1
|
Rotureau E, Pagnout C, Duval JFL. Physicochemical Rationale of Matrix Effects Involved in the Response of Hydrogel-Embedded Luminescent Metal Biosensors. BIOSENSORS 2024; 14:552. [PMID: 39590011 PMCID: PMC11591670 DOI: 10.3390/bios14110552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024]
Abstract
There is currently a critical need for understanding how the response and activity of whole-cell bacterial reporters positioned in a complex biological or environmental matrix are impacted by the physicochemical properties of their micro-environment. Accordingly, a comprehensive analysis of the bioluminescence response of Cd(II)-inducible PzntA-luxCDABE Escherichia coli biosensors embedded in silica-based hydrogels is reported to decipher how metal bioavailability, cell photoactivity and ensuing light bioproduction are impacted by the hydrogel environment and the associated matrix effects. The analysis includes the account of (i) Cd speciation and accumulation in the host hydrogels, in connection with their reactivity and electrostatic properties, and (ii) the reduced bioavailability of resources for the biosensors confined (deep) inside the hydrogels. The measurements of the bioluminescence response of the Cd(II) inducible-lux biosensors in both hydrogels and free-floating cell suspensions are completed by those of the constitutive rrnB P1-luxCDABE E. coli so as to probe cell metabolic activity in these two situations. The approach contributes to unraveling the connections between the electrostatic hydrogel charge, the nutrient/metal bioavailabilities and the resulting Cd-triggered bioluminescence output. Biosensors are hosted in hydrogels with thickness varying between 0 mm (the free-floating cell situation) and 1.6 mm, and are exposed to total Cd concentrations from 0 to 400 nM. The partitioning of bioavailable metals at the hydrogel/solution interface following intertwined metal speciation, diffusion and Boltzmann electrostatic accumulation is addressed by stripping chronopotentiometry. In turn, we detail how the bioluminescence maxima generated by the Cd-responsive cells under all tested Cd concentration and hydrogel thickness conditions collapse remarkably well on a single plot featuring the dependence of bioluminescence on free Cd concentration at the individual cell level. Overall, the construction of this master curve integrates the contributions of key and often overlooked processes that govern the bioavailability properties of metals in 3D matrices. Accordingly, the work opens perspectives for quantitative and mechanistic monitoring of metals by biosensors in environmental systems like biofilms or sediments.
Collapse
Affiliation(s)
- Elise Rotureau
- Université de Lorraine, CNRS, LIEC, F-54000 Nancy, France;
| | | | | |
Collapse
|
2
|
Li J, Zhao H, Zheng L, An W. Advances in Synthetic Biology and Biosafety Governance. Front Bioeng Biotechnol 2021; 9:598087. [PMID: 33996776 PMCID: PMC8120004 DOI: 10.3389/fbioe.2021.598087] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 02/17/2021] [Indexed: 11/22/2022] Open
Abstract
Tremendous advances in the field of synthetic biology have been witnessed in multiple areas including life sciences, industrial development, and environmental bio-remediation. However, due to the limitations of human understanding in the code of life, any possible intended or unintended uses of synthetic biology, and other unknown reasons, the development and application of this technology has raised concerns over biosafety, biosecurity, and even cyberbiosecurity that they may expose public health and the environment to unknown hazards. Over the past decades, some countries in Europe, America, and Asia have enacted laws and regulations to control the application of synthetic biology techniques in basic and applied research and this has resulted in some benefits. The outbreak of the COVID-19 caused by novel coronavirus SARS-CoV-2 and various speculations about the origin of this virus have attracted more attention on bio-risk concerns of synthetic biology because of its potential power and uncertainty in the synthesis and engineering of living organisms. Therefore, it is crucial to scrutinize the control measures put in place to ensure appropriate use, promote the development of synthetic biology, and strengthen the governance of pathogen-related research, although the true origin of coronavirus remains hotly debated and unresolved. This article reviews the recent progress made in the field of synthetic biology and combs laws and regulations in governing bio-risk issues. We emphasize the urgent need for legislative and regulatory constraints and oversight to address the biological risks of synthetic biology.
Collapse
Affiliation(s)
- Jing Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Huimiao Zhao
- College of Humanities and Law, Beijing University of Chemical Technology, Beijing, China
| | - Lanxin Zheng
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Wenlin An
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
3
|
Sunantha G, Vasudevan N. A method for detecting perfluorooctanoic acid and perfluorooctane sulfonate in water samples using genetically engineered bacterial biosensor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143544. [PMID: 33189373 DOI: 10.1016/j.scitotenv.2020.143544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 05/29/2023]
Abstract
A simple, reagent and pre-treatment (i.e. dilution, sample purification and pH adjustment) free approach based genetically engineered bacterial biosensor is developed and demonstrated for the detection of perfluorinated compounds in water samples. The bacterial biosensor was developed by integrating two genes called regulatory (defluorinase gene) and reporter gene (green fluorescence gene) through genetic engineering techniques. The as-developed bacterial biosensor was employed to detect perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in water samples upon induction of regulatory gene and expression of green fluorescence protein. The induced fluorescence emission by the biosensor was visualized using fluorescence microscopic images. The specificity of biosensor was evaluated with different types of organic pollutants such as chlorinated compounds, polyaromatic hydrocarbons and pesticides etc., in both presence and absence of PFOA and PFOS. The biosensor was employed to detect the perfluorinated compounds at nano gram level in both standard solutions and natural water samples like river water, wastewater and drinking water with an analysis time of 24 h. The detection of PFOA and PFOS by the developed-bacterial sensor is validated by liquid chromatography coupled with mass spectrometer. The developed biosensor has demonstrated a rapid and sensitive detection of PFOA and PFOS in various water samples.
Collapse
Affiliation(s)
- Ganesan Sunantha
- National Centre for Sustainable Coastal Management, Anna University Campus, Chennai 600025, India; Centre for Environmental Studies, Anna University, Chennai 600 025, Tamil Nadu, India.
| | - Namasivayam Vasudevan
- Centre for Environmental Studies, Anna University, Chennai 600 025, Tamil Nadu, India
| |
Collapse
|
4
|
Zappi D, Ramma MM, Scognamiglio V, Antonacci A, Varani G, Giardi MT. High-Tech and Nature-Made Nanocomposites and Their Applications in the Field of Sensors and Biosensors for Gas Detection. BIOSENSORS-BASEL 2020; 10:bios10110176. [PMID: 33203038 PMCID: PMC7696430 DOI: 10.3390/bios10110176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 01/25/2023]
Abstract
Gas sensors have been object of increasing attention by the scientific community in recent years. For the development of the sensing element, two major trends seem to have appeared. On one hand, the possibility of creating complex structures at the nanoscale level has given rise to ever more sensitive sensors based on metal oxides and metal-polymer combinations. On the other hand, gas biosensors have started to be developed, thanks to their intrinsic ability to be selective for the target analyte. In this review, we analyze the recent progress in both areas and underline their strength, current problems, and future perspectives.
Collapse
Affiliation(s)
- Daniele Zappi
- Istituto di Cristallografia, CNR Area Della Ricerca di Roma, 00015 Monterotondo Scalo Rome, Italy; (D.Z.); (V.S.); (A.A.)
| | - Matiss Martins Ramma
- Biosensor Srl, Via Degli Olmetti 44, 00060 Formello Rome, Italy; (M.M.R.); (G.V.)
| | - Viviana Scognamiglio
- Istituto di Cristallografia, CNR Area Della Ricerca di Roma, 00015 Monterotondo Scalo Rome, Italy; (D.Z.); (V.S.); (A.A.)
| | - Amina Antonacci
- Istituto di Cristallografia, CNR Area Della Ricerca di Roma, 00015 Monterotondo Scalo Rome, Italy; (D.Z.); (V.S.); (A.A.)
| | - Gabriele Varani
- Biosensor Srl, Via Degli Olmetti 44, 00060 Formello Rome, Italy; (M.M.R.); (G.V.)
| | - Maria Teresa Giardi
- Istituto di Cristallografia, CNR Area Della Ricerca di Roma, 00015 Monterotondo Scalo Rome, Italy; (D.Z.); (V.S.); (A.A.)
- Biosensor Srl, Via Degli Olmetti 44, 00060 Formello Rome, Italy; (M.M.R.); (G.V.)
