1
|
Fortuin J, Hoffmeester LJ, Minnaar LS, den Haan R. Advancing cellulose utilization and engineering consolidated bioprocessing yeasts: current state and perspectives. Appl Microbiol Biotechnol 2025; 109:43. [PMID: 39939397 PMCID: PMC11821801 DOI: 10.1007/s00253-025-13426-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/14/2025]
Abstract
Despite the lack of implementation of consolidated bioprocessing (CBP) at an industrial scale, this bioconversion strategy still holds significant potential as an economically viable solution for converting lignocellulosic biomass (LCB) into biofuels and green chemicals, provided an appropriate organism can be isolated or engineered. The use of Saccharomyces cerevisiae for this purpose requires, among other things, the development of a cellulase expression system within the yeast. Over the past three decades, numerous studies have reported the expression of cellulase-encoding genes, both individually and in combination, in S. cerevisiae. Various strategies have emerged to produce a core set of cellulases, with differing degrees of success. While one-step conversion of cellulosic substrates to ethanol has been reported, the resulting titers and productivities fall well below industrial requirements. In this review, we examine the strategies employed for cellulase expression in yeast, highlighting the successes in developing basic cellulolytic CBP-enabled yeasts. We also summarize recent advancements in rational strain design and engineering, exploring how these approaches can be further enhanced through modern synthetic biology tools to optimize CBP-enabled yeast strains for potential industrial applications. KEY POINTS: • S. cerevisiae's lack of cellulolytic ability warrants its engineering for industry. • Advancements in the expression of core sets of cellulases have been reported. • Rational engineering is needed to enhance cellulase secretion and strain robustness. • Insights gained from omics strategies will direct the future development of CBP strains.
Collapse
Affiliation(s)
- Jordan Fortuin
- Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Lazzlo J Hoffmeester
- Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Letitia S Minnaar
- Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Riaan den Haan
- Department of Biotechnology, University of the Western Cape, Bellville, South Africa.
| |
Collapse
|
2
|
Ma XY, Coleman B, Prabhu P, Yang M, Wen F. Engineering Compositionally Uniform Yeast Whole-Cell Biocatalysts with Maximized Surface Enzyme Density for Cellulosic Biofuel Production. ACS Synth Biol 2024; 13:1225-1236. [PMID: 38551819 DOI: 10.1021/acssynbio.3c00669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
In recent decades, whole-cell biocatalysis has played an increasingly important role in the food, pharmaceutical, and energy sector. One promising application is the use of ethanologenic yeast displaying minicellulosomes on the cell surface to combine cellulose hydrolysis and fermentation into a single step for consolidated bioprocessing. However, cellulosic ethanol production using existing yeast whole-cell biocatalysts (yWCBs) has not reached industrial feasibility due to their inefficient cellulose hydrolysis. As prior studies have demonstrated enzyme density on the yWCB surface to be one of the most important parameters for enhancing cellulose hydrolysis, we sought to maximize this parameter at both the population and single-cell levels in yWCBs displaying tetrafunctional minicellulosomes. At the population level, enzyme density is limited by the presence of a nondisplay population constituting 25-50% of all cells. In this study, we identified the cause to be plasmid loss and successfully eliminated the nondisplay population to generate compositionally uniform yWCBs. At the single-cell level, we demonstrate that enzyme density is limited by molecular crowding, which hinders minicellulosome assembly. By adjusting the integrated gene copy number, we obtained yWCBs of tunable enzyme display levels. This tunability allowed us to avoid the crowding-limited regime and achieve a maximum enzyme density per cell. As a result, the best strain showed a cellulose-to-ethanol yield of 4.92 g/g, corresponding to 96% of the theoretical maximum and near-complete conversion (∼96%) of the starting cellulose (1% PASC). Our holistic engineering strategy that combines a population and single-cell level approach is broadly applicable to enhance the WCB performance in other biocatalytic cascade schemes.
Collapse
Affiliation(s)
- Xiao Yin Ma
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Catalysis Science and Technology Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bryan Coleman
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Catalysis Science and Technology Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ponnandy Prabhu
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Margaret Yang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Fei Wen
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Catalysis Science and Technology Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
3
|
Gong C, Cao L, Fang D, Zhang J, Kumar Awasthi M, Xue D. Genetic manipulation strategies for ethanol production from bioconversion of lignocellulose waste. BIORESOURCE TECHNOLOGY 2022; 352:127105. [PMID: 35378286 DOI: 10.1016/j.biortech.2022.127105] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Lignocellulose waste was served as promising raw material for bioethanol production. Bioethanol was considered to be a potential alternative energy to take the place of fossil fuels. Lignocellulosic biomass synthesized by plants is regenerative, sufficient and cheap source for bioethanol production. The biotransformation of lignocellulose could exhibit dual significance-reduction of pollution and obtaining of energy. Some strategies are being developing and increasing the utilization of lignocellulose waste to produce ethanol. New technology of bioethanol production from natural lignocellulosic biomass is required. In this paper, the progress in genetic manipulation strategies including gene editing and synthetic genomics for the transformation from lignocellulose to ethanol was reviewed. At last, the application prospect of bioethanol was introduced.
Collapse
Affiliation(s)
- Chunjie Gong
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China
| | - Liping Cao
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China
| | - Donglai Fang
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China
| | - Jiaqi Zhang
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Dongsheng Xue
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China.
| |
Collapse
|
4
|
Šuchová K, Fehér C, Ravn JL, Bedő S, Biely P, Geijer C. Cellulose- and xylan-degrading yeasts: Enzymes, applications and biotechnological potential. Biotechnol Adv 2022; 59:107981. [DOI: 10.1016/j.biotechadv.2022.107981] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 01/23/2023]
|
5
|
Cai Y, Wang M, Xiao X, Liang B, Fan S, Zheng Z, Cosnier S, Liu A. A membraneless starch/O 2 biofuel cell based on bacterial surface regulable displayed sequential enzymes of glucoamylase and glucose dehydrogenase. Biosens Bioelectron 2022; 207:114197. [PMID: 35358946 DOI: 10.1016/j.bios.2022.114197] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 11/02/2022]
Abstract
Enzymatic biofuel cells (EBFCs) provide a new strategy to enable direct biomass-to-electricity conversion, posing considerable demand on sequential enzymes. However, artificial blend of multi-enzyme systems often suffer biocatalytic inefficiency due to the rambling mixture of catalytic units. In an attempt to construct a high-performance starch/O2 EBFC, herein we prepared a starch-oxidizing bioanode based on displaying a sequential enzyme system of glucoamylase (GA) and glucose dehydrogenase (GDH) on E.coli cell surfaces in a precise way using cohesin-dockerin interactions. The enzyme stoichiometry was optimized, with GA&GDH (3:1)-E.coli exhibiting the highest catalytic reaction rate. The bioanode employed polymerized methylene blue (polyMB) to collect electrons from the oxidation of NADH into NAD+, which jointly oxidized starch together with co-displayed GA and GDH. The bioanode was oxygen-insensitive, which can be combined with a laccase based biocathode, resulting in a membranless starch/O2 EBFC in a non-compartmentalized configuration. The optimal EBFC exhibited an open-circuit voltage (OCV) of 0.74 V, a maximum power density of 30.1 ± 2.8 μW cm-2, and good operational stability.
Collapse
Affiliation(s)
- Yuanyuan Cai
- Institute for Biosensing, and College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Mingyang Wang
- Institute for Biosensing, and College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Xinxin Xiao
- Institute for Biosensing, and College of Life Sciences, Qingdao University, Qingdao, 266071, China; Department of Chemistry, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Bo Liang
- Qingdao Institute of Bioenergy & Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, China
| | - Shuqin Fan
- Qingdao Institute of Bioenergy & Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, China
| | - Zongmei Zheng
- Institute for Biosensing, and College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Serge Cosnier
- University Grenoble Alpes DCM UMR 5250, F-38000, Grenoble, France; Département de Chimie Moléculaire, UMR CNRS, DCM UMR 5250, F-38000, Grenoble, France
| | - Aihua Liu
- Institute for Biosensing, and College of Life Sciences, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
6
|
Sharma J, Kumar V, Prasad R, Gaur NA. Engineering of Saccharomyces cerevisiae as a consolidated bioprocessing host to produce cellulosic ethanol: Recent advancements and current challenges. Biotechnol Adv 2022; 56:107925. [DOI: 10.1016/j.biotechadv.2022.107925] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/24/2022] [Accepted: 02/06/2022] [Indexed: 01/01/2023]
|
7
|
Miura N. Condensate Formation by Metabolic Enzymes in Saccharomyces cerevisiae. Microorganisms 2022; 10:232. [PMID: 35208686 PMCID: PMC8876316 DOI: 10.3390/microorganisms10020232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/31/2022] Open
Abstract
Condensate formation by a group of metabolic enzymes in the cell is an efficient way of regulating cell metabolism through the formation of "membrane-less organelles." Because of the use of green fluorescent protein (GFP) for investigating protein localization, various enzymes were found to form condensates or filaments in living Saccharomyces cerevisiae, mammalian cells, and in other organisms, thereby regulating cell metabolism in the certain status of the cells. Among different environmental stresses, hypoxia triggers the spatial reorganization of many proteins, including more than 20 metabolic enzymes, to form numerous condensates, including "Glycolytic body (G-body)" and "Purinosome." These individual condensates are collectively named "Metabolic Enzymes Transiently Assembling (META) body". This review overviews condensate or filament formation by metabolic enzymes in S. cerevisiae, focusing on the META body, and recent reports in elucidating regulatory machinery of META body formation.
