1
|
Holtz M, Rago D, Nedermark I, Hansson FG, Lehka BJ, Hansen LG, Marcussen NEJ, Veneman WJ, Ahonen L, Wungsintaweekul J, Acevedo-Rocha CG, Dirks RP, Zhang J, Keasling JD, Jensen MK. Metabolic engineering of yeast for de novo production of kratom monoterpene indole alkaloids. Metab Eng 2024; 86:135-146. [PMID: 39366478 DOI: 10.1016/j.ymben.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/04/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
Monoterpene indole alkaloids (MIAs) from Mitragyna speciosa ("kratom"), such as mitragynine and speciogynine, are promising novel scaffolds for opioid receptor ligands for treatment of pain, addiction, and depression. While kratom leaves have been used for centuries in South-East Asia as stimulant and pain management substance, the biosynthetic pathway of these psychoactives have only recently been partially elucidated. Here, we demonstrate the de novo production of mitragynine and speciogynine in Saccharomyces cerevisiae through the reconstruction of a five-step synthetic pathway from common MIA precursor strictosidine comprising fungal tryptamine 4-monooxygenase to bypass an unknown kratom hydroxylase. Upon optimizing cultivation conditions, a titer of ∼290 μg/L kratom MIAs from glucose was achieved. Untargeted metabolomics analysis of lead production strains led to the identification of numerous shunt products derived from the activity of strictosidine synthase (STR) and dihydrocorynantheine synthase (DCS), highlighting them as candidates for enzyme engineering to further improve kratom MIAs production in yeast. Finally, by feeding fluorinated tryptamine and expressing a human tailoring enzyme, we further demonstrate production of fluorinated and hydroxylated mitragynine derivatives with potential applications in drug discovery campaigns. Altogether, this study introduces a yeast cell factory platform for the biomanufacturing of complex natural and new-to-nature kratom MIAs derivatives with therapeutic potential.
Collapse
Affiliation(s)
- Maxence Holtz
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Daniela Rago
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ida Nedermark
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Frederik G Hansson
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Beata J Lehka
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Lea G Hansen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Nils E J Marcussen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | - Linda Ahonen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Juraithip Wungsintaweekul
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai Campus, 90112, Songkhla, Thailand
| | - Carlos G Acevedo-Rocha
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ron P Dirks
- Future Genomics Technologies, Leiden, 2333 BE, the Netherlands
| | - Jie Zhang
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Jay D Keasling
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark; Joint BioEnergy Institute, Emeryville, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Department of Chemical and Biomolecular Engineering, Department of Bioengineering, University of California, Berkeley, CA, USA.
| | - Michael K Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark.
| |
Collapse
|
2
|
Biermann AR, Hogan DA. Transcriptional Response of Candida auris to the Mrr1 Inducers Methylglyoxal and Benomyl. mSphere 2022; 7:e0012422. [PMID: 35473297 PMCID: PMC9241502 DOI: 10.1128/msphere.00124-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/18/2022] [Indexed: 11/20/2022] Open
Abstract
Candida auris is an urgent threat to human health due to its rapid spread in health care settings and its repeated development of multidrug resistance. Diseases that increase risk for C. auris infection, such as diabetes, kidney failure, or immunocompromising conditions, are associated with elevated levels of methylglyoxal (MG), a reactive dicarbonyl compound derived from several metabolic processes. In other Candida species, expression of MG reductase enzymes that catabolize and detoxify MG are controlled by Mrr1, a multidrug resistance-associated transcription factor, and MG induces Mrr1 activity. Here, we used transcriptomics and genetic assays to determine that C. auris MRR1a contributes to MG resistance, and that the main Mrr1a targets are an MG reductase and MDR1, which encodes a drug efflux protein. The C. auris Mrr1a regulon is smaller than Mrr1 regulons described in other species. In addition to MG, benomyl (BEN), a known Mrr1 stimulus, induces C. auris Mrr1 activity, and characterization of the MRR1a-dependent and -independent transcriptional responses revealed substantial overlap in genes that were differentially expressed in response to each compound. Additionally, we found that an MRR1 allele specific to one C. auris phylogenetic clade, clade III, encodes a hyperactive Mrr1 variant, and this activity correlated with higher MG resistance. C. auris MRR1a alleles were functional in Candida lusitaniae and were inducible by BEN, but not by MG, suggesting that the two Mrr1 inducers act via different mechanisms. Together, the data presented in this work contribute to the understanding of Mrr1 activity and MG resistance in C. auris. IMPORTANCE Candida auris is a fungal pathogen that has spread since its identification in 2009 and is of concern due to its high incidence of resistance against multiple classes of antifungal drugs. In other Candida species, the transcription factor Mrr1 plays a major role in resistance against azole antifungals and other toxins. More recently, Mrr1 has been recognized to contribute to resistance to methylglyoxal (MG), a toxic metabolic product that is often elevated in different disease states. MG can activate Mrr1 and its induction of Mdr1 which can protect against diverse challenges. The significance of this work lies in showing that MG is also an inducer of Mrr1 in C. auris, and that one of the major pathogenic C. auris lineages has an activating Mrr1 mutation that confers protection against MG.
Collapse
Affiliation(s)
- Amy R. Biermann
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Deborah A. Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
3
|
Zhang X, Nijland JG, Driessen AJM. Combined roles of exporters in acetic acid tolerance in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:67. [PMID: 35717394 PMCID: PMC9206328 DOI: 10.1186/s13068-022-02164-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 06/08/2022] [Indexed: 05/30/2023]
Abstract
Acetic acid is a growth inhibitor generated during alcoholic fermentation and pretreatment of lignocellulosic biomass, a major feedstock to produce bioethanol. An understanding of the acetic acid tolerance mechanisms is pivotal for the industrial production of bioethanol. One of the mechanisms for acetic acid tolerance is transporter-mediated secretion where individual transporters have been implicated. Here, we deleted the transporters Aqr1, Tpo2, and Tpo3, in various combinations, to investigate their combined role in acetic acid tolerance. Single transporter deletions did not impact the tolerance at mild acetic acid stress (20 mM), but at severe stress (50 mM) growth was decreased or impaired. Tpo2 plays a crucial role in acetic acid tolerance, while the AQR1 deletion has a least effect on growth and acetate efflux. Deletion of both Tpo2 and Tpo3 enhanced the severe growth defects at 20 mM acetic acid concomitantly with a reduced rate of acetate secretion, while TPO2 and/or TPO3 overexpression in ∆tpo2∆tpo3∆ restored the tolerance. In the deletion strains, the acetate derived from sugar metabolism accumulated intracellularly, while gene transcription analysis suggests that under these conditions, ethanol metabolism is activated while acetic acid production is reduced. The data demonstrate that Tpo2 and Tpo3 together fulfill an important role in acetate efflux and the acetic acid response.
Collapse
Affiliation(s)
- Xiaohuan Zhang
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, Netherlands
| | - Jeroen G Nijland
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, Netherlands
| | - Arnold J M Driessen
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, Netherlands.
| |
Collapse
|
4
|
Doughty TW, Yu R, Chao LFI, Qin Z, Siewers V, Nielsen J. A single chromosome strain of S. cerevisiae exhibits diminished ethanol metabolism and tolerance. BMC Genomics 2021; 22:688. [PMID: 34551706 PMCID: PMC8456624 DOI: 10.1186/s12864-021-07947-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Eukaryotic organisms, like the model yeast S. cerevisiae, have linear chromosomes that facilitate organization and protection of nuclear DNA. A recent work described a stepwise break/repair method that enabled fusion of the 16 chromosomes of S. cerevisiae into a single large chromosome. Construction of this strain resulted in the removal of 30 of 32 telomeres, over 300 kb of subtelomeric DNA, and 107 subtelomeric ORFs. Despite these changes, characterization of the single chromosome strain uncovered modest phenotypes compared to a reference strain. RESULTS This study further characterized the single chromosome strain and found that it exhibited a longer lag phase, increased doubling time, and lower final biomass concentration compared with a reference strain when grown on YPD. These phenotypes were amplified when ethanol was added to the medium or used as the sole carbon source. RNAseq analysis showed poor induction of genes involved in diauxic shift, ethanol metabolism, and fatty-acid ß-oxidation during growth on ethanol compared to the reference strain. Enzyme-constrained metabolic modeling identified decreased flux through the enzymes that are encoded by these poorly induced genes as a likely cause of diminished biomass accumulation. The diminished growth on ethanol for the single chromosome strain was rescued by nicotinamide, an inhibitor of sirtuin family deacetylases, which have been shown to silence gene expression in heterochromatic regions. CONCLUSIONS Our results indicate that sirtuin-mediated silencing in the single chromosome strain interferes with growth on non-fermentable carbon sources. We propose that the removal of subtelomeric DNA that would otherwise be bound by sirtuins leads to silencing at other loci in the single chromosome strain. Further, we hypothesize that the poorly induced genes in the single chromosome strain during ethanol growth could be silenced by sirtuins in wildtype S. cerevisiae during growth on glucose.
Collapse
Affiliation(s)
- Tyler W Doughty
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Rosemary Yu
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Lucy Fang-I Chao
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Zhongjun Qin
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Verena Siewers
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden.
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden.
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark.
