ndo amplicons comigrating with dominant DGGE bands revealed new ndo genotypes. PCR-Southern blot analysis and ndo DGGE showed that the frequently studied nah and phn genotypes were not detected as dominant ndo types in the mangrove sediments. However, ndo genotypes related to nagAc-like genes were detected, but only in oil-contaminated mangrove sediments. The long-term impact of PAH contamination, together with the specific environmental conditions at each site, may have affected the abundance and diversity of ndo genes in sediments of urban mangroves.
Collapse
Affiliation(s)
- Newton C Marcial Gomes
- Federal Biological Research Centre for Agriculture and Forestry (BBA), Braunschweig, Germany
| | | | | | | | | | | | | |
Collapse
|
42
|
Liang Y, Britt DW, McLean JE, Sorensen DL, Sims RC. Humic acid effect on pyrene degradation: finding an optimal range for pyrene solubility and mineralization enhancement. Appl Microbiol Biotechnol 2007; 74:1368-75. [PMID: 17216450 DOI: 10.1007/s00253-006-0769-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 11/09/2006] [Accepted: 11/16/2006] [Indexed: 10/23/2022]
Abstract
The addition of humic acid (HA) to polycyclic aromatic hydrocarbon (PAH) contaminated systems has been shown to enhance, inhibit, or have no effect on the biodegradation of these PAHs. In this study, the surfactant effects of Elliott soil HA (ESHA) at two pH values were tested. At pH 7.0, ESHA did not behave as a surfactant. At pH 11.8, ESHA acted as a surfactant, as displayed by a decrease in surface tension with increasing concentrations of ESHA. The effect of ESHA on pyrene solubility was tested by adding 0 to 800 microg ESHA/g soil to soil-slurries. Enhancement of pyrene apparent solubility demonstrated a dose- and time-related effect. Broader doses from 0 to 10,080 microg ESHA/g soil and three higher doses from 3,360 to 10,080 microg ESHA/g soil were tested for their effects on pyrene mineralization by indigenous soil microorganisms and a novel PAH-degrading Mycobacterium sp. KMS in soil microcosms, respectively. ESHA amendments between 20 and 200 microg ESHA/g soil were found to consistently increase pyrene mineralization by indigenous microorganisms, while the 10,080 microg ESHA/g soil produced inhibition and all other doses presented no effects. Pyrene degradation by M. KMS was significantly inhibited by the addition of the highest dose of ESHA.
Collapse
Affiliation(s)
- Yanna Liang
- Utah Water Research Laboratory, Utah State University, 8200 Old Main Hill, Logan, UT 84322, USA
| | | | | | | | | |
Collapse
|
43
|
Cardinale M, Puglia AM, Grube M. Molecular analysis of lichen-associated bacterial communities. FEMS Microbiol Ecol 2006; 57:484-95. [PMID: 16907761 DOI: 10.1111/j.1574-6941.2006.00133.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The bacterial communities associated with 11 different lichen samples (belonging to eight different species) from different habitats were investigated. The culturable aerobic-heterotrophic fraction of the bacterial communities was isolated from nine lichen samples on protein-rich and sugar-rich/N-free media. Thirty-four bacterial isolates were purified and pooled into groups (phylotypes) by analysis of the ribosomal internal transcribed spacer polymorphism. Twenty five phylotypes were identified, each comprising between one and three isolates. One isolate of each phylotype was partially sequenced and the resulting 16S rRNA gene sequences were compared in a phylogenetic analysis. Three genera of Firmicutes, four of Actinobacteria and three of Proteobacteria were identified. Two phylotypes, belonging to the phyla Actinobacteria and Proteobacteria, respectively, were not identified at genus level. Some bacterial taxa were retrieved frequently in different lichen species sampled in the same or different sites. Paenibacillus and Burkholderia phylotypes seem to be common in lichens. Luteibactor rhizovicina was found in three different lichens of two different regions. In a cultivation-independent approach, total DNA was extracted from 11 lichen samples. Molecular fingerprints of the bacterial communities were obtained by PCR-amplification of the internal transcribed spacer region, and sequencing of selected bands indicated the presence of additional bacteria.