Collapse
Affiliation(s)
- Natsuko Miura
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Japan
| |
Collapse
|
8
|
Kuroda K, Ueda M. Simultaneous Display of Multiple Kinds of Enzymes on the Yeast Cell Surface for Multistep Reactions. Methods Mol Biol 2022; 2491:627-641. [PMID: 35482207 DOI: 10.1007/978-1-0716-2285-8_26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The yeast surface display system is a valuable platform for constructing cells with novel functions for various applications and high-throughput screening of protein or peptide libraries containing random mutations. Among the host microorganisms used for surface display, yeast is the most suitable microorganism for surface engineering owing to its eukaryotic features. In yeast, proper folding and glycosylation of expressed eukaryotic proteins can be performed. Furthermore, in this system, multiple kinds of proteins can be simultaneously displayed on the cell surface. This allows for a synergistic effect between the displayed enzymes, leading to an efficient multistep reaction. Alternatively, the ratio of the enzymes to be displayed can be controlled by the co-culture of surface-engineered yeasts displaying a single kind of enzyme. Therefore, yeast surface display systems have been applied to the construction of various whole-cell biocatalysts. Here, we describe methods for the simultaneous display of multiple kinds of proteins on the yeast cell surface.
Collapse
Affiliation(s)
- Kouichi Kuroda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
| | - Mitsuyoshi Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
9
|
Kuroda K, Ueda M. Generation of Arming Yeasts with Active Proteins and Peptides via Cell Surface Display System: Cell Surface Engineering, Bio-Arming Technology. Methods Mol Biol 2022; 2513:59-77. [PMID: 35781200 DOI: 10.1007/978-1-0716-2399-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The cell surface display system in yeast enables the innovative strategy for improving cellular functions in a wide range of applications such as biofuel production, bioremediation, synthesis of valuable chemicals, recovery of rare metal ions, development of biosensors, and high-throughput screening of protein/peptide library. Display of enzymes for polysaccharide degradation enables the construction of metabolically engineered whole-cell biocatalyst owing to the accessibility of the displayed enzymes to high-molecular-weight polysaccharides. In addition, along with fluorescence-based activity evaluation, fluorescence-activated cell sorting (FACS), and yeast cell chip, the cell surface display system is an effective molecular tool for high-throughput screening of mutated protein/peptide library. In this article, we describe the methods for cell surface display of proteins/peptides of interest on yeast, evaluation of display efficiency, and harvesting of the displayed proteins/peptides from cell surface.
Collapse
Affiliation(s)
- Kouichi Kuroda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Mitsuyoshi Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
| |
Collapse
|
10
|
den Haan R, Rose SH, Cripwell RA, Trollope KM, Myburgh MW, Viljoen-Bloom M, van Zyl WH. Heterologous production of cellulose- and starch-degrading hydrolases to expand Saccharomyces cerevisiae substrate utilization: Lessons learnt. Biotechnol Adv 2021; 53:107859. [PMID: 34678441 DOI: 10.1016/j.biotechadv.2021.107859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/28/2022]
Abstract
Selected strains of Saccharomyces cerevisiae are used for commercial bioethanol production from cellulose and starch, but the high cost of exogenous enzymes for substrate hydrolysis remains a challenge. This can be addressed through consolidated bioprocessing (CBP) where S. cerevisiae strains are engineered to express recombinant glycoside hydrolases during fermentation. Looking back at numerous strategies undertaken over the past four decades to improve recombinant protein production in S. cerevisiae, it is evident that various steps in the protein production "pipeline" can be manipulated depending on the protein of interest and its anticipated application. In this review, we briefly introduce some of the strategies and highlight lessons learned with regards to improved transcription, translation, post-translational modification and protein secretion of heterologous hydrolases. We examine how host strain selection and modification, as well as enzyme compatibility, are crucial determinants for overall success. Finally, we discuss how lessons from heterologous hydrolase expression can inform modern synthetic biology and genome editing tools to provide process-ready yeast strains in future. However, it is clear that the successful expression of any particular enzyme is still unpredictable and requires a trial-and-error approach.
Collapse
Affiliation(s)
- Riaan den Haan
- Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Shaunita H Rose
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Rosemary A Cripwell
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Kim M Trollope
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Marthinus W Myburgh
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | | | - Willem H van Zyl
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
11
|
Bhardwaj N, Kumar B, Agrawal K, Verma P. Current perspective on production and applications of microbial cellulases: a review. BIORESOUR BIOPROCESS 2021; 8:95. [PMID: 38650192 PMCID: PMC10992179 DOI: 10.1186/s40643-021-00447-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/21/2021] [Indexed: 12/27/2022] Open
Abstract
The potential of cellulolytic enzymes has been widely studied and explored for bioconversion processes and plays a key role in various industrial applications. Cellulase, a key enzyme for cellulose-rich waste feedstock-based biorefinery, has increasing demand in various industries, e.g., paper and pulp, juice clarification, etc. Also, there has been constant progress in developing new strategies to enhance its production, such as the application of waste feedstock as the substrate for the production of individual or enzyme cocktails, process parameters control, and genetic manipulations for enzyme production with enhanced yield, efficiency, and specificity. Further, an insight into immobilization techniques has also been presented for improved reusability of cellulase, a critical factor that controls the cost of the enzyme at an industrial scale. In addition, the review also gives an insight into the status of the significant application of cellulase in the industrial sector, with its techno-economic analysis for future applications. The present review gives a complete overview of current perspectives on the production of microbial cellulases as a promising tool to develop a sustainable and greener concept for industrial applications.
Collapse
Affiliation(s)
- Nisha Bhardwaj
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
- Department of Chemical Engineering, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, Maharashtra, 400019, India
| | - Bikash Kumar
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Komal Agrawal
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
12
|
Berckman EA, Chen W. Self-assembling protein nanocages for modular enzyme assembly by orthogonal bioconjugation. Biotechnol Prog 2021; 37:e3190. [PMID: 34173352 DOI: 10.1002/btpr.3190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/03/2021] [Accepted: 06/24/2021] [Indexed: 11/06/2022]
Abstract
The wide variety of enzymatic pathways that can benefit from enzyme scaffolding is astronomical. While enzyme co-localization based on protein, DNA, and RNA scaffolds has been reported, we still lack scaffolds that offer well-defined and uniform three-dimensional structures for enzyme organization. Here we reported a new approach for protein co-localization using naturally occurring protein nanocages as a scaffold. Two different nanocages, the 25 nm E2 and the 34 nm heptatitis B virus, were used to demonstrate the successfully co-localization of the endoglucanase CelA and cellulose binding domain using the robust SpyTag/SpyCatcher bioconjugation chemistry. Because of the simplicity of the assembly, this strategy is useful not only for in vivo enzyme cascading but also the potential for in vivo applications as well.
Collapse
Affiliation(s)
- Emily A Berckman
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA.,Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
13
|
Oh EJ, Jin YS. Engineering of Saccharomyces cerevisiae for efficient fermentation of cellulose. FEMS Yeast Res 2021; 20:5698803. [PMID: 31917414 DOI: 10.1093/femsyr/foz089] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/08/2020] [Indexed: 12/18/2022] Open
Abstract
Conversion of lignocellulosic biomass to biofuels using microbial fermentation is an attractive option to substitute petroleum-based production economically and sustainably. The substantial efforts to design yeast strains for biomass hydrolysis have led to industrially applicable biological routes. Saccharomyces cerevisiae is a robust microbial platform widely used in biofuel production, based on its amenability to systems and synthetic biology tools. The critical challenges for the efficient microbial conversion of lignocellulosic biomass by engineered S. cerevisiae include heterologous expression of cellulolytic enzymes, co-fermentation of hexose and pentose sugars, and robustness against various stresses. Scientists developed many engineering strategies for cellulolytic S. cerevisiae strains, bringing the application of consolidated bioprocess at an industrial scale. Recent advances in the development and implementation of engineered yeast strains capable of assimilating lignocellulose will be reviewed.