- BioInnovation Institute, DK-2200, Copenhagen N, Denmark.
| |
Collapse
|
5
|
Stress Resistance and Adhesive Properties of Commercial Flor and Wine Strains, and Environmental Isolates of Saccharomyces cerevisiae. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7030188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Flor strains of Saccharomyces cerevisiae represent a special group of yeasts used for producing biologically aged wines. We analyzed the collection of commercial wine and flor yeast strains, as well as environmental strains isolated from the surface of grapes growing in vineyards, for resistance to abiotic stresses, adhesive properties, and the ability to form a floating flor. The degree of resistance of commercial strains to ethanol, acetaldehyde, and hydrogen peroxide was generally not higher than that of environmental isolates, some of which had high resistance to the tested stress agents. The relatively low degree of stress resistance of flor strains can be explained both by the peculiarities of their adaptive mechanisms and by differences in the nature of their exposure to various types of stress in the course of biological wine aging and under the experimental conditions we used. The hydrophobicity and adhesive properties of cells were determined by the efficiency of adsorption to polystyrene and the distribution of cells between the aqueous and organic phases. Flor strains were distinguished by a higher degree of hydrophobicity of the cell surface and an increased ability to adhere to polystyrene. A clear correlation between biofilm formation and adhesive properties was also observed for environmental yeast isolates. The overall results of this study indicate that relatively simple tests for cell hydrophobicity can be used for the rapid screening of new candidate flor strains in yeast culture collections and among environmental isolates.
Collapse
|
6
|
Liu ZL. Reasons for 2-furaldehyde and 5-hydroxymethyl-2-furaldehyde resistance in Saccharomyces cerevisiae: current state of knowledge and perspectives for further improvements. Appl Microbiol Biotechnol 2021; 105:2991-3007. [PMID: 33830300 DOI: 10.1007/s00253-021-11256-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/16/2021] [Accepted: 03/23/2021] [Indexed: 11/25/2022]
Abstract
Common toxic compounds 2-furaldehyde (furfural) and 5-hydroxymethyl-2-furaldehyde (HMF) are formed from dehydration of pentose and hexose, respectively, during decomposition of lignocellulosic biomass polymers. Furfural and HMF represent a major class of aldehyde toxic chemicals that inhibit microbial growth and interfere with subsequent fermentation for production of renewable fuels and chemicals. Understanding mechanisms of yeast tolerance aids development of tolerant strains as the most economic means to overcome the toxicity. This review updates current knowledge on yeast resistance to these toxic chemicals obtained from rapid advances in the past few years. Findings are largely exemplified by an adapted strain NRRL Y-50049 compared with its progenitor, the industrial yeast Saccharomyces cerevisiae type strain NRRL Y-12632. Newly characterized molecular phenotypes distinguished acquired resistant components of Y-50049 from innate stress response of its progenitor Y-12632. These findings also raised important questions on how to address more deeply ingrained changes in addition to local renovations for yeast adaptation. An early review on understandings of yeast tolerance to these inhibitory compounds is available and its contents omitted here to avoid redundancy. Controversial and confusing issues on identification of yeast resistance to furfural and HMF are further clarified aiming improved future research. Propositions and perspectives on research understanding molecular mechanisms of yeast resistance and future improvements are also presented. KEY POINTS: • Distinguished adapted resistance from innate stress response in yeast. • Defined pathway-based molecular phenotypes of yeast resistance. • Proposed genomic insight and perspectives on yeast resistance and adaptation.
Collapse
Affiliation(s)
- Z Lewis Liu
- National Center for Agricultural Utilization Research, Bioenergy Research Unit, USDA Agricultural Research Service, 1815 N. University Street, Peoria, IL, 61604, USA.
| |
Collapse
|
7
|
Abstract
Most of the yeast bypasses the developmental stage from simple unicellular yeast to elongated structure like hyphae. Regulation of this transition is governed by various quorum sensing and signalling molecules produced under different conditions of growth, that differ significantly, both physiologically and chemically. The evidence of fungal quorum sensing was uncovered ten years ago after the discovery of farnesol as first eukaryotic quorum sensing molecules in Candida albicans. In addition to farnesol, tyrosol was identified as second quorum sensing molecules in C. albicans controlling physiological activities. After the discovery of farnesol and tyrosol, regulation of morphogenesis through the production of chemical signalling molecules such as isoamyl alcohol, 2-phenylethyl alcohol, 1-dodecanol, E-nerolidol, etc. is reported in C. albicans. Some of the evidence suggests that the budding yeast Saccharomyces cerevisiae exhibits this type of regulation and the signals are regulated by aromatic alcohols which are the end product of amino acid metabolism. The effects of these molecules on morphogenesis are not similar in both yeasts, making comparisons hard. It is hypothesized that these signals works in microorganisms to derive a competitive advantage. Here, we present an example for utilization of competitive strategy by C. albicans and S. cerevisiae over other microorganisms.
Collapse
Affiliation(s)
| | - S Mohan Karuppayil
- Professor and Head, Department of Stem Cell & Regenerative Medicine and Medical Biotechnology, D Y Patil Education Society, Kasaba Bawada, Kolhapur, Maharashtra 416006, India
| |
Collapse
|
8
|
Rajakumar S, Suriyagandhi V, Nachiappan V. Impairment of MET transcriptional activators, MET4 and MET31 induced lipid accumulation in Saccharomyces cerevisiae. FEMS Yeast Res 2020; 20:5869667. [PMID: 32648914 DOI: 10.1093/femsyr/foaa039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/08/2020] [Indexed: 11/13/2022] Open
Abstract
The genes involved in the methionine pathway are closely associated with phospholipid homeostasis in yeast. The impact of the deletion of methionine (MET) transcriptional activators (MET31, MET32 and MET4) in lipid homeostasis is studied. Our lipid profiling data showed that aberrant phospholipid and neutral lipid accumulation occurred in met31∆ and met4∆ strains with low Met. The expression pattern of phospholipid biosynthetic genes such as CHO2, OPI3 and triacylglycerol (TAG) biosynthetic gene, DGA1 were upregulated in met31∆, and met4∆ strains when compared to wild type (WT). The accumulation of triacylglycerol and sterol esters (SE) content supports the concomitant increase in lipid droplets in met31∆ and met4∆ strains. However, excessive supplies of methionine (1 mM) in the cells lacking the MET transcriptional activators MET31 and MET4 ameliorates the abnormal lipogenesis and causes aberrant lipid accumulation. These findings implicate the methionine accessibility plays a pivotal role in lipid metabolism in the yeast model.
Collapse
Affiliation(s)
- Selvaraj Rajakumar
- Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli - 620 024, Tamil Nadu, India
| | - Vennila Suriyagandhi
- Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli - 620 024, Tamil Nadu, India
| | - Vasanthi Nachiappan
- Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli - 620 024, Tamil Nadu, India
| |
Collapse
|
9
|
Sobh A, Loguinov A, Stornetta A, Balbo S, Tagmount A, Zhang L, Vulpe CD. Genome-Wide CRISPR Screening Identifies the Tumor Suppressor Candidate OVCA2 As a Determinant of Tolerance to Acetaldehyde. Toxicol Sci 2020; 169:235-245. [PMID: 31059574 DOI: 10.1093/toxsci/kfz037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Acetaldehyde, a metabolite of ethanol, is a cellular toxicant and a human carcinogen. A genome-wide CRISPR-based loss-of-function screen in erythroleukemic K562 cells revealed candidate genetic contributors affecting acetaldehyde cytotoxicity. Secondary screening exposing cells to a lower acetaldehyde dose simultaneously validated multiple candidate genes whose loss results in increased sensitivity to acetaldehyde. Disruption of genes encoding components of various DNA repair pathways increased cellular sensitivity to acetaldehyde. Unexpectedly, the tumor suppressor gene OVCA2, whose function is unknown, was identified in our screen as a determinant of acetaldehyde tolerance. Disruption of the OVCA2 gene resulted in increased acetaldehyde sensitivity and higher accumulation of the acetaldehyde-derived DNA adduct N2-ethylidene-dG. Together these results are consistent with a role for OVCA2 in adduct removal and/or DNA repair.
Collapse
Affiliation(s)
- Amin Sobh
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida.,Department of Nutritional Sciences & Toxicology, Comparative Biochemistry Program, University of California, Berkeley, California
| | - Alex Loguinov
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Alessia Stornetta
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.,Division of Environmental Health Sciences, University of Minnesota, Minneapolis, Minnesota
| | - Abderrahmane Tagmount
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, California
| | - Chris D Vulpe
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
10
|
Mardanov AV, Eldarov MA, Beletsky AV, Tanashchuk TN, Kishkovskaya SA, Ravin NV. Transcriptome Profile of Yeast Strain Used for Biological Wine Aging Revealed Dynamic Changes of Gene Expression in Course of Flor Development. Front Microbiol 2020; 11:538. [PMID: 32308650 PMCID: PMC7145950 DOI: 10.3389/fmicb.2020.00538] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/12/2020] [Indexed: 01/08/2023] Open
Abstract
Flor strains of Saccharomyces cerevisiae are principal microbial agents responsible for biological wine aging used for production of sherry-like wines. The flor yeast velum formed on the surface of fortified fermented must is a major adaptive and technological characteristic of flor yeasts that helps them to withstanding stressful winemaking conditions and ensures specific biochemical and sensory oxidative alterations typical for sherry wines. We have applied RNAseq technology for transcriptome analysis of an industrial flor yeast strain at different steps of velum development over 71 days under experimental winemaking conditions. Velum growth and maturation was accompanied by accumulation of aldehydes and acetales. We have identified 1490 differentially expressed genes including 816 genes upregulated and 674 downregulated more than 2-fold at mature biofilm stage as compared to the early biofilm. Distinct expression patterns of genes involved in carbon and nitrogen metabolism, respiration, cell cycle, DNA repair, cell adhesion, response to various stresses were observed. Many genes involved in response to different stresses, oxidative carbon metabolism, high affinity transport of sugars, glycerol utilization, sulfur metabolism, protein quality control and recycling, cell wall biogenesis, apoptosis were induced at the mature biofilm stage. Strong upregulation was observed for FLO11 flocculin while expression of other flocculins remained unaltered or moderately downregulated. Downregulated genes included those for proteins involved in glycolysis, transportation of ions, metals, aminoacids, sugars, indicating repression of some major transport and metabolic process at the mature biofilm stage. Presented results are important for in-depth understanding of cell response elicited by velum formation and sherry wine manufacturing conditions, and for the comprehension of relevant regulatory mechanisms. Such knowledge may help to better understand the molecular mechanisms that flor yeasts use to adapt to winemaking environments, establish the functions of previously uncharacterized genes, improve the technology of sherry- wine production, and find target genes for strain improvement.
