1
|
Dubey S, Ager-Wick E, Kumar J, Karunasagar I, Karunasagar I, Peng B, Evensen Ø, Sørum H, Munang’andu HM. Aeromonas species isolated from aquatic organisms, insects, chicken, and humans in India show similar antimicrobial resistance profiles. Front Microbiol 2022; 13:1008870. [PMID: 36532495 PMCID: PMC9752027 DOI: 10.3389/fmicb.2022.1008870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/14/2022] [Indexed: 01/07/2024] Open
Abstract
Aeromonas species are Gram-negative bacteria that infect various living organisms and are ubiquitously found in different aquatic environments. In this study, we used whole genome sequencing (WGS) to identify and compare the antimicrobial resistance (AMR) genes, integrons, transposases and plasmids found in Aeromonas hydrophila, Aeromonas caviae and Aeromonas veronii isolated from Indian major carp (Catla catla), Indian carp (Labeo rohita), catfish (Clarias batrachus) and Nile tilapia (Oreochromis niloticus) sampled in India. To gain a wider comparison, we included 11 whole genome sequences of Aeromonas spp. from different host species in India deposited in the National Center for Biotechnology Information (NCBI). Our findings show that all 15 Aeromonas sequences examined had multiple AMR genes of which the Ambler classes B, C and D β-lactamase genes were the most dominant. The high similarity of AMR genes in the Aeromonas sequences obtained from different host species point to interspecies transmission of AMR genes. Our findings also show that all Aeromonas sequences examined encoded several multidrug efflux-pump proteins. As for genes linked to mobile genetic elements (MBE), only the class I integrase was detected from two fish isolates, while all transposases detected belonged to the insertion sequence (IS) family. Only seven of the 15 Aeromonas sequences examined had plasmids and none of the plasmids encoded AMR genes. In summary, our findings show that Aeromonas spp. isolated from different host species in India carry multiple AMR genes. Thus, we advocate that the control of AMR caused by Aeromonas spp. in India should be based on a One Health approach.
Collapse
Affiliation(s)
- Saurabh Dubey
- Section of Experimental Biomedicine, Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Eirill Ager-Wick
- Section of Experimental Biomedicine, Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Jitendra Kumar
- College of Fisheries, Acharya Narendra Deva University of Agriculture and Technology, Uttar Pradesh, India
| | - Indrani Karunasagar
- Nitte University Centre for Science Education and Research, Mangaluru, India
| | - Iddya Karunasagar
- Nitte University Centre for Science Education and Research, Mangaluru, India
| | - Bo Peng
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, China
| | - Øystein Evensen
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Henning Sørum
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Hetron M. Munang’andu
- Section of Experimental Biomedicine, Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| |
Collapse
|
2
|
Detection of Acquired Antibiotic Resistance Genes in Domestic Pig (Sus scrofa) and Common Carp (Cyprinus carpio) Intestinal Samples by Metagenomics Analyses in Hungary. Antibiotics (Basel) 2022; 11:antibiotics11101441. [PMID: 36290099 PMCID: PMC9598914 DOI: 10.3390/antibiotics11101441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 11/26/2022] Open
Abstract
The aim of this study was metagenomics analyses of acquired antibiotic-resistance genes (ARGs) in the intestinal microbiome of two important food-animal species in Hungary from a One Health perspective. Intestinal content samples were collected from 12 domestic pigs (Sus scrofa) and from a common carp (Cyprinus carpio). Shotgun metagenomic sequencing of DNA purified from the intestinal samples was performed on the Illumina platform. The ResFinder database was applied for detecting acquired ARGs in the assembled metagenomic contigs. Altogether, 59 acquired ARG types were identified, 51 genes from domestic pig and 12 genes from the carp intestinal microbiome. ARG types belonged to the antibiotic classes aminoglycosides (27.1%), tetracyclines (25.4%), β-lactams (16.9%), and others. Of the identified ARGs, tet(E), a blaOXA-48-like β-lactamase gene, as well as cphA4, ampS, aadA2, qnrS2, and sul1, were identified only in carp but not in swine samples. Several of the detected acquired ARGs have not yet been described from food animals in Hungary. The tet(Q), tet(W), tet(O), and mef(A) genes detected in the intestinal microbiome of domestic pigs had also been identified from free-living wild boars in Hungary, suggesting a possible relationship between the occurrence of acquired ARGs in domestic and wild animal populations.
Collapse
|
3
|
Kim M, Park J, Kang M, Yang J, Park W. Gain and loss of antibiotic resistant genes in multidrug resistant bacteria: One Health perspective. J Microbiol 2021; 59:535-545. [PMID: 33877574 DOI: 10.1007/s12275-021-1085-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 12/17/2022]
Abstract
The emergence of multidrug resistance (MDR) has become a global health threat due to the increasing unnecessary use of antibiotics. Multidrug resistant bacteria occur mainly by accumulating resistance genes on mobile genetic elements (MGEs), made possible by horizontal gene transfer (HGT). Humans and animal guts along with natural and engineered environments such as wastewater treatment plants and manured soils have proven to be the major reservoirs and hotspots of spreading antibiotic resistance genes (ARGs). As those environments support the dissemination of MGEs through the complex interactions that take place at the human-animal-environment interfaces, a growing One Health challenge is for multiple sectors to communicate and work together to prevent the emergence and spread of MDR bacteria. However, maintenance of ARGs in a bacterial chromosome and/or plasmids in the environments might place energy burdens on bacterial fitness in the absence of antibiotics, and those unnecessary ARGs could eventually be lost. This review highlights and summarizes the current investigations into the gain and loss of ARG genes in MDR bacteria among human-animal-environment interfaces. We also suggest alternative treatments such as combinatory therapies or sequential use of different classes of antibiotics/adjuvants, treatment with enzyme-inhibitors, and phage therapy with antibiotics to solve the MDR problem from the perspective of One Health issues.
Collapse
Affiliation(s)
- Misung Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jaeeun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Mingyeong Kang
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jihye Yang
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
4
|
Adamczyk M, Lewicka E, Szatkowska R, Nieznanska H, Ludwiczak J, Jasiński M, Dunin-Horkawicz S, Sitkiewicz E, Swiderska B, Goch G, Jagura-Burdzy G. Revealing biophysical properties of KfrA-type proteins as a novel class of cytoskeletal, coiled-coil plasmid-encoded proteins. BMC Microbiol 2021; 21:32. [PMID: 33482722 PMCID: PMC7821693 DOI: 10.1186/s12866-020-02079-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/20/2020] [Indexed: 01/22/2023] Open
Abstract
Background DNA binding KfrA-type proteins of broad-host-range bacterial plasmids belonging to IncP-1 and IncU incompatibility groups are characterized by globular N-terminal head domains and long alpha-helical coiled-coil tails. They have been shown to act as transcriptional auto-regulators. Results This study was focused on two members of the growing family of KfrA-type proteins encoded by the broad-host-range plasmids, R751 of IncP-1β and RA3 of IncU groups. Comparative in vitro and in silico studies on KfrAR751 and KfrARA3 confirmed their similar biophysical properties despite low conservation of the amino acid sequences. They form a wide range of oligomeric forms in vitro and, in the presence of their cognate DNA binding sites, they polymerize into the higher order filaments visualized as “threads” by negative staining electron microscopy. The studies revealed also temperature-dependent changes in the coiled-coil segment of KfrA proteins that is involved in the stabilization of dimers required for DNA interactions. Conclusion KfrAR751 and KfrARA3 are structural homologues. We postulate that KfrA type proteins have moonlighting activity. They not only act as transcriptional auto-regulators but form cytoskeletal structures, which might facilitate plasmid DNA delivery and positioning in the cells before cell division, involving thermal energy. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-020-02079-w.
Collapse
Affiliation(s)
- M Adamczyk
- Warsaw University of Technology, Faculty of Chemistry, Chair of Drug and Cosmetics Biotechnology, Noakowskiego 3, 00-664, Warsaw, Poland.
| | - E Lewicka
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - R Szatkowska
- Warsaw University of Technology, Faculty of Chemistry, Chair of Drug and Cosmetics Biotechnology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - H Nieznanska
- Nencki Institute of Experimental Biology PAS, Laboratory of Electron Microscopy, Pasteura 3, 02-093, Warsaw, Poland
| | - J Ludwiczak
- University of Warsaw, Centre of New Technologies, Laboratory of Structural Bioinformatics, 02-097, Warsaw, Poland.,Nencki Institute of Experimental Biology, Laboratory of Bioinformatics, Pasteura 3, 02-093, Warsaw, Poland
| | - M Jasiński
- University of Warsaw, Centre of New Technologies, Laboratory of Structural Bioinformatics, 02-097, Warsaw, Poland
| | - S Dunin-Horkawicz
- University of Warsaw, Centre of New Technologies, Laboratory of Structural Bioinformatics, 02-097, Warsaw, Poland
| | - E Sitkiewicz
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - B Swiderska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - G Goch
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - G Jagura-Burdzy
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106, Warsaw, Poland
| |
Collapse
|
5
|
Lewicka E, Mitura M, Steczkiewicz K, Kieracinska J, Skrzynska K, Adamczyk M, Jagura-Burdzy G. Unique Properties of the Alpha-Helical DNA-Binding Protein KfrA Encoded by the IncU Incompatibility Group Plasmid RA3 and Its Host-Dependent Role in Plasmid Maintenance. Appl Environ Microbiol 2021; 87:e01771-20. [PMID: 33097508 PMCID: PMC7783346 DOI: 10.1128/aem.01771-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/18/2020] [Indexed: 01/15/2023] Open
Abstract
KfrA, encoded on the broad-host-range RA3 plasmid, is an alpha-helical DNA-binding protein that acts as a transcriptional autoregulator. The KfrARA3 operator site overlaps the kfrA promoter and is composed of five 9-bp direct repeats (DRs). Here, the biological properties of KfrA were studied using both in vivo and in vitro approaches. Localization of the DNA-binding helix-turn-helix motif (HTH) was mapped to the N29-R52 region by protein structure modeling and confirmed by alanine scanning. KfrA repressor ability depended on the number and orientation of DRs in the operator, as well as the ability of the protein to oligomerize. The long alpha-helical tail from residues 54 to 355 was shown to be involved in self-interactions, whereas the region from residue 54 to 177 was involved in heterodimerization with KfrC, another RA3-encoded alpha-helical protein. KfrA also interacted with the segrosome proteins IncC (ParA) and KorB (ParB), representatives of the class Ia active partition systems. Deletion of the kfr genes from the RA3 stability module decreased the plasmid retention in diverse hosts in a species-dependent manner. The specific interactions of KfrA with DNA are essential not only for the transcriptional regulatory function but also for the accessory role of KfrA in stable plasmid maintenance.IMPORTANCE Alpha-helical coiled-coil KfrA-type proteins are encoded by various broad-host-range low-copy-number conjugative plasmids. The DNA-binding protein KfrA encoded on the RA3 plasmid, a member of the IncU incompatibility group, oligomerizes, forms a complex with another plasmid-encoded, alpha-helical protein, KfrC, and interacts with the segrosome proteins IncC and KorB. The unique mode of KfrA dimer binding to the repetitive operator is required for a KfrA role in the stable maintenance of RA3 plasmid in distinct hosts.