Collapse
Affiliation(s)
- Eun Joong Oh
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, 4001 Discovery Dr., CO 80303, USA
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, 905 S. Goodwin Ave., IL 61801, USA.,1105 Carl R. Woese Institute for Genomic Biology, 1206 W. Gregory Dr. Urbana, IL 61801. USA.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, 1206 W. Gregory Dr. Urbana, IL 61801, USA
| |
Collapse
|
14
|
Lopes AMM, Martins M, Goldbeck R. Heterologous Expression of Lignocellulose-Modifying Enzymes in Microorganisms: Current Status. Mol Biotechnol 2021; 63:184-199. [PMID: 33484441 DOI: 10.1007/s12033-020-00288-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2020] [Indexed: 02/06/2023]
Abstract
Heterologous expression of the carbohydrate-active enzymes in microorganisms is a promising approach to produce bio-based compounds, such as fuels, nutraceuticals and other value-added products from sustainable lignocellulosic sources. Several microorganisms, including Saccharomyces cerevisiae, Escherichia coli, and the filamentous fungi Aspergillus nidulans, have unique characteristics desirable for a biorefinery production approach like well-known genetic tools, thermotolerance, high fermentative capacity and product tolerance, and high amount of recombinant enzyme secretion. These microbial factories are already stablished in the heterologous production of the carbohydrate-active enzymes to produce, among others, ethanol, xylooligosaccharides and the valuable coniferol. A complete biocatalyst able to heterologous express the CAZymes of glycoside hydrolases, carbohydrate esterases and auxiliary activities families could release these compounds faster, with higher yield and specificity. Recent advances in the synthetic biology tools could expand the number and diversity of enzymes integrated in these microorganisms, and also modify those already integrated. This review outlines the heterologous expression of carbohydrate-active enzymes in microorganisms, as well as recent updates in synthetic biology.
Collapse
Affiliation(s)
- Alberto Moura Mendes Lopes
- Bioprocess and Metabolic Engineering Laboratory, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato no 80, Cidade Universitária, Campinas, São Paulo, 13083-862, Brazil
| | - Manoela Martins
- Bioprocess and Metabolic Engineering Laboratory, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato no 80, Cidade Universitária, Campinas, São Paulo, 13083-862, Brazil
| | - Rosana Goldbeck
- Bioprocess and Metabolic Engineering Laboratory, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato no 80, Cidade Universitária, Campinas, São Paulo, 13083-862, Brazil.
| |
Collapse
|
15
|
Ye M, Ye Y, Du Z, Chen G. Cell-surface engineering of yeasts for whole-cell biocatalysts. Bioprocess Biosyst Eng 2021; 44:1003-1019. [PMID: 33389168 DOI: 10.1007/s00449-020-02484-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/16/2020] [Indexed: 01/23/2023]
Abstract
Due to the unique advantages comparing with traditional free enzymes and chemical catalysis, whole-cell biocatalysts have been widely used to catalyze reactions effectively, simply and environment friendly. Cell-surface display technology provides a novel and effective approach for improved whole-cell biocatalysts expressing heterologous enzymes on the cell surface. They can overcome the substrate transport limitation of the intracellular expression and provide the enzymes with enhanced properties. Among all the host surface-displaying microorganisms, yeast is ideally suitable for constructing whole cell-surface-displaying biocatalyst, because of the large cell size, the generally regarded as safe (GRAS) status, and the perfect post-translational processing of secreted proteins. Yeast cell-surface display system has been a promising and powerful method for development of novel and improved engineered biocatalysts. In this review, the characterization and principles of yeast cell-surface display and the applications of yeast cell-surface display in engineered whole-cell biocatalysts as well as the improvement of the enzyme efficiency are summarized and discussed.
Collapse
Affiliation(s)
- Mengqi Ye
- Marine College, Shandong University, Weihai, 264209, China
| | - Yuqi Ye
- Marine College, Shandong University, Weihai, 264209, China
| | - Zongjun Du
- Marine College, Shandong University, Weihai, 264209, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Guanjun Chen
- Marine College, Shandong University, Weihai, 264209, China.
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
16
|
Mahmoud YAG, Abd El-Zaher EH. Recent advancements in biofuels production with a special attention to fungi. SUSTAINABLE BIOFUELS 2021:73-99. [DOI: 10.1016/b978-0-12-820297-5.00009-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
17
|
Wightman ELI, Kroukamp H, Pretorius IS, Paulsen IT, Nevalainen HKM. Rapid optimisation of cellulolytic enzymes ratios in Saccharomyces cerevisiae using in vitro SCRaMbLE. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:182. [PMID: 33292481 PMCID: PMC7607656 DOI: 10.1186/s13068-020-01823-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 10/23/2020] [Indexed: 05/12/2023]
Abstract
BACKGROUND For the economic production of biofuels and other valuable products from lignocellulosic waste material, a consolidated bioprocessing (CBP) organism is required. With efficient fermentation capability and attractive industrial qualities, Saccharomyces cerevisiae is a preferred candidate and has been engineered to produce enzymes that hydrolyze cellulosic biomass. Efficient cellulose hydrolysis requires the synergistic action of several enzymes, with the optimum combined activity ratio dependent on the composition of the substrate. RESULTS In vitro SCRaMbLE generated a library of plasmids containing different ratios of a β-glucosidase gene (CEL3A) from Saccharomycopsis fibuligera and an endoglucanase gene (CEL5A) from Trichoderma reesei. S. cerevisiae, transformed with the plasmid library, displayed a range of individual enzyme activities and synergistic capabilities. Furthermore, we show for the first time that 4,6-O-(3-ketobutylidene)-4-nitrophenyl-β-D-cellopentaoside (BPNPG5) is a suitable substrate to determine synergistic Cel3A and Cel5A action and an accurate predictive model for this synergistic action was devised. Strains with highest BPNPG5 activity had an average CEL3A and CEL5A gene cassette copy number of 1.3 ± 0.6 and 0.8 ± 0.2, respectively (ratio of 1.6:1). CONCLUSIONS Here, we describe a synthetic biology approach to rapidly optimise gene copy numbers to achieve efficient synergistic substrate hydrolysis. This study demonstrates how in vitro SCRaMbLE can be applied to rapidly combine gene constructs in various ratios to allow screening of synergistic enzyme activities for efficient substrate hydrolysis.
Collapse
Affiliation(s)
- Elizabeth L I Wightman
- Centre of Excellence in Synthetic Biology, Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Heinrich Kroukamp
- Centre of Excellence in Synthetic Biology, Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
- Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW, 2109, Australia.
| | | | - Ian T Paulsen
- Centre of Excellence in Synthetic Biology, Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
- Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW, 2109, Australia
| | - Helena K M Nevalainen
- Centre of Excellence in Synthetic Biology, Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
- Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
18
|
|
19
|
Dong C, Qiao J, Wang X, Sun W, Chen L, Li S, Wu K, Ma L, Liu Y. Engineering Pichia pastoris with surface-display minicellulosomes for carboxymethyl cellulose hydrolysis and ethanol production. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:108. [PMID: 32549912 PMCID: PMC7296672 DOI: 10.1186/s13068-020-01749-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUNDS Engineering yeast as a consolidated bioprocessing (CBP) microorganism by surface assembly of cellulosomes has been aggressively utilized for cellulosic ethanol production. However, most of the previous studies focused on Saccharomyces cerevisiae, achieving efficient conversion of phosphoric acid-swollen cellulose (PASC) or microcrystalline cellulose (Avicel) but not carboxymethyl cellulose (CMC) to ethanol, with an average titer below 2 g/L. RESULTS Harnessing an ultra-high-affinity IM7/CL7 protein pair, here we describe a method to engineer Pichia pastoris with minicellulosomes by in vitro assembly of three recombinant cellulases including an endoglucanase (EG), an exoglucanase (CBH) and a β-glucosidase (BGL), as well as a carbohydrate-binding module (CBM) on the cell surface. For the first time, the engineered yeasts enable efficient and direct conversion of CMC to bioethanol, observing an impressive ethanol titer of 5.1 g/L. CONCLUSIONS The research promotes the application of P. pastoris as a CBP cell factory in cellulosic ethanol production and provides a promising platform for screening the cellulases from different species to construct surface-assembly celluosome.
Collapse
Affiliation(s)
- Ce Dong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062 Hubei China
| | - Jie Qiao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062 Hubei China
| | - Xinping Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062 Hubei China
| | - Wenli Sun
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062 Hubei China
| | - Lixia Chen
- Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062 Hubei China
| | - Shuntang Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062 Hubei China
| | - Ke Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062 Hubei China
- BravoVax Co., Ltd., Wuhan, 430000 Hubei China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062 Hubei China
- Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062 Hubei China
| | - Yi Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062 Hubei China
- Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062 Hubei China
| |
Collapse
|
20
|
Xin H, Hu X, Cai C, Wang H, Zhu C, Li S, Xiu Z, Zhang X, Liu Q, Ma L. Catalytic Production of Oxygenated and Hydrocarbon Chemicals From Cellulose Hydrogenolysis in Aqueous Phase. Front Chem 2020; 8:333. [PMID: 32432080 PMCID: PMC7215936 DOI: 10.3389/fchem.2020.00333] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/31/2020] [Indexed: 12/26/2022] Open
Abstract
As the most abundant polysaccharide in lignocellulosic biomass, a clean and renewable carbon resource, cellulose shows huge capacity and roused much attention on the methodologies of its conversion to downstream products, mainly including platform chemicals and fuel additives. Without appropriate treatments in the processes of cellulose decompose, there are some by-products that may not be chemically valuable or even truly harmful. Therefore, higher selectivity and more economical and greener processes would be favored and serve as criteria in a correlational study. Aqueous phase, an economically accessible and immensely potential reaction system, has been widely studied in the preparation of downstream products of cellulose. Accordingly, this mini-review aims at making a related summary about several conversion pathways of cellulose to target products in aqueous phase. Mainly, there are four categories about the conversion of cellulose to downstream products in the following: (i) cellulose hydrolysis hydrogenation to saccharides and sugar alcohols, like glucose, sorbitol, mannose, etc.; (ii) selective hydrogenolysis leads to the cleavage of the corresponding glucose C-C and C-O bond, like ethylene glycol (EG), 1,2-propylene glycol (PG), etc.; (iii) dehydration of fructose and further oxidation, like 5-hydroxymethylfurfural (HMF), 2,5-furandicarboxylic acid (FDCA), etc.; and (iv) production of liquid alkanes via hydrogenolysis and hydrodeoxygenation, like pentane, hexane, etc. The representative products were enumerated, and the mechanism and pathway of mentioned reaction are also summarized in a brief description. Ultimately, the remaining challenges and possible further research objects are proposed in perspective to provide researchers with a lucid research direction.