Collapse
Affiliation(s)
- Andrey V Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Mikhail A Eldarov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Alexey V Beletsky
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Tatiana N Tanashchuk
- Research Institute of Viticulture and Winemaking "Magarach" of the Russian Academy of Sciences, Yalta, Russia
| | - Svetlana A Kishkovskaya
- Research Institute of Viticulture and Winemaking "Magarach" of the Russian Academy of Sciences, Yalta, Russia
| | - Nikolai V Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
11
|
Liu ZL, Ma M. Pathway-based signature transcriptional profiles as tolerance phenotypes for the adapted industrial yeast Saccharomyces cerevisiae resistant to furfural and HMF. Appl Microbiol Biotechnol 2020; 104:3473-3492. [PMID: 32103314 DOI: 10.1007/s00253-020-10434-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/25/2019] [Accepted: 02/04/2020] [Indexed: 10/24/2022]
Abstract
The industrial yeast Saccharomyces cerevisiae has a plastic genome with a great flexibility in adaptation to varied conditions of nutrition, temperature, chemistry, osmolarity, and pH in diversified applications. A tolerant strain against 2-furaldehyde (furfural) and 5-hydroxymethyl-2-furaldehyde (HMF) was successfully obtained previously by adaptation through environmental engineering toward development of the next-generation biocatalyst. Using a time-course comparative transcriptome analysis in response to a synergistic challenge of furfural-HMF, here we report tolerance phenotypes of pathway-based transcriptional profiles as components of the adapted defensive system for the tolerant strain NRRL Y-50049. The newly identified tolerance phenotypes were involved in biosynthesis superpathway of sulfur amino acids, defensive reduction-oxidation reaction process, cell wall response, and endogenous and exogenous cellular detoxification. Key transcription factors closely related to these pathway-based components, such as Yap1, Met4, Met31/32, Msn2/4, and Pdr1/3, were also presented. Many important genes in Y-50049 acquired an enhanced transcription background and showed continued increased expressions during the entire lag phase against furfural-HMF. Such signature expressions distinguished tolerance phenotypes of Y-50049 from the innate stress response of its progenitor NRRL Y-12632, an industrial type strain. The acquired yeast tolerance is believed to be evolved in various mechanisms at the genomic level. Identification of legitimate tolerance phenotypes provides a basis for continued investigations on pathway interactions and dissection of mechanisms of yeast tolerance and adaptation at the genomic level.
Collapse
Affiliation(s)
- Z Lewis Liu
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service,U.S. Department of Agriculture, 1815 N University Street, Peoria, IL, 61604, USA.
| | - Menggen Ma
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service,U.S. Department of Agriculture, 1815 N University Street, Peoria, IL, 61604, USA
| |
Collapse
|
12
|
Abstract
Enzyme immobilization to solid matrices often presents a challenge due to protein conformation sensitivity, desired enzyme purity, and requirements for the particular carrier properties and immobilization technique. Surface display of enzymes at the cell walls of microorganisms presents an alternative that has been the focus of many research groups worldwide in different fields, such as biotechnology, energetics, pharmacology, medicine, and food technology. The range of systems by which a heterologous protein can be displayed at the cell surface allows the appropriate one to be found for almost every case. However, the efficiency of display systems is still quite low. The most frequently used yeast for the surface display of proteins is Saccharomyces cerevisiae. However, apart from its many advantages, Saccharomyces cerevisiae has some disadvantages, such as low robustness in industrial applications, hyperglycosylation of some heterologous proteins, and relatively low efficiency of surface display. Thus, in the recent years the display systems for alternative yeast hosts with better performances including Pichia pastoris, Hansenula polymorpha, Blastobotrys adeninivorans, Yarrowia lipolytica, Kluyveromyces marxianus, and others have been developed. Different strategies of surface display aimed to increase the amount of displayed protein, including new anchoring systems and new yeast hosts are reviewed in this paper.
Collapse
|
13
|
Transcriptomic Response of Saccharomyces cerevisiae during Fermentation under Oleic Acid and Ergosterol Depletion. FERMENTATION-BASEL 2019. [DOI: 10.3390/fermentation5030057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Under anaerobic/hypoxic conditions, Saccharomyces cerevisiae relies on external lipid supplements to modulate membrane lipid fraction in response to different stresses. Here, transcriptomic responses of two S. cerevisiae wine strains were evaluated during hypoxic fermentation of a synthetic must with/without ergosterol and oleic acid supplementation. In the absence of lipids, the two strains, namely EC1118 and M25, showed different behaviour, with M25 significantly decreasing its fermentation rate from the 72 h after inoculum. At this time point, the whole genome transcriptomic analysis revealed common and strain-specific responses to the lack of lipid supplementation. Common responses included the upregulation of the genes involved in ergosterol biosynthesis, as well as the seripauperin and the heat shock protein multigene families. In addition, the upregulation of the aerobic isoforms of genes involved in mitochondrial electron transport is compatible with the previously observed accumulation of reactive oxygen species in the two strains during growth in absence of lipids. Considering the strain-specific responses, M25 downregulated the transcription of genes involved in glucose transport, methionine biosynthesis and of those encoding mannoproteins required for adaptation to low temperatures and hypoxia. The identification of these pathways, which are presumably involved in yeast resistance to stresses, will assist industrial strain selection.
Collapse
|
14
|
Balodite E, Strazdina I, Martynova J, Galinina N, Rutkis R, Lasa Z, Kalnenieks U. Translocation of Zymomonas mobilis pyruvate decarboxylase to periplasmic compartment for production of acetaldehyde outside the cytosol. Microbiologyopen 2019; 8:e00809. [PMID: 30770675 PMCID: PMC6692523 DOI: 10.1002/mbo3.809] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 11/13/2022] Open
Abstract
Acetaldehyde, a valuable commodity chemical, is a volatile inhibitory byproduct of aerobic fermentation in Zymomonas mobilis and in several other microorganisms. Attempting to improve acetaldehyde production by minimizing its contact with the cell interior and facilitating its removal from the culture, we engineered a Z. mobilis strain with acetaldehyde synthesis reaction localized in periplasm. For that, the pyruvate decarboxylase (PDC) was transferred from the cell interior to the periplasmic compartment. This was achieved by the construction of a Z. mobilis Zm6 PDC‐deficient mutant, fusion of PDC with the periplasmic signal sequence of Z. mobilis gluconolactonase, and the following expression of this fusion protein in the PDC‐deficient mutant. The obtained recombinant strain PeriAc, with most of its PDC localized in periplasm, showed a twofold higher acetaldehyde yield, than the parent strain, and will be used for further improvement by directed evolution.
Collapse
Affiliation(s)
- Elina Balodite
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| | - Inese Strazdina
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| | | | - Nina Galinina
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| | - Reinis Rutkis
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| | - Zane Lasa
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| | - Uldis Kalnenieks
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| |
Collapse
|
15
|
Zhang E, Cao Y, Xia Y. Ethanol Dehydrogenase I Contributes to Growth and Sporulation Under Low Oxygen Condition via Detoxification of Acetaldehyde in Metarhizium acridum. Front Microbiol 2018; 9:1932. [PMID: 30186258 PMCID: PMC6110892 DOI: 10.3389/fmicb.2018.01932] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/30/2018] [Indexed: 01/17/2023] Open
Abstract
The entomopathogenic fungi encounter hypoxic conditions in both nature and artificial culture. Alcohol dehydrogenases (ADHs) are a group of oxidoreductases that occur in many organisms. Here we demonstrate that an alcohol dehydrogenase I, MaADH1, in the locust-specific fungal pathogen, Metarhizium acridum, functions in acetaldehyde detoxification mechanism under hypoxic conditions in growth and sporulation. The MaADH1 was highly expressed in sporulation stage under hypoxic conditions. Compared with a wild-type strain, the ΔMaADH1 mutant showed inhibited growth and sporulation under hypoxic conditions, but no impairment under normal conditions. Under hypoxic conditions, ΔMaADH1 mutant produced significant decreased alcohol, but significant increased acetaldehyde compared to wild type. M. acridum was sensitive to exogenous acetaldehyde, exhibiting an inhibited growth and sporulation with acetaldehyde added in the medium. MaADH1 did not affect virulence. Our results indicated that the MaADH1 was critical to growth and sporulation under hypoxic stress by detoxification of acetaldehyde in M. acridum.
Collapse
Affiliation(s)
- Erhao Zhang
- School of Life Sciences, Chongqing University, Chongqing, China.,Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, China.,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, China
| | - Yueqing Cao
- School of Life Sciences, Chongqing University, Chongqing, China.,Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, China.,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, China
| | - Yuxian Xia
- School of Life Sciences, Chongqing University, Chongqing, China.,Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, China.,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, China
| |
Collapse
|
16
|
Diaz D, Care A, Sunna A. Bioengineering Strategies for Protein-Based Nanoparticles. Genes (Basel) 2018; 9:E370. [PMID: 30041491 PMCID: PMC6071185 DOI: 10.3390/genes9070370] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 12/16/2022] Open
Abstract
In recent years, the practical application of protein-based nanoparticles (PNPs) has expanded rapidly into areas like drug delivery, vaccine development, and biocatalysis. PNPs possess unique features that make them attractive as potential platforms for a variety of nanobiotechnological applications. They self-assemble from multiple protein subunits into hollow monodisperse structures; they are highly stable, biocompatible, and biodegradable; and their external components and encapsulation properties can be readily manipulated by chemical or genetic strategies. Moreover, their complex and perfect symmetry have motivated researchers to mimic their properties in order to create de novo protein assemblies. This review focuses on recent advances in the bioengineering and bioconjugation of PNPs and the implementation of synthetic biology concepts to exploit and enhance PNP's intrinsic properties and to impart them with novel functionalities.