Collapse
Affiliation(s)
- Ewa Lewicka
- Institute of Biochemistry and Biophysics, Department of Microbial Biochemistry, PAS, Warsaw, Poland
| | - Monika Mitura
- Institute of Biochemistry and Biophysics, Department of Microbial Biochemistry, PAS, Warsaw, Poland
| | - Kamil Steczkiewicz
- Institute of Biochemistry and Biophysics, Department of Bioinformatics, PAS, Warsaw, Poland
| | - Justyna Kieracinska
- Institute of Biochemistry and Biophysics, Department of Microbial Biochemistry, PAS, Warsaw, Poland
- Warsaw University of Technology, Faculty of Chemistry, Chair of Drug and Cosmetics Biotechnology, Warsaw, Poland
| | - Kamila Skrzynska
- Warsaw University of Technology, Faculty of Chemistry, Chair of Drug and Cosmetics Biotechnology, Warsaw, Poland
| | - Malgorzata Adamczyk
- Warsaw University of Technology, Faculty of Chemistry, Chair of Drug and Cosmetics Biotechnology, Warsaw, Poland
| | - Grazyna Jagura-Burdzy
- Institute of Biochemistry and Biophysics, Department of Microbial Biochemistry, PAS, Warsaw, Poland
| |
Collapse
|
6
|
Blau K, Bettermann A, Jechalke S, Fornefeld E, Vanrobaeys Y, Stalder T, Top EM, Smalla K. The Transferable Resistome of Produce. mBio 2018; 9:e01300-18. [PMID: 30401772 PMCID: PMC6222124 DOI: 10.1128/mbio.01300-18] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/20/2018] [Indexed: 11/20/2022] Open
Abstract
Produce is increasingly recognized as a reservoir of human pathogens and transferable antibiotic resistance genes. This study aimed to explore methods to characterize the transferable resistome of bacteria associated with produce. Mixed salad, arugula, and cilantro purchased from supermarkets in Germany were analyzed by means of cultivation- and DNA-based methods. Before and after a nonselective enrichment step, tetracycline (TET)-resistant Escherichia coli were isolated and plasmids conferring TET resistance were captured by exogenous plasmid isolation. TET-resistant E. coli isolates, transconjugants, and total community DNA (TC-DNA) from the microbial fraction detached from leaves or after enrichment were analyzed for the presence of resistance genes, class 1 integrons, and various plasmids by real-time PCR and PCR-Southern blot hybridization. Real-time PCR primers were developed for IncI and IncF plasmids. TET-resistant E. coli isolated from arugula and cilantro carried IncF, IncI1, IncN, IncHI1, IncU, and IncX1 plasmids. Three isolates from cilantro were positive for IncN plasmids and blaCTX-M-1 From mixed salad and cilantro, IncF, IncI1, and IncP-1β plasmids were captured exogenously. Importantly, whereas direct detection of IncI and IncF plasmids in TC-DNA failed, these plasmids became detectable in DNA extracted from enrichment cultures. This confirms that cultivation-independent DNA-based methods are not always sufficiently sensitive to detect the transferable resistome in the rare microbiome. In summary, this study showed that an impressive diversity of self-transmissible multiple resistance plasmids was detected in bacteria associated with produce that is consumed raw, and exogenous capturing into E. coli suggests that they could transfer to gut bacteria as well.IMPORTANCE Produce is one of the most popular food commodities. Unfortunately, leafy greens can be a reservoir of transferable antibiotic resistance genes. We found that IncF and IncI plasmids were the most prevalent plasmid types in E. coli isolates from produce. This study highlights the importance of the rare microbiome associated with produce as a source of antibiotic resistance genes that might escape cultivation-independent detection, yet may be transferred to human pathogens or commensals.
Collapse
Affiliation(s)
- Khald Blau
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| | - Antje Bettermann
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| | - Sven Jechalke
- Justus Liebig University Giessen, Institute for Phytopathology, Gießen, Germany
| | - Eva Fornefeld
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| | - Yann Vanrobaeys
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, USA
| | - Thibault Stalder
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, USA
| | - Eva M Top
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, USA
| | - Kornelia Smalla
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| |
Collapse
|
7
|
Herbst E, Baldera-Aguayo PA, Lee H, Cornish VW. A Yeast Three Hybrid Assay for Metabolic Engineering of Tetracycline Derivatives. Biochemistry 2018; 57:4726-4734. [PMID: 29956923 DOI: 10.1021/acs.biochem.8b00419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metabolic engineering stands to transform the discovery and production of a wide range of chemicals, but metabolic engineering currently demands considerable resource investments that restrict commercial application. To facilitate the applicability of metabolic engineering, general high-throughput and readily implemented technologies are needed to assay vast libraries of strains producing desirable chemicals. Toward this end, we describe here the development of a yeast three hybrid (Y3H) assay as a general, high-throughput, versatile and readily implemented approach for the detection of target molecule biosynthesis. Our system detects target molecule biosynthesis through a change in reporter gene transcription that results from the binding of the target molecule to a modular protein receptor. We demonstrate the use of the Y3H assay for detecting the biosynthesis of tetracyclines, a major class of antibiotics, based on the interaction between tetracyclines and the tetracycline repressor protein (TetR). Various tetracycline derivatives can be detected using our assay, whose versatility enables its use both as a screen and a selection to match the needs and instrumentation of a wide range of end users. We demonstrate the applicability of the Y3H assay to metabolic engineering by differentiating between producer and nonproducer strains of the natural product tetracycline TAN-1612. The Y3H assay is superior to state-of-the-art HPLC-MS methods in throughput and limit of detection of tetracycline derivatives. Finally, our establishment of the Y3H assay for detecting the biosynthesis of a tetracycline supports the generality of the Y3H assay for detecting the biosynthesis of many other target molecules.
Collapse
Affiliation(s)
- Ehud Herbst
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| | - Pedro A Baldera-Aguayo
- Integrated Program in Cellular, Molecular and Biomedical Studies , Columbia University , New York , New York 10032 , United States
| | - Hyunwook Lee
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| | - Virginia W Cornish
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
- Department of Systems Biology , Columbia University , New York , New York 10032 , United States
| |
Collapse
|
8
|
Characteristics of ARG-carrying plasmidome in the cultivable microbial community from wastewater treatment system under high oxytetracycline concentration. Appl Microbiol Biotechnol 2018; 102:1847-1858. [DOI: 10.1007/s00253-018-8738-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 12/19/2017] [Accepted: 12/26/2017] [Indexed: 11/26/2022]
|
9
|
Furushita M, Akagi H, Kaneoka A, Maeda T, Fukuda T, Tatsuno R, Shiba T. Similarity in the Structure of tetD-Carrying Mobile Genetic Elements in Bacterial Strains of Different Genera Isolated from Cultured Yellowtail. Biocontrol Sci 2016; 21:183-6. [PMID: 27667524 DOI: 10.4265/bio.21.183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Structure analysis was performed on the antibiotic-resistance-gene region of conjugative plasmids of four fish farm bacteria.The kanamycin resistance gene, IS26, and tetracycline resistance gene (tetA(D)) were flanked by two IS26s in opposite orientation in Citrobacter sp. TA3 and TA6, and Alteromonas sp. TA55 from fish farm A. IS26-Inner was disrupted with ISRSB101. The chloramphenicol resistance gene, IS26 and tetA (D) were flanked by two IS26s in direct orientation in Salmonella sp. TC67 from farm C. Structures of tetA (D) and IS26 were identical among the four bacteria, but there was no insertion within the IS26-Inner of Salmonella sp. TC67. Horizontal gene transfer between the strains of two different genera in fish farm A was suggested by the structure homologies of mobile genetic elements and antibiotic resistance genes.
Collapse
Affiliation(s)
- Manabu Furushita
- Department of Food Science and Technology, National Fisheries Univ
| | | | | | | | | | | | | |
Collapse
|
10
|
Dang B, Xu Y, Mao D, Luo Y. Complete nucleotide sequence of plasmid pNA6 reveals the high plasticity of IncU family plasmids. Gene 2016; 591:74-79. [PMID: 27374151 DOI: 10.1016/j.gene.2016.06.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/21/2016] [Accepted: 06/29/2016] [Indexed: 12/27/2022]
Abstract
Antibiotic resistance is a serious problem in health care and is of widespread public concern. Conjugative plasmids are the most important vectors in the dissemination of antibiotic resistance genes. In this study, we determined the complete sequence of plasmid pNA6, a plasmid which was isolated from the sediments of Haihe River. This plasmid confers reduced susceptibility to ampicillin, erythromycin and sulfamethoxazole. The complete sequence of plasmid pNA6 was 52,210bp in length with an average G+C content of 52.70%. Plasmid pNA6 belongs to the IncU group by sequence queries against the GenBank database. This plasmid has a typical IncU backbone and shows the highest similarities with plasmid RA3 and plasmid pFBAOT6. Plasmid pNA6 carries a class 1 integron consisting of aacA4, ereA and dfrA1 genes. Moreover, plasmid pNA6 also harbors a blaTEM-1-containing complex structure which inserted into the replication region and maintenance region. This insertion site has never been found on other IncU plasmids. The sequencing of plasmid pNA6 will add new sequence information to IncU family plasmids and enhance our understanding of the plasticity of IncU family plasmids.