Collapse
Affiliation(s)
- Massimiliano Cardinale
- Dipartimento di Biologia Cellulare e dello Sviluppo, Università degli Studi di Palermo, Palermo, Italy
| | | | | |
Collapse
|
44
|
Salles JF, van Elsas JD, van Veen JA. Effect of agricultural management regime on Burkholderia community structure in soil. MICROBIAL ECOLOGY 2006; 52:267-79. [PMID: 16897309 DOI: 10.1007/s00248-006-9048-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Revised: 02/23/2005] [Accepted: 02/24/2005] [Indexed: 05/06/2023]
Abstract
The main objective of this study was to determine the Burkholderia community structure associated with areas under different agricultural management and to evaluate to which extent this community structure is affected by changes in agricultural management. Two fields with distinct soil history (arable land and permanent grassland) were exposed to three agricultural management regimes (crop rotation, maize monoculture, and grassland). By using a culture-independent approach, based on a Burkholderia-specific polymerase chain reaction-denaturing gradient gel electrophoresis system, it was possible to observe the conversion of Burkholderia communities typical for permanent grassland to those of arable land after four consecutive years. However, the time needed to achieve the reverse transition, i.e., converting the Burkholderia community associated with arable land to that of grassland, was beyond the duration of the field experiment. In addition, by applying principal response curves, the direction and extent of the conversion from grassland to arable land (maize monoculture and to crop rotation) were determined. Hence, the results suggested that agricultural practices, such as fertilization and tillage, were more effective in changing the Burkholderia community structure than agricultural management regime. To determine the effect of agricultural management on the Burkholderia population with biocontrol abilities, the culturable fraction of the Burkholderia community was assessed. The areas under permanent grassland and grassland converted to maize monoculture had the highest percentages of Burkholderia strains with antagonistic activity against Rhizoctonia solani AG-3, mainly Burkholderia pyrrocinia and Burkholderia sp. LMG 22929. The isolation frequency of antagonistic isolates from arable land was extremely low. Our results indicate that (changes in) agricultural management, mainly crop rotation, affect the frequency of isolation of antagonistic Burkholderia strains and that grassland represents a reservoir of Burkholderia species with great potential for agricultural applications.
Collapse
Affiliation(s)
- J F Salles
- Plant Research International, P.O. Box 16, 6700 AA, Wageningen, The Netherlands.
| | | | | |
Collapse
|
45
|
Jeon CO, Park M, Ro HS, Park W, Madsen EL. The naphthalene catabolic (nag) genes of Polaromonas naphthalenivorans CJ2: evolutionary implications for two gene clusters and novel regulatory control. Appl Environ Microbiol 2006; 72:1086-95. [PMID: 16461653 PMCID: PMC1392936 DOI: 10.1128/aem.72.2.1086-1095.2006] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polaromonas naphthalenivorans CJ2, found to be responsible for the degradation of naphthalene in situ at a coal tar waste-contaminated site (C.-O. Jeon et al., Proc. Natl. Acad. Sci. USA 100:13591-13596, 2003), is able to grow on mineral salts agar media with naphthalene as the sole carbon source. Beginning from a 484-bp nagAc-like region, we used a genome walking strategy to sequence genes encoding the entire naphthalene degradation pathway andadditional flanking regions. We found that the naphthalene catabolic genes in P. naphthalenivorans CJ2 were divided into one large and one small gene cluster, separated by an unknown distance. The large gene cluster (nagRAaGHAbAcAdBFCQEDJI'ORF1tnpA) is bounded by a LysR-type regulator (nagR). The small cluster (nagR2ORF2I"KL) is bounded by a MarR-type regulator (nagR2). The catabolic genes of P. naphthalenivorans CJ2 were homologous to many of those of Ralstonia U2, which uses the gentisate pathway to convert naphthalene to central metabolites. However, three open reading frames (nagY, nagM, and nagN), present in Ralstonia U2, were absent. Also, P. naphthalenivorans carries two copies of gentisate dioxygenase (nagI) with 77.4% DNA sequence identity to one another and 82% amino acid identity to their homologue in Ralstonia sp. strain U2. Investigation of the operons using reverse transcription PCR showed that each cluster was controlled independently by its respective promoter. Insertional inactivation and lacZ reporter assays showed that nagR2 is a negative regulator and that expression of the small cluster is not induced by naphthalene, salicylate, or gentisate. Association of two putative Azoarcus-related transposases with the large cluster and one Azoarcus-related putative salicylate 5-hydroxylase gene (ORF2) in the small cluster suggests that mobile genetic elements were likely involved in creating the novel arrangement of catabolic and regulatory genes in P. naphthalenivorans.