Collapse
Affiliation(s)
- Dennis Diaz
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Andrew Care
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW 2109, Australia.
| | - Anwar Sunna
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW 2109, Australia.
- Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
17
|
Andreu C, Del Olmo ML. Yeast arming systems: pros and cons of different protein anchors and other elements required for display. Appl Microbiol Biotechnol 2018; 102:2543-2561. [PMID: 29435617 DOI: 10.1007/s00253-018-8827-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 12/13/2022]
Abstract
Yeast display is a powerful strategy that consists in exposing peptides or proteins of interest on the cell surface of this microorganism. Ever since initial experiments with this methodology were carried out, its scope has extended and many applications have been successfully developed in different science and technology fields. Several yeast display systems have been designed, which all involve introducting into yeast cells the gene fusions that contain the coding regions of a signal peptide, an anchor protein, to properly attach the target to the cell surface, and the protein of interest to be exposed, all of which are controlled by a strong promoter. In this work, we report the description of such elements for the alternative systems introduced by focusing particularly on anchor proteins. The comparisons made between them are included whenever possible, and the main advantages and inconveniences of each one are discussed. Despite the huge number of publications on yeast surface display and the revisions published to date, this topic has not yet been widely considered. Finally, given the growing interest in developing systems for non-Saccharomyces yeasts, the main strategies reported for some are also summarized.
Collapse
Affiliation(s)
- Cecilia Andreu
- Departament de Química Orgànica, Facultat de Farmàcia, Universitat de València, Vicent Andrés Estellés s/n. 46100 Burjassot, València, Spain
| | - Marcel Lí Del Olmo
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de València, Dr. Moliner 50, E-46100 Burjassot, València, Spain.
| |
Collapse
|
18
|
Dzialo MC, Park R, Steensels J, Lievens B, Verstrepen KJ. Physiology, ecology and industrial applications of aroma formation in yeast. FEMS Microbiol Rev 2017; 41:S95-S128. [PMID: 28830094 PMCID: PMC5916228 DOI: 10.1093/femsre/fux031] [Citation(s) in RCA: 233] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/06/2017] [Indexed: 01/05/2023] Open
Abstract
Yeast cells are often employed in industrial fermentation processes for their ability to efficiently convert relatively high concentrations of sugars into ethanol and carbon dioxide. Additionally, fermenting yeast cells produce a wide range of other compounds, including various higher alcohols, carbonyl compounds, phenolic compounds, fatty acid derivatives and sulfur compounds. Interestingly, many of these secondary metabolites are volatile and have pungent aromas that are often vital for product quality. In this review, we summarize the different biochemical pathways underlying aroma production in yeast as well as the relevance of these compounds for industrial applications and the factors that influence their production during fermentation. Additionally, we discuss the different physiological and ecological roles of aroma-active metabolites, including recent findings that point at their role as signaling molecules and attractants for insect vectors.
Collapse
Affiliation(s)
- Maria C Dzialo
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB Center for Microbiology, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Rahel Park
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB Center for Microbiology, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Jan Steensels
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB Center for Microbiology, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems, KU Leuven, Campus De Nayer, Fortsesteenweg 30A B-2860 Sint-Katelijne Waver, Belgium
| | - Kevin J Verstrepen
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB Center for Microbiology, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| |
Collapse
|
19
|
Deparis Q, Claes A, Foulquié-Moreno MR, Thevelein JM. Engineering tolerance to industrially relevant stress factors in yeast cell factories. FEMS Yeast Res 2017; 17:3861662. [PMID: 28586408 PMCID: PMC5812522 DOI: 10.1093/femsyr/fox036] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/04/2017] [Indexed: 01/01/2023] Open
Abstract
The main focus in development of yeast cell factories has generally been on establishing optimal activity of heterologous pathways and further metabolic engineering of the host strain to maximize product yield and titer. Adequate stress tolerance of the host strain has turned out to be another major challenge for obtaining economically viable performance in industrial production. Although general robustness is a universal requirement for industrial microorganisms, production of novel compounds using artificial metabolic pathways presents additional challenges. Many of the bio-based compounds desirable for production by cell factories are highly toxic to the host cells in the titers required for economic viability. Artificial metabolic pathways also turn out to be much more sensitive to stress factors than endogenous pathways, likely because regulation of the latter has been optimized in evolution in myriads of environmental conditions. We discuss different environmental and metabolic stress factors with high relevance for industrial utilization of yeast cell factories and the experimental approaches used to engineer higher stress tolerance. Improving stress tolerance in a predictable manner in yeast cell factories should facilitate their widespread utilization in the bio-based economy and extend the range of products successfully produced in large scale in a sustainable and economically profitable way.
Collapse
Affiliation(s)
- Quinten Deparis
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, B-3001 KU Leuven, Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Arne Claes
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, B-3001 KU Leuven, Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Maria R. Foulquié-Moreno
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, B-3001 KU Leuven, Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Johan M. Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, B-3001 KU Leuven, Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| |
Collapse
|
20
|
Matallana E, Aranda A. Biotechnological impact of stress response on wine yeast. Lett Appl Microbiol 2016; 64:103-110. [DOI: 10.1111/lam.12677] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/09/2016] [Accepted: 09/29/2016] [Indexed: 01/07/2023]
Affiliation(s)
- E. Matallana
- Institute of Agrochemistry and Food Technology (IATA-CSIC); Paterna Spain
- Department of Biochemistry and Molecular Biology; University of Valencia; Paterna Spain
| | - A. Aranda
- Institute of Agrochemistry and Food Technology (IATA-CSIC); Paterna Spain
| |
Collapse
|
21
|
Development of a new yeast surface display system based on Spi1 as an anchor protein. Appl Microbiol Biotechnol 2016; 101:287-299. [DOI: 10.1007/s00253-016-7905-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/16/2016] [Accepted: 09/27/2016] [Indexed: 01/28/2023]
|
22
|
Scott B, Shen J, Nizzero S, Boom K, Persano S, Mi Y, Liu X, Zhao Y, Blanco E, Shen H, Ferrari M, Wolfram J. A pyruvate decarboxylase-mediated therapeutic strategy for mimicking yeast metabolism in cancer cells. Pharmacol Res 2016; 111:413-421. [PMID: 27394167 DOI: 10.1016/j.phrs.2016.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/28/2016] [Accepted: 07/05/2016] [Indexed: 01/18/2023]
Abstract
Cancer cells have high rates of glycolysis and lactic acid fermentation in order to fuel accelerated rates of cell division (Warburg effect). Here, we present a strategy for merging cancer and yeast metabolism to remove pyruvate, a key intermediate of cancer cell metabolism, and produce the toxic compound acetaldehyde. This approach was achieved by administering the yeast enzyme pyruvate decarboxylase to triple negative breast cancer cells. To overcome the challenges of protein delivery, a nanoparticle-based system consisting of cationic lipids and porous silicon were employed to obtain efficient intracellular uptake. The results demonstrate that the enzyme therapy decreases cancer cell viability through production of acetaldehyde and reduction of lactic acid fermentation.
Collapse
Affiliation(s)
- Bronwyn Scott
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Jianliang Shen
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Sara Nizzero
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; Applied Physics Graduate Program, Rice University, Houston, TX 77005, USA
| | - Kathryn Boom
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Stefano Persano
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Yu Mi
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Xuewu Liu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience & Technology of China, University of Chinese Academy of Sciences, Beijing 100190, China; Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Elvin Blanco
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Haifa Shen
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Mauro Ferrari
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Joy Wolfram
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience & Technology of China, University of Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
23
|
Cyanohydrin reactions enhance glycolytic oscillations in yeast. Biophys Chem 2015; 200-201:18-26. [PMID: 25863195 DOI: 10.1016/j.bpc.2015.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 11/21/2022]
Abstract
Synchronous metabolic oscillations can be induced in yeast by addition of glucose and removal of extracellular acetaldehyde (ACAx). Compared to other means of ACAx removal, cyanide robustly induces oscillations, indicating additional cyanide reactions besides ACA to lactonitrile conversion. Here, (13)C NMR is used to confirm our previous hypothesis, that cyanide directly affects glycolytic fluxes through reaction with carbonyl-containing compounds. Intracellularly, at least 3 cyanohydrins were identified. Extracellularly, all signals could be identified and lactonitrile was found to account for ~66% of total cyanide removal. Simulations of our updated computational model show that intracellular cyanide reactions increase the amplitude of oscillations and that cyanide addition lowers [ACA] instantaneously. We conclude that cyanide provides the following means of inducing global oscillations: a) by reducing [ACAx] relative to oscillation amplitude, b) by targeting multiple intracellular carbonyl compounds during fermentation, and c) by acting as a phase resetting stimulus.