- Correspondence:
| |
Collapse
|
5
|
Lopreside A, Calabretta MM, Montali L, Zangheri M, Guardigli M, Mirasoli M, Michelini E. Bioluminescence goes portable: recent advances in whole-cell and cell-free bioluminescence biosensors. LUMINESCENCE 2020; 36:278-293. [PMID: 32945075 DOI: 10.1002/bio.3948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/24/2022]
Abstract
Recent advancements in synthetic biology, organic chemistry, and computational models have allowed the application of bioluminescence in several fields, ranging from well established methods for detecting microbial contamination to in vivo imaging to track cancer and stem cells, from cell-based assays to optogenetics. Moreover, thanks to recent technological progress in miniaturized and sensitive light detectors, such as photodiodes and imaging sensors, it is possible to implement laboratory-based assays, such as cell-based and enzymatic assays, into portable analytical devices for point-of-care and on-site applications. This review highlights some recent advances in the development of whole-cell and cell-free bioluminescence biosensors with a glance on current challenges and different strategies that have been used to turn bioassays into biosensors with the required analytical performance. Critical issues and unsolved technical problems are also highlighted, to give the reader a taste of this fascinating and challenging field.
Collapse
Affiliation(s)
- Antonia Lopreside
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, Via Selmi 2, Bologna, Italy
| | | | - Laura Montali
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, Via Selmi 2, Bologna, Italy
| | - Martina Zangheri
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, Via Selmi 2, Bologna, Italy
| | - Massimo Guardigli
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, Via Selmi 2, Bologna, Italy.,Interdepartmental Centre for Renewable Sources, Environment, Sea and Energy (CIRI FRAME), Alma Mater Studiorum - University of Bologna, Via Sant'Alberto 163, Ravenna, Italy
| | - Mara Mirasoli
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, Via Selmi 2, Bologna, Italy.,Interdepartmental Centre for Renewable Sources, Environment, Sea and Energy (CIRI FRAME), Alma Mater Studiorum - University of Bologna, Via Sant'Alberto 163, Ravenna, Italy.,INBB, Istituto Nazionale di Biostrutture e Biosistemi, Via Medaglie d'Oro, Rome, Italy
| | - Elisa Michelini
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, Via Selmi 2, Bologna, Italy.,Interdepartmental Centre for Renewable Sources, Environment, Sea and Energy (CIRI FRAME), Alma Mater Studiorum - University of Bologna, Via Sant'Alberto 163, Ravenna, Italy.,Health Sciences and Technologies-Interdepartmental Centre for Industrial Research (HST-ICIR), University of Bologna, via Tolara di Sopra 41/E 40064, Ozzano dell'Emilia, Bologna, Italy
| |
Collapse
|
6
|
Yazgan Karacaglar NN, Topcu A, Dudak FC, Boyaci IH. Development of a green fluorescence protein (GFP)-based bioassay for detection of antibiotics and its application in milk. J Food Sci 2020; 85:500-509. [PMID: 31958152 DOI: 10.1111/1750-3841.14996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/13/2019] [Accepted: 11/21/2019] [Indexed: 11/30/2022]
Abstract
Antibiotics are one of the most widely used types of drugs in pharmaceutics. However, efficiency of these drugs has decreased recently owing to the threat of antibiotic resistance. One of the important factors causing antibiotic resistance is the excessive use of antibacterials in animals. Therefore, detection of antibiotics in foods of animal origin is crucial. The aim of this study was to develop a novel whole-cell based bioassay to be used for detection of some antibiotics. Green fluorescent protein (GFP)-expressing Escherichia coli cells were used as a recognition agent, and antibiotic detection was carried out by pursuing the inhibition rate of fluorescence intensity as a result of the inhibition of viable cells by the time of progress. The performance of bioassay was tested for different antibiotics, and the obtained results showed that the developed method can be used successfully for detection of ampicillin, benzylpenicillin, gentamicin, neomycin, and tetracycline with the limit of detection (LOD) values of 3.33, 0.29, 28.00, 618.36, and 33.17 µg/L, respectively. The assay was also tested with antibiotic spiked milk samples (skimmed UHT, full-fat UHT, and whole raw milk). According to obtained recovery values, developed method was successful for all samples. The precision and bias values of the method were found between the range of 1.30% to 7.54% and -8.00% to 0.64%, respectively. The developed method, which is inexpensive and simple with detection limits in line with the regulatory limits, is promising for use in milk quality monitoring. Method has potential to be used as a screening method after comprehensive validation. PRACTICAL APPLICATION: This method could be used in animal husbandry to check whether the antibiotic prescribed for the treatment of sick animals is still present in their milk as residual. For dairy industry, detection of residual antibiotics in milk is crucial because of their inhibition effects on the fermentation processes. Therefore, the proposed method can be used for routine analysis of raw milk reception in dairy industries. In addition, it is considered to have a wide range of applications for all foods.
Collapse
Affiliation(s)
| | - Ali Topcu
- Dept. of Food Engineering, Faculty of Engineering, Hacettepe Univ., Beytepe, 06800, Ankara, Turkey
| | - Fahriye Ceyda Dudak
- Dept. of Food Engineering, Faculty of Engineering, Hacettepe Univ., Beytepe, 06800, Ankara, Turkey
| | - Ismail Hakki Boyaci
- Dept. of Food Engineering, Faculty of Engineering, Hacettepe Univ., Beytepe, 06800, Ankara, Turkey
| |
Collapse
|
7
|
Abstract
Abstract
A vast majority of people today spend more time indoors than outdoors. However, the air quality indoors may be as bad as or even worse than the air quality outside. This is due to the continuous circulation of the same air without proper ventilation and filtration systems, causing a buildup of pollutants. As such, indoor air quality monitoring should be considered more seriously. Indoor air quality (IAQ) is a measure of the air quality within and around buildings and relates to the health and comfort of building occupants. To determine the IAQ, computer modeling is done to simulate the air flow and human exposure to the pollutant. Currently, very few instruments are available to measure the indoor air pollution index. In this paper, we will review the list of techniques available for measuring IAQ, but our emphasis will be on indoor air toxicity monitoring.
Collapse
|
8
|
Towards the Response Threshold for p-Hydroxyacetophenone in the Denitrifying Bacterium "Aromatoleum aromaticum" EbN1. Appl Environ Microbiol 2018; 84:AEM.01018-18. [PMID: 29959253 DOI: 10.1128/aem.01018-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 06/26/2018] [Indexed: 01/21/2023] Open
Abstract
The denitrifying betaproteobacterium "Aromatoleum aromaticum" EbN1 regulates the capacity to anaerobically degrade p-ethylphenol (via p-hydroxyacetophenone) with high substrate specificity. This process is mediated by the σ54-dependent transcriptional regulator EtpR, which apparently recognizes both aromatic compounds, yielding congruent expression profiles. The responsiveness of this regulatory system was studied with p-hydroxyacetophenone, which is more easily administered to cultures and traced analytically. Cultures of A. aromaticum EbN1 were initially cultivated under nitrate-reducing conditions with a growth-limiting supply of benzoate, upon the complete depletion of which p-hydroxyacetophenone was added at various concentrations (from 500 μM down to 0.1 nM). Depletion profiles of this aromatic substrate and presumptive effector were determined by highly sensitive micro-high-performance liquid chromatography (microHPLC). Irrespective of the added concentration of p-hydroxyacetophenone, depletion commenced after less than 5 min and suggested a response threshold of below 10 nM. This approximation was corroborated by time-resolved transcript profiles (quantitative reverse transcription-PCR) of selected degradation and efflux relevant genes (e.g., pchF, encoding a subunit of predicted p-ethylphenol methylenehydroxylase) and narrowed down to a range of 10 to 1 nM. The most pronounced transcriptional response was observed, as expected, for genes located at the beginning of the two operon-like structures, related to catabolism (i.e., acsA) and potential efflux (i.e., ebA335).IMPORTANCE Aromatic compounds are widespread microbial growth substrates with natural as well as anthropogenic sources, albeit with their in situ concentrations and their bioavailabilities varying over several orders of magnitude. Even though degradation pathways and underlying regulatory systems have long been studied with aerobic and, to a lesser extent, with anaerobic bacteria, comparatively little is known about the effector concentration-dependent responsiveness. A. aromaticum EbN1 is a model organism for the anaerobic degradation of aromatic compounds with the architecture of the catabolic network and its substrate-specific regulation having been intensively studied by means of differential proteogenomics. The present study aims at unraveling the minimal concentration of an aromatic growth substrate (p-hydroxyacetophenone here) required to initiate gene expression for its degradation pathway and to learn in principle about the lower limit of catabolic responsiveness of an anaerobic degradation specialist.