Collapse
Affiliation(s)
- Haosheng Xin
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China.,CAS Key Laboratory of Renewable Energy, Guangzhou, China.,Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaohong Hu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China.,CAS Key Laboratory of Renewable Energy, Guangzhou, China.,Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chiliu Cai
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China.,CAS Key Laboratory of Renewable Energy, Guangzhou, China.,Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, China
| | - Haiyong Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China.,CAS Key Laboratory of Renewable Energy, Guangzhou, China.,Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, China
| | - Changhui Zhu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China.,CAS Key Laboratory of Renewable Energy, Guangzhou, China.,Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Song Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China.,CAS Key Laboratory of Renewable Energy, Guangzhou, China.,Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhongxun Xiu
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, China
| | - Xinghua Zhang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China.,CAS Key Laboratory of Renewable Energy, Guangzhou, China.,Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, China
| | - Qiying Liu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China.,CAS Key Laboratory of Renewable Energy, Guangzhou, China.,Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, China.,Dalian National Laboratory for Clean Energy, Dalian, China
| | - Longlong Ma
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China.,CAS Key Laboratory of Renewable Energy, Guangzhou, China.,Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, China
| |
Collapse
|
21
|
Claes A, Deparis Q, Foulquié-Moreno MR, Thevelein JM. Simultaneous secretion of seven lignocellulolytic enzymes by an industrial second-generation yeast strain enables efficient ethanol production from multiple polymeric substrates. Metab Eng 2020; 59:131-141. [DOI: 10.1016/j.ymben.2020.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/01/2020] [Accepted: 02/18/2020] [Indexed: 01/22/2023]
|
22
|
Combinatorial cell surface display system in Escherichia coli for noninvasive colorectal cancer detection. JOURNAL OF BIO-X RESEARCH 2019. [DOI: 10.1097/jbr.0000000000000052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
23
|
Improved cellulase expression in diploid yeast strains enhanced consolidated bioprocessing of pretreated corn residues. Enzyme Microb Technol 2019; 131:109382. [DOI: 10.1016/j.enzmictec.2019.109382] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/27/2019] [Accepted: 07/12/2019] [Indexed: 01/12/2023]
|
24
|
Liu Q, Wang H, Xin H, Wang C, Yan L, Wang Y, Zhang Q, Zhang X, Xu Y, Huber GW, Ma L. Selective Cellulose Hydrogenolysis to Ethanol Using Ni@C Combined with Phosphoric Acid Catalysts. CHEMSUSCHEM 2019; 12:3977-3987. [PMID: 31225696 DOI: 10.1002/cssc.201901110] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/04/2019] [Indexed: 06/09/2023]
Abstract
Ethanol is an important bulk chemical with diverse applications. Biomass-derived ethanol is traditionally produced by fermentation. Direct cellulose conversion to ethanol by chemocatalysis is particularly promising but remains a great challenge. Herein, a one-pot hydrogenolysis of cellulose into ethanol was developed by using graphene-layers-encapsulated nickel (Ni@C) catalysts with the aid of H3 PO4 in water. The cellulose was hydrolyzed into glucose, which was activated by forming cyclic di-ester bonds between the OH groups of H3 PO4 and glucose, promoting ethanol formation under the synergistic hydrogenation of Ni@C. A 69.1 % yield of ethanol (carbon mole basis) was obtained, which is comparable to the theoretical value achieved by glucose fermentation. An ethanol concentration of up to 8.9 wt % was obtained at an increased cellulose concentration. This work demonstrates a chemocatalytic approach for the high-yield production of ethanol from renewable cellulosic biomass at high concentration.
Collapse
Affiliation(s)
- Qiying Liu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, P.R. China
- CAS Key Laboratory of Renewable Energy, Guangzhou, 510640, P.R. China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, P.R. China
- Dalian National Laboratory for Clean Energy, Dalian, 116023, P.R. China
| | - Haiyong Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, P.R. China
- CAS Key Laboratory of Renewable Energy, Guangzhou, 510640, P.R. China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Haosheng Xin
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, P.R. China
- CAS Key Laboratory of Renewable Energy, Guangzhou, 510640, P.R. China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Chenguang Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, P.R. China
- CAS Key Laboratory of Renewable Energy, Guangzhou, 510640, P.R. China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, P.R. China
| | - Long Yan
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, P.R. China
- CAS Key Laboratory of Renewable Energy, Guangzhou, 510640, P.R. China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, P.R. China
| | - Yingxiong Wang
- Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P. R. China
| | - Qi Zhang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, P.R. China
- CAS Key Laboratory of Renewable Energy, Guangzhou, 510640, P.R. China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, P.R. China
| | - Xinghua Zhang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, P.R. China
- CAS Key Laboratory of Renewable Energy, Guangzhou, 510640, P.R. China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, P.R. China
| | - Ying Xu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, P.R. China
- CAS Key Laboratory of Renewable Energy, Guangzhou, 510640, P.R. China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, P.R. China
| | - George W Huber
- Department of Chemical and Biological Engineering, University of Wisconsin, 1415 Engineering Drive, Madison, Wisconsin, 53706, USA
| | - Longlong Ma
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, P.R. China
- CAS Key Laboratory of Renewable Energy, Guangzhou, 510640, P.R. China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, P.R. China
| |
Collapse
|
25
|
Cell surface display of proteins on filamentous fungi. Appl Microbiol Biotechnol 2019; 103:6949-6972. [PMID: 31359105 DOI: 10.1007/s00253-019-10026-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/11/2019] [Accepted: 07/15/2019] [Indexed: 12/14/2022]
Abstract
Protein display approaches have been useful to endow the cell surface of yeasts with new catalytic activities so that they can act as enhanced whole-cell biocatalysts. Despite their biotechnological potential, protein display technologies remain poorly developed for filamentous fungi. The lignocellulolytic character of some of them coupled to the cell surface biosynthesis of valuable molecules by a single or a cascade of several displayed enzymes is an appealing prospect. Cell surface protein display consists in the co-translational fusion of a functional protein (passenger) to an anchor one, usually a cell-wall-resident protein. The abundance, spacing, and local environment of the displayed enzymes-determined by the relationship of the anchor protein with the structure and dynamics of the engineered cell wall-are factors that influence the performance of display-based biocatalysts. The development of protein display strategies in filamentous fungi could be based on the field advances in yeasts; however, the unique composition, structure, and biology of filamentous fungi cell walls require the customization of the approach to those microorganisms. In this prospective review, the cellular bases, the design principles, and the available tools to foster the development of cell surface protein display technologies in filamentous fungi are discussed.
Collapse
|
26
|
Song X, Li Y, Wu Y, Cai M, Liu Q, Gao K, Zhang X, Bai Y, Xu H, Qiao M. Metabolic engineering strategies for improvement of ethanol production in cellulolytic Saccharomyces cerevisiae. FEMS Yeast Res 2019; 18:5071949. [PMID: 30107496 DOI: 10.1093/femsyr/foy090] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/09/2018] [Indexed: 01/31/2023] Open
Abstract
As a traditional ethanol-producing microorganism, Saccharomyces cerevisiae is an ideal host for consolidated bioprocessing. However, expression of heterologous cellulase increases the metabolic burden in yeast, which results in low cellulase activity and poor cellulose degradation efficiency. In this study, cellulase-expressing yeast strains that could efficiently degrade different cellulosic substrates were created by optimizing cellulase ratios through a POT1-mediated δ-integration strategy. Metabolic engineering strategies, including optimization of codon usage, promoter and signal peptide, were also included in this system. We also confirmed that heterologous cellulase expression in cellulosic yeast induced the unfolded protein response. To enhance protein folding capacity, the endoplasmic reticulum chaperone protein BiP and the disulfide isomerase Pdi1p were overexpressed, and the Golgi membrane protein Ca2+/Mn2+ ATPase Pmr1p was disrupted to decrease the glycosylation of cellulase. The resultant strain, SK18-3, could produce 5.4 g L-1 ethanol with carboxymethyl-cellulose. Strain SK12-50 achieved 4.7 g L-1 ethanol production with phosphoric acid swollen cellulose hydrolysis. When Avicel was used as the substrate, 3.8 g L-1 ethanol (75% of the theoretical maximum yield) was produced in SK13-34. This work will significantly increase our knowledge of how to engineer optimal yeast strains for biofuel production from cellulosic biomass.