Collapse
Affiliation(s)
- Che Ok Jeon
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| | | | | | | | | |
Collapse
|
46
|
Ma Y, Wang L, Shao Z. Pseudomonas, the dominant polycyclic aromatic hydrocarbon-degrading bacteria isolated from Antarctic soils and the role of large plasmids in horizontal gene transfer. Environ Microbiol 2006; 8:455-65. [PMID: 16478452 DOI: 10.1111/j.1462-2920.2005.00911.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Twenty-two polycyclic aromatic hydrocarbon (PAH)-degrading bacterial strains were isolated from Antarctic soils with naphthalene or phenanthrene as a sole carbon source, while no degrader was obtained from an unpolluted sampling site. Phylogenetic analysis showed that all belonged to the genus Pseudomonas except one that was identified as the genus of Rahnella. Some of them were closely related to previously reported cold-tolerant species, while some were separated in deeply rooted branches and represent new strains. All these strains showed a high efficiency to degrade naphthalene at 4 degrees C, and some additionally degraded phenanthrene. Using degenerate primers and polymerase chain reaction (PCR) amplification, ndo gene encoding naphthalene dioxygenase (NDO) was detected from all the isolates. Phylogenetic analysis grouped these genes into two clusters which shared 94% similarity to each other, and showed about 97% similarity within a cluster. However, no obvious difference was observed with mesophilic ndo genes; this indicates that the host cell is pivotal in cold adaptation. In addition, the mismatch between 16S rRNA and NDO phylogenetic trees strongly indicates horizontal gene transfer among these isolates and may have happened in situ. Further, Southern hybridization and plasmid curing confirmed that ndo genes were located on a large self-transmissible plasmid, which can be transferred to a mesophilic strains. The transconjugants acquired the ability to utilize naphthalene and phenanthrene. Results of this article imply that Pseudomonas plays an important role in PAH biodegradation in Antarctic soils, and the related genes might be originally transferred from outside Antarctica and spread among indigenous species.
Collapse
MESH Headings
- Antarctic Regions
- Blotting, Southern
- Conjugation, Genetic
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Dioxygenases
- Gene Transfer, Horizontal
- Molecular Sequence Data
- Multienzyme Complexes/genetics
- Naphthalenes/metabolism
- Oxygenases/genetics
- Phenanthrenes/metabolism
- Phylogeny
- Plasmids/genetics
- Polycyclic Aromatic Hydrocarbons/metabolism
- Polymerase Chain Reaction
- Pseudomonas/classification
- Pseudomonas/genetics
- Pseudomonas/isolation & purification
- Pseudomonas/metabolism
- RNA, Ribosomal, 16S/genetics
- Rahnella/classification
- Rahnella/genetics
- Rahnella/isolation & purification
- Rahnella/metabolism
- Sequence Analysis, DNA
- Sequence Homology
- Soil Microbiology
- Temperature
Collapse
Affiliation(s)
- Yingfei Ma
- Key Laboratory of Marine Biogenetic Resources, The Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, Fujian, China
| | | | | |
Collapse
|
47
|
Gomes NCM, Kosheleva IA, Abraham WR, Smalla K. Effects of the inoculant strain Pseudomonas putida KT2442 (pNF142) and of naphthalene contamination on the soil bacterial community. FEMS Microbiol Ecol 2005; 54:21-33. [PMID: 16329969 DOI: 10.1016/j.femsec.2005.02.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Revised: 02/10/2005] [Accepted: 02/15/2005] [Indexed: 10/25/2022] Open
Abstract