Collapse
|
9
|
Sun Y, Zhao X, Zhang D, Ding A, Chen C, Huang WE, Zhang H. New naphthalene whole-cell bioreporter for measuring and assessing naphthalene in polycyclic aromatic hydrocarbons contaminated site. CHEMOSPHERE 2017; 186:510-518. [PMID: 28810221 DOI: 10.1016/j.chemosphere.2017.08.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/22/2017] [Accepted: 08/07/2017] [Indexed: 06/07/2023]
Abstract
A new naphthalene bioreporter was designed and constructed in this work. A new vector, pWH1274_Nah, was constructed by the Gibson isothermal assembly fused with a 9 kb naphthalene-degrading gene nahAD (nahAa nahAb nahAc nahAd nahB nahF nahC nahQ nahE nahD) and cloned into Acinetobacter ADPWH_lux as the host, capable of responding to salicylate (the central metabolite of naphthalene). The ADPWH_Nah bioreporter could effectively metabolize naphthalene and evaluate the naphthalene in natural water and soil samples. This whole-cell bioreporter did not respond to other polycyclic aromatic hydrocarbons (PAHs; pyrene, anthracene, and phenanthrene) and demonstrated a positive response in the presence of 0.01 μM naphthalene, showing high specificity and sensitivity. The bioluminescent response was quantitatively measured after a 4 h exposure to naphthalene, and the model simulation further proved the naphthalene metabolism dynamics and the salicylate-activation mechanisms. The ADPWH_Nah bioreporter also achieved a rapid evaluation of the naphthalene in the PAH-contaminated site after chemical spill accidents, showing high consistency with chemical analysis. The engineered Acinetobacter variant had significant advantages in rapid naphthalene detection in the laboratory and potential in situ detection. The state-of-the-art concept of cloning PAHs-degrading pathway in salicylate bioreporter hosts led to the construction and assembly of high-throughput PAH bioreporter array, capable of crude oil contamination assessment and risk management.
Collapse
Affiliation(s)
- Yujiao Sun
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Xiaohui Zhao
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; Department of Water Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China.
| | - Dayi Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Aizhong Ding
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Cheng Chen
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Wei E Huang
- Kroto Research Institute, University of Sheffield, Sheffield, S3 7HQ, United Kingdom
| | - Huichun Zhang
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
10
|
Segura A, Hernández-Sánchez V, Marqués S, Molina L. Insights in the regulation of the degradation of PAHs in Novosphingobium sp. HR1a and utilization of this regulatory system as a tool for the detection of PAHs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 590-591:381-393. [PMID: 28285855 DOI: 10.1016/j.scitotenv.2017.02.180] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 05/15/2023]
Abstract
Novosphingobium sp. HR1a is able to grow using diverse polycyclic aromatic hydrocarbons (PAHs) as the sole carbon sources. We have identified two transposons that contain genes encoding several ring-hydroxylating dioxygenases and we have demonstrated the crucial role of one of these dioxygenases in the PAH metabolism in this strain; a mutant in the large subunit of this dioxygenase was unable to growth with 2-, 3-, or 4-rings aromatic hydrocarbons. Using a construction of lacZ gene fused with the pathway promoter, we determined that the expression of the dioxygenase gene was specifically induced in the presence of some PAHs and intermediates of their metabolic pathway. In silico analysis of the ORFs within the transposons and construction of the corresponding knock-out mutants allowed us to identify the main regulatory protein involved in PAH degradation in Novosphingobium sp. HR1a. To our knowledge this is the first time that a regulatory protein controlling the degradation pathway of high-molecular weight PAHs has been investigated. A deeper knowledge of the regulatory circuits that control the expression of PAH degradation has allowed us to design two biosensors for monitoring environments contaminated with oil-derived mixtures. Novosphingobium sp. HR1a (pKSR-1), the biosensor based on the promoter of the regulatory protein PahR, was more sensitive and faster in the detection of aromatic contaminants in environmental samples than Novosphingobium sp. HR1a (pKSA-1), the biosensor that is based on the PAHs-dioxygenase promoter (PpahA). Novosphingobium sp. HR1a (pKSR-1) was able to detect PAHs in the range of μgl-1 (ppb).
Collapse
Affiliation(s)
- Ana Segura
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/ Profesor Albareda 1, 18008, Spain
| | - Verónica Hernández-Sánchez
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/ Profesor Albareda 1, 18008, Spain
| | - Silvia Marqués
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/ Profesor Albareda 1, 18008, Spain
| | - Lázaro Molina
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/ Profesor Albareda 1, 18008, Spain.
| |
Collapse
|
11
|
Tan J, Kan N, Wang W, Ling J, Qu G, Jin J, Shao Y, Liu G, Chen H. Construction of 2,4,6-Trinitrotoluene Biosensors with Novel Sensing Elements from Escherichia coli K-12 MG1655. Cell Biochem Biophys 2017; 72:417-28. [PMID: 25561288 DOI: 10.1007/s12013-014-0481-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Detection of 2,4,6-trinitrotoluene (TNT) has been extensively studied since it is a common explosive filling for landmines, posing significant threats to the environment and human safety. The rapid advances in synthetic biology give new hope to detect such toxic and hazardous compounds in a more sensitive and safe way. Biosensor construction anticipates finding sensing elements able to detect TNT. As TNT can induce some physiological responses in E. coli, it may be useful to define the sensing elements from E. coli to detect TNT. An E. coli MG1655 genomic promoter library containing nearly 5,400 elements was constructed. Five elements, yadG, yqgC, aspC, recE, and topA, displayed high sensing specificity to TNT and its indicator compounds 1,3-DNB and 2,4-DNT. Based on this, a whole cell biosensor was constructed using E. coli, in which green fluorescent protein was positioned downstream of the five sensing elements via genetic fusion. The threshold value, detection time, EC200 value, and other aspects of five sensing elements were determined and the minimum responding concentration to TNT was 4.75 mg/L. According to the synthetic biology, the five sensing elements enriched the reservoir of TNT-sensing elements, and provided a more applicable toolkit to be applied in genetic routes and live systems of biosensors in future.
Collapse
Affiliation(s)
- Junjie Tan
- Beijing Institute of Biotechnology, Beijing, China
| | - Naipeng Kan
- College of Life Sciences, Anhui University, Hefei, China
| | - Wei Wang
- College of Life Sciences, Jilin University, Changchun, China
| | - Jingyi Ling
- Beijing Institute of Biotechnology, Beijing, China
| | - Guolong Qu
- Beijing Institute of Biotechnology, Beijing, China
| | - Jing Jin
- ShenYang Pharmaceutical University, Shenyang, China
| | - Yu Shao
- College of Life Sciences, Anhui University, Hefei, China
| | - Gang Liu
- Beijing Institute of Biotechnology, Beijing, China.
| | - Huipeng Chen
- Beijing Institute of Biotechnology, Beijing, China.
| |
Collapse
|
12
|
Plotnikova EG, Shumkova ES, Shumkov MS. Whole-cell bacterial biosensors for the detection of aromatic hydrocarbons and their chlorinated derivatives (Review). APPL BIOCHEM MICRO+ 2016. [DOI: 10.1134/s0003683816040128] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Hassan SHA, Van Ginkel SW, Hussein MAM, Abskharon R, Oh SE. Toxicity assessment using different bioassays and microbial biosensors. ENVIRONMENT INTERNATIONAL 2016; 92-93:106-18. [PMID: 27071051 DOI: 10.1016/j.envint.2016.03.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 03/05/2016] [Accepted: 03/05/2016] [Indexed: 05/23/2023]
Abstract
Toxicity assessment of water streams, wastewater, and contaminated sediments, is a very important part of environmental pollution monitoring. Evaluation of biological effects using a rapid, sensitive and cost effective method can indicate specific information on ecotoxicity assessment. Recently, different biological assays for toxicity assessment based on higher and lower organisms such as fish, invertebrates, plants and algal cells, and microbial bioassays have been used. This review focuses on microbial biosensors as an analytical device for environmental, food, and biomedical applications. Different techniques which are commonly used in microbial biosensing include amperometry, potentiometry, conductometry, voltammetry, microbial fuel cells, fluorescence, bioluminescence, and colorimetry. Examples of the use of different microbial biosensors in assessing a variety of environments are summarized.