Collapse
Affiliation(s)
- Xiaofei Song
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin 300071, China
| | - Yuanzi Li
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin 300071, China
| | - Yuzhen Wu
- Department of Microbiology, College of Life Sciences, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin 300071, China
| | - Miao Cai
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin 300071, China
| | - Quanli Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin 300071, China
| | - Kai Gao
- Tianjin Academy of Environmental Sciences, No. 17 Fukang Road, Nankai District, Tianjin 300071, China
| | - Xiuming Zhang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin 300071, China
| | - Yanling Bai
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin 300071, China
| | - Haijin Xu
- Department of Microbiology, College of Life Sciences, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin 300071, China
| | - Mingqiang Qiao
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin 300071, China
| |
Collapse
|
27
|
Zhang Y, Min Z, Qin Y, Ye DQ, Song YY, Liu YL. Efficient Display of Aspergillus niger β-Glucosidase on Saccharomyces cerevisiae Cell Wall for Aroma Enhancement in Wine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5169-5176. [PMID: 30997795 DOI: 10.1021/acs.jafc.9b00863] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The aim of this study was to evaluate the potential application of cell-surface-displayed β-glucosidase (BGL) in wine aroma enhancement. Gene cassettes for the surface display of Aspergillus niger BGL were constructed using different promoters ( GPD and SED1) and glycosylphosphatidylinositol (GPI) anchoring regions (Sag1, Sed1, and Cwp2). The differences in surface-display cassettes, the tolerance of the displayed BGL to typical winemaking conditions, and the hydrolysis capacity for the liberation of grape aroma glycosides were analyzed. Results revealed that simultaneous utilization of GPD promoter and Sed1 anchoring domain achieved the highest BGL activity. The displayed BGL exhibited relatively high activity at pH 3.0 and at glucose concentration below 2.5% (w/v), compared to commercial enzyme (AR 2000), but exhibited no significant difference under varying ethanol concentrations. Furthermore, the surface-displayed BGL presented better ability to release free terpenols compared to AR 2000. Therefore, a surface-display system could provide a new viable solution for enhancing wine aroma.
Collapse
Affiliation(s)
- Yang Zhang
- College of Enology , Northwest A&F University , Yangling 712100 , Shaanxi , People's Republic of China
| | - Zhuo Min
- College of Enology , Northwest A&F University , Yangling 712100 , Shaanxi , People's Republic of China
| | - Yi Qin
- College of Enology , Northwest A&F University , Yangling 712100 , Shaanxi , People's Republic of China
| | - Dong-Qing Ye
- College of Enology , Northwest A&F University , Yangling 712100 , Shaanxi , People's Republic of China
| | - Yu-Yang Song
- College of Enology , Northwest A&F University , Yangling 712100 , Shaanxi , People's Republic of China
| | - Yan-Lin Liu
- College of Enology , Northwest A&F University , Yangling 712100 , Shaanxi , People's Republic of China
| |
Collapse
|
28
|
Zhang S, Xu Z, Wang T, Kong J. Endoglucanase improve the growth of homofermentative Lactobacillus spp. in ensilages. J Biotechnol 2019; 295:55-62. [PMID: 30853632 DOI: 10.1016/j.jbiotec.2019.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/25/2019] [Accepted: 02/05/2019] [Indexed: 10/27/2022]
Abstract
Endoglucanase, an important component of cellulases, is used as additives in ensiling of forage crops. However, its detailed role is unclear in ensilages. In the present study, two endoglucanases Cel5 and Cel9 produced by strain Paenibacillus panacisoli SDMCC050309, previously isolated from ensiled corn stover, were identified in the cultures by microcrystalline cellulose absorption coupled with zymogram analysis. After heterologously expressed in Escherichia coli DE3 and purified, these two proteins were biochemically characterized. Cel5 was 61 kDa and showed maximal activity at pH 7.0 and 45 °C, while the maximum activity was at pH 8.0 and 65 °C for Cel9 with 97 kDa in size. Both of them could degrade carboxymethyl cellulose into cellooligosaccharides, in which cellobiose and cellotriose could be used as substrates for the growth of homofermentative strains Lactobacillus plantarum CGMCC6888 and L. farciminis CCTCC AB2016237, but not for the heterofermentative strains L. brevis SDMCC050297 and L. parafarraginis SDMCC050300. Therefore, we concluded that the added endoglucanase contributed to enhance the growth of homofermentative lactic acid bacteria for high level of lactic acid production in ensilages.
Collapse
Affiliation(s)
- Susu Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China
| | - Zhenshang Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, PR China
| | - Ting Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, PR China
| | - Jian Kong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
29
|
Meng D, Wu R, Wang J, Zhu Z, You C. Acceleration of cellodextrin phosphorolysis for bioelectricity generation from cellulosic biomass by integrating a synthetic two-enzyme complex into an in vitro synthetic enzymatic biosystem. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:267. [PMID: 31737096 PMCID: PMC6849236 DOI: 10.1186/s13068-019-1607-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/01/2019] [Indexed: 05/17/2023]
Abstract
BACKGROUND Cellulosic biomass, the earth's most abundant renewable resource, can be used as substrates for biomanufacturing biofuels or biochemicals via in vitro synthetic enzymatic biosystems in which the first step is the enzymatic phosphorolysis of cellodextrin to glucose 1-phosphate (G1P) by cellodextrin phosphorylase (CDP). However, almost all the CDPs prefer cellodextrin synthesis to phosphorolysis, resulting in the low reaction rate of cellodextrin phosphorolysis for biomanufacturing. RESULTS To increase the reaction rate of cellodextrin phosphorolysis, synthetic enzyme complexes containing CDP and phosphoglucomutase (PGM) were constructed to convert G1P to glucose 6-phosphate (G6P) rapidly, which is an important intermediate for biomanufacturing. Four self-assembled synthetic enzyme complexes were constructed with different spatial organizations based on the high-affinity and high-specific interaction between cohesins and dockerins from natural cellulosomes. Thus, the CDP-PGM enzyme complex with the highest enhancement of initial reaction rate was integrated into an in vitro synthetic enzymatic biosystem for generating bioelectricity from cellodextrin. The in vitro biosystem containing the best CDP-PGM enzyme complex exhibited a much higher current density (3.35-fold) and power density (2.14-fold) than its counterpart biosystem containing free CDP and PGM mixture. CONCLUSIONS Hereby, we first reported bioelectricity generation from cellulosic biomass via in vitro synthetic enzymatic biosystems. This work provided a strategy of how to link non-energetically favorable reaction (cellodextrin phosphorolysis) and energetically favorable reaction (G1P to G6P) together to circumvent unfavorable reaction equilibrium and shed light on improving the reaction efficiency of in vitro synthetic enzymatic biosystems through the construction of synthetic enzyme complexes.
Collapse
Affiliation(s)
- Dongdong Meng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308 People’s Republic of China
| | - Ranran Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308 People’s Republic of China
| | - Juan Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308 People’s Republic of China
| | - Zhiguang Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308 People’s Republic of China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049 People’s Republic of China
| | - Chun You
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308 People’s Republic of China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049 People’s Republic of China
| |
Collapse
|
30
|
Kalbarczyk KZ, Mazeau EJ, Rapp KM, Marchand N, Koffas MAG, Collins CH. Engineering Bacillus megaterium Strains To Secrete Cellulases for Synergistic Cellulose Degradation in a Microbial Community. ACS Synth Biol 2018; 7:2413-2422. [PMID: 30226981 DOI: 10.1021/acssynbio.8b00186] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Recent environmental concerns have intensified the need to develop systems to degrade waste biomass for use as an inexpensive carbon source for microbial chemical production. Current approaches to biomass utilization rely on pretreatment processes that include expensive enzymatic purification steps for the requisite cellulases. We aimed to engineer a synthetic microbial community to synergistically degrade cellulose by compartmentalizing the system with multiple specialized Bacillus megaterium strains. EGI1, an endoglucanase, and Cel9AT, a multimodular cellulase, were targeted for secretion from B. megaterium. A small library of signal peptides (SPs) with five amino acid linkers was selected to tag each cellulase for secretion from B. megaterium. Cellulase activity against amorphous cellulose was confirmed through a series of bioassays, and the most active SP constructs were identified as EGI1 with the LipA SP and Cel9AT with the YngK SP. The activity of the optimized cellulase secretion strains was characterized individually and in tandem to assess synergistic cellulolytic activity. The combination of EGI1 and Cel9AT yielded higher activity than either single cellulase. A coculture of EGI1 and Cel9AT secreting B. megaterium strains demonstrated synergistic behavior with higher activity than either monoculture. This cellulose degradation module can be further integrated with bioproduct synthesis modules to build complex systems for the production of high value molecules.