The naphthalene-degrading activity of a Pseudomonas sp. strain isolated from a creosote-contaminated soil was shown to be encoded by the IncP9 plasmid pNF142 by transfer to Pseudomonas putida KT2442. The effects of the inoculant strain KT2442 (pNF142) and of naphthalene contamination on the soil bacterial community were studied in microcosms with the following treatments: (I) soil, (II) soil with naphthalene, (III) soil with naphthalene and inoculated with KT2442 (pNF142). The inoculant became the dominant bacterial population in treatment (III) as evidenced by cultivation and denaturing gradient gel electrophoresis (DGGE) analysis. The bacterial DGGE profiles revealed drastically reduced complexity due to the numerical dominance of the inoculant. However, group-specific fingerprints (beta-proteobacteria, actinobacteria) that excluded KT2442 (pNF142) showed less severe changes in the bacterial community patterns. A major effect of naphthalene on the soil bacterial community was observed in treatment (II) after 21 days. Two dominant bands appeared whose sequences showed the highest similarity to those of Burkholderia sp. RP007 and Nocardia vinaceae based on 16S rRNA gene sequencing. These bands were less intense in treatment (III). The increased abundance of RP007-like populations due to naphthalene contamination was also confirmed by PCR amplification of the phnAc gene. The nahAc and nahH genes were detected in DNA and cDNA only in treatment III. Although the inoculant strain KT2442 (pNF142) showed good survival and expression of genes involved in naphthalene degradation, this study suggests that KT2442 (pNF142) suppressed the enrichment of indigenous naphthalene degraders.
Collapse
Affiliation(s)
- Newton C M Gomes
- Federal Biological Research Centre for Agriculture and Forestry (BBA), Braunschweig, Germany
| | | | | | | |
Collapse
|
48
|
Ramos JL, Martínez-Bueno M, Molina-Henares AJ, Terán W, Watanabe K, Zhang X, Gallegos MT, Brennan R, Tobes R. The TetR family of transcriptional repressors. Microbiol Mol Biol Rev 2005; 69:326-56. [PMID: 15944459 PMCID: PMC1197418 DOI: 10.1128/mmbr.69.2.326-356.2005] [Citation(s) in RCA: 868] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have developed a general profile for the proteins of the TetR family of repressors. The stretch that best defines the profile of this family is made up of 47 amino acid residues that correspond to the helix-turn-helix DNA binding motif and adjacent regions in the three-dimensional structures of TetR, QacR, CprB, and EthR, four family members for which the function and three-dimensional structure are known. We have detected a set of 2,353 nonredundant proteins belonging to this family by screening genome and protein databases with the TetR profile. Proteins of the TetR family have been found in 115 genera of gram-positive, alpha-, beta-, and gamma-proteobacteria, cyanobacteria, and archaea. The set of genes they regulate is known for 85 out of the 2,353 members of the family. These proteins are involved in the transcriptional control of multidrug efflux pumps, pathways for the biosynthesis of antibiotics, response to osmotic stress and toxic chemicals, control of catabolic pathways, differentiation processes, and pathogenicity. The regulatory network in which the family member is involved can be simple, as in TetR (i.e., TetR bound to the target operator represses tetA transcription and is released in the presence of tetracycline), or more complex, involving a series of regulatory cascades in which either the expression of the TetR family member is modulated by another regulator or the TetR family member triggers a cell response to react to environmental insults. Based on what has been learned from the cocrystals of TetR and QacR with their target operators and from their three-dimensional structures in the absence and in the presence of ligands, and based on multialignment analyses of the conserved stretch of 47 amino acids in the 2,353 TetR family members, two groups of residues have been identified. One group includes highly conserved positions involved in the proper orientation of the helix-turn-helix motif and hence seems to play a structural role. The other set of less conserved residues are involved in establishing contacts with the phosphate backbone and target bases in the operator. Information related to the TetR family of regulators has been updated in a database that can be accessed at www.bactregulators.org.