Collapse
Affiliation(s)
- Sedky H A Hassan
- Botany Department, Faculty of Science, Assiut University, New Valley Branch, 72511 Al-Kharja, Egypt
| | - Steven W Van Ginkel
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | - Romany Abskharon
- National Institute of Oceanography and Fisheries (NIFO), 11516 Cairo, Egypt
| | - Sang-Eun Oh
- Department of Biological Environment, Kangwon National University, 200-701 Chuncheon, Kangwon-do, South Korea.
| |
Collapse
|
14
|
Jiang B, Huang WE, Li G. Construction of a bioreporter by heterogeneously expressing a Vibrio natriegens recA::luxCDABE fusion in Escherichia coli, and genotoxicity assessments of petrochemical-contaminated groundwater in northern China. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2016; 18:751-759. [PMID: 27258332 DOI: 10.1039/c6em00120c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Here, we constructed an Escherichia coli recA::luxCDABE bioreporter for genotoxicity assessments. The recA promoter was cloned from the marine bacterium Vibrio natriegens. This bioreporter showed a dose-response relationship following induction by mitomycin C, and other pollutants or environmental samples could be calculated as mitomycin C equivalents, which provided a way to quantitatively compare the genotoxicities of different environmental samples. This bioreporter was used to evaluate the genotoxicity under a wide range of external environmental conditions, like temperatures ranging from 15 °C to 42 °C, pH between 4.0 and 9.0, and salinity ranging from 0% to 3%. This successfully extended its application from the laboratory to the field, and allowed the bioreporter to assess the genotoxicity and bioavailability of genotoxins in various environmental media, including surface water, groundwater, seawater, and soil matrix. Expression of V. natriegens recA in E. coli indicated a LexA-like regulator in V. natriegens, and the putative SOS box of V. natriegens recA was similar to that of E. coli. The genotoxicities of groundwater samples from a petrochemical-contaminated site in northern China were evaluated by this bioreporter assay, and the genotoxic levels were in accordance with contamination levels obtained by chemical analyses.
Collapse
Affiliation(s)
- Bo Jiang
- School of Environment, Tsinghua University, Beijing, 100084, People's Republic of China.
| | | | | |
Collapse
|
15
|
Kováts N, Horváth E. Bioluminescence-based assays for assessing eco- and genotoxicity of airborne emissions. LUMINESCENCE 2016. [DOI: 10.1002/bio.3102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nora Kováts
- University of Pannonia; Institute of Environmental Sciences; Egyetem Str. 10 H-8200 Veszprém Hungary
| | - Eszter Horváth
- University of Pannonia; Institute of Environmental Sciences; Egyetem Str. 10 H-8200 Veszprém Hungary
| |
Collapse
|
16
|
Axelrod T, Eltzov E, Marks RS. Bioluminescent bioreporter pad biosensor for monitoring water toxicity. Talanta 2015; 149:290-297. [PMID: 26717844 DOI: 10.1016/j.talanta.2015.11.067] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/22/2015] [Accepted: 11/25/2015] [Indexed: 01/26/2023]
Abstract
Toxicants in water sources are of concern. We developed a tool that is affordable and easy-to-use for monitoring toxicity in water. It is a biosensor composed of disposable bioreporter pads (calcium alginate matrix with immobilized bacteria) and a non-disposable CMOS photodetector. Various parameters to enhance the sensor's signal have been tested, including the effect of alginate and bacterium concentrations. The effect of various toxicants, as well as, environmental samples were tested by evaluating their effect on bacterial luminescence. This is the first step in the creation of a sensitive and simple operative tool that may be used in different environments.
Collapse
Affiliation(s)
- Tim Axelrod
- Department of Biotechnology Engineering, Faculty of Engineering Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Evgeni Eltzov
- Department of Biotechnology Engineering, Faculty of Engineering Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel; School of Material Science and Engineering, Nanyang Technology University, Nanyang Avenue, 639798 Singapore
| | - Robert S Marks
- Department of Biotechnology Engineering, Faculty of Engineering Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel; School of Material Science and Engineering, Nanyang Technology University, Nanyang Avenue, 639798 Singapore; National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel; The Ilse Katz Center for Meso and Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
17
|
Fernandez-López R, Ruiz R, de la Cruz F, Moncalián G. Transcription factor-based biosensors enlightened by the analyte. Front Microbiol 2015; 6:648. [PMID: 26191047 PMCID: PMC4486848 DOI: 10.3389/fmicb.2015.00648] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 06/15/2015] [Indexed: 01/17/2023] Open
Abstract
Whole cell biosensors (WCBs) have multiple applications for environmental monitoring, detecting a wide range of pollutants. WCBs depend critically on the sensitivity and specificity of the transcription factor (TF) used to detect the analyte. We describe the mechanism of regulation and the structural and biochemical properties of TF families that are used, or could be used, for the development of environmental WCBs. Focusing on the chemical nature of the analyte, we review TFs that respond to aromatic compounds (XylS-AraC, XylR-NtrC, and LysR), metal ions (MerR, ArsR, DtxR, Fur, and NikR) or antibiotics (TetR and MarR). Analyzing the structural domains involved in DNA recognition, we highlight the similitudes in the DNA binding domains (DBDs) of these TF families. Opposite to DBDs, the wide range of analytes detected by TFs results in a diversity of structures at the effector binding domain. The modular architecture of TFs opens the possibility of engineering TFs with hybrid DNA and effector specificities. Yet, the lack of a crisp correlation between structural domains and specific functions makes this a challenging task.
Collapse
Affiliation(s)
| | | | | | - Gabriel Moncalián
- Departamento de Biología Molecular and Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria – Consejo Superior de Investigaciones CientíficasSantander, Spain
| |
Collapse
|
18
|
Cho JH, Lee DY, Lim WK, Shin HJ. A RECOMBINANTEscherichia coliBIOSENSOR FOR DETECTING POLYCYCLIC AROMATIC HYDROCARBONS IN GAS AND AQUEOUS PHASES. Prep Biochem Biotechnol 2014; 44:849-60. [DOI: 10.1080/10826068.2014.887577] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Xu T, Close D, Smartt A, Ripp S, Sayler G. Detection of organic compounds with whole-cell bioluminescent bioassays. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 144:111-51. [PMID: 25084996 PMCID: PMC4597909 DOI: 10.1007/978-3-662-43385-0_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Natural and manmade organic chemicals are widely deposited across a diverse range of ecosystems including air, surface water, groundwater, wastewater, soil, sediment, and marine environments. Some organic compounds, despite their industrial values, are toxic to living organisms and pose significant health risks to humans and wildlife. Detection and monitoring of these organic pollutants in environmental matrices therefore is of great interest and need for remediation and health risk assessment. Although these detections have traditionally been performed using analytical chemical approaches that offer highly sensitive and specific identification of target compounds, these methods require specialized equipment and trained operators, and fail to describe potential bioavailable effects on living organisms. Alternatively, the integration of bioluminescent systems into whole-cell bioreporters presents a new capacity for organic compound detection. These bioreporters are constructed by incorporating reporter genes into catabolic or signaling pathways that are present within living cells and emit a bioluminescent signal that can be detected upon exposure to target chemicals. Although relatively less specific compared to analytical methods, bioluminescent bioassays are more cost-effective, more rapid, can be scaled to higher throughput, and can be designed to report not only the presence but also the bioavailability of target substances. This chapter reviews available bacterial and eukaryotic whole-cell bioreporters for sensing organic pollutants and their applications in a variety of sample matrices.