Collapse
Affiliation(s)
- Bingjun Dang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Yan Xu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Daqing Mao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China.
| | - Yi Luo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China.
| |
Collapse
|
11
|
Godziszewska J, Moncalián G, Cabezas M, Bartosik AA, de la Cruz F, Jagura-Burdzy G. Concerted action of NIC relaxase and auxiliary protein MobC in RA3 plasmid conjugation. Mol Microbiol 2016; 101:439-56. [PMID: 27101775 DOI: 10.1111/mmi.13401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2016] [Indexed: 11/29/2022]
Abstract
Conjugative transfer of the broad-host-range RA3 plasmid, the archetype of the IncU group, relies on the relaxase NIC that belongs to the as yet uncharacterized MOBP4 subfamily. NIC contains the signature motifs of HUH relaxases involved in Tyr nucleophilic attack. However, it differs in the residue involved in His activation for cation coordination and was shown here to have altered divalent cation requirements. NIC is encoded in the mobC-nic operon preceded directly by oriT, where mobC encodes an auxiliary transfer protein with a dual function: autorepressor and stimulator of conjugative transfer. Here an interplay between MobC and NIC was demonstrated. MobC is required for efficient NIC cleavage of oriT in supercoiled DNA whereas NIC assists MobC in repression of the mobC-nic operon. A 7-bp arm of IR3 (IR3a) was identified as the binding site for NIC and the crucial nucleotides in IR3a for NIC recognition were defined. Fully active oriTRA3 was delineated to a 47-bp DNA segment encompassing a conserved cleavage site sequence, the NIC binding site IR3a and the MobC binding site OM . This highly efficient RA3 conjugative system with defined requirements for minimal oriT could find ample applications in biotechnology and computational biology where simple conjugative systems are needed.
Collapse
Affiliation(s)
- Jolanta Godziszewska
- Institute of Biochemistry and Biophysics PAS, Department of Microbial Biochemistry, 02-106 Warsaw, Poland.,Warsaw University of Life Sciences (WULS-SGGW), Faculty of Human Nutrition and Consumer Sciences, Laboratory of Food Chemistry, 02-776, Warsaw, Poland
| | - Gabriel Moncalián
- Departamento de Biología Molecular and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, C/Albert Einstein 22, 39011, Santander, Spain
| | - Matilde Cabezas
- Departamento de Biología Molecular and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, C/Albert Einstein 22, 39011, Santander, Spain
| | - Aneta A Bartosik
- Institute of Biochemistry and Biophysics PAS, Department of Microbial Biochemistry, 02-106 Warsaw, Poland
| | - Fernando de la Cruz
- Departamento de Biología Molecular and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, C/Albert Einstein 22, 39011, Santander, Spain
| | - Grazyna Jagura-Burdzy
- Institute of Biochemistry and Biophysics PAS, Department of Microbial Biochemistry, 02-106 Warsaw, Poland
| |
Collapse
|
12
|
Global Transcriptional Regulation of Backbone Genes in Broad-Host-Range Plasmid RA3 from the IncU Group Involves Segregation Protein KorB (ParB Family). Appl Environ Microbiol 2016; 82:2320-2335. [PMID: 26850301 DOI: 10.1128/aem.03541-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/31/2016] [Indexed: 01/04/2023] Open
Abstract
The KorB protein of the broad-host-range conjugative plasmid RA3 from the IncU group belongs to the ParB family of plasmid and chromosomal segregation proteins. As a partitioning DNA-binding factor, KorB specifically recognizes a 16-bp palindrome which is an essential motif in the centromere-like sequence parSRA3, forms a segrosome, and together with its partner IncC (ParA family) participates in active DNA segregation ensuring stable plasmid maintenance. Here we show that by binding to this palindromic sequence, KorB also acts as a repressor for the adjacent mobC promoter driving expression of the mobC-nicoperon, which is involved in DNA processing during conjugation. Three other promoters, one buried in the conjugative transfer module and two divergent promoters located at the border between the replication and stability regions, are regulated by KorB binding to additional KorB operators (OBs). KorB acts as a repressor at a distance, binding to OBs separated from their cognate promoters by between 46 and 1,317 nucleotides. This repressor activity is facilitated by KorB spreading along DNA, since a polymerization-deficient KorB variant with its dimerization and DNA-binding abilities intact is inactive in transcriptional repression. KorB may act as a global regulator of RA3 plasmid functions in Escherichia coli, since its overexpression in transnegatively interferes with mini-RA3 replication and stable maintenance of RA3.
Collapse
|
13
|
|
14
|
Li X, Wang Y, Brown CJ, Yao F, Jiang Y, Top EM, Li H. Diversification of broad host range plasmids correlates with the presence of antibiotic resistance genes. FEMS Microbiol Ecol 2015; 92:fiv151. [PMID: 26635412 DOI: 10.1093/femsec/fiv151] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2015] [Indexed: 11/13/2022] Open
Abstract
The IncP-1ε subgroup is a recently identified phylogenetic clade within IncP-1 plasmids, which plays an important role in the spread of antibiotic resistance and degradation of xenobiotic pollutants. Here, four IncP-1ε plasmids were exogenously captured from a petroleum-contaminated habitat in China and compared phylogenetically and genomically with previously reported IncP-1ε and other IncP-1 plasmids. The IncP-1ε plasmids can be clearly subdivided into two subclades, designated as ε-I and ε-II, based on phylogenetic analysis of backbone proteins TraI and TrfA. This was further supported by comparison of concatenated backbone genes. Moreover, the two subclades differed in the transposon types, phenotypes and insertion locations of the accessory elements. The accessory genes on ε-I plasmids were inserted between parA and traC, and harbored ISPa17 and Tn402-like transposon modules, typically carrying antibiotic resistance genes. In contrast, the accessory elements on ε-II plasmids were typically located between trfA and oriV, and contained IS1071, which was commonly inserted within the Tn501-like transposon, typically harboring a cluster of genes encoding mercury resistance and/or catabolic pathways. Our study is one of the first to compare IncP-1 plasmid genomes from China, expands the available collection of IncP-1ε plasmids and enhances our understanding of their diversity, biogeography and evolutionary history.
Collapse
Affiliation(s)
- Xiaobin Li
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yafei Wang
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China
| | - Celeste J Brown
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, ID 83844-3051, USA
| | - Fei Yao
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Jiang
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China
| | - Eva M Top
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, ID 83844-3051, USA
| | - Hui Li
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China
| |
Collapse
|
15
|
Complete Sequences of IncU Plasmids Harboring Quinolone Resistance Genes qnrS2 and aac(6')-Ib-cr in Aeromonas spp. from Ornamental Fish. Antimicrob Agents Chemother 2015; 60:653-7. [PMID: 26525788 DOI: 10.1128/aac.01773-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/25/2015] [Indexed: 11/20/2022] Open
Abstract
The nucleotide sequences of three IncU plasmids from Aeromonas spp. isolated from ornamental fish are described. They had a typical IncU backbone for plasmid replication and maintenance functions, but conjugative transfer modules were disrupted. The gene qnrS2 was inserted into mpR as a mobile insertion cassette. Novel Tn3 family transposons carrying putative toxin-antitoxin and plasmid stability genes were identified. The study demonstrates high plasticity of IncU plasmids from aquatic environments.
Collapse
|
16
|
Zhang M, Warmink J, Pereira E Silva MC, Brons J, Smalla K, van Elsas JD. IncP-1β Plasmids Are Important Carriers of Fitness Traits for Variovorax Species in the Mycosphere--Two Novel Plasmids, pHB44 and pBS64, with Differential Effects Unveiled. MICROBIAL ECOLOGY 2015; 70:141-153. [PMID: 25542203 DOI: 10.1007/s00248-014-0550-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 12/01/2014] [Indexed: 06/04/2023]
Abstract
The Laccaria proxima mycosphere strongly selects Variovorax paradoxus cells. Fifteen independent V. paradoxus strains, isolated from mycospheres sampled at two occasions, were investigated with respect to the occurrence of plasmids of sizes <60-100 kb. Two V. paradoxus strains, HB44 and BS64, were found to contain such plasmids, which were coined pHB44 and pBS64. Replicon typing using a suite of plasmid-specific PCR systems indicated that both plasmids belong to the IncP-1β group. Also, both were able to mobilize selectable IncQ group plasmids into Escherichia coli as well as Pseudomonas fluorescens. Moreover, they showed stable replication in these organisms, confirming their broad host range. Strain BS64 was cured of pBS64 and plasmid pHB44 was subsequently moved into this cured strain by making use of the IncQ group tracer plasmid pSUP104, which was then removed at elevated temperature. Thus, both plasmids could be screened for their ability to confer a phenotype upon strain BS64. No evidence for the presence of genes for xenobiotic degradation and/or antibiotic or heavy metal resistances was found for either of the two plasmids. Remarkably, both could stimulate the production of biofilm material by strain BS64. Also, the population densities of pBS64-containing strain BS64 were temporarily raised in liquid as well as soil systems (versus the plasmid-cured strain), both in the presence of the fungal host Lyophyllum sp. strain Karsten. Strikingly, plasmid pHB44 significantly enhanced the fitness of strain BS64 in soil containing Lyophyllum sp. strain Karsten, but decreased its fitness in soil supplemented with extra FeCl3. The effect was noted both in separate (no inter-strain competition) and joint (competition) inoculations.