Collapse
Affiliation(s)
- Karolina Z. Kalbarczyk
- Center for Biotechnology and Interdisciplinary Studies and Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Emily J. Mazeau
- Center for Biotechnology and Interdisciplinary Studies and Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Kent M. Rapp
- Center for Biotechnology and Interdisciplinary Studies and Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Nicholas Marchand
- Center for Biotechnology and Interdisciplinary Studies and Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Mattheos A. G. Koffas
- Center for Biotechnology and Interdisciplinary Studies and Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Cynthia H. Collins
- Center for Biotechnology and Interdisciplinary Studies and Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
31
|
Zhang B, Karnik R, Donald N, Blatt MR. A GPI Signal Peptide-Anchored Split-Ubiquitin (GPS) System for Detecting Soluble Bait Protein Interactions at the Membrane. PLANT PHYSIOLOGY 2018; 178:13-17. [PMID: 30037807 PMCID: PMC6130019 DOI: 10.1104/pp.18.00577] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/12/2018] [Indexed: 05/20/2023]
Abstract
Bait fusion proteins with a glycosyl-phosphatidylinositol signal sequence anchor enable effective split ubiquitin screening for interactions with otherwise soluble membrane proteins.
Collapse
Affiliation(s)
- Ben Zhang
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Rucha Karnik
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Naomi Donald
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
32
|
Zhou J, Zhu P, Hu X, Lu H, Yu Y. Improved secretory expression of lignocellulolytic enzymes in Kluyveromyces marxianus by promoter and signal sequence engineering. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:235. [PMID: 30279722 PMCID: PMC6116501 DOI: 10.1186/s13068-018-1232-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/20/2018] [Indexed: 06/05/2023]
Abstract
BACKGROUND Taking into account its thermotolerance, high growth rate, and broad substrate spectrum, Kluyveromyces marxianus can be considered an ideal consolidated bioprocessing (CBP). A major obstacle to ethanol production using K. marxianus is the low production of lignocellulolytic enzymes, which reduces the cellulose hydrolysis and ethanol production. Thus, further improvement of enzyme expression and secretion is essential. RESULTS To improve the expression of lignocellulolytic enzymes, the inulinase promoter and signal sequence from K. marxianus was optimized through mutagenesis. A T(-361)A mutation inside the promoter, a deletion of AT-rich region inside 5'UTR (UTR∆A), and a P10L substitution in the signal sequence increased the secretory expression of the feruloyl esterase Est1E by up to sixfold. T(-361)A and UTR∆A increased the mRNA expression, while the P10L substitution extended the hydrophobic core of signal sequence and promoted secretion of mature protein. P10L and T(-361)A mutations increased secretory expressions of other types of lignocellulolytic enzymes by up to threefold, including endo-1,4-β-glucanase RuCelA, endo-1,4-β-endoxylanase Xyn-CDBFV, and endo-1,4-β-mannanase MAN330. During the fed-batch fermentation of strains carrying optimized modules, the peak activities of RuCelA, Xyn-CDBFV, MAN330, and Est1E reached 24 U/mL, 25,600 U/mL, 10,200 U/mL, and 1220 U/mL, respectively. Importantly, higher yield of enzymes by optimized promoter and signal sequence were achieved in all tested carbon sources, including the major end products of lignocellulose saccharification and fermentation, with growth on xylose resulting in the highest production. CONCLUSIONS The engineered promoter and signal sequence presented increased secretory expressions of different lignocellulolytic enzymes in K. marxianus by means of various carbon resources. Activities of lignocellulolytic enzymes in fed-batch fermentation were the highest activities reported for K. marxianus so far. Our engineered modules are valuable in producing lignocellulolytic enzymes by K. marxianus and in constructing efficient CBP strains for cellulosic ethanol production.
Collapse
Affiliation(s)
- Jungang Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438 China
| | - Peixia Zhu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438 China
| | - Xiaoyue Hu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438 China
| | - Hong Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438 China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Shanghai, 200237 China
| | - Yao Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438 China
| |
Collapse
|
33
|
Endo A, Kurinomaru T, Shiraki K. Hyperactivation of serine proteases by the Hofmeister effect. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.05.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Jayakody LN, Liu JJ, Yun EJ, Turner TL, Oh EJ, Jin YS. Direct conversion of cellulose into ethanol and ethyl-β-d-glucoside via engineered Saccharomyces cerevisiae. Biotechnol Bioeng 2018; 115:2859-2868. [PMID: 30011361 DOI: 10.1002/bit.26799] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/02/2018] [Accepted: 07/02/2018] [Indexed: 12/13/2022]
Abstract
Simultaneous saccharification and fermentation (SSF) of cellulose via engineered Saccharomyces cerevisiae is a sustainable solution to valorize cellulose into fuels and chemicals. In this study, we demonstrate the feasibility of direct conversion of cellulose into ethanol and a biodegradable surfactant, ethyl-β-d-glucoside, via an engineered yeast strain (i.e., strain EJ2) expressing heterologous cellodextrin transporter (CDT-1) and intracellular β-glucosidase (GH1-1) originating from Neurospora crassa. We identified the formation of ethyl-β-d-glucoside in SSF of cellulose by the EJ2 strain owing to transglycosylation activity of GH1-1. The EJ2 strain coproduced 0.34 ± 0.03 g ethanol/g cellulose and 0.06 ± 0.00 g ethyl-β-d-glucoside/g cellulose at a rate of 0.30 ± 0.02 g·L-1 ·h-1 and 0.09 ± 01 g·L-1 ·h-1 , respectively, during the SSF of Avicel PH-101 cellulose, supplemented only with Celluclast 1.5 L. Herein, we report a possible coproduction of a value-added chemical (alkyl-glucosides) during SSF of cellulose exploiting the transglycosylation activity of GH1-1 in engineered S. cerevisiae. This coproduction could have a substantial effect on the overall technoeconomic feasibility of theSSF of cellulose.
Collapse
Affiliation(s)
- Lahiru N Jayakody
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado
| | - Jing-Jing Liu
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Eun Ju Yun
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Timothy Lee Turner
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Eun Joong Oh
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
35
|
Padkina MV, Sambuk EV. Prospects for the Application of Yeast Display in Biotechnology and Cell Biology (Review). APPL BIOCHEM MICRO+ 2018. [DOI: 10.1134/s0003683818040105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
36
|
Chen L, Du JL, Zhan YJ, Li JA, Zuo RR, Tian S. Consolidated bioprocessing for cellulosic ethanol conversion by cellulase-xylanase cell-surfaced yeast consortium. Prep Biochem Biotechnol 2018; 48:653-661. [PMID: 29995567 DOI: 10.1080/10826068.2018.1487846] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Consolidated bioprocessing (CBP) strategy was developed to construct a cell-surface displayed consortium for heterologously expressing functional lignocellulytic enzymes. The reaction system composed of two engineered yeast strains: Y5/XynII-XylA (co-displaying two types of xylanases) and Y5/EG-CBH-BGL (co-displaying three types of cellulases). The immobilization of recombinant fusion proteins and their cell-surface accessibility of were analyzed by flow cytometry and immunofluorescence. The feasibility of consolidated bioprocessing by using pretreated corn stover (CS) as substrate for direct bioconversion was further investigated, and the synergistic activity and proximity effect between cellulases and xylanases on lignocelluloses degradation were also discussed in this work. Without any commercial enzyme addition, the combined yeast consortium produced 1.61 g/L ethanol which achieved 64.7% of the theoretical ethanol yield during 144 h from steam-exploded CS. The results indicated that the assembly of cellulases and xylanases using a synthetic consortium capable of combined displaying lignocellulytic enzymes is a promising approach for simultaneous saccharification and fermentation to ethanol from lignocellulosic biomass.
Collapse
Affiliation(s)
- Le Chen
- a College of Life Science , Capital Normal University , Beijing , China
| | - Ji-Liang Du
- a College of Life Science , Capital Normal University , Beijing , China
| | - Yong-Jia Zhan
- a College of Life Science , Capital Normal University , Beijing , China
| | - Jian-An Li
- a College of Life Science , Capital Normal University , Beijing , China
| | - Ran-Ran Zuo
- a College of Life Science , Capital Normal University , Beijing , China
| | - Shen Tian
- a College of Life Science , Capital Normal University , Beijing , China
| |
Collapse
|
37
|
Liu H, Sun J, Chang JS, Shukla P. Engineering microbes for direct fermentation of cellulose to bioethanol. Crit Rev Biotechnol 2018; 38:1089-1105. [DOI: 10.1080/07388551.2018.1452891] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Hao Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China
| | - Jianliang Sun
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan, China
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
38
|
The Role of Yeast-Surface-Display Techniques in Creating Biocatalysts for Consolidated BioProcessing. Catalysts 2018. [DOI: 10.3390/catal8030094] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Climate change is directly linked to the rapid depletion of our non-renewable fossil resources and has posed concerns on sustainability. Thus, imploring the need for us to shift from our fossil based economy to a sustainable bioeconomy centered on biomass utilization. The efficient bioconversion of lignocellulosic biomass (an ideal feedstock) to a platform chemical, such as bioethanol, can be achieved via the consolidated bioprocessing technology, termed yeast surface engineering, to produce yeasts that are capable of this feat. This approach has various strategies that involve the display of enzymes on the surface of yeast to degrade the lignocellulosic biomass, then metabolically convert the degraded sugars directly into ethanol, thus elevating the status of yeast from an immobilization material to a whole-cell biocatalyst. The performance of the engineered strains developed from these strategies are presented, visualized, and compared in this article to highlight the role of this technology in moving forward to our quest against climate change. Furthermore, the qualitative assessment synthesized in this work can serve as a reference material on addressing the areas of improvement of the field and on assessing the capability and potential of the different yeast surface display strategies on the efficient degradation, utilization, and ethanol production from lignocellulosic biomass.