Collapse
|
24
|
Atanassova M, Fernández-Otero C, Centeno J, Garabal J. Alcohol-Mediated Hemolysis in Dairy Yeast Isolates and Hemolytic Activities on Blood Agar Media Containing Milk and Cheese. J Food Saf 2015. [DOI: 10.1111/jfs.12158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- M. Atanassova
- Dairy Science and Technology Laboratory; Agricultural Research Center of Mabegondo (CIAM), Xunta de Galicia; A Coruña Spain
| | - C. Fernández-Otero
- Dairy Science and Technology Laboratory; Agricultural Research Center of Mabegondo (CIAM), Xunta de Galicia; A Coruña Spain
| | - J.A. Centeno
- Food Technology Area; Faculty of Science; University of Vigo; Ourense Spain
| | - J.I. Garabal
- Dairy Science and Technology Laboratory; Agricultural Research Center of Mabegondo (CIAM), Xunta de Galicia; A Coruña Spain
| |
Collapse
|
25
|
Gao J, Yuan W, Li Y, Xiang R, Hou S, Zhong S, Bai F. Transcriptional analysis of Kluyveromyces marxianus for ethanol production from inulin using consolidated bioprocessing technology. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:115. [PMID: 26273319 PMCID: PMC4535673 DOI: 10.1186/s13068-015-0295-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/24/2015] [Indexed: 05/07/2023]
Abstract
BACKGROUND Ethanol production from non-crop materials, such as Jerusalem artichokes, would make a great contribution to the energy industry. The non-conventional yeast, Kluyveromyces marxianus, is able to carry out ethanol fermentation of sugar molecules obtained from inulin-containing materials by consolidated bioprocessing. Lower inulin concentrations and micro-aeration can lead to a relatively fast and ideal fermentation process; however, it is unclear what causes the inhibition of higher concentrations of inulin and the promotion effect of aeration. RESULTS Next-generation sequencing technology was used to study the global transcriptional response of K. marxianus Y179 under three fermentation conditions, including 120 g/L inulin without aeration (120-N), 230 g/L inulin without aeration (230-N), 230 g/L inulin with aeration by ORP controlling at -130 mV (230-130mV). A total of 35.55 million clean reads were generated from three samples, of which 4,820 predicted that open reading frames were annotated. For differential expression analysis, 950 and 1,452 differentially expressed genes were discovered under the conditions of 230-130mV and 120-N, respectively, and the sample 230-N was used as the control. These genes are mainly associated with the pathways of central carbon metabolism and ethanol formation. Increased expression of inulinase and the low activity of the autophagy-related gene, ATG8, ensured fast and ideal fermentation processes. CONCLUSIONS Despite being reported as the "crabtree-negative" species, K. marxianus Y179 could achieve favorable ethanol fermentation profiles under micro-aeration and high inulin concentrations. K. marxianus Y179 cells responded to inulin concentrations and micro-aeration that is involved in the whole ethanol metabolism network. These results will serve as an important foundation for further exploration of the regulatory mechanisms involved in ethanol fermentation from inulin by consolidated bioprocessing and also provide a valuable reference for future studies on optimization and reconstruction of the metabolism network in K. marxianus.
Collapse
Affiliation(s)
- Jiaoqi Gao
- />School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024 China
| | - Wenjie Yuan
- />School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024 China
| | - Yimin Li
- />School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024 China
| | - Ruijuan Xiang
- />School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024 China
| | - Shengbo Hou
- />School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024 China
| | - Shijun Zhong
- />School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024 China
| | - Fengwu Bai
- />School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024 China
- />School of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai, 200240 China
| |
Collapse
|
26
|
Dos Santos SC, Teixeira MC, Dias PJ, Sá-Correia I. MFS transporters required for multidrug/multixenobiotic (MD/MX) resistance in the model yeast: understanding their physiological function through post-genomic approaches. Front Physiol 2014; 5:180. [PMID: 24847282 PMCID: PMC4021133 DOI: 10.3389/fphys.2014.00180] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 04/19/2014] [Indexed: 12/03/2022] Open
Abstract
Multidrug/Multixenobiotic resistance (MDR/MXR) is a widespread phenomenon with clinical, agricultural and biotechnological implications, where MDR/MXR transporters that are presumably able to catalyze the efflux of multiple cytotoxic compounds play a key role in the acquisition of resistance. However, although these proteins have been traditionally considered drug exporters, the physiological function of MDR/MXR transporters and the exact mechanism of their involvement in resistance to cytotoxic compounds are still open to debate. In fact, the wide range of structurally and functionally unrelated substrates that these transporters are presumably able to export has puzzled researchers for years. The discussion has now shifted toward the possibility of at least some MDR/MXR transporters exerting their effect as the result of a natural physiological role in the cell, rather than through the direct export of cytotoxic compounds, while the hypothesis that MDR/MXR transporters may have evolved in nature for other purposes than conferring chemoprotection has been gaining momentum in recent years. This review focuses on the drug transporters of the Major Facilitator Superfamily (MFS; drug:H+ antiporters) in the model yeast Saccharomyces cerevisiae. New insights into the natural roles of these transporters are described and discussed, focusing on the knowledge obtained or suggested by post-genomic research. The new information reviewed here provides clues into the unexpectedly complex roles of these transporters, including a proposed indirect regulation of the stress response machinery and control of membrane potential and/or internal pH, with a special emphasis on a genome-wide view of the regulation and evolution of MDR/MXR-MFS transporters.
Collapse
Affiliation(s)
- Sandra C Dos Santos
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa Lisbon, Portugal
| | - Miguel C Teixeira
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa Lisbon, Portugal
| | - Paulo J Dias
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa Lisbon, Portugal
| | - Isabel Sá-Correia
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa Lisbon, Portugal
| |
Collapse
|
27
|
Kozak BU, van Rossum HM, Benjamin KR, Wu L, Daran JMG, Pronk JT, van Maris AJA. Replacement of the Saccharomyces cerevisiae acetyl-CoA synthetases by alternative pathways for cytosolic acetyl-CoA synthesis. Metab Eng 2013; 21:46-59. [PMID: 24269999 DOI: 10.1016/j.ymben.2013.11.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 10/03/2013] [Accepted: 11/11/2013] [Indexed: 10/26/2022]
Abstract
Cytosolic acetyl-coenzyme A is a precursor for many biotechnologically relevant compounds produced by Saccharomyces cerevisiae. In this yeast, cytosolic acetyl-CoA synthesis and growth strictly depend on expression of either the Acs1 or Acs2 isoenzyme of acetyl-CoA synthetase (ACS). Since hydrolysis of ATP to AMP and pyrophosphate in the ACS reaction constrains maximum yields of acetyl-CoA-derived products, this study explores replacement of ACS by two ATP-independent pathways for acetyl-CoA synthesis. After evaluating expression of different bacterial genes encoding acetylating acetaldehyde dehydrogenase (A-ALD) and pyruvate-formate lyase (PFL), acs1Δ acs2Δ S. cerevisiae strains were constructed in which A-ALD or PFL successfully replaced ACS. In A-ALD-dependent strains, aerobic growth rates of up to 0.27 h(-1) were observed, while anaerobic growth rates of PFL-dependent S. cerevisiae (0.20 h(-1)) were stoichiometrically coupled to formate production. In glucose-limited chemostat cultures, intracellular metabolite analysis did not reveal major differences between A-ALD-dependent and reference strains. However, biomass yields on glucose of A-ALD- and PFL-dependent strains were lower than those of the reference strain. Transcriptome analysis suggested that reduced biomass yields were caused by acetaldehyde and formate in A-ALD- and PFL-dependent strains, respectively. Transcript profiles also indicated that a previously proposed role of Acs2 in histone acetylation is probably linked to cytosolic acetyl-CoA levels rather than to direct involvement of Acs2 in histone acetylation. While demonstrating that yeast ACS can be fully replaced, this study demonstrates that further modifications are needed to achieve optimal in vivo performance of the alternative reactions for supply of cytosolic acetyl-CoA as a product precursor.
Collapse
Affiliation(s)
- Barbara U Kozak
- Department of Biotechnology, Delft University of Technology, Kluyver Centre for Genomics of Industrial Fermentation, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Harmen M van Rossum
- Department of Biotechnology, Delft University of Technology, Kluyver Centre for Genomics of Industrial Fermentation, Julianalaan 67, 2628 BC Delft, The Netherlands
| | | | - Liang Wu
- DSM Biotechnology Center, Alexander Fleminglaan 1, 2613 AX Delft, The Netherlands
| | - Jean-Marc G Daran
- Department of Biotechnology, Delft University of Technology, Kluyver Centre for Genomics of Industrial Fermentation, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Kluyver Centre for Genomics of Industrial Fermentation, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Antonius J A van Maris
- Department of Biotechnology, Delft University of Technology, Kluyver Centre for Genomics of Industrial Fermentation, Julianalaan 67, 2628 BC Delft, The Netherlands.
| |
Collapse
|
28
|
Overexpression of stress-related genes enhances cell viability and velum formation in Sherry wine yeasts. Appl Microbiol Biotechnol 2013; 97:6867-81. [DOI: 10.1007/s00253-013-4850-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 03/06/2013] [Accepted: 03/10/2013] [Indexed: 11/25/2022]
|
29
|
Orozco H, Matallana E, Aranda A. Genetic manipulation of longevity-related genes as a tool to regulate yeast life span and metabolite production during winemaking. Microb Cell Fact 2013; 12:1. [PMID: 23282100 PMCID: PMC3583744 DOI: 10.1186/1475-2859-12-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 12/27/2012] [Indexed: 12/16/2022] Open
Abstract
Background Yeast viability and vitality are essential for different industrial processes where the yeast Saccharomyces cerevisiae is used as a biotechnological tool. Therefore, the decline of yeast biological functions during aging may compromise their successful biotechnological use. Life span is controlled by a variety of molecular mechanisms, many of which are connected to stress tolerance and genomic stability, although the metabolic status of a cell has proven a main factor affecting its longevity. Acetic acid and ethanol accumulation shorten chronological life span (CLS), while glycerol extends it. Results Different age-related gene classes have been modified by deletion or overexpression to test their role in longevity and metabolism. Overexpression of histone deacetylase SIR2 extends CLS and reduces acetate production, while overexpression of SIR2 homolog HST3 shortens CLS, increases the ethanol level, and reduces acetic acid production. HST3 overexpression also enhances ethanol tolerance. Increasing tolerance to oxidative stress by superoxide dismutase SOD2 overexpression has only a moderate positive effect on CLS. CLS during grape juice fermentation has also been studied for mutants on several mRNA binding proteins that are regulators of gene expression at the posttranscriptional level; we found that NGR1 and UTH4 deletions decrease CLS, while PUF3 and PUB1 deletions increase it. Besides, the pub1Δ mutation increases glycerol production and blocks stress granule formation during grape juice fermentation. Surprisingly, factors relating to apoptosis, such as caspase Yca1 or apoptosis-inducing factor Aif1, play a positive role in yeast longevity during winemaking as their deletions shorten CLS. Conclusions Manipulation of regulators of gene expression at both transcriptional (i.e., sirtuins) and posttranscriptional (i.e., mRNA binding protein Pub1) levels allows to modulate yeast life span during its biotechnological use. Due to links between aging and metabolism, it also influences the production profile of metabolites of industrial relevance.