Collapse
Affiliation(s)
- Miaozhi Zhang
- Department of Microbial Ecology, Center for Ecological and Evolutionary Studies, University of Groningen, Nijenborgh 7, 9747AG, Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
17
|
Antonelli A, D'Andrea MM, Vaggelli G, Docquier JD, Rossolini GM. OXA-372, a novel carbapenem-hydrolysing class D β-lactamase from aCitrobacter freundiiisolated from a hospital wastewater plant. J Antimicrob Chemother 2015; 70:2749-56. [DOI: 10.1093/jac/dkv181] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/03/2015] [Indexed: 11/13/2022] Open
|
18
|
Living in an Extremely Polluted Environment: Clues from the Genome of Melanin-Producing Aeromonas salmonicida subsp. pectinolytica 34melT. Appl Environ Microbiol 2015; 81:5235-48. [PMID: 26025898 DOI: 10.1128/aem.00903-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/20/2015] [Indexed: 11/20/2022] Open
Abstract
Aeromonas salmonicida subsp. pectinolytica 34mel(T) can be considered an extremophile due to the characteristics of the heavily polluted river from which it was isolated. While four subspecies of A. salmonicida are known fish pathogens, 34mel(T) belongs to the only subspecies isolated solely from the environment. Genome analysis revealed a high metabolic versatility, the capability to cope with diverse stress agents, and the lack of several virulence factors found in pathogenic Aeromonas. The most relevant phenotypic characteristics of 34mel(T) are pectin degradation, a distinctive trait of A. salmonicida subsp. pectinolytica, and melanin production. Genes coding for three pectate lyases were detected in a cluster, unique to this microorganism, that contains all genes needed for pectin degradation. Melanin synthesis in 34mel(T) is hypothesized to occur through the homogentisate pathway, as no tyrosinases or laccases were detected and the homogentisate 1,2-dioxygenase gene is inactivated by a transposon insertion, leading to the accumulation of the melanin precursor homogentisate. Comparative genome analysis of other melanogenic Aeromonas strains revealed that this gene was inactivated by transposon insertions or point mutations, indicating that melanin biosynthesis in Aeromonas occurs through the homogentisate pathway. Horizontal gene transfer could have contributed to the adaptation of 34mel(T) to a highly polluted environment, as 13 genomic islands were identified in its genome, some of them containing genes coding for fitness-related traits. Heavy metal resistance genes were also found, along with others associated with oxidative and nitrosative stresses. These characteristics, together with melanin production and the ability to use different substrates, may explain the ability of this microorganism to live in an extremely polluted environment.
Collapse
|
19
|
Piotrowska M, Popowska M. Insight into the mobilome of Aeromonas strains. Front Microbiol 2015; 6:494. [PMID: 26074893 PMCID: PMC4444841 DOI: 10.3389/fmicb.2015.00494] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/05/2015] [Indexed: 11/13/2022] Open
Abstract
The mobilome is a pool of genes located within mobile genetic elements (MGE), such as plasmids, IS elements, transposons, genomic/pathogenicity islands, and integron-associated gene cassettes. These genes are often referred to as “flexible” and may encode virulence factors, toxic compounds as well as resistance to antibiotics. The phenomenon of MGE transfer between bacteria, known as horizontal gene transfer (HGT), is well documented. The genes present on MGE are subject to continuous processes of evolution and environmental changes, largely induced or significantly accelerated by man. For bacteria, the only chance of survival in an environment contaminated with toxic chemicals, heavy metals and antibiotics is the acquisition of genes providing the ability to survive in such conditions. The process of acquiring and spreading antibiotic resistance genes (ARG) is of particular significance, as it is important for the health of humans and animals. Therefore, it is important to thoroughly study the mobilome of Aeromonas spp. that is widely distributed in various environments, causing many diseases in fishes and humans. This review discusses the recently published information on MGE prevalent in Aeromonas spp. with special emphasis on plasmids belonging to different incompatibility groups, i.e., IncA/C, IncU, IncQ, IncF, IncI, and ColE-type. The vast majority of plasmids carry a number of different transposons (Tn3, Tn21, Tn1213, Tn1721, Tn4401), the 1st, 2nd, or 3rd class of integrons, IS elements (e.g., IS26, ISPa12, ISPa13, ISKpn8, ISKpn6) and encode determinants such as antibiotic and mercury resistance genes, as well as virulence factors. Although the actual role of Aeromonas spp. as a human pathogen remains controversial, species of this genus may pose a serious risk to human health. This is due to the considerable potential of their mobilome, particularly in terms of antibiotic resistance and the possibility of the horizontal transfer of resistance genes.
Collapse
Affiliation(s)
- Marta Piotrowska
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Magdalena Popowska
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| |
Collapse
|
20
|
Li X, Top EM, Wang Y, Brown CJ, Yao F, Yang S, Jiang Y, Li H. The broad-host-range plasmid pSFA231 isolated from petroleum-contaminated sediment represents a new member of the PromA plasmid family. Front Microbiol 2015; 5:777. [PMID: 25628616 PMCID: PMC4290620 DOI: 10.3389/fmicb.2014.00777] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 12/18/2014] [Indexed: 11/13/2022] Open
Abstract
A self-transmissible broad-host-range (BHR) plasmid pSFA231 was isolated from petroleum-contaminated sediment in Shen-fu wastewater irrigation zone, China, using the triparental mating exogenous plasmid capture method. Based on its complete sequence the plasmid has a size of 41.5 kb and codes for 50 putative open reading frames (orfs), 29 of which represent genes involved in replication, partitioning and transfer functions of the plasmid. Phylogenetic analysis grouped pSFA231 into the newly defined PromA plasmid family, which currently includes five members. Further comparative genomic analysis shows that pSFA231 shares the common backbone regions with the other PromA plasmids, i.e., genes involved in replication, maintenance and control, and conjugative transfer. Nevertheless, phylogenetic divergence was found in specific gene products. We propose to divide the PromA group into two subgroups, PromA-α (pMRAD02, pSB102) and PromA-β (pMOL98, pIPO2T, pSFA231, pTer331), based on the splits network analysis of the RepA protein. Interestingly, a cluster of hypothetical orfs located between parA and traA of pSFA231 shows high similarity with the corresponding regions on pMOL98, pIPO2T, and pTer331, suggesting these hypothetical orfs may represent “essential” plasmid backbone genes for the PromA-β subgroup. Alternatively, they may also be accessory genes that were first acquired and then stayed as the plasmid diverged. Our study increases the available collection of complete genome sequences of BHR plasmids, and since pSFA231 is the only characterized PromA plasmid from China, our findings also enhance our understanding of the genetic diversity of this plasmid group in different parts of the world.
Collapse
Affiliation(s)
- Xiaobin Li
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences Shenyang, China ; College of Resources and Environment, University of Chinese Academy of Sciences Beijing, China
| | - Eva M Top
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho Moscow, ID, USA
| | - Yafei Wang
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences Shenyang, China
| | - Celeste J Brown
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho Moscow, ID, USA
| | - Fei Yao
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences Shenyang, China ; College of Resources and Environment, University of Chinese Academy of Sciences Beijing, China
| | - Shan Yang
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences Shenyang, China
| | - Yong Jiang
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences Shenyang, China
| | - Hui Li
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences Shenyang, China
| |
Collapse
|
21
|
Rahube TO, Viana LS, Koraimann G, Yost CK. Characterization and comparative analysis of antibiotic resistance plasmids isolated from a wastewater treatment plant. Front Microbiol 2014; 5:558. [PMID: 25389419 PMCID: PMC4211555 DOI: 10.3389/fmicb.2014.00558] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 10/06/2014] [Indexed: 11/13/2022] Open
Abstract
A wastewater treatment plant (WWTP) is an environment high in nutrient concentration with diverse bacterial populations and can provide an ideal environment for the proliferation of mobile elements such as plasmids. WWTPs have also been identified as reservoirs for antibiotic resistance genes that are associated with human pathogens. The objectives of this study were to isolate and characterize self-transmissible or mobilizable resistance plasmids associated with effluent from WWTP. An enrichment culture approach designed to capture plasmids conferring resistance to high concentrations of erythromycin was used to capture plasmids from an urban WWTP servicing a population of ca. 210,000. DNA sequencing of the plasmids revealed diversity of plasmids represented by incompatibility groups IncU, col-E, IncFII and IncP-1β. Genes coding resistance to clinically relevant antibiotics (macrolide, tetracycline, beta-lactam, trimethoprim, chloramphenicol, sulphonamide), quaternary ammonium compounds and heavy metals were co-located on these plasmids, often within transposable and integrative mobile elements. Several of the plasmids were self-transmissible or mobilizable and could be maintained in the absence of antibiotic selection. The IncFII plasmid pEFC36a showed the highest degree of sequence identity to plasmid R1 which has been isolated in England more than 50 years ago from a patient suffering from a Salmonella infection. Functional conservation of key regulatory features of this F-like conjugation module were demonstrated by the finding that the conjugation frequency of pEFC36a could be stimulated by the positive regulator of plasmid R1 DNA transfer genes, TraJ.
Collapse
Affiliation(s)
- Teddie O Rahube
- Department of Biology, University of Regina Regina, SK, Canada ; Department of Biology and Biotechnological Sciences, Botswana International University of Science and Technology Palapye, Botswana
| | - Laia S Viana
- Institute of Molecular Biosciences, University of Graz Graz, Austria
| | - Günther Koraimann
- Institute of Molecular Biosciences, University of Graz Graz, Austria
| | | |
Collapse
|
22
|
Godziszewska J, Kulińska A, Jagura-Burdzy G. MobC of conjugative RA3 plasmid from IncU group autoregulates the expression of bicistronic mobC-nic operon and stimulates conjugative transfer. BMC Microbiol 2014; 14:235. [PMID: 25187417 PMCID: PMC4175270 DOI: 10.1186/s12866-014-0235-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/19/2014] [Indexed: 11/28/2022] Open
Abstract
Background The IncU conjugative transfer module represents highly efficient promiscuous system widespread among conjugative plasmids of different incompatibility groups. Despite its frequent occurrence the mechanisms of relaxosome formation/action are far from understood. Here we analyzed the putative transfer auxiliary protein MobC of the conjugative plasmid RA3 from the IncU incompatibility group. Results MobC is a protein of 176 amino acids encoded in the bicistronic operon mobC-nic adjacent to oriT. MobC is homologous to prokaryotic transcription factors of the ribbon-helix-helix (RHH) superfamily. Conserved LxxugxNlNQiaxxLn motif clusters MobC with the clade of conjugative transfer auxilliary proteins of MobP relaxases. MobC forms dimers in solution and autoregulates the expression of mobCp by binding to an imperfect palindromic sequence (OM) located between putative -35 and -10 motifs of the promoter. Medium-copy number test plasmid containing the oriT-mobCp region is mobilized with a high frequency by the RA3 conjugative system. The mutations introduced into OM that abolished MobC binding in vitro decreased 2-3 fold the frequency of mobilization of the test plasmids. The deletion of OM within the RA3 conjugative module had no effect on transfer if the mobC-nic operon was expressed from the heterologous promoter. If only nic was expressed from the heterologous promoter (no mobC) the conjugative transfer frequency of such plasmid was 1000-fold lower. Conclusion The MobC is an auxiliary transfer protein of dual function. It autoregulates the expression of mobC-nic operon while its presence significantly stimulates transfer efficiency. Electronic supplementary material The online version of this article (doi:10.1186/s12866-014-0235-1) contains supplementary material, which is available to authorized users.