Collapse
Affiliation(s)
- Tingting Xu
- Joint Institute for Biological Sciences, The University of Tennessee, Knoxville, TN, USA
| | - Dan Close
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Abby Smartt
- Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN, USA; Department of Microbiology, The University of Tennessee, Knoxville, TN, USA
| | - Steven Ripp
- Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN, USADepartment of Microbiology, The University of Tennessee, Knoxville, TN, USA
| | - Gary Sayler
- Joint Institute for Biological Sciences, The University of Tennessee, Knoxville, TN, USA; Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN, USA; Department of Microbiology, The University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
20
|
Wackwitz A, Harms H, Chatzinotas A, Breuer U, Vogne C, Van Der Meer JR. Internal arsenite bioassay calibration using multiple bioreporter cell lines. Microb Biotechnol 2011; 1:149-57. [PMID: 21261832 PMCID: PMC3864448 DOI: 10.1111/j.1751-7915.2007.00011.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Bioassays with bioreporter bacteria are usually calibrated with analyte solutions of known concentrations that are analysed along with the samples of interest. This is done as bioreporter output (the intensity of light, fluorescence or colour) does not only depend on the target concentration, but also on the incubation time and physiological activity of the cells in the assay. Comparing the bioreporter output with standardized colour tables in the field seems rather difficult and error‐prone. A new approach to control assay variations and improve application ease could be an internal calibration based on the use of multiple bioreporter cell lines with drastically different reporter protein outputs at a given analyte concentration. To test this concept, different Escherichia coli‐based bioreporter strains expressing either cytochrome c peroxidase (CCP, or CCP mutants) or β‐galactosidase upon induction with arsenite were constructed. The reporter strains differed either in the catalytic activity of the reporter protein (for CCP) or in the rates of reporter protein synthesis (for β‐galactosidase), which, indeed, resulted in output signals with different intensities at the same arsenite concentration. Hence, it was possible to use combinations of these cell lines to define arsenite concentration ranges at which none, one or more cell lines gave qualitative (yes/no) visible signals that were relatively independent of incubation time or bioreporter activity. The discriminated concentration ranges would fit very well with the current permissive (e.g. World Health Organization) levels of arsenite in drinking water (10 µg l−1).
Collapse
Affiliation(s)
- Anke Wackwitz
- UFZ, Helmholtz Centre for Environmental Research, Department of Environmental Microbiology, 04318 Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
21
|
Woutersen M, Belkin S, Brouwer B, van Wezel AP, Heringa MB. Are luminescent bacteria suitable for online detection and monitoring of toxic compounds in drinking water and its sources? Anal Bioanal Chem 2011; 400:915-29. [PMID: 21058029 PMCID: PMC3074085 DOI: 10.1007/s00216-010-4372-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 10/21/2010] [Accepted: 10/21/2010] [Indexed: 11/26/2022]
Abstract
Biosensors based on luminescent bacteria may be valuable tools to monitor the chemical quality and safety of surface and drinking water. In this review, an overview is presented of the recombinant strains available that harbour the bacterial luciferase genes luxCDABE, and which may be used in an online biosensor for water quality monitoring. Many bacterial strains have been described for the detection of a broad range of toxicity parameters, including DNA damage, protein damage, membrane damage, oxidative stress, organic pollutants, and heavy metals. Most lux strains have sensitivities with detection limits ranging from milligrams per litre to micrograms per litre, usually with higher sensitivities in compound-specific strains. Although the sensitivity of lux strains can be enhanced by various molecular manipulations, most reported detection thresholds are still too high to detect levels of individual contaminants as they occur nowadays in European drinking waters. However, lux strains sensing specific toxic effects have the advantage of being able to respond to mixtures of contaminants inducing the same effect, and thus could be used as a sensor for the sum effect, including the effect of compounds that are as yet not identified by chemical analysis. An evaluation of the suitability of lux strains for monitoring surface and drinking water is therefore provided.
Collapse
|
22
|
Beggah S, Vogne C, Zenaro E, Van Der Meer JR. Mutant HbpR transcription activator isolation for 2-chlorobiphenyl via green fluorescent protein-based flow cytometry and cell sorting. Microb Biotechnol 2011; 1:68-78. [PMID: 21261823 PMCID: PMC3864433 DOI: 10.1111/j.1751-7915.2007.00008.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Mutants were produced in the A-domain of HbpR, a protein belonging to the XylR family of σ(54)-dependent transcription activators, with the purpose of changing its effector recognition specificity from 2-hydroxybiphenyl (2-HBP, the cognate effector) to 2-chlorobiphenyl (2-CBP). Mutations were introduced in the hbpR gene part for the A-domain via error-prone polymerase chain reaction, and assembled on a gene circuitry plasmid in Escherichia coli, permitting HbpR-dependent induction of the enhanced green fluorescent protein (egfp). Cells with mutant HbpR proteins responsive to 2-CBP were enriched and separated in a flow cytometry-assisted cell-sorting procedure. Some 70 mutants were isolated and the A-domain mutations mapped. One of these had acquired true 2-CBP recognition but reacted hypersensitively to 2-HBP (20-fold more than the wild type), whereas others had reduced sensitivity to 2-HBP but a gain of 2-CBP recognition. Sequencing showed that most mutants carried double or triple mutations in the A-domain gene part, and were not located in previously recognized conserved residues within the XylR family members. Further selection from a new mutant pool prepared of the hypersensitive mutant did not result in increased 2-CBP or reduced 2-HBP recognition. Our data thus demonstrate that a one-step in vitro 'evolutionary' adaptation of the HbpR protein can result in both enhancement and reduction of the native effector recognition.
Collapse
Affiliation(s)
- Siham Beggah
- Department of Fundamental Microbiology, University of Lausanne, Bâtiment Biophore, Quartier UNIL-Sorge, 1015 Lausanne, Switzerland
| | | | | | | |
Collapse
|
23
|
Lee SH, Kim JM, Lee HJ, Jeon CO. Screening of promoters from rhizosphere metagenomic DNA using a promoter-trap vector and flow cytometric cell sorting. J Basic Microbiol 2011; 51:52-60. [DOI: 10.1002/jobm.201000291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 10/09/2010] [Indexed: 11/06/2022]
|
24
|
|
25
|
Hanzel J, Harms H, Wick LY. Bacterial chemotaxis along vapor-phase gradients of naphthalene. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:9304-9310. [PMID: 21080701 DOI: 10.1021/es100776h] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The role of bacterial growth and translocation for the bioremediation of organic contaminants in the vadose zone is poorly understood. Whereas air-filled pores restrict the mobility of bacteria, diffusion of volatile organic compounds in air is more efficient than in water. Past research, however, has focused on chemotactic swimming of bacteria along gradients of water-dissolved chemicals. In this study we tested if and to what extent Pseudomonas putida PpG7 (NAH7) chemotactically reacts to vapor-phase gradients forming above their swimming medium by the volatilization from a spot source of solid naphthalene. The development of an aqueous naphthalene gradient by air-water partitioning was largely suppressed by means of activated carbon in the agar. Surprisingly, strain PpG7 was repelled by vapor-phase naphthalene although the steady state gaseous concentrations were 50-100 times lower than the aqueous concentrations that result in positive chemotaxis of the same strain. It is thus assumed that the efficient gas-phase diffusion resulting in a steady, and possibly toxic, naphthalene flux to the cells controlled the chemotactic reaction rather than the concentration to which the cells were exposed. To our knowledge this is the first demonstration of apparent chemotactic behavior of bacteria in response to vapor-phase effector gradients.
Collapse
Affiliation(s)
- Joanna Hanzel
- UFZ, Helmholtz Centre for Environmental Research, Department of Environmental Microbiology, 04318 Leipzig, Germany
| | | | | |
Collapse
|
26
|
Shin HJ. Genetically engineered microbial biosensors for in situ monitoring of environmental pollution. Appl Microbiol Biotechnol 2010; 89:867-77. [DOI: 10.1007/s00253-010-2990-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 10/27/2010] [Accepted: 10/27/2010] [Indexed: 10/18/2022]
|
27
|
Construction and characterization of Escherichia coli whole-cell biosensors for toluene and related compounds. Curr Microbiol 2010; 62:690-6. [PMID: 20872219 DOI: 10.1007/s00284-010-9764-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2010] [Accepted: 09/03/2010] [Indexed: 10/19/2022]
Abstract
The XylR regulatory protein is a transcriptional activator from the TOL plasmid of Pseudomonas putida mt-2 that is involved in the toluene and benzene degradation pathway. Here we describe the construction and laboratory characterization of recombinant biosensors (pGLPX plasmids) based on XylR and its cognate promoter (Pu). In the pGLPX plasmid, the reporter luc gene is under the control of the Pu promoter. We evaluated the ability of two distinct nucleotide sequences to function as SD elements and improve sensitivity of bioreporting. We also evaluated the effect of introducing the T₂rrnβ terminator on the specificity of the construct. E. coli transformed with pGLPX plasmids were used to sense toluene and its derivatives. The pattern of induction was different for each derivative. In general, more luciferase activity was induced by toluene and benzene than by TNT and DNT at most tested concentrations. The bioluminescence response of the reporter strains to the nitrotoluenes was significantly stronger at lower concentrations (≥ 50 μmol) than at higher concentrations. Our results show that the SD sequence (taaggagg) is crucially important for biosensor sensitivity. The presence of the T₂rrnβ terminator in the bioreporter plasmid prevents nonspecific responses and also reduces biosensor sensitivity upon exposure to inducers. These data suggest that pGLPX strains can be used as whole-cell biosensors to detect toluene and related compounds. Further investigation will be required to optimize the application of pGLPX biosensors.