Collapse
|
39
|
Kim ES, Kim BS, Kim KY, Woo HM, Lee SM, Um Y. Aerobic and anaerobic cellulose utilization by Paenibacillus sp. CAA11 and enhancement of its cellulolytic ability by expressing a heterologous endoglucanase. J Biotechnol 2018; 268:21-27. [PMID: 29339118 DOI: 10.1016/j.jbiotec.2018.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/09/2018] [Accepted: 01/12/2018] [Indexed: 12/21/2022]
Abstract
For cost-effective lignocellulosic biofuel/chemical production, consolidated bioprocessing (CBP)-enabling microorganisms utilizing cellulose as well as producing biofuel/chemical are required. A novel strain Paenibacillus sp. CAA11 isolated from sediment was found to be not only as a cellulose degrader under both aerobic and strict anaerobic conditions but also as a producer of cellulosic biofuel/chemicals. Paenibacillus sp. CAA11 secreted cellulolytic enzymes by its own secretion system and produced ethanol as well as short-chain organic acids (formic acid, acetic acid, lactic acid) from cellulose. Cellulolytic activity of the strain was significantly enhanced by expressing a heterologous endoglucanase 168Cel5 from Bacillus subtilis under both aerobic and anaerobic conditions. The strain harboring the 168cel5 gene revealed 2-fold bigger halo zone on Congo-red plate and 1.75-fold more aerobic cellulose utilization in liquid medium compared with the negative control. Notably, under anaerobic conditions, the recombinant strain expressing 168Cel5 consumed 1.83-fold more cellulose (5.10 g/L) and produced 5-fold more ethanol (0.65 g/L) along with 5-fold more total acids (1.6 g/L) compared with the control, resulting 2.73-fold higher yields. This result demonstrates the potential of Paenibacillus sp. CAA11 as a suitable aerobic and anaerobic CBP-enabling microbe with cellulolytic production of ethanol and short-chain organic acids.
Collapse
Affiliation(s)
- Eun Sook Kim
- Clean Energy Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Byeong-Soo Kim
- Clean Energy Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea; Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Ki-Yeon Kim
- Clean Energy Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea; Clean Energy and Chemical Engineering, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Han-Min Woo
- Department of Food Science and Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Sun-Mi Lee
- Clean Energy Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea; Green School (Graduate School of Energy and Environment), Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Youngsoon Um
- Clean Energy Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea; Clean Energy and Chemical Engineering, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea.
| |
Collapse
|
40
|
Onodera K, Hama S, Yoshida A, Noda H, Kondo A. Development of fed-batch process for high-yielding β-glucosidase displayed on cell surface of industrial yeast Saccharomyces cerevisiae. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.09.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
41
|
Amoah J, Ishizue N, Ishizaki M, Yasuda M, Takahashi K, Ninomiya K, Yamada R, Kondo A, Ogino C. Development and evaluation of consolidated bioprocessing yeast for ethanol production from ionic liquid-pretreated bagasse. BIORESOURCE TECHNOLOGY 2017; 245:1413-1420. [PMID: 28610972 DOI: 10.1016/j.biortech.2017.05.171] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 06/07/2023]
Abstract
This work aimed to study the use of consolidated bioprocess (CBP) yeast expressing five cellulase genes (BGL, XYNII, EGII, CBHI and CBHII) for ethanol production from ionic liquid-pretreated bagasse and Laubholz unbleached Kraft pulp (LUKP). A proposed screening method shows that the optimal cellulase ratio varies for each biomass substrate, and thus it is essential to breed CBP yeast having optimal cellulase-displaying ratio for the target biomass. CBP yeast specialized towards bagasse produced 0.93g/l ethanol whiles that for LUKP produced 0.71g/l ethanol, which is approximately 4 and 2-fold, respectively, higher than that of the wild type. The cell-surface displayed enzymes synergistically contributed to the degradation of the biomass. The developed CBP yeast is a potential cheap source for consolidated bioprocessing of ethanol and the proposed screening method can be used for matching CBP yeast to a target biomass.
Collapse
Affiliation(s)
- Jerome Amoah
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Naoya Ishizue
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Miki Ishizaki
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Misa Yasuda
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Kenji Takahashi
- Division of Material Engineering, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Kazuaki Ninomiya
- Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Ryosuke Yamada
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuencho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan; Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan.
| |
Collapse
|
42
|
Yadav SK. Technological advances and applications of hydrolytic enzymes for valorization of lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2017; 245:1727-1739. [PMID: 28552567 DOI: 10.1016/j.biortech.2017.05.066] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 06/07/2023]
Abstract
Hydrolytic enzymes are indispensable tools in the production of various foodstuffs, drugs, and consumables owing to their applications in almost every industrial process nowadays. One of the foremost areas of interest involving the use of hydrolytic enzymes is in the transformation of lignocellulosic biomass into value added products. However, limitations of the processes due to inadequate enzyme activity and stability with a narrow range of pH and temperature optima often limit their effective usage. The innovative technologies, involving manipulation of enzyme activity and stability through mutagenesis, genetic engineering and metagenomics lead to a major leap in all the fields using hydrolytic enzymes. This article provides recent advancement towards the isolation and use of microbes for lignocellulosic biomass utilisation, microbes producing the hydrolytic enzymes, the modern age technologies used to manipulate and enhance the hydrolytic enzyme activity and the applications of such enzymes in value added products development from lignocellulosic biomass.
Collapse
Affiliation(s)
- Sudesh Kumar Yadav
- Center of Innovative and Applied Bioprocessing (CIAB), Knowledge City, Sector-81, Mohali, India.
| |
Collapse
|
43
|
Bamba T, Inokuma K, Hasunuma T, Kondo A. Enhanced cell-surface display of a heterologous protein using SED1 anchoring system in SED1-disrupted Saccharomyces cerevisiae strain. J Biosci Bioeng 2017; 125:306-310. [PMID: 29175124 DOI: 10.1016/j.jbiosc.2017.09.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 01/22/2023]
Abstract
Yeast displaying enzymes on the cell surface are used for developing whole-cell biocatalysts. High enzyme activity on the cell surface is required in certain applications such as direct ethanol production from lignocellulosic materials. However, the cell surface enzyme activity is limited by several factors, one of which is the protein amount of the yeast cell wall. In this study, we attempted to improve the incorporation capacity of a displayed heterologous enzyme by disrupting a native cell-wall protein. β-Glucosidase (BGL1) from Aspergillus aculeatus was fused with Saccharomyces cerevisiae Sed1 and displayed on the cell surface of S. cerevisiae BY4741 strain and its SED1 disruptant. Sed1 is one of the most abundant stationary phase yeast cell wall protein. A time course analysis revealed that BGL1 activity of the control strain reached saturation after 48 h of cultivation. In contrast, the BGL1 activity of the SED1 disruptant increased until 72 h of cultivation and was 22% higher than that of the control strain. We also performed relative quantification of cell wall proteins of these strains by nanoscale ultra pressure liquid chromatography electrospray ionization quadrupole time-of-flight tandem mass spectrometry (nano-UPLC-MSE). The amount of the cell wall-associated BGL1 per unit dry cell-weight of the SED1 disruptant was 19% higher than that of the control strain. These results suggested that the incorporation capacity of the cell wall for BGL1 was increased by disruption of SED1. Disruption of SED1 would be a promising approach for improving display efficiency of heterologous protein fused with Sed1.
Collapse
Affiliation(s)
- Takahiro Bamba
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Kentaro Inokuma
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Biomass Engineering Program, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
44
|
Sorokina KN, Samoylova YV, Piligaev AV, Sivakumar U, Parmon VN. New methods for the one-pot processing of polysaccharide components (cellulose and hemicelluloses) of lignocellulose biomass into valuable products. Part 2: Biotechnological approaches to the conversion of polysaccharides and monosaccharides into the valuable industrial chemicals. CATALYSIS IN INDUSTRY 2017. [DOI: 10.1134/s2070050417030126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Xu Q, Knoshaug EP, Wang W, Alahuhta M, Baker JO, Yang S, Vander Wall T, Decker SR, Himmel ME, Zhang M, Wei H. Expression and secretion of fungal endoglucanase II and chimeric cellobiohydrolase I in the oleaginous yeast Lipomyces starkeyi. Microb Cell Fact 2017; 16:126. [PMID: 28738851 PMCID: PMC5525229 DOI: 10.1186/s12934-017-0742-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 07/13/2017] [Indexed: 11/29/2022] Open
Abstract
Background Lipomyces starkeyi is one of the leading lipid-producing microorganisms reported to date; its genetic transformation was only recently reported. Our aim is to engineer L. starkeyi to serve in consolidated bioprocessing (CBP) to produce lipid or fatty acid-related biofuels directly from abundant and low-cost lignocellulosic substrates. Results To evaluate L. starkeyi in this role, we first conducted a genome analysis, which revealed the absence of key endo- and exocellulases in this yeast, prompting us to select and screen four signal peptides for their suitability for the overexpression and secretion of cellulase genes. To compensate for the cellulase deficiency, we chose two prominent cellulases, Trichoderma reesei endoglucanase II (EG II) and a chimeric cellobiohydrolase I (TeTrCBH I) formed by fusion of the catalytic domain from Talaromyces emersonii CBH I with the linker peptide and cellulose-binding domain from T. reesei CBH I. The systematically tested signal peptides included three peptides from native L. starkeyi and one from Yarrowia lipolytica. We found that all four signal peptides permitted secretion of active EG II. We also determined that three of these signal peptides worked for expression of the chimeric CBH I; suggesting that our design criteria for selecting these signal peptides was effective. Encouragingly, the Y. lipolytica signal peptide was able to efficiently guide secretion of the chimeric TeTrCBH I protein from L. starkeyi. The purified chimeric TeTrCBH I showed high activity against the cellulose in pretreated corn stover and the purified EG II showed high endocellulase activity measured by the CELLG3 (Megazyme) method. Conclusions Our results suggest that L. starkeyi is capable of expressing and secreting core fungal cellulases. Moreover, the purified EG II and chimeric TeTrCBH I displayed significant and potentially useful enzymatic activities, demonstrating that engineered L. starkeyi has the potential to function as an oleaginous CBP strain for biofuel production. The effectiveness of the tested secretion signals will also benefit future secretion of other heterologous proteins in L. starkeyi and, given the effectiveness of the cross-genus secretion signal, possibly other oleaginous yeasts as well. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0742-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qi Xu
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Eric P Knoshaug
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Wei Wang
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Markus Alahuhta
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - John O Baker
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Shihui Yang
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.,Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China
| | - Todd Vander Wall
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Stephen R Decker
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Michael E Himmel
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Min Zhang
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.