Collapse
|
23
|
Compain F, Poisson A, Le Hello S, Branger C, Weill FX, Arlet G, Decré D. Targeting relaxase genes for classification of the predominant plasmids in Enterobacteriaceae. Int J Med Microbiol 2014; 304:236-42. [DOI: 10.1016/j.ijmm.2013.09.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/19/2013] [Accepted: 09/28/2013] [Indexed: 11/29/2022] Open
|
24
|
The complete nucleotide sequence of the carbapenem resistance-conferring conjugative plasmid pLD209 from a Pseudomonas putida clinical strain reveals a chimeric design formed by modules derived from both environmental and clinical bacteria. Antimicrob Agents Chemother 2014; 58:1816-21. [PMID: 24395220 DOI: 10.1128/aac.02494-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complete sequence of the carbapenem-resistance-conferring conjugative plasmid pLD209 from a Pseudomonas putida clinical strain is presented. pLD209 is formed by 3 well-defined regions: an adaptability module encompassing a Tn402-like class 1 integron of clinical origin containing blaVIM-2 and aacA4 gene cassettes, partitioning and transfer modules, and a replication module derived from plasmids of environmental bacteria. pLD209 is thus a mosaic of modules originating in both the clinical and environmental (nonclinical) microbiota.
Collapse
|
25
|
Zheng J, Peng D, Ruan L, Sun M. Evolution and dynamics of megaplasmids with genome sizes larger than 100 kb in the Bacillus cereus group. BMC Evol Biol 2013; 13:262. [PMID: 24295128 PMCID: PMC4219350 DOI: 10.1186/1471-2148-13-262] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 11/25/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plasmids play a crucial role in the evolution of bacterial genomes by mediating horizontal gene transfer. However, the origin and evolution of most plasmids remains unclear, especially for megaplasmids. Strains of the Bacillus cereus group contain up to 13 plasmids with genome sizes ranging from 2 kb to 600 kb, and thus can be used to study plasmid dynamics and evolution. RESULTS This work studied the origin and evolution of 31 B. cereus group megaplasmids (>100 kb) focusing on the most conserved regions on plasmids, minireplicons. Sixty-five putative minireplicons were identified and classified to six types on the basis of proteins that are essential for replication. Twenty-nine of the 31 megaplasmids contained two or more minireplicons. Phylogenetic analysis of the protein sequences showed that different minireplicons on the same megaplasmid have different evolutionary histories. Therefore, we speculated that these megaplasmids are the results of fusion of smaller plasmids. All plasmids of a bacterial strain must be compatible. In megaplasmids of the B. cereus group, individual minireplicons of different megaplasmids in the same strain belong to different types or subtypes. Thus, the subtypes of each minireplicon they contain may determine the incompatibilities of megaplasmids. A broader analysis of all 1285 bacterial plasmids with putative known minireplicons whose complete genome sequences were available from GenBank revealed that 34% (443 plasmids) of the plasmids have two or more minireplicons. This indicates that plasmid fusion events are general among bacterial plasmids. CONCLUSIONS Megaplasmids of B. cereus group are fusion of smaller plasmids, and the fusion of plasmids likely occurs frequently in the B. cereus group and in other bacterial taxa. Plasmid fusion may be one of the major mechanisms for formation of novel megaplasmids in the evolution of bacteria.
Collapse
Affiliation(s)
- Jinshui Zheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | | | | | | |
Collapse
|
26
|
Diverse broad-host-range plasmids from freshwater carry few accessory genes. Appl Environ Microbiol 2013; 79:7684-95. [PMID: 24096417 DOI: 10.1128/aem.02252-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Broad-host-range self-transferable plasmids are known to facilitate bacterial adaptation by spreading genes between phylogenetically distinct hosts. These plasmids typically have a conserved backbone region and a variable accessory region that encodes host-beneficial traits. We do not know, however, how well plasmids that do not encode accessory functions can survive in nature. The goal of this study was to characterize the backbone and accessory gene content of plasmids that were captured from freshwater sources without selecting for a particular phenotype or cultivating their host. To do this, triparental matings were used such that the only required phenotype was the plasmid's ability to mobilize a nonconjugative plasmid. Based on complete genome sequences of 10 plasmids, only 5 carried identifiable accessory gene regions, and none carried antibiotic resistance genes. The plasmids belong to four known incompatibility groups (IncN, IncP-1, IncU, and IncW) and two potentially new groups. Eight of the plasmids were shown to have a broad host range, being able to transfer into alpha-, beta-, and gammaproteobacteria. Because of the absence of antibiotic resistance genes, we resampled one of the sites and compared the proportion of captured plasmids that conferred antibiotic resistance to their hosts with the proportion of such plasmids captured from the effluent of a local wastewater treatment plant. Few of the captured plasmids from either site encoded antibiotic resistance. A high diversity of plasmids that encode no or unknown accessory functions is thus readily found in freshwater habitats. The question remains how the plasmids persist in these microbial communities.
Collapse
|
27
|
Cabello FC, Godfrey HP, Tomova A, Ivanova L, Dölz H, Millanao A, Buschmann AH. Antimicrobial use in aquaculture re-examined: its relevance to antimicrobial resistance and to animal and human health. Environ Microbiol 2013; 15:1917-42. [PMID: 23711078 DOI: 10.1111/1462-2920.12134] [Citation(s) in RCA: 427] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 02/10/2013] [Accepted: 02/14/2013] [Indexed: 12/18/2022]
Abstract
The worldwide growth of aquaculture has been accompanied by a rapid increase in therapeutic and prophylactic usage of antimicrobials including those important in human therapeutics. Approximately 80% of antimicrobials used in aquaculture enter the environment with their activity intact where they select for bacteria whose resistance arises from mutations or more importantly, from mobile genetic elements containing multiple resistance determinants transmissible to other bacteria. Such selection alters biodiversity in aquatic environments and the normal flora of fish and shellfish. The commonality of the mobilome (the total of all mobile genetic elements in a genome) between aquatic and terrestrial bacteria together with the presence of residual antimicrobials, biofilms, and high concentrations of bacteriophages where the aquatic environment may also be contaminated with pathogens of human and animal origin can stimulate exchange of genetic information between aquatic and terrestrial bacteria. Several recently found genetic elements and resistance determinants for quinolones, tetracyclines, and β-lactamases are shared between aquatic bacteria, fish pathogens, and human pathogens, and appear to have originated in aquatic bacteria. Excessive use of antimicrobials in aquaculture can thus potentially negatively impact animal and human health as well as the aquatic environment and should be better assessed and regulated.
Collapse
Affiliation(s)
- Felipe C Cabello
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, 10595, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Ludwiczak M, Dolowy P, Markowska A, Szarlak J, Kulinska A, Jagura-Burdzy G. Global transcriptional regulator KorC coordinates expression of three backbone modules of the broad-host-range RA3 plasmid from IncU incompatibility group. Plasmid 2013; 70:131-45. [PMID: 23583562 DOI: 10.1016/j.plasmid.2013.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/28/2013] [Accepted: 03/29/2013] [Indexed: 11/17/2022]
Abstract
The broad-host-range conjugative RA3 plasmid from IncU incompatibility group has been isolated from the fish pathogen Aeromonas hydrophila. DNA sequencing has revealed a mosaic modular structure of RA3 with the stabilization module showing some similarity to IncP-1 genes and the conjugative transfer module highly similar to that from PromA plasmids. The integrity of the mosaic plasmid genome seems to be specified by its regulatory network. In this paper the transcriptional regulator KorC was analyzed. KorCRA3 (98 amino acids) is encoded in the stabilization region and represses four strong promoters by binding to a conserved palindrome sequence, designated OC on the basis of homology to the KorC operator sequences in IncP-1 plasmids. Two of the KorCRA3-regulated promoters precede the first two cistrons in the stabilization module, one fires towards replication module, remaining one controls a tricistronic operon, whose products are involved in the conjugative transfer process. Despite the similarity between the binding sites in IncU and IncP-1 plasmids, no cross-reactivity between their KorC proteins has been detected. KorC emerges as a global regulator of RA3, coordinating all its backbone functions: replication, stable maintenance and conjugative transfer.
Collapse
Affiliation(s)
- M Ludwiczak
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, PAS, Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
29
|
Beaz-Hidalgo R, Figueras MJ. Aeromonas spp. whole genomes and virulence factors implicated in fish disease. JOURNAL OF FISH DISEASES 2013; 36:371-388. [PMID: 23305319 DOI: 10.1111/jfd.12025] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 09/20/2012] [Accepted: 09/23/2012] [Indexed: 05/27/2023]
Abstract
It is widely recognized that Aeromonas infections produce septicaemia, and ulcerative and haemorrhagic diseases in fish, causing significant mortality in both wild and farmed freshwater and marine fish species that damage the economics of the aquaculture sector. The descriptions of the complete genomes of Aeromonas species have allowed the identification of an important number of virulence genes that affect the pathogenic potential of these bacteria. This review will focus on the most relevant information derived from the available Aeromonas genomes in relation to virulence and on the diverse virulence factors that actively participate in host adherence, colonization and infection, including structural components, extracellular factors, secretion systems, iron acquisition and quorum sensing mechanisms.