Collapse
|
28
|
De Las Heras A, Carreño CA, Martínez-García E, De Lorenzo V. Engineering input/output nodes in prokaryotic regulatory circuits. FEMS Microbiol Rev 2010; 34:842-65. [DOI: 10.1111/j.1574-6976.2010.00238.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
29
|
Where microbiology meets microengineering: design and applications of reporter bacteria. Nat Rev Microbiol 2010; 8:511-22. [DOI: 10.1038/nrmicro2392] [Citation(s) in RCA: 404] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Sensitive fluorescent microplate bioassay using recombinant Escherichia coli with multiple promoter-reporter units in tandem for detection of arsenic. J Biosci Bioeng 2010; 108:414-20. [PMID: 19804866 DOI: 10.1016/j.jbiosc.2009.05.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 05/21/2009] [Accepted: 05/22/2009] [Indexed: 11/22/2022]
Abstract
Genetically modified bacterial biosensors can detect specific environmental compounds. Here, we attempted to establish a fluorescent microplate method to detect arsenic using recombinant Escherichia coli cells transformed with plasmids harboring three tandem copies of the ars promoter/operator-the gene for green fluorescent protein (gfp). In the biosensors, one copy of arsR, whose transcription is autoregulated by the ars promoter/operator and ArsR in the genome of E. coli, was placed in trans in another plasmid under the control of isopropyl-1-thio-beta-D-galactopyranoside-inducible promoter. First, this manipulation enabled regulation of the arsR expression at an adequate level. Second, the copy number of reporter unit also affected signal and noise. When the plasmid harboring three copies of the reporter unit was used, the signal-to-noise ratio doubled and the detection limit decreased from 20 to 7.5 microg L(-1) As(III), compared to the use of the plasmid harboring one copy of the ars promoter/operator-arsR-gfp. Thus, segregation of arsR from the ars promoter/operator-gfp using two plasmids is effective in regulating the signal-to-noise ratio and the detection limit with the different functions.
Collapse
|
31
|
Komori K, Miyajima S, Tsuru T, Fujii T, Mohri S, Ono Y, Sakai Y. A rapid and simple evaluation system for gas toxicity using luminous bacteria entrapped by a polyion complex membrane. CHEMOSPHERE 2009; 77:1106-1112. [PMID: 19716582 DOI: 10.1016/j.chemosphere.2009.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 08/03/2009] [Accepted: 08/03/2009] [Indexed: 05/28/2023]
Abstract
We have developed a rapid and simple gas toxicity evaluation system based on bioluminescence inhibition of a marine-derived wild luminous bacterium, Vibrio fischeri. The luminous bacteria were trapped using a thin polyion complex membrane in order to allow semi direct contact between the bacteria and toxic gases. Bioluminescence inhibition ratios of the present system to six reference gases, including benzene, trichloroethylene, acetone, NO(2), SO(2), and CO, were evaluated, and dose-response relationships were successfully obtained after 15 min of gas exposure, except for CO gas. The sensitivity to the five gases except for CO gas of the present system was 1-3 orders of magnitude higher than that in acute animal tests. The present system also allowed for the evaluation of overall toxicity of some environmental gases containing various chemicals. These results clearly demonstrated that the present system would be a valuable prototype for rapid and on-site acute toxicity detection of a gas mixture, such as environmental gases.
Collapse
Affiliation(s)
- Kikuo Komori
- Institute of Industrial Science, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8505, Japan.
| | | | | | | | | | | | | |
Collapse
|
32
|
Paton GI, Reid BJ, Semple KT. Application of a luminescence-based biosensor for assessing naphthalene biodegradation in soils from a manufactured gas plant. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2009; 157:1643-8. [PMID: 19200630 DOI: 10.1016/j.envpol.2008.12.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 12/16/2008] [Accepted: 12/17/2008] [Indexed: 05/27/2023]
Abstract
Despite numerous reviews suggesting that microbial biosensors could be used in many environmental applications, in reality they have failed to be used for which they were designed. In part this is because most of these sensors perform in an aqueous phase and a buffered medium, which is in contrast to the nature of genuine environmental systems. In this study, a range of non-exhaustive extraction techniques (NEETs) were assessed for (i) compatibility with a naphthalene responsive biosensor and (ii) correlation with naphthalene biodegradation. The NEETs removed a portion of the total soil naphthalene in the order of methanol > HPCD > betaCD > water. To place the biosensor performance to NEETs in context, a biodegradation experiment was carried out using historically contaminated soils. By coupling the HPCD extraction with the biosensor, it was possible to assess the fraction of the naphthalene capable of undergoing microbial degradation in soil.
Collapse
Affiliation(s)
- G I Paton
- Institute of Biological and Environmental Sciences, Cruickshank Building, University of Aberdeen, Aberdeen AB24 3UU, United Kingdom
| | | | | |
Collapse
|
33
|
Optimization of preservation conditions of As (III) bioreporter bacteria. Appl Microbiol Biotechnol 2009; 82:785-92. [DOI: 10.1007/s00253-009-1888-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 12/15/2008] [Accepted: 01/21/2009] [Indexed: 10/21/2022]
|
34
|
Kohlmeier S, Mancuso M, Deepthike U, Tecon R, van der Meer JR, Harms H, Wells M. Comparison of naphthalene bioavailability determined by whole-cell biosensing and availability determined by extraction with Tenax. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2008; 156:803-808. [PMID: 18635297 DOI: 10.1016/j.envpol.2008.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 05/30/2008] [Accepted: 06/01/2008] [Indexed: 05/26/2023]
Abstract
A rapid biological method for the determination of the bioavailability of naphthalene was developed and its value as an alternative to extraction-based chemical approaches demonstrated. Genetically engineered whole-cell biosensors are used to determine bioavailable naphthalene and their responses compared with results from Tenax extraction and chemical analysis. Results show a 1:1 correlation between biosensor results and chemical analyses for naphthalene-contaminated model materials and sediments, but the biosensor assay is much faster. This work demonstrates that biosensor technology can perform as well as standard chemical methods, though with some advantages including the inherent biological relevance of the response, rapid response time, and potential for field deployment. A survey of results from this work and the literature shows that bioavailability under non-equilibrium conditions nonetheless correlates well with K(oc) or K(d). A rationale is provided wherein chemical resistance is speculated to be operative.
Collapse
Affiliation(s)
- Stefanie Kohlmeier
- Swiss Federal Institute of Technology (EPFL), Laboratory of Soil Science, CH-1015 Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
35
|
Molina-Henares MA, García-Salamanca A, Molina-Henares AJ, de la Torre J, Herrera MC, Ramos JL, Duque E. Functional analysis of aromatic biosynthetic pathways in Pseudomonas putida KT2440. Microb Biotechnol 2008; 2:91-100. [PMID: 21261884 PMCID: PMC3815424 DOI: 10.1111/j.1751-7915.2008.00062.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Pseudomonas putida KT2440 is a non-pathogenic prototrophic bacterium with high potential for biotechnological applications. Despite all that is known about this strain, the biosynthesis of essential chemicals has not been fully analysed and auxotroph mutants are scarce. We carried out massive mini-Tn5 random mutagenesis and screened for auxotrophs that require aromatic amino acids. The biosynthesis of aromatic amino acids was analysed in detail including physical and transcriptional organization of genes, complementation assays and feeding experiments to establish pathway intermediates. There is a single pathway from chorismate leading to the biosynthesis of tryptophan, whereas the biosynthesis of phenylalanine and tyrosine is achieved through multiple convergent pathways. Genes for tryptophan biosynthesis are grouped in unlinked regions with the trpBA and trpGDE genes organized as operons and the trpI, trpE and trpF genes organized as single transcriptional units. The pheA and tyrA gene-encoding multifunctional enzymes for phenylalanine and tyrosine biosynthesis are linked in the chromosome and form an operon with the serC gene involved in serine biosynthesis. The last step in the biosynthesis of these two amino acids requires an amino transferase activity for which multiple tyrB-like genes are present in the host chromosome.