| | - Hui Wei
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.
| |
Collapse
|
46
|
Synergies in coupled hydrolysis and fermentation of cellulose using a Trichoderma reesei enzyme preparation and a recombinant Saccharomyces cerevisiae strain. World J Microbiol Biotechnol 2017; 33:140. [DOI: 10.1007/s11274-017-2308-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/01/2017] [Indexed: 11/27/2022]
|
47
|
Gao G, Mao RQ, Xiao Y, Zhou J, Liu YH, Li G. Efficient yeast cell-surface display of an endoglucanase of Aspergillus flavus and functional characterization of the whole-cell enzyme. World J Microbiol Biotechnol 2017; 33:114. [PMID: 28488197 DOI: 10.1007/s11274-016-2182-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 11/21/2016] [Indexed: 11/26/2022]
Abstract
The endoglucanase gene endo753 from Aspergillus flavus NRRL3357 strains was cloned, and the recombinant Endo753 was displayed on the cell surface of Saccharomyces cerevisiae EBY100 strain by the C-terminal fusion using Aga2p protein as anchor attachment tag. The results of indirect immunofluorescence and Western blot confirmed the expression and localization of Endo753 on the yeast cell surface. The hydrolytic activity test of the whole-cell enzyme revealed that Endo753 immobilized on the yeast cell surface had high endoglucanase activity. The functional characterization of the whole-cell enzyme was investigated, and the whole-cell enzyme displayed the maximum activity at pH 8 and 50 °C. The enzyme was stable in a pH range of 7.0-10.0. Furthermore, the whole-cell enzyme displayed high thermostability below 50 °C and moderate stability between 50 and 70 °C. These properties make endo753 a good candidate in bioethanol production from lignocellulosic materials after displaying on the yeast cell surface.
Collapse
Affiliation(s)
- Gang Gao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Run-Qian Mao
- Guangdong Entomological Institute, Guangzhou, 510260, People's Republic of China.
| | - Yue Xiao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Jing Zhou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Yu-Huan Liu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Gang Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
48
|
Lim S, Glasgow JE, Interrante MF, Storm EM, Cochran JR. Dual display of proteins on the yeast cell surface simplifies quantification of binding interactions and enzymatic bioconjugation reactions. Biotechnol J 2017; 12:10.1002/biot.201600696. [PMID: 28299901 PMCID: PMC5708543 DOI: 10.1002/biot.201600696] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 11/12/2022]
Abstract
Yeast surface display, a well-established technology for protein analysis and engineering, involves expressing a protein of interest as a genetic fusion to either the N- or C-terminus of the yeast Aga2p mating protein. Historically, yeast-displayed protein variants are flanked by peptide epitope tags that enable flow cytometric measurement of construct expression using fluorescent primary or secondary antibodies. Here, we built upon this technology to develop a new yeast display strategy that comprises fusion of two different proteins to Aga2p, one to the N-terminus and one to the C-terminus. This approach allows an antibody fragment, ligand, or receptor to be directly coupled to expression of a fluorescent protein readout, eliminating the need for antibody-staining of epitope tags to quantify yeast protein expression levels. We show that this system simplifies quantification of protein-protein binding interactions measured on the yeast cell surface. Moreover, we show that this system facilitates co-expression of a bioconjugation enzyme and its corresponding peptide substrate on the same Aga2p construct, enabling enzyme expression and catalytic activity to be measured on the surface of yeast.
Collapse
Affiliation(s)
- Sungwon Lim
- Dept. of Bioengineering, Schools of Engineering and Medicine, Stanford University, Stanford, CA, USA
| | - Jeff E. Glasgow
- Dept. of Bioengineering, Schools of Engineering and Medicine, Stanford University, Stanford, CA, USA
- Joint Initiative for Metrology in Biology, Stanford, CA, USA
- Genome-scale Measurements Group, National Institute of Standards and Technology, Stanford, CA, USA
| | | | - Erica M. Storm
- School of Medicine, Stanford University, Stanford, CA, USA
| | - Jennifer R. Cochran
- Dept. of Bioengineering, Schools of Engineering and Medicine, Stanford University, Stanford, CA, USA
- Dept. of Chemical Engineering, School of Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
49
|
Waters JC, Nixon A, Dwyer M, Biffinger JC, Lee K. Developing elite Neurospora crassa strains for cellulosic ethanol production using fungal breeding. J Ind Microbiol Biotechnol 2017; 44:1137-1144. [PMID: 28429154 PMCID: PMC5511601 DOI: 10.1007/s10295-017-1941-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/27/2017] [Indexed: 01/14/2023]
Abstract
The demand for renewable and sustainable energy has generated considerable interest in the conversion of cellulosic biomass into liquid fuels such as ethanol using a filamentous fungus. While attempts have been made to study cellulose metabolism through the use of knock-out mutants, there have been no systematic effort to characterize natural variation for cellulose metabolism in ecotypes adapted to different habitats. Here, we characterized natural variation in saccharification of cellulose and fermentation in 73 ecotypes and 89 laboratory strains of the model fungus Neurospora crassa. We observed significant variation in both traits among natural and laboratory generated populations, with some elite strains performing better than the reference strain. In the F1 population N345, 15% of the population outperformed both parents with the top performing strain having 10% improvement in ethanol production. These results suggest that natural alleles can be exploited through fungal breeding for developing elite industrial strains for bioethanol production.
Collapse
Affiliation(s)
- Joshua C Waters
- Department of Biology, Rutgers, The State University of New Jersey, Camden, NJ, 08103, USA
| | - Andrew Nixon
- Center for Computational and Integrative Biology, Rutgers, The State University of New Jersey, Camden, NJ, 08103, USA
| | - Morgan Dwyer
- Department of Biology, Rutgers, The State University of New Jersey, Camden, NJ, 08103, USA
| | - Justin C Biffinger
- Chemistry Department, US Naval Research Laboratory, Washington D.C., 20375, USA
| | - Kwangwon Lee
- Department of Biology, Rutgers, The State University of New Jersey, Camden, NJ, 08103, USA.
- Center for Computational and Integrative Biology, Rutgers, The State University of New Jersey, Camden, NJ, 08103, USA.
| |
Collapse
|
50
|
Direct bioethanol production from wheat straw using xylose/glucose co-fermentation by co-culture of two recombinant yeasts. ACTA ACUST UNITED AC 2017; 44:453-464. [DOI: 10.1007/s10295-016-1893-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 12/22/2016] [Indexed: 10/20/2022]
Abstract
Abstract
To achieve a cost-effective bioconversion of lignocellulosic materials, a novel xylose/glucose co-fermentation process by co-culture of cellulose-utilizing recombinant Saccharomyces cerevisiae (S. cerevisiae) and xylan-utilizing recombinant Pichia pastoris (P. pastoris) was developed, in which ethanol was produced directly from wheat straw without additional hydrolytic enzymes. Recombinant S. cerevisiae coexpressing three types of cellulase and recombinant P. pastoris coexpressing two types of xylanase were constructed, respectively. All cellulases and xylanases were successfully expressed and similar extracellular activity was demonstrated. The maximum ethanol concentration of 32.6 g L−1 with the yield 0.42 g g−1 was achieved from wheat straw corresponding to 100 g L−1 of total sugar after 80 h co-fermentation, which corresponds to 82.6% of the theoretical yield. These results demonstrate that the direct and efficient ethanol production from lignocellulosic materials is accomplished by simultaneous saccharification (cellulose and hemicellulose) and co-fermentation (glucose and xylose) with the co-culture of the two recombinant yeasts.
Collapse
|