Collapse
Affiliation(s)
- R Beaz-Hidalgo
- Unitat de Microbiologia, Departament de Ciènces Médiques Bàsiques, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | | |
Collapse
|
30
|
Sen D, Brown CJ, Top EM, Sullivan J. Inferring the evolutionary history of IncP-1 plasmids despite incongruence among backbone gene trees. Mol Biol Evol 2013; 30:154-66. [PMID: 22936717 PMCID: PMC3525142 DOI: 10.1093/molbev/mss210] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Plasmids of the incompatibility group IncP-1 can transfer and replicate in many genera of the Proteobacteria. They are composed of backbone genes that encode a variety of essential functions and accessory genes that have implications for human health and environmental remediation. Although it is well understood that the accessory genes are transferred horizontally between plasmids, recent studies have also provided examples of recombination in the backbone genes of IncP-1 plasmids. As a consequence, phylogeny estimation based on backbone genes is expected to produce conflicting gene tree topologies. The main goal of this study was therefore to infer the evolutionary history of IncP-1 plasmids in the presence of both vertical and horizontal gene transfer. This was achieved by quantifying the incongruence among gene trees and attributing it to known causes such as 1) phylogenetic uncertainty, 2) coalescent stochasticity, and 3) horizontal inheritance. Topologies of gene trees exhibited more incongruence than could be attributed to phylogenetic uncertainty alone. Species-tree estimation using a Bayesian framework that takes coalescent stochasticity into account was well supported, but it differed slightly from the maximum-likelihood tree estimated by concatenation of backbone genes. After removal of the gene that demonstrated a signal of intergroup recombination, the concatenated tree was congruent with the species-tree estimate, which itself was robust to inclusion/exclusion of the recombinant gene. Thus, in spite of horizontal gene exchange both within and among IncP-1 subgroups, the backbone genome of these IncP-1 plasmids retains a detectable vertical evolutionary history.
Collapse
Affiliation(s)
- Diya Sen
- Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho
- Bioinformatics and Computational Biology Graduate Program, University of Idaho
| | - Celeste J. Brown
- Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho
- Bioinformatics and Computational Biology Graduate Program, University of Idaho
- Department of Biological Sciences, University of Idaho
| | - Eva M. Top
- Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho
- Bioinformatics and Computational Biology Graduate Program, University of Idaho
- Department of Biological Sciences, University of Idaho
| | - Jack Sullivan
- Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho
- Bioinformatics and Computational Biology Graduate Program, University of Idaho
- Department of Biological Sciences, University of Idaho
| |
Collapse
|
31
|
Marti E, Balcázar JL. Multidrug resistance-encoding plasmid from Aeromonas sp. strain P2G1. Clin Microbiol Infect 2012; 18:E366-8. [PMID: 22725683 DOI: 10.1111/j.1469-0691.2012.03935.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A plasmid (pP2G1), which confers multidrug resistance in an environmental Aeromonas species, was completely sequenced using a shotgun approach. Plasmid pP2G1 encoded resistance to aminoglycosides and quinolones [aac(6')-Ib-cr], β-lactams (bla(OXA-1)), chloramphenicol (catB3), macrolides [mphA-mrx-mphR], quaternary ammonium compounds (qacEΔ1), quinolones (qnrS2), rifampicin (arr-3) and sulphonamides (sul1). These findings suggest that Aeromonas species may potentially act as reservoirs of antibiotic resistance genes.
Collapse
Affiliation(s)
- E Marti
- Catalan Institute for Water Research, ICRA, Scientific and Technological Park of the University of Girona, Girona, Spain
| | | |
Collapse
|
32
|
Cantas L, Midtlyng PJ, Sørum H. Impact of antibiotic treatments on the expression of the R plasmid tra genes and on the host innate immune activity during pRAS1 bearing Aeromonas hydrophila infection in zebrafish (Danio rerio). BMC Microbiol 2012; 12:37. [PMID: 22429905 PMCID: PMC3340321 DOI: 10.1186/1471-2180-12-37] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 03/19/2012] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The transfer of R plasmids between bacteria has been well studied under laboratory conditions and the transfer frequency has been found to vary between plasmids and under various physical conditions. For the first time, we here study the expression of the selected plasmid mobility genes traD, virB11 and virD4 in the 45 kb IncU plasmid, pRAS1, conferring resistance to tetracycline, trimethoprim and sulphonamide, using an in vivo zebrafish infection- treatment model. RESULTS Three days after oral infection of adult zebrafish with Aeromonas hydrophila harboring pRAS1, elevated expression of pro-inflammatory cytokine (TNF α, IL-1β and IL-8) and complement C3 genes in the intestine coincided with disease symptoms. Tetracycline, trimethoprim and an ineffective concentration of flumequine given 48 h prior to sampling, strongly increased expression of plasmid mobility genes, whereas an effective dosage of flumequine resulted in lower levels of mRNA copies of these genes relative to placebo treatment. Following effective treatment with flumequine, and ineffective treatments with a low concentration of flumequine, with trimethoprim or with sulphonamide, the intestinal expression of immune genes was strongly induced compared to placebo treated control fish. CONCLUSIONS Treatment of zebrafish infected with an antibiotic resistant (TcR, TmR, SuR) A. hydrophila with ineffective concentrations of flumequine or the ineffective antimicrobials tetracycline and trimethoprim strongly induced expression of genes mediating conjugative transfer of the R-plasmid pRAS1. Simultaneously, there was a strong induction of selected inflammatory and immune response genes, which was again evident in fish subjected to ineffective treatment protocols. Our findings point to the essential role of therapeutic practices in escalation or control of antibiotic resistance transfer, and suggest that antibiotic substances, even in sub-inhibitory concentrations, may stimulate innate defenses against bacterial infections.
Collapse
Affiliation(s)
- Leon Cantas
- Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, Ullevålsveien 72, PO 8146, 0033 Oslo, Norway.
| | | | | |
Collapse
|
33
|
Gomez SA, Pasteran FG, Faccone D, Tijet N, Rapoport M, Lucero C, Lastovetska O, Albornoz E, Galas M, Melano RG, Corso A, Petroni A. Clonal dissemination of Klebsiella pneumoniae ST258 harbouring KPC-2 in Argentina. Clin Microbiol Infect 2011; 17:1520-4. [PMID: 21851480 DOI: 10.1111/j.1469-0691.2011.03600.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The present work describes the abrupt emergence of Klebsiella pneumoniae carbapenemase (KPC) and characterizes the first 79 KPC-producing enterobacteria from Argentina (isolated from 2006 to 2010). The emergence of bla(KPC-2) was characterized by two patterns of dispersion: the first was the sporadic occurrence in diverse enterobacteria from distant geographical regions, harbouring plasmids of different incompatibility groups and bla(KPC-2) in an unusual genetic environment flanked by ISKpn8-Δbla(TEM-1) and ISKpn6-like. bla(KPC-2) was associated with IncL/M transferable plasmids; the second was the abrupt clonal spread of K. pneumoniae ST258 harbouring bla(KPC-2) in Tn4401a.
Collapse
Affiliation(s)
- S A Gomez
- Servicio Antimicrobianos, Instituto Nacional de Enfermedades Infecciosas (INEI)-ANLIS Dr Carlos G. Malbrán, Ciudad Autónoma de Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wide dissemination of Pseudomonas aeruginosa producing beta-lactamase blaKPC-2 gene in Colombia. Antimicrob Agents Chemother 2011; 55:5350-3. [PMID: 21844315 DOI: 10.1128/aac.00297-11] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Ten bla(KPC-2)-harboring Pseudomonas aeruginosa isolates from hospitals located in five different Colombian cities have been characterized. Isolates were multidrug resistant, belonged to five different pulsotypes, and possessed naturally chromosome-encoded bla(AmpC) and bla(OXA-50) genes and the acquired bla(KPC-2) gene. In most cases, the bla(KPC-2) genes were carried by plasmids of different sizes and were associated with Tn4401b or a new structure containing only part of the Tn4401 sequence. This study revealed that several clones of P. aeruginosa producing bla(KPC-2) are disseminating in Colombia.
Collapse
|
35
|
Furushita M, Akagi H, Kaneoka A, Awamura K, Maeda T, Ohta M, Shiba T. Structural variation of Tn10 that carries tetB found in fish farm bacteria. Microbes Environ 2011; 26:84-7. [PMID: 21487208 DOI: 10.1264/jsme2.me10160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Three variants of the composite transposon Tn10 were extracted from transferable plasmids of fish farm bacteria. These variants were identical in insertions with IS10, but differed in another class I transposon insertion and a region of homologous recombination downstream of tetB.
Collapse
Affiliation(s)
- Manabu Furushita
- Department of Food Science and Technology, National Fisheries University, Shimonoseki, 759–6595, Japan.
| | | | | | | | | | | | | |
Collapse
|
36
|
The centromere site of the segregation cassette of broad-host-range plasmid RA3 is located at the border of the maintenance and conjugative transfer modules. Appl Environ Microbiol 2011; 77:2414-27. [PMID: 21296952 DOI: 10.1128/aem.02338-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
RA3 is a low-copy-number, broad-host-range (BHR) conjugative plasmid of the IncU incompatibility group isolated originally from Aeromonas spp. A 4.9-kb fragment of RA3 is sufficient to stabilize an otherwise unstable replicon in Escherichia coli. This fragment specifies the korA-incC-korB-orf11 operon coding for an active partition system related to the central control operon of IncP-1 plasmids and found also in BHR environmental plasmids recently classified as the PromA group. All four genes in the cassette are necessary for segregation. IncC and KorB of RA3 belong to the ParA and ParB families of partitioning proteins, respectively. In contrast with IncP-1 plasmids, neither KorB nor IncC are involved in transcriptional autoregulation. Instead, KorA exerts transcriptional control of the operon by binding to a palindromic sequence that overlaps the putative -35 promoter motif of the cassette. The Orf11 protein is not required for regulation, but its absence decreases the stabilization potential of the segregation module. A region discontiguous from the cassette harbors a set of unrelated repeat motifs distributed over ∼300 bp. Dissection of this region identified the centromere sequence that is vital for partitioning. The ∼300-bp fragment also encompasses the origin of conjugative transfer, oriT, and the promoter that drives transcription of the conjugative transfer operon. A similar set of cis-acting motifs are evident in the PromA group of environmental plasmids, highlighting a common evolutionary origin of segregation and conjugative transfer modules in these plasmids and members of the IncU group.