Collapse
Affiliation(s)
- M Antonia Molina-Henares
- Consejo Superior de Investigaciones Científicas, Estación del Zaidín, Department of Environmental Protection, Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
36
|
Bacterial Biosensors for Measuring Availability of Environmental Pollutants. SENSORS 2008; 8:4062-4080. [PMID: 27879922 PMCID: PMC3697161 DOI: 10.3390/s8074062] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 07/06/2008] [Accepted: 07/09/2008] [Indexed: 11/24/2022]
Abstract
Traditionally, pollution risk assessment is based on the measurement of a pollutant's total concentration in a sample. The toxicity of a given pollutant in the environment, however, is tightly linked to its bioavailability, which may differ significantly from the total amount. Physico-chemical and biological parameters strongly influence pollutant fate in terms of leaching, sequestration and biodegradation. Bacterial sensor-reporters, which consist of living micro-organisms genetically engineered to produce specific output in response to target chemicals, offer an interesting alternative to monitoring approaches. Bacterial sensor-reporters detect bioavailable and/or bioaccessible compound fractions in samples. Currently, a variety of environmental pollutants can be targeted by specific biosensor-reporters. Although most of such strains are still confined to the lab, several recent reports have demonstrated utility of bacterial sensing-reporting in the field, with method detection limits in the nanomolar range. This review illustrates the general design principles for bacterial sensor-reporters, presents an overview of the existing biosensor-reporter strains with emphasis on organic compound detection. A specific focus throughout is on the concepts of bioavailability and bioaccessibility, and how bacteria-based sensing-reporting systems can help to improve our basic understanding of the different processes at work.
Collapse
|
37
|
Yagi K. Applications of whole-cell bacterial sensors in biotechnology and environmental science. Appl Microbiol Biotechnol 2007; 73:1251-8. [PMID: 17111136 DOI: 10.1007/s00253-006-0718-6] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Revised: 09/30/2006] [Accepted: 10/12/2006] [Indexed: 11/26/2022]
Abstract
Biosensors have major advantages over chemical or physical analyses with regard to specificity, sensitivity, and portability. Recently, many types of whole-cell bacterial biosensors have been developed using recombinant DNA technology. The bacteria are genetically engineered to respond to the presence of chemicals or physiological stresses by synthesizing a reporter protein, such as luciferase, beta-galactosidase, or green fluorescent protein. In addition to an overview of conventional biosensors, this minireview discusses a novel type of biosensor using a photosynthetic bacterium as the sensor strain and the crtA gene, which is responsible for carotenoid synthesis, as the reporter. Since bacteria possess a wide variety of stress-response mechanisms, including antioxidation, heat-shock responses, nutrient-starvation, and membrane-damage responses, DNA response elements for several stress-response proteins can be fused with various reporter genes to construct a versatile set of bacterial biosensors for a variety of analytes. Portable biosensors for on-site monitoring have been developed using a freeze-dried biosensing strain, and cell array biosensors have been designed for high-throughput analysis. Moreover, in the future, the use of single-cell biosensors will permit detailed analyses of samples. Signals from such sensors could be detected with digital imaging, epifluorescence microscopy, and/or flow cytometry.
Collapse
Affiliation(s)
- Kiyohito Yagi
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
38
|
Lei Y, Chen W, Mulchandani A. Microbial biosensors. Anal Chim Acta 2006; 568:200-10. [PMID: 17761261 DOI: 10.1016/j.aca.2005.11.065] [Citation(s) in RCA: 218] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Revised: 11/17/2005] [Accepted: 11/21/2005] [Indexed: 11/24/2022]
Abstract
A microbial biosensor is an analytical device that couples microorganisms with a transducer to enable rapid, accurate and sensitive detection of target analytes in fields as diverse as medicine, environmental monitoring, defense, food processing and safety. The earlier microbial biosensors used the respiratory and metabolic functions of the microorganisms to detect a substance that is either a substrate or an inhibitor of these processes. Recently, genetically engineered microorganisms based on fusing of the lux, gfp or lacZ gene reporters to an inducible gene promoter have been widely applied to assay toxicity and bioavailability. This paper reviews the recent trends in the development and application of microbial biosensors. Current advances and prospective future direction in developing microbial biosensor have also been discussed.
Collapse
Affiliation(s)
- Yu Lei
- Division of Chemical and Biomolecular Engineering and Centre of Biotechnology, Nanyang Technological University, Singapore 637722, Singapore.
| | | | | |
Collapse
|
39
|
Tecon R, Wells M, van der Meer JR. A new green fluorescent protein-based bacterial biosensor for analysing phenanthrene fluxes. Environ Microbiol 2006; 8:697-708. [PMID: 16584481 DOI: 10.1111/j.1462-2920.2005.00948.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The polycyclic aromatic hydrocarbon (PAH)-degrading strain Burkholderia sp. RP007 served as host strain for the design of a bacterial biosensor for the detection of phenanthrene. RP007 was transformed with a reporter plasmid containing a transcriptional fusion between the phnS putative promoter/operator region and the gene encoding the enhanced green fluorescent protein (GFP). The resulting bacterial biosensor--Burkholderia sp. strain RP037--produced significant amounts of GFP after batch incubation in the presence of phenanthrene crystals. Co-incubation with acetate did not disturb the phenanthrene-specific response but resulted in a homogenously responding population of cells. Active metabolism was required for induction with phenanthrene. The magnitude of GFP induction was influenced by physical parameters affecting the phenanthrene flux to the cells, such as the contact surface area between solid phenanthrene and the aqueous phase, addition of surfactant, and slow phenanthrene release from Model Polymer Release System beads or from a water-immiscible oil. These results strongly suggest that the bacterial biosensor can sense different phenanthrene fluxes while maintaining phenanthrene metabolism, thus acting as a genuine sensor for phenanthrene bioavailability. A relationship between GFP production and phenanthrene mass transfer is proposed.
Collapse
Affiliation(s)
- Robin Tecon
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
40
|
Harms H, Wells MC, van der Meer JR. Whole-cell living biosensors—are they ready for environmental application? Appl Microbiol Biotechnol 2006; 70:273-80. [PMID: 16463172 DOI: 10.1007/s00253-006-0319-4] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Revised: 12/20/2005] [Accepted: 12/24/2005] [Indexed: 10/25/2022]
Abstract
Since the development of the first whole-cell living biosensor or bioreporter about 15 years ago, construction and testing of new genetically modified microorganisms for environmental sensing and reporting has proceeded at an ever increasing rate. One and a half decades appear as a reasonable time span for a new technology to reach the maturity needed for application and commercial success. It seems, however, that the research into cellular biosensors is still mostly in a proof-of-principle or demonstration phase and not close to extensive or commercial use outside of academia. In this review, we consider the motivations for bioreporter developments and discuss the suitability of extant bioreporters for the proposed applications to stimulate complementary research and to help researchers to develop realistic objectives. This includes the identification of some popular misconceptions about the qualities and shortcomings of bioreporters.
Collapse
Affiliation(s)
- Hauke Harms
- Department of Environmental Microbiology, UFZ Centre for Environmental Research Leipzig-Halle GmbH, Permoserstr. 15, 04318, Leipzig, Germany.
| | | | | |
Collapse
|
41
|
Galvão TC, de Lorenzo V. Transcriptional regulators à la carte: engineering new effector specificities in bacterial regulatory proteins. Curr Opin Biotechnol 2006; 17:34-42. [PMID: 16359854 DOI: 10.1016/j.copbio.2005.12.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Revised: 11/15/2005] [Accepted: 12/05/2005] [Indexed: 11/27/2022]
Abstract
For many regulators of bacterial biodegradation pathways, small molecule/effector binding is the signal for triggering transcriptional activation. Thus, regulation results from a cross-talk between chemicals sensed by transcriptional factors and operon expression status. These features can be utilised in the construction of biosensors for a wide range of target compounds as, in principle, any regulatory protein whose activity is modulated by binding to a small molecule can have its effector/inducer profile artificially altered. The cognate specificities of a number of regulatory proteins have been modified as an astute approach to developing, among others, bacterial biosensors for environmentally relevant compounds.