Collapse
Affiliation(s)
- Juan L Ramos
- Department of Plant Biochemistry and Molecular and Cellular Biology, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Cientificas, Granada, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Pieper DH, Martins dos Santos VAP, Golyshin PN. Genomic and mechanistic insights into the biodegradation of organic pollutants. Curr Opin Biotechnol 2005; 15:215-24. [PMID: 15193329 DOI: 10.1016/j.copbio.2004.03.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Several new methodologies have enabled recent studies on the microbial biodegradation mechanisms of organic pollutants. Culture-independent techniques for analysis of the genetic and metabolic potential of natural and model microbial communities that degrade organic pollutants have identified new metabolic pathways and enzymes for aerobic and anaerobic degradation. Furthermore, structural studies of the enzymes involved have revealed the specificities and activities of key catabolic enzymes, such as dioxygenases. Genome sequencing of several biodegradation-relevant microorganisms have provided the first whole-genome insights into the genetic background of the metabolic capability and biodegradation versatility of these organisms. Systems biology approaches are still in their infancy, but are becoming increasingly helpful to unravel, predict and quantify metabolic abilities within particular organisms or microbial consortia.
Collapse
Affiliation(s)
- Dietmar H Pieper
- Division of Microbiology, German Research Centre for Biotechnology, Mascheroder Weg 1, Braunschweig, Germany
| | | | | |
Collapse
|
50
|
Rhee SK, Liu X, Wu L, Chong SC, Wan X, Zhou J. Detection of genes involved in biodegradation and biotransformation in microbial communities by using 50-mer oligonucleotide microarrays. Appl Environ Microbiol 2004; 70:4303-17. [PMID: 15240314 PMCID: PMC444823 DOI: 10.1128/aem.70.7.4303-4317.2004] [Citation(s) in RCA: 259] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
To effectively monitor biodegrading populations, a comprehensive 50-mer-based oligonucleotide microarray was developed based on most of the 2,402 known genes and pathways involved in biodegradation and metal resistance. This array contained 1,662 unique and group-specific probes with <85% similarity to their nontarget sequences. Based on artificial probes, our results showed that under hybridization conditions of 50 degrees C and 50% formamide, the 50-mer microarray hybridization can differentiate sequences having <88% similarity. Specificity tests with representative pure cultures indicated that the designed probes on the arrays appeared to be specific to their corresponding target genes. The detection limit was approximately 5 to 10 ng of genomic DNA in the absence of background DNA and 50 to 100 ng of pure-culture genomic DNA in the presence of background DNA or 1.3 x 10(7) cells in the presence of background RNA. Strong linear relationships between the signal intensity and the target DNA and RNA were observed (r(2) = 0.95 to 0.99). Application of this type of microarray to analyze naphthalene-amended enrichment and soil microcosms demonstrated that microflora changed differently depending on the incubation conditions. While the naphthalene-degrading genes from Rhodococcus-type microorganisms were dominant in naphthalene-degrading enrichments, the genes involved in naphthalene (and polyaromatic hydrocarbon and nitrotoluene) degradation from gram-negative microorganisms, such as Ralstonia, Comamonas, and Burkholderia, were most abundant in the soil microcosms. In contrast to general conceptions, naphthalene-degrading genes from Pseudomonas were not detected, although Pseudomonas is widely known as a model microorganism for studying naphthalene degradation. The real-time PCR analysis with four representative genes showed that the microarray-based quantification was very consistent with real-time PCR (r(2) = 0.74). In addition, application of the arrays to both polyaromatic-hydrocarbon- and benzene-toluene-ethylbenzene-xylene-contaminated and uncontaminated soils indicated that the developed microarrays appeared to be useful for profiling differences in microbial community structures. Our results indicate that this technology has potential as a specific, sensitive, and quantitative tool in revealing a comprehensive picture of the compositions of biodegradation genes and the microbial community in contaminated environments, although more work is needed to improve detection sensitivity.
Collapse
Affiliation(s)
- Sung-Keun Rhee
- Environmental Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6038, USA
| | | | | | | | | | | |
Collapse
|