Collapse
Affiliation(s)
- Helena Orozco
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos-CSIC, Av, Agustín Escardino, 7, Paterna 46980, Spain
| | | | | |
Collapse
|
30
|
Orozco H, Matallana E, Aranda A. Two-carbon metabolites, polyphenols and vitamins influence yeast chronological life span in winemaking conditions. Microb Cell Fact 2012; 11:104. [PMID: 22873488 PMCID: PMC3503821 DOI: 10.1186/1475-2859-11-104] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 08/03/2012] [Indexed: 12/21/2022] Open
Abstract
Background Viability in a non dividing state is referred to as chronological life span (CLS). Most grape juice fermentation happens when Saccharomyces cerevisiae yeast cells have stopped dividing; therefore, CLS is an important factor toward winemaking success. Results We have studied both the physical and chemical determinants influencing yeast CLS. Low pH and heat shorten the maximum wine yeast life span, while hyperosmotic shock extends it. Ethanol plays an important negative role in aging under winemaking conditions, but additional metabolites produced by fermentative metabolism, such as acetaldehyde and acetate, have also a strong impact on longevity. Grape polyphenols quercetin and resveratrol have negative impacts on CLS under winemaking conditions, an unexpected behavior for these potential anti-oxidants. We observed that quercetin inhibits alcohol and aldehyde dehydrogenase activities, and that resveratrol performs a pro-oxidant role during grape juice fermentation. Vitamins nicotinic acid and nicotinamide are precursors of NAD+, and their addition reduces mean longevity during fermentation, suggesting a metabolic unbalance negative for CLS. Moreover, vitamin mix supplementation at the end of fermentation shortens CLS and enhances cell lysis, while amino acids increase life span. Conclusions Wine S. cerevisiae strains are able to sense changes in the environmental conditions and adapt their longevity to them. Yeast death is influenced by the conditions present at the end of wine fermentation, particularly by the concentration of two-carbon metabolites produced by the fermentative metabolism, such as ethanol, acetic acid and acetaldehyde, and also by the grape juice composition, particularly its vitamin content.
Collapse
Affiliation(s)
- Helena Orozco
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos-CSIC, Av. Agustín Escardino 7, Paterna 46980, Spain
| | | | | |
Collapse
|
31
|
Divol B, du Toit M, Duckitt E. Surviving in the presence of sulphur dioxide: strategies developed by wine yeasts. Appl Microbiol Biotechnol 2012; 95:601-13. [PMID: 22669635 DOI: 10.1007/s00253-012-4186-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 05/15/2012] [Accepted: 05/15/2012] [Indexed: 11/26/2022]
Abstract
Sulphur dioxide has been used as a common preservative in wine since at least the nineteenth century. Its use has even become essential to the making of quality wines because of its antioxidant, antioxidasic and antiseptic properties. The chemistry of SO₂ in wine is fairly complex due to its dissociation into different species and its binding to other compounds produced by yeasts and bacteria during fermentation. The only antiseptic species is the minute part remaining as molecular SO₂. The latter concentration is both dependent on pH and concentration of free bisulphite. However, certain yeast species have developed cellular and molecular mechanisms as a response to SO₂ exposure. Some of these mechanisms are fairly complex and have only been investigated recently, at least for the molecular mechanisms. They include sulphite reduction, sulphite oxidation, acetaldehyde production, sulphite efflux and the entry into viable but not culturable state, as the ultimate response. In this review, the chemistry of SO₂ in wine is explained together with the impact of SO₂ on yeast cells. The different defence mechanisms are described and discussed, mostly based on current knowledge available for Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Benoit Divol
- Institute for Wine Biotechnology, Stellenbosch University, Private Bag X1, 7602 Matieland, South Africa.
| | | | | |
Collapse
|
32
|
Novel physiological roles for glutathione in sequestering acetaldehyde to confer acetaldehyde tolerance in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2012; 97:297-303. [DOI: 10.1007/s00253-012-4147-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 04/27/2012] [Accepted: 04/29/2012] [Indexed: 10/28/2022]
|
33
|
Wine yeast sirtuins and Gcn5p control aging and metabolism in a natural growth medium. Mech Ageing Dev 2012; 133:348-58. [PMID: 22738658 DOI: 10.1016/j.mad.2012.03.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 02/08/2012] [Accepted: 03/23/2012] [Indexed: 11/20/2022]
Abstract
Grape juice fermentation by wine yeast is an interesting model to understand aging under conditions closer to those in nature. Grape juice is rich in sugars and, unlike laboratory conditions, the limiting factor for yeast growth is nitrogen. We tested the effect of deleting sirtuins and several acetyltransferases to find that the role of many of these proteins during grape juice fermentation is the opposite to that under standard laboratory aging conditions using synthetic complete media. For instance, SIR2 deletion extends maximum chronological lifespan in wine yeasts grown under laboratory conditions, but shortens it in winemaking. Deletions of sirtuin HST2 and acetyltransferase GCN5 have the opposite effect to SIR2 mutation in both media. Acetic acid, a well known pro-aging compound in laboratory conditions, does not play a determinant role on aging during wine fermentation. We discovered that gcn5Δ mutant strain displays strongly increased aldehyde dehydrogenase Ald6p activity, caused by blocking of Ald6p degradation by autophagy under nitrogen limitation conditions, leading to acetic acid accumulation. We describe how nitrogen limitation and TOR inhibition extend the chronological lifespan under winemaking conditions and how the TOR-dependent control of aging partially depends on the Gcn5p function.
Collapse
|
34
|
Carrillo E, Ben-Ari G, Wildenhain J, Tyers M, Grammentz D, Lee TA. Characterizing the roles of Met31 and Met32 in coordinating Met4-activated transcription in the absence of Met30. Mol Biol Cell 2012; 23:1928-42. [PMID: 22438580 PMCID: PMC3350556 DOI: 10.1091/mbc.e11-06-0532] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
To examine how target gene expression is coordinated among members of a transcription factor family, a simple two-member family (Met31 and Met32) that is essential for regulating sulfur metabolism in budding yeast is examined using both transcriptional and genome-wide binding arrays. Yeast sulfur metabolism is transcriptionally regulated by the activator Met4. Met4 lacks DNA-binding ability and relies on interactions with Met31 and Met32, paralogous proteins that bind the same cis-regulatory element, to activate its targets. Although Met31 and Met32 are redundant for growth in the absence of methionine, studies indicate that Met32 has a prominent role over Met31 when Met30, a negative regulator of Met4 and Met32, is inactive. To characterize different roles of Met31 and Met32 in coordinating Met4-activated transcription, we examined transcription in strains lacking either Met31 or Met32 upon Met4 induction in the absence of Met30. Microarray analysis revealed that transcripts involved in sulfate assimilation and sulfonate metabolism were dramatically decreased in met32Δ cells compared to its wild-type and met31Δ counterparts. Despite this difference, both met31Δ and met32Δ cells used inorganic sulfur compounds and sulfonates as sole sulfur sources in minimal media when Met30 was present. This discrepancy may be explained by differential binding of Met31 to Cbf1-dependent promoters between these two conditions. In the absence of Met30, genome-wide chromatin immunoprecipitation analyses found that Met32 bound all Met4-bound targets, supporting Met32 as the main platform for Met4 recruitment. Finally, Met31 and Met32 levels were differentially regulated, with Met32 levels mimicking the profile for active Met4. These different properties of Met32 likely contribute to its prominent role in Met4-activated transcription when Met30 is absent.
Collapse
Affiliation(s)
- Emilio Carrillo
- Department of Biological Sciences, University of Wisconsin-Parkside, Kenosha, WI 53144, USA
| | | | | | | | | | | |
Collapse
|
35
|
Hickman MJ, Petti AA, Ho-Shing O, Silverman SJ, McIsaac RS, Lee TA, Botstein D. Coordinated regulation of sulfur and phospholipid metabolism reflects the importance of methylation in the growth of yeast. Mol Biol Cell 2011; 22:4192-204. [PMID: 21900497 PMCID: PMC3204079 DOI: 10.1091/mbc.e11-05-0467] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The sulfur assimilation and phospholipid biosynthesis pathways interact metabolically and transcriptionally. Genetic analysis, genome-wide sequencing, and expression microarrays show that regulators of these pathways, Met4p and Opi1p, control cellular methylation capacity that can limit the growth rate. A yeast strain lacking Met4p, the primary transcriptional regulator of the sulfur assimilation pathway, cannot synthesize methionine. This apparently simple auxotroph did not grow well in rich media containing excess methionine, forming small colonies on yeast extract/peptone/dextrose plates. Faster-growing large colonies were abundant when overnight cultures were plated, suggesting that spontaneous suppressors of the growth defect arise with high frequency. To identify the suppressor mutations, we used genome-wide single-nucleotide polymorphism and standard genetic analyses. The most common suppressors were loss-of-function mutations in OPI1, encoding a transcriptional repressor of phospholipid metabolism. Using a new system that allows rapid and specific degradation of Met4p, we could study the dynamic expression of all genes following loss of Met4p. Experiments using this system with and without Opi1p showed that Met4 activates and Opi1p represses genes that maintain levels of S-adenosylmethionine (SAM), the substrate for most methyltransferase reactions. Cells lacking Met4p grow normally when either SAM is added to the media or one of the SAM synthetase genes is overexpressed. SAM is used as a methyl donor in three Opi1p-regulated reactions to create the abundant membrane phospholipid, phosphatidylcholine. Our results show that rapidly growing cells require significant methylation, likely for the biosynthesis of phospholipids.