Collapse
Affiliation(s)
- Teca Calcagno Galvão
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología-CSIC, Madrid 28049, Spain.
| | | |
Collapse
|
42
|
Tecon R, van der Meer JR. Information from single-cell bacterial biosensors: what is it good for? Curr Opin Biotechnol 2006; 17:4-10. [PMID: 16326092 DOI: 10.1016/j.copbio.2005.11.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Revised: 11/10/2005] [Accepted: 11/23/2005] [Indexed: 11/26/2022]
Abstract
Bacterial reporter cells (i.e. strains engineered to produce easily measurable signals in response to one or more chemical targets) can principally be used to quantify chemical signals and analytes, physicochemical conditions and gradients on a microscale (i.e. micrometer to submillimeter distances), when the reporter signal is determined in individual cells. This makes sense, as bacterial life essentially thrives in microheterogenic environments and single-cell reporter information can help us to understand the microphysiology of bacterial cells and its importance for macroscale processes like pollutant biodegradation, beneficial bacteria-eukaryote interactions, and infection. Recent findings, however, showed that clonal bacterial populations are essentially always physiologically, phenotypically and genotypically heterogeneous, thus emphasizing the need for sound statistical approaches for the interpretation of reporter response in individual bacterial cells. Serious attempts have been made to measure and interpret single-cell reporter gene expression and to understand variability in reporter expression among individuals in a population.
Collapse
Affiliation(s)
- Robin Tecon
- Department of Fundamental Microbiology, Bâtiment Biophore, Quartier UNIL-Sorge, University of Lausanne, CH 1015 Lausanne, Switzerland
| | | |
Collapse
|
43
|
Wells M. Advances in optical detection strategies for reporter signal measurements. Curr Opin Biotechnol 2006; 17:28-33. [PMID: 16413770 DOI: 10.1016/j.copbio.2005.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 11/15/2005] [Accepted: 12/22/2005] [Indexed: 10/25/2022]
Abstract
Many recent advances in bioreporter technology focus on challenges related to bioengineering, yet in many applications implementation of optical signal measurement is equally susceptible to improvement. For bioluminescent bioreporters, one area of effort lies in the development of semiconductor chip-based detector modules; this holds great promise for ultra-compact and field-deployable instrumentation, but has not yet had a palpable impact on improved detection limits. Regarding lower detection limits, single-molecule detection techniques have seen their first application to bioreporters, and preliminary results serve as an indication of future promise. Another technique applicable to fluorescent bioreporters is fluorescence flow cytometry, which is rapid, suitable for high-throughput screening, and lends itself to increased analytical specificity through simple algorithmic approaches to data treatment.
Collapse
Affiliation(s)
- Mona Wells
- Department of Chemistry, Foster Hall, Tennessee Technological University, Cookeville, TN 38505, USA.
| |
Collapse
|
44
|
Marqués S, Aranda-Olmedo I, Ramos JL. Controlling bacterial physiology for optimal expression of gene reporter constructs. Curr Opin Biotechnol 2005; 17:50-6. [PMID: 16359853 DOI: 10.1016/j.copbio.2005.12.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 11/15/2005] [Accepted: 12/05/2005] [Indexed: 10/25/2022]
Abstract
Bacterial biosensors for the detection of pollutants are based on the regulatory elements that control the corresponding degradation pathways. An increasing number of catabolic pathways under the control of specific regulators are now known to be influenced by the presence of alternative carbon sources, which to different extents repress expression of the pathway despite the presence of the inducer. The molecular basis underlying the control of each catabolic pathway is different, although all sense a high energy state of the cell resulting from the presence of more favourable carbon sources. Biosensor tests mimicking field conditions point to global regulation being relevant for biosensor performance; thus, this global regulation must be taken into account when designing whole-cell biosensors.
Collapse
Affiliation(s)
- Silvia Marqués
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Apartado de Correos 419, E-18008, Granada, Spain.
| | | | | |
Collapse
|
45
|
Toba FA, Hay AG. A simple solid phase assay for the detection of 2,4-D in soil. J Microbiol Methods 2005; 62:135-43. [PMID: 16009273 DOI: 10.1016/j.mimet.2005.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Revised: 01/21/2005] [Accepted: 02/02/2005] [Indexed: 10/25/2022]
Abstract
Contaminated soils are usually characterized using chemical analyses. However, these do not assess the bioavailability of pollutants, a factor which may be important in estimating the risks associated with contamination. Thus there is a need to support chemical analyses with information on biological effects to determine the potential risks a pollutant may pose in the soil. Although bacterial bioreporters have been used to detect the presence of contaminants in soils, in general these studies have been carried out in slurries or soil extracts rather than soil itself. The following study presents the development of a simple solid-phase bioassay for the direct detection of the herbicide 2,4-dichlorophenoxy acetic acid (2,4-D) in soil using Ralstonia eutropha JMP 134-32, a luxCDABE-based 2,4-D whole cell bioreporter. The bioreporter was spotted onto glass microfibre filter discs that allowed its retrieval and analysis after exposure to 2,4-D amended soils. These disc-fixed cells responded in a concentration dependent manner to 2,4-D in solution (0-25 mg/L) and in spiked soil (0-50 mg/kg). The influence of environmental factors on bioavailability was demonstrated in soil with a low moisture content which prevented 2,4-D-induced bioluminescence but which did not affect bioluminescence from already induced cells. This rapid and low cost bioassay provides a proof of concept demonstrating that retrievable disk-fixed cells can be induced in soil, thus providing a measure of solid-phase bioavailability. This method overcomes some of the limitations associated with the inoculation and monitoring of bioreporters directly in soil. Additionally, this simple system should be amenable to use with other bioreporters.
Collapse
Affiliation(s)
- Faustino A Toba
- Department of Microbiology, Cornell University, Ithaca, NY 14853-5701, United States
| | | |
Collapse
|
46
|
Parales RE, Ditty JL. Laboratory evolution of catabolic enzymes and pathways. Curr Opin Biotechnol 2005; 16:315-25. [PMID: 15961033 DOI: 10.1016/j.copbio.2005.03.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Revised: 02/15/2005] [Accepted: 03/23/2005] [Indexed: 11/25/2022]
Abstract
The laboratory evolution of environmentally relevant enzymes and proteins has resulted in the generation of optimized and stabilized enzymes, as well as enzymes with activity against new substrates. Numerous methods, including random mutagenesis, site-directed mutagenesis and DNA shuffling, have been widely used to generate variants of existing enzymes. These evolved catabolic enzymes have application for improving biodegradation pathways, generating engineered pathways for the degradation of particularly recalcitrant compounds, and for the development of biocatalytic processes to produce useful compounds. Regulatory proteins associated with catabolic pathways have been utilized to generate biosensors for the detection of bioavailable concentrations of environmentally relevant chemicals.
Collapse
Affiliation(s)
- Rebecca E Parales
- Section of Microbiology, 226 Briggs Hall, University of California, Davis, California 95616, USA.
| | | |
Collapse
|
47
|
Abstract
Engineering bacteria for measuring chemicals of environmental or toxicological concern (bioreporter bacteria) has grown slowly into a mature research area. Despite many potential advantages, current bioreporters do not perform well enough to comply with environmental detection standards. Basically, the reasons for this are the lack of engineering principles in the detection chain in the bioreporters. Here, we dissect critical steps in the detection chain and illustrate how bioreporter design could be improved by mutagenizing specificity and selectivity of the sensing and regulatory proteins, by newer expression strategies and application of different signalling networks. Furthermore, we describe how redesigning bioreporter assays with respect to pollutant transport into the cells and application of other detection devices can decrease detection limits and increase the speed of detection.
Collapse
Affiliation(s)
- Jan Roelof van der Meer
- Department of Fundamental Microbiology, Bâtiment de Biologie, University of Lausanne, 1015 Lausanne, Switzerland.
| | | | | |
Collapse
|