Collapse
|
37
|
Szczepanowski R, Eikmeyer F, Harfmann J, Blom J, Rogers LM, Top EM, Schlüter A. Sequencing and comparative analysis of IncP-1α antibiotic resistance plasmids reveal a highly conserved backbone and differences within accessory regions. J Biotechnol 2010; 155:95-103. [PMID: 21115076 DOI: 10.1016/j.jbiotec.2010.11.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 11/08/2010] [Accepted: 11/20/2010] [Indexed: 10/18/2022]
Abstract
Although IncP-1 plasmids are important for horizontal gene transfer among bacteria, in particular antibiotic resistance spread, so far only three plasmids from the subgroup IncP-1α have been completely sequenced. In this study we doubled this number. The three IncP-1α plasmids pB5, pB11 and pSP21 were isolated from bacteria of two different sewage treatment plants and sequenced by a combination of next-generation and capillary sequencing technologies. A comparative analysis including the previously analysed IncP-1α plasmids RK2, pTB11 and pBS228 revealed a highly conserved plasmid backbone (at least 99.9% DNA sequence identity) comprising 54 core genes. The accessory elements of the plasmid pB5 constitute a class 1 integron interrupting the parC gene and an IS6100 copy inserted into the integron. In addition, the tetracycline resistance genes tetAR and the ISTB11-like element are located between the klc operon and the trfA-ssb operon. Plasmid pB11 is loaded with a Tn5053-like mercury resistance transposon between the parCBA and parDE operons and contains tetAR that are identical to those identified in plasmid pB5 and the insertion sequence ISSP21. Plasmid pSP21 harbours an ISPa7 element in a Tn402 transposon including a class 1 integron between the partitioning genes parCBA and parDE. The IS-element ISSP21 (99.89% DNA sequence identity to ISSP21 from pB11), inserted downstream of the tetR gene and a copy of ISTB11 (identical to ISTB11 on pTB11) inserted between the genes pncA and pinR. On all three plasmids the accessory genes are almost always located between the backbone modules confirming the importance of the backbone functions for plasmid maintenance. The striking backbone conservation among the six completely sequenced IncP-1α plasmids is in contrast to the much higher diversity within the IncP-1β subgroup.
Collapse
Affiliation(s)
- Rafael Szczepanowski
- Institute for Genome Research and Systems Biology, Center for Biotechnology, Bielefeld University, D-33594 Bielefeld, Germany.
| | | | | | | | | | | | | |
Collapse
|
38
|
de la Cruz F, Frost LS, Meyer RJ, Zechner EL. Conjugative DNA metabolism in Gram-negative bacteria. FEMS Microbiol Rev 2010; 34:18-40. [PMID: 19919603 DOI: 10.1111/j.1574-6976.2009.00195.x] [Citation(s) in RCA: 267] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bacterial conjugation in Gram-negative bacteria is triggered by a signal that connects the relaxosome to the coupling protein (T4CP) and transferosome, a type IV secretion system. The relaxosome, a nucleoprotein complex formed at the origin of transfer (oriT), consists of a relaxase, directed to the nic site by auxiliary DNA-binding proteins. The nic site undergoes cleavage and religation during vegetative growth, but this is converted to a cleavage and unwinding reaction when a competent mating pair has formed. Here, we review the biochemistry of relaxosomes and ponder some of the remaining questions about the nature of the signal that begins the process.
Collapse
|
39
|
Arias A, Seral C, Navarro F, Miró E, Coll P, Castillo FJ. Plasmid-mediated QnrS2 determinant in an Aeromonas caviae isolate recovered from a patient with diarrhoea. Clin Microbiol Infect 2009; 16:1005-7. [PMID: 19863591 DOI: 10.1111/j.1469-0691.2009.02958.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A qnrS2 gene was identified in an Aeromonas caviae isolate (MICs of ciprofloxacin, norfloxacin and ofloxacin >32 mg/L) from a stool sample collected from a patient with gastroenteritis. The analysis of the gyrA and parC genes revealed amino acid substitutions Ser83-Ile and Ser80-Thr, respectively. In addition, five out of 41 nalidixic acid-resistant Aeromonas isolates studied (26 identified as Aeromonas veronii bv sobria and 15 identified as A. caviae) showed ciprofloxacin resistance. The identification of plasmid-mediated qnr genes outside of the Enterobacteriaceae underlines a possible diffusion of these resistance determinants among Gram-negative rods. This emphasizes the importance of monitoring the emergence of these determinants as well as their dissemination among the Aeromonadaceae.
Collapse
Affiliation(s)
- A Arias
- Department of Microbiology, Hospital Clínico Lozano Blesa, Zaragoza, Spain
| | | | | | | | | | | |
Collapse
|
40
|
Garcillán-Barcia MP, Francia MV, de la Cruz F. The diversity of conjugative relaxases and its application in plasmid classification. FEMS Microbiol Rev 2009; 33:657-87. [PMID: 19396961 DOI: 10.1111/j.1574-6976.2009.00168.x] [Citation(s) in RCA: 392] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Bacterial conjugation is an efficient and sophisticated mechanism of DNA transfer among bacteria. While mobilizable plasmids only encode a minimal MOB machinery that allows them to be transported by other plasmids, conjugative plasmids encode a complete set of transfer genes (MOB1T4SS). The only essential ingredient of the MOB machinery is the relaxase, the protein that initiates and terminates conjugative DNA processing. In this review we compared the sequences and properties of the relaxase proteins contained in gene sequence databases. Proteins were arranged in families and phylogenetic trees constructed from the family alignments. This allowed the classification of conjugative transfer systems in six MOB families:MOB(F), MOB(H), MOB(Q), MOB(C), MOB(P) and MOB(V). The main characteristics of each family were reviewed. The phylogenetic relationships of the coupling proteins were also analysed and resulted in phylogenies congruent to those of the cognate relaxases. We propose that the sequences of plasmid relaxases can be used for plasmid classification. We hope our effort will provide researchers with a useful tool for further mining and analysing the plasmid universe both experimentally and in silico.
Collapse
Affiliation(s)
- María Pilar Garcillán-Barcia
- Departamento de Biología Molecular e Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-CSIC-IDICAN, Santander, Spain
| | | | | |
Collapse
|
41
|
Zhang J, Yu C, Pulletikurti V, Lamb J, Danilova T, Weber DF, Birchler J, Peterson T. Alternative Ac/Ds transposition induces major chromosomal rearrangements in maize. Genes Dev 2009; 23:755-65. [PMID: 19299561 PMCID: PMC2661611 DOI: 10.1101/gad.1776909] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Accepted: 02/11/2009] [Indexed: 11/24/2022]
Abstract
Barbara McClintock reported that the Ac/Ds transposable element system can generate major chromosomal rearrangements (MCRs), but the underlying mechanism has not been determined. Here, we identified a series of chromosome rearrangements derived from maize lines containing pairs of closely linked Ac transposable element termini. Molecular and cytogenetic analyses showed that the MCRs in these lines comprised 17 reciprocal translocations and two large inversions. The breakpoints of all 19 MCRs are delineated by Ac termini and characteristic 8-base-pair target site duplications, indicating that the MCRs were generated by precise transposition reactions involving the Ac termini of two closely linked elements. This alternative transposition mechanism may have contributed to chromosome evolution and may also occur during V(D)J recombination resulting in oncogenic translocations.
Collapse
Affiliation(s)
- Jianbo Zhang
- Department of Genetics, Development and Cell Biology, and Department of Agronomy, Iowa State University, Ames, Iowa 50011, USA
| | - Chuanhe Yu
- Department of Genetics, Development and Cell Biology, and Department of Agronomy, Iowa State University, Ames, Iowa 50011, USA
| | - Vinay Pulletikurti
- School of Biological Sciences, Illinois State University, Normal, Illinois 61790, USA
| | - Jonathan Lamb
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Tatiana Danilova
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - David F. Weber
- School of Biological Sciences, Illinois State University, Normal, Illinois 61790, USA
| | - James Birchler
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Thomas Peterson
- Department of Genetics, Development and Cell Biology, and Department of Agronomy, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
42
|
Van der Auwera GA, Król JE, Suzuki H, Foster B, Van Houdt R, Brown CJ, Mergeay M, Top EM. Plasmids captured in C. metallidurans CH34: defining the PromA family of broad-host-range plasmids. Antonie van Leeuwenhoek 2009; 96:193-204. [PMID: 19259779 DOI: 10.1007/s10482-009-9316-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Accepted: 02/08/2009] [Indexed: 11/29/2022]
Abstract
The self-transmissible, broad-host-range (BHR) plasmid pMOL98 was previously isolated from polluted soil using a triparental plasmid capture approach and shown to possess a replicon similar to that of the BHR plasmids pSB102 and pIPO2. Here, complete sequence analysis and comparative genomics reveal that the 55.5 kb nucleotide sequence of pMOL98 shows extensive sequence similarity and synteny with the BHR plasmid family that now includes pIPO2, pSB102, pTER331, and pMRAD02. They share a plasmid backbone comprising replication, partitioning and conjugative transfer functions. Comparison of the variable accessory regions of these plasmids shows that the majority of natural transposons, as well as the mini-transposon used to mark the plasmids, are inserted in the parA locus. The transposon unique to pMOL98 appears to have inserted from the chromosome of the recipient strain used in the plasmid capture procedure. This demonstrates the necessity for careful screening of plasmids and host chromosomes to avoid mis-interpretation of plasmid genome content. The presence of very similar BHR plasmids with different accessory genes in geographically distinct locations suggests an important role in horizontal gene exchange and bacterial adaptation for this recently defined plasmid group, which we propose to name "PromA".
Collapse
|
43
|
Abstract
Are plasmids selfish parasitic DNA molecules or an integrated part of the bacterial genome? This chapter reviews the current understanding of the persistence mechanisms of conjugative plasmids harbored by bacterial cells and populations. The diversity and intricacy of mechanisms affecting the successful propagation and long-term continued existence of these extra-chromosomal elements is extensive. Apart from the accessory genetic elements that may provide plasmid-harboring cells a selective advantage, special focus is placed on the mechanisms conjugative plasmids employ to ensure their stable maintenance in the host cell. These importantly include the ability to self-mobilize in a process termed conjugative transfer, which may occur across species barriers. Other plasmid stabilizing mechanisms include the multimer resolution system, active partitioning, and post-segregational-killing of plasmid-free cells. Finally, various molecular adaptations of plasmids to better match the genetic background of their bacterial host cell will be described.