Collapse
Affiliation(s)
- Mark J Hickman
- Lewis-Sigler Institute for Integrative Genomics and Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Acetaldehyde inhibits the yeast-to-hypha conversion and biofilm formation in Candida albicans. MYCOSCIENCE 2011. [DOI: 10.1007/s10267-011-0110-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
Brückner S, Mösch HU. Choosing the right lifestyle: adhesion and development in Saccharomyces cerevisiae. FEMS Microbiol Rev 2011; 36:25-58. [PMID: 21521246 DOI: 10.1111/j.1574-6976.2011.00275.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The budding yeast Saccharomyces cerevisiae is a eukaryotic microorganism that is able to choose between different unicellular and multicellular lifestyles. The potential of individual yeast cells to switch between different growth modes is advantageous for optimal dissemination, protection and substrate colonization at the population level. A crucial step in lifestyle adaptation is the control of self- and foreign adhesion. For this purpose, S. cerevisiae contains a set of cell wall-associated proteins, which confer adhesion to diverse biotic and abiotic surfaces. Here, we provide an overview of different aspects of S. cerevisiae adhesion, including a detailed description of known lifestyles, recent insights into adhesin structure and function and an outline of the complex regulatory network for adhesin gene regulation. Our review shows that S. cerevisiae is a model system suitable for studying not only the mechanisms and regulation of cell adhesion, but also the role of this process in microbial development, ecology and evolution.
Collapse
Affiliation(s)
- Stefan Brückner
- Department of Genetics, Philipps-Universität Marburg, Marburg, Germany
| | | |
Collapse
|
38
|
Shuster A, Korem M, Jacob-Hirsch J, Amariglio N, Rechavi G, Rosenberg M. Microbial alcohol-conferred hemolysis is a late response to alcohol stress. FEMS Yeast Res 2011; 11:315-23. [PMID: 21276200 DOI: 10.1111/j.1567-1364.2011.00722.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We have reported previously that growth on alcohol vapors confers hemolytic properties on certain yeast species and strains ['microbial alcohol-conferred hemolysis' (MACH)]. In a recent study, we analyzed the genetic basis of MACH in Saccharomyces cerevisiae using the EUROSCARF mutant collection. The data suggested that intact mitochondrial and respiratory chain functions are critical for the observed alcohol-mediated hemolysis. We proposed that the uncontrolled cellular uptake of alcohol results in yeast 'hyper-respiration', leading to elaboration of hemolytic molecules such as hydrogen peroxide and lytic lipids. In the current study, we have further analyzed the molecular mechanisms involved in the MACH phenomenon in S. cerevisiae, using DNA microarrays. The patterns of regulation were confirmed by quantitative reverse transcriptase PCR. The results presented here lend further support to this hypothesis, based on upregulation of the genes responsible for coping with vast amounts of hydrogen peroxide produced as a byproduct of excessive oxidation of alcohol. These results, taken together, show that alcohol-mediated hemolysis in yeast appears to be related to the overproduction of hemolytic byproducts, particularly hydrogen peroxide, which accumulates during long-term exposure of S. cerevisiae to both ethanol and n-butanol.
Collapse
Affiliation(s)
- Amir Shuster
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Ramat-Aviv, Israel
| | | | | | | | | | | |
Collapse
|
39
|
New insight into the role of the Cdc34 ubiquitin-conjugating enzyme in cell cycle regulation via Ace2 and Sic1. Genetics 2010; 187:701-15. [PMID: 21196523 DOI: 10.1534/genetics.110.125302] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Cdc34 ubiquitin-conjugating enzyme plays a central role in progression of the cell cycle. Through analysis of the phenotype of a mutant missing a highly conserved sequence motif within the catalytic domain of Cdc34, we discovered previously unrecognized levels of regulation of the Ace2 transcription factor and the cyclin-dependent protein kinase inhibitor Sic1. In cells carrying the Cdc34(tm) mutation, which alters the conserved sequence, the cyclin-dependent protein kinase inhibitor Sic1, an SCF(Cdc4) substrate, has a shorter half-life, while the cyclin Cln1, an SCF(Grr1) substrate, has a longer half-life than in wild-type cells. Expression of the SIC1 gene cluster, which is regulated by Swi5 and Ace2 transcription factors, is induced in CDC34(tm) cells. Levels of Swi5, Ace2, and the SCF(Grr1) targets Cln1 and Cln2 are elevated in Cdc34(tm) cells, and loss of Grr1 causes an increase in Ace2 levels. Sic1 levels are similar in CDC34(tm) ace2Δ and wild-type cells, explaining a paradoxical increase in the steady-state level of Sic1 protein despite its reduced half-life. A screen for mutations that interact with CDC34(tm) uncovered novel regulators of Sic1, including genes encoding the polyubiquitin chain receptors Rad23 and Rpn10.
Collapse
|
40
|
Linderholm A, Dietzel K, Hirst M, Bisson LF. Identification of MET10-932 and characterization as an allele reducing hydrogen sulfide formation in wine strains of Saccharomyces cerevisiae. Appl Environ Microbiol 2010; 76:7699-707. [PMID: 20889780 PMCID: PMC2988593 DOI: 10.1128/aem.01666-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 09/25/2010] [Indexed: 11/20/2022] Open
Abstract
A vineyard isolate of the yeast Saccharomyces cerevisiae, UCD932, was identified as a strain producing little or no detectable hydrogen sulfide during wine fermentation. Genetic analysis revealed that this trait segregated as a single genetic determinant. The gene also conferred a white colony phenotype on BiGGY agar (bismuth-glucose-glycine-yeast agar), which is thought to indicate low basal levels of sulfite reductase activity. However, this isolate does not display a requirement for S-containing amino acids, indicating that the sulfate reduction pathway is fully operational. Genetic crosses against known mutations conferring white colony color on BiGGY agar identified the gene leading to reduced H(2)S formation as an allele of MET10 (MET10-932), which encodes a catalytic subunit of sulfite reductase. Sequence analysis of MET10-932 revealed several corresponding amino acid differences in relation to laboratory strain S288C. Allele differences for other genes of the sulfate reduction pathway were also detected in UCD932. The MET10 allele of UCD932 was found to be unique in comparison to the sequences of several other vineyard isolates with differing levels of production of H(2)S. Replacing the MET10 allele of high-H(2)S-producing strains with MET10-932 prevented H(2)S formation by those strains. A single mutative change, corresponding to T662K, in MET10-932 resulted in a loss of H(2)S production. The role of site 662 in sulfide reduction was further analyzed by changing the encoded amino acid at this position. A change back to threonine or to the conservative serine fully restored the H(2)S formation conferred by this allele. In addition to T662K, arginine, tryptophan, and glutamic acid substitutions similarly reduced sulfide formation.
Collapse
Affiliation(s)
- Angela Linderholm
- Department of Viticulture and Enology, University of California, Davis, Davis, California 95616
| | - Kevin Dietzel
- Department of Viticulture and Enology, University of California, Davis, Davis, California 95616
| | - Marissa Hirst
- Department of Viticulture and Enology, University of California, Davis, Davis, California 95616
| | - Linda F. Bisson
- Department of Viticulture and Enology, University of California, Davis, Davis, California 95616
| |
Collapse
|
41
|
Yasokawa D, Iwahashi H. Toxicogenomics using yeast DNA microarrays. J Biosci Bioeng 2010; 110:511-22. [PMID: 20624688 DOI: 10.1016/j.jbiosc.2010.06.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 06/01/2010] [Accepted: 06/04/2010] [Indexed: 02/03/2023]
Abstract
Development of genomics and bioinformatics enable us to analyze the global gene expression profiles of cells by DNA microarray. Changes in gene expression patterns indicate changes in its physiological conditions. Following the exposure of an organism or cell to toxic chemicals or other environmental stresses, the global genetic responses can be expeditiously and easily analyzed. Baker's yeast, Saccharomyces cerevisiae, is one of the most studied and useful model eukaryotes. The biggest advantage of yeast genomics is the available functional information for each gene and a considerable number of data are accumulating in the field of toxicity assessment using yeast DNA microarray. In this review, we discuss the toxicogenomics of metal ions, alcohols and aldehydes, and other chemicals.
Collapse
Affiliation(s)
- Daisuke Yasokawa
- Hokkaido Food Processing Research Center, Department of Food Development, 589-4 Bunkyodai Midorimachi, Ebetsu, Hokkaido 0690836, Japan.
| | | |
Collapse
|
42
|
Parapouli M, Fragkos-Livanios L, Samiotaki M, Koukkou AI, Perisynakis A, Hatziloukas E, Panayotou G, Drainas C. Comparative proteomic analysis of alcoholic fermentation employing a new environmental strain of Saccharomyces cerevisiae. Process Biochem 2010. [DOI: 10.1016/j.procbio.2010.03.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
43
|
Nardi T, Corich V, Giacomini A, Blondin B. A sulphite-inducible form of the sulphite efflux gene SSU1 in a Saccharomyces cerevisiae wine yeast. Microbiology (Reading) 2010; 156:1686-1696. [DOI: 10.1099/mic.0.036723-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sulphite is widely used as a preservative in foods and beverages for its antimicrobial and antioxidant activities, particularly in winemaking where SO2 is frequently added. Thus, sulphite resistance mechanisms have been extensively studied in the fermenting yeast Saccharomyces cerevisiae. Sulphite detoxification, involving a plasma membrane protein encoded by the SSU1 gene, is the most efficient resistance mechanism in S. cerevisiae. In this study, we characterized the unusual expression pattern of SSU1 in the wine strain 71B. We provide, for the first time, evidence of SSU1 induction by sulphite. The study of SSU1 expression during fermentation and in different growth conditions showed that sulphite is the main regulator of SSU1 expression, explaining its specific pattern. Combining analyses of gene expression and growth behaviour in response to sulphite, we found that 71B displayed unique behavioural patterns in response to sulphite pre-adaptation that may be explained by changes in SSU1 expression. Examination of the genomic organization of the SSU1 locus and sequencing of the region revealed three different alleles in 71B, two of which corresponded to translocated VIII–XVI forms. The lack of differences between promoter regions suggests that this inducible SSU1 expression pattern is due to modification of regulatory/signalling pathways.
Collapse
Affiliation(s)
- Tiziana Nardi
- Dipartimento Biotecnologie Agrarie, Università degli Studi di Padova, Viale dell'Università 16, I-35020 Legnaro, Italy
| | - Viviana Corich
- Centro Interdipartimentale per la Ricerca in Viticoltura ed Enologia, Università degli Studi di Padova, Viale XXVIII Aprile 14, I-31015 Conegliano, Italy
- Dipartimento Biotecnologie Agrarie, Università degli Studi di Padova, Viale dell'Università 16, I-35020 Legnaro, Italy
| | - Alessio Giacomini
- Centro Interdipartimentale per la Ricerca in Viticoltura ed Enologia, Università degli Studi di Padova, Viale XXVIII Aprile 14, I-31015 Conegliano, Italy
- Dipartimento Biotecnologie Agrarie, Università degli Studi di Padova, Viale dell'Università 16, I-35020 Legnaro, Italy
| | - Bruno Blondin
- INRA, Montpellier SupAgro, UMR 1083 Sciences pour l'Oenologie, 2 Place Viala, F-34060 Montpellier, France
| |
Collapse
|
44
|
Lee TA, Jorgensen P, Bognar AL, Peyraud C, Thomas D, Tyers M. Dissection of combinatorial control by the Met4 transcriptional complex. Mol Biol Cell 2010; 21:456-69. [PMID: 19940020 PMCID: PMC2814790 DOI: 10.1091/mbc.e09-05-0420] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 10/20/2009] [Accepted: 11/18/2009] [Indexed: 02/01/2023] Open
Abstract
Met4 is the transcriptional activator of the sulfur metabolic network in Saccharomyces cerevisiae. Lacking DNA-binding ability, Met4 must interact with proteins called Met4 cofactors to target promoters for transcription. Two types of DNA-binding cofactors (Cbf1 and Met31/Met32) recruit Met4 to promoters and one cofactor (Met28) stabilizes the DNA-bound Met4 complexes. To dissect this combinatorial system, we systematically deleted each category of cofactor(s) and analyzed Met4-activated transcription on a genome-wide scale. We defined a core regulon for Met4, consisting of 45 target genes. Deletion of both Met31 and Met32 eliminated activation of the core regulon, whereas loss of Met28 or Cbf1 interfered with only a subset of targets that map to distinct sectors of the sulfur metabolic network. These transcriptional dependencies roughly correlated with the presence of Cbf1 promoter motifs. Quantitative analysis of in vivo promoter binding properties indicated varying levels of cooperativity and interdependency exists between members of this combinatorial system. Cbf1 was the only cofactor to remain fully bound to target promoters under all conditions, whereas other factors exhibited different degrees of regulated binding in a promoter-specific fashion. Taken together, Met4 cofactors use a variety of mechanisms to allow differential transcription of target genes in response to various cues.
Collapse
Affiliation(s)
- Traci A Lee
- Department of Biological Sciences, University of Wisconsin-Parkside, Kenosha, WI 53144, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Microarray analysis of p-anisaldehyde-induced transcriptome of Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 2009; 37:313-22. [DOI: 10.1007/s10295-009-0676-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 11/29/2009] [Indexed: 10/20/2022]
|
46
|
Chattopadhyay MK, Chen W, Poy G, Cam M, Stiles D, Tabor H. Microarray studies on the genes responsive to the addition of spermidine or spermine to a Saccharomyces cerevisiae spermidine synthase mutant. Yeast 2009; 26:531-44. [PMID: 19688718 DOI: 10.1002/yea.1703] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The naturally occurring polyamines putrescine, spermidine or spermine are ubiquitous in all cells. Although polyamines have prominent regulatory roles in cell division and growth, precise molecular and cellular functions are not well-established in vivo. In this work we have performed microarray experiments with a spermidine synthase, spermine oxidase mutant (Deltaspe3 Deltafms1) strain to investigate the responsiveness of yeast genes to supplementation with spermidine or spermine. Expression analysis identified genes responsive to the addition of either excess spermidine (10(-5) M) or spermine (10(-5) M) compared to a control culture containing 10(-8) M spermidine. 247 genes were upregulated > two-fold and 11 genes were upregulated >10-fold after spermidine addition. Functional categorization of the genes showed induction of transport-related genes and genes involved in methionine, arginine, lysine, NAD and biotin biosynthesis. 268 genes were downregulated more than two-fold, and six genes were downregulated > eight-fold after spermidine addition. A majority of the downregulated genes are involved in nucleic acid metabolism and various stress responses. In contrast, only a few genes (18) were significantly responsive to spermine. Thus, results from global gene expression profiling demonstrate a more major role for spermidine in modulating gene expression in yeast than spermine.
Collapse
Affiliation(s)
- Manas K Chattopadhyay
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda 20892-0830, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Acetaldehyde stimulates ethanol-stressed Saccharomyces cerevisiae, grown on various carbon sources. Folia Microbiol (Praha) 2009; 53:505-8. [DOI: 10.1007/s12223-008-0079-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 06/02/2008] [Indexed: 10/20/2022]
|
48
|
Matsufuji Y, Fujimura S, Ito T, Nishizawa M, Miyaji T, Nakagawa J, Ohyama T, Tomizuka N, Nakagawa T. Acetaldehyde tolerance in Saccharomyces cerevisiae involves the pentose phosphate pathway and oleic acid biosynthesis. Yeast 2009; 25:825-33. [PMID: 19061187 DOI: 10.1002/yea.1637] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
To identify genes responsible for acetaldehyde tolerance, genome-wide screening was performed using a collection of haploid Saccharomyces cerevisiae strains deleted in single genes. The screen identified 49 genes whose deletion conferred acetaldehyde sensitivity, and these were termed the genes required for acetaldehyde tolerance. We focused on six of these genes required for acetaldehyde tolerance, ZWF1, GND1, RPE1, TKL1 and TAL1, which encode enzymes in the pentose phosphate pathway (PPP), and OAR1, which encodes for NADPH-dependent 3-oxoacyl-(acyl-carrier-protein) reductase. These genes were not only responsible for acetaldehyde tolerance but also turned out to be induced by acetaldehyde. Moreover, the content of oleic acid was remarkably increased in yeast cells under acetaldehyde stress, and supplementation of oleic acid into the media partially alleviated acetaldehyde stress-induced growth inhibition of strains disrupted in the genes required for acetaldehyde tolerance and OLE1. Taken together, our data suggest that the supply of NADPH and the process of fatty acid biosynthesis are the key factors in acetaldehyde tolerance in the yeast, and that oleic acid plays an important role in acetaldehyde tolerance.
Collapse
Affiliation(s)
- Yoshimi Matsufuji
- Department of Food Science and Technology, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri, Hokkaido 099-2493, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Park H, Hwang YS. Genome-wide transcriptional responses to sulfite in Saccharomyces cerevisiae. J Microbiol 2008; 46:542-8. [DOI: 10.1007/s12275-008-0053-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 07/08/2008] [Indexed: 11/24/2022]
|
50
|
Identification of genes affecting hydrogen sulfide formation in Saccharomyces cerevisiae. Appl Environ Microbiol 2008; 74:1418-27. [PMID: 18192430 DOI: 10.1128/aem.01758-07] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A screen of the Saccharomyces cerevisiae deletion strain set was performed to identify genes affecting hydrogen sulfide (H(2)S) production. Mutants were screened using two assays: colony color on BiGGY agar, which detects the basal level of sulfite reductase activity, and production of H(2)S in a synthetic juice medium using lead acetate detection of free sulfide in the headspace. A total of 88 mutants produced darker colony colors than the parental strain, and 4 produced colonies significantly lighter in color. There was no correlation between the appearance of a dark colony color on BiGGY agar and H(2)S production in synthetic juice media. Sixteen null mutations were identified as leading to the production of increased levels of H(2)S in synthetic juice using the headspace analysis assay. All 16 mutants also produced H(2)S in actual juices. Five of these genes encode proteins involved in sulfur containing amino acid or precursor biosynthesis and are directly associated with the sulfate assimilation pathway. The remaining genes encode proteins involved in a variety of cellular activities, including cell membrane integrity, cell energy regulation and balance, or other metabolic functions. The levels of hydrogen sulfide production of each of the 16 strains varied in response to nutritional conditions. In most cases, creation of multiple deletions of the 16 mutations in the same strain did not lead to a further increase in H(2)S production, instead often resulting in decreased levels.
Collapse
|