Collapse
|
44
|
Bingle LEH, Rajasekar KV, Muntaha ST, Nadella V, Hyde EI, Thomas CM. A single aromatic residue in transcriptional repressor protein KorA is critical for cooperativity with its co-regulator KorB. Mol Microbiol 2008; 70:1502-14. [PMID: 19019158 PMCID: PMC2680271 DOI: 10.1111/j.1365-2958.2008.06498.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2008] [Indexed: 01/08/2023]
Abstract
A central feature of broad host range IncP-1 plasmids is the set of regulatory circuits that tightly control plasmid core functions under steady-state conditions. Cooperativity between KorB and either KorA or TrbA repressor proteins is a key element of these circuits and deletion analysis has implicated the conserved C-terminal domain of KorA and TrbA in this interaction. By NMR we show that KorA and KorB interact directly and identify KorA amino acids that are affected on KorB binding. Studies on mutants showed that tyrosine 84 (or phenylalanine, in some alleles) is dispensable for repressor activity but critical for the specific interaction with KorB in both in vivo reporter gene assays and in vitro electrophoretic mobility shift and co-purification assays. This confirms that direct and specific protein-protein interactions are responsible for the cooperativity observed between KorB and its corepressors and lays the basis for determining the biological importance of this cooperativity.
Collapse
Affiliation(s)
| | | | - Sidra tul Muntaha
- School of Biosciences, University of Birmingham, EdgbastonBirmingham B15 2TT, UK
| | - Vinod Nadella
- School of Biosciences, University of Birmingham, EdgbastonBirmingham B15 2TT, UK
| | - Eva I Hyde
- School of Biosciences, University of Birmingham, EdgbastonBirmingham B15 2TT, UK
| | - Christopher M Thomas
- School of Biosciences, University of Birmingham, EdgbastonBirmingham B15 2TT, UK
| |
Collapse
|
45
|
Szczepanowski R, Bekel T, Goesmann A, Krause L, Krömeke H, Kaiser O, Eichler W, Pühler A, Schlüter A. Insight into the plasmid metagenome of wastewater treatment plant bacteria showing reduced susceptibility to antimicrobial drugs analysed by the 454-pyrosequencing technology. J Biotechnol 2008; 136:54-64. [DOI: 10.1016/j.jbiotec.2008.03.020] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 03/20/2008] [Accepted: 03/31/2008] [Indexed: 11/28/2022]
|
46
|
Picao RC, Poirel L, Demarta A, Silva CSF, Corvaglia AR, Petrini O, Nordmann P. Plasmid-mediated quinolone resistance in Aeromonas allosaccharophila recovered from a Swiss lake. J Antimicrob Chemother 2008; 62:948-50. [DOI: 10.1093/jac/dkn341] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
47
|
Complete Sequence of p07-406, a 24,179-base-pair plasmid harboring the blaVIM-7 metallo-beta-lactamase gene in a Pseudomonas aeruginosa isolate from the United States. Antimicrob Agents Chemother 2008; 52:3099-105. [PMID: 18591274 DOI: 10.1128/aac.01093-07] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An outbreak involving a Pseudomonas aeruginosa strain that was resistant to all tested antimicrobials except polymyxin B occurred in a hospital in Houston, TX. Previous studies on this strain showed that it possesses a novel mobile metallo-beta-lactamase (MBL) gene, designated bla(VIM-7), located on a plasmid (p07-406). Here, we report the complete sequence, annotation, and functional characterization of this plasmid. p07-406 is 24,179 bp in length, and 29 open reading frames were identified related to known or putatively recognized proteins. Analysis of this plasmid showed it to be comprised of four distinct regions: (i) a region of 5,200 bp having a Tn501-like mercuric resistance (mer) transposon upstream of the replication region; (ii) a Tn3-like transposon carrying a truncated integron with a bla(VIM-7) gene and an insertion sequence inserted at the other end of this transposon; (iii) a region of four genes, upstream of the Tn3-like transposon, possessing very high similarity to plasmid pXcB from Xanthomonas campestris pv. citri commonly associated with plants; (iv) a backbone sequence similar to the backbone structure of the IncP group plasmid Rms149, pB10, and R751. This is the first plasmid to be sequenced carrying an MBL gene and highlights the amelioration of DNA segments from disparate origins, most noticeably from plant pathogens.
Collapse
|
48
|
Genomic and functional characterization of the modular broad-host-range RA3 plasmid, the archetype of the IncU group. Appl Environ Microbiol 2008; 74:4119-32. [PMID: 18502921 PMCID: PMC2446526 DOI: 10.1128/aem.00229-08] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
IncU plasmids are a distinctive group of mobile elements with highly conserved backbone functions and variable antibiotic resistance gene cassettes. The IncU archetype is conjugative plasmid RA3, whose sequence (45,909 bp) shows it to be a mosaic, modular replicon with a class I integron different from that of other IncU replicons. Functional analysis demonstrated that RA3 possesses a broad host range and can efficiently self-transfer, replicate, and be maintained stably in alpha-, beta-, and gammaproteobacteria. RA3 contains 50 open reading frames clustered in distinct functional modules. The replication module encompasses the repA and repB genes embedded in long repetitive sequences. RepA, which is homologous to antitoxin proteins from alpha- and gammaproteobacteria, contains a Cro/cI-type DNA-binding domain present in the XRE family of transcriptional regulators. The repA promoter is repressed by RepA and RepB. The minireplicon encompasses repB and the downstream repetitive sequence r1/r2. RepB shows up to 80% similarity to putative replication initiation proteins from environmental plasmids of beta- and gammaproteobacteria, as well as similarity to replication proteins from alphaproteobacteria and Firmicutes. Stable maintenance functions of RA3 are most like those of IncP-1 broad-host-range plasmids and comprise the active partitioning apparatus formed by IncC (ParA) and KorB (ParB), the antirestriction protein KlcA, and accessory stability components KfrA and KfrC. The RA3 origin of transfer was localized experimentally between the maintenance and conjugative-transfer operons. The putative conjugative-transfer module is highly similar in organization and in its products to transfer regions of certain broad-host-range environmental plasmids.
Collapse
|
49
|
Gordon L, Cloeckaert A, Doublet B, Schwarz S, Bouju-Albert A, Ganière JP, Le Bris H, Le Flèche-Matéos A, Giraud E. Complete sequence of the floR-carrying multiresistance plasmid pAB5S9 from freshwater Aeromonas bestiarum. J Antimicrob Chemother 2008; 62:65-71. [PMID: 18413319 DOI: 10.1093/jac/dkn166] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES A multiresistant Aeromonas bestiarum strain, shown to be persistent and spreading in a freshwater stream, was investigated for the presence, location and organization of antimicrobial resistance genes. METHODS The plasmid pAB5S9 was transferred by electroporation into Escherichia coli TG1. The resistance phenotype mediated by pAB5S9 was determined. Moreover, the plasmid was sequenced completely and analysed for its structure and organization of reading frames. RESULTS Plasmid pAB5S9 mediated resistances to phenicols, sulphonamides, streptomycin and tetracycline. The analysis of the 24.7 kb sequence revealed the presence of 20 predicted coding sequences (CDSs), which included the floR, sul2 and strA-strB resistance genes and a tetR-tet(Y) determinant. Approximately 7.5 kb of pAB5S9 showed 100% nucleotide sequence identity to three non-contiguous segments of the SXT element of Vibrio cholerae. Regions identical to SXT comprised the floR gene, flanked upstream by a complete and downstream by a truncated ISCR2 element, and the region of the sul2 and strA-strB genes. Other CDSs of pAB5S9 related to plasmid replication and partitioning, metabolic and gene regulation functions as well as conjugative transfer showed homology to sequences from diverse bacterial species, indicating a mosaic structure. CONCLUSIONS This study provides the first report of a floR-carrying plasmid in the genus Aeromonas and the first description of a tetR-tet(Y) determinant. The analysis of the multiresistant A. bestiarum strain indicates that strains of this species, some of which are opportunistic pathogens for fish, might also act as a resistance gene reservoir in the freshwater environment.
Collapse
Affiliation(s)
- Laurence Gordon
- INRA, ENVN, UMR1035 Chimiothérapie Aquacole et Environnement, F-44307 Nantes, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Schlüter A, Krause L, Szczepanowski R, Goesmann A, Pühler A. Genetic diversity and composition of a plasmid metagenome from a wastewater treatment plant. J Biotechnol 2008; 136:65-76. [PMID: 18603322 DOI: 10.1016/j.jbiotec.2008.03.017] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 03/14/2008] [Accepted: 03/31/2008] [Indexed: 11/24/2022]
Abstract
Plasmid metagenome nucleotide sequence data were recently obtained from wastewater treatment plant (WWTP) bacteria with reduced susceptibility to selected antimicrobial drugs by applying the ultrafast 454-sequencing technology. The sequence dataset comprising 36,071,493 bases (346,427 reads with an average read length of 104 bases) was analysed for genetic diversity and composition by using a newly developed bioinformatic pipeline based on assignment of environmental gene tags (EGTs) to protein families stored in the Pfam database. Short amino acid sequences deduced from the plasmid metagenome sequence reads were compared to profile hidden Markov models underlying Pfam. Obtained matches evidenced that many reads represent genes having predicted functions in plasmid replication, stability and plasmid mobility which indicates that WWTP bacteria harbour genetically stabilised and mobile plasmids. Moreover, the data confirm a high diversity of plasmids residing in WWTP bacteria. The mobile organic peroxide resistance plasmid pMAC from Acinetobacter baumannii was identified as reference plasmid for the most abundant replication module type in the sequenced sample. Accessory plasmid modules encode different transposons, insertion sequences, integrons, resistance and virulence determinants. Most of the matches to Transposase protein families were identified for transposases similar to the one of the chromate resistance transposon Tn5719. Noticeable are hits to beta-lactamase protein families which suggests that plasmids from WWTP bacteria encode different enzymes possessing beta-lactam-hydrolysing activity. Some of the sequence reads correspond to antibiotic resistance genes that were only recently identified in clinical isolates of human pathogens. EGT analysis thus proofed to be a very valuable method to explore genetic diversity and composition of the present plasmid metagenome dataset.
Collapse
Affiliation(s)
- Andreas Schlüter
- Department of Genetics, Bielefeld University, Postfach 100131, D-33501 Bielefeld, Germany.
| | | | | | | | | |
Collapse
|