1
|
Martínez A, Molina F, Hernández LM, Ramírez M. Improving wine fermentation efficiency of Torulaspora delbrueckii by increasing the ploidy of yeast inocula. Int J Food Microbiol 2024; 425:110894. [PMID: 39216361 DOI: 10.1016/j.ijfoodmicro.2024.110894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The life cycle of most non-conventional yeasts, such as Torulaspora delbrueckii (Td), is not as well-understood as that of Saccharomyces cerevisiae (Sc). Td is generally assumed to be haploid, which detracts from some biotechnological properties compared to diploid Sc strains. We analyzed the life cycle of several Td wine strains and found that they were mainly diploid during exponential growth in rich medium. However, most cells became haploid in stationary phase, as observed for Sc haploid heterothallic strains. When transferred and incubated in nutrient-deficient media, these haploid cells became polymorphic, enlarged, and transitioned to diploid or polyploid states. The increased ploidy, that mainly results from supernumerary mitosis without cytokinesis, was followed by sporulation. A similar response was observed in yeasts that remained alive during the second fermentation of base wine for sparkling wine making, or during growth in ethanol-supplemented medium. This response was not observed in the Sc yeast populations under any of the experimental conditions assayed, which suggests that it is a specific adaptation of Td to the stressful fermentation conditions. This response allows Td yeasts to remain alive and metabolically active longer during wine fermentation. Consequently, we designed procedures to increase the cell size and ploidy of haploid Td strains. Td inocula with increased ploidy showed enhanced fermentation efficiency compared to haploid inocula of the same strains.
Collapse
Affiliation(s)
- Alberto Martínez
- Departamento de Ciencias Biomédicas (Área de Microbiología), Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, 06006 Badajoz, Spain
| | - Felipe Molina
- Departamento de Bioquímica, Biología Molecular y Genética (Área de Genética), Universidad de Extremadura, Avda. de Elvas s/n., 06006 Badajoz, Spain
| | - Luis M Hernández
- Departamento de Ciencias Biomédicas (Área de Microbiología), Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, 06006 Badajoz, Spain
| | - Manuel Ramírez
- Departamento de Ciencias Biomédicas (Área de Microbiología), Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, 06006 Badajoz, Spain.
| |
Collapse
|
2
|
Martínez A, Zamora E, Álvarez ML, Bautista-Gallego J, Ramírez M. Genetic improvement of non-conventional Torulaspora delbrueckii for traditional sparkling winemaking by mixing for eventual hybridization with Saccharomyces cerevisiae. Front Microbiol 2022; 13:1006978. [PMID: 36274726 PMCID: PMC9583163 DOI: 10.3389/fmicb.2022.1006978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/22/2022] [Indexed: 11/24/2022] Open
Abstract
Non-conventional yeasts such as Torulaspora delbrueckii (Td) have been proposed for sparkling winemaking. Unfortunately, this yeast has poor efficiency in completing wine fermentation as compared to Saccharomyces cerevisiae (Sc). New mutants with increased resistance to SO2, ethanol, and high CO2 pressure were previously isolated from spore clones of Td. Although these mutants showed improved capability for base wine fermentation, there is still room for genetic improvement of Td yeasts until the fermentative capacity of Sc is achieved. As an alternative approach, yeast mixture for eventual hybridization of Td with Sc was assayed in this study. The new yeast mixture clones (Sc-mixed Td) showed an intermediate phenotype between both parent yeasts for some relevant biotechnological properties, such as resistance to SO2, ethanol, copper, high CO2 pressure, and high temperature, as well as flocculation potential. These properties varied depending on the specific Sc-mixed Td clone. Several mixture clones showed improved capability for base wine fermentation as compared to the Td parent strain, approaching the fermentation capability of the Sc parent strain. The organoleptic quality of sparkling wine was also improved by using some mixture clones and this improved quality coincided with an increased amount of acetate and ethyl esters. The genetic stability of some Sc-mixed Td clones was good enough for commercial yeast production and winery applications.
Collapse
Affiliation(s)
- Alberto Martínez
- Departamento de Ciencias Biomédicas (Área de Microbiología), Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Emiliano Zamora
- Estación Enológica, Junta de Extremadura, Almendralejo, Spain
| | | | - Joaquín Bautista-Gallego
- Departamento de Ciencias Biomédicas (Área de Microbiología), Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Manuel Ramírez
- Departamento de Ciencias Biomédicas (Área de Microbiología), Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
- *Correspondence: Manuel Ramírez,
| |
Collapse
|
3
|
Morata A, Arroyo T, Bañuelos MA, Blanco P, Briones A, Cantoral JM, Castrillo D, Cordero-Bueso G, Del Fresno JM, Escott C, Escribano-Viana R, Fernández-González M, Ferrer S, García M, González C, Gutiérrez AR, Loira I, Malfeito-Ferreira M, Martínez A, Pardo I, Ramírez M, Ruiz-Muñoz M, Santamaría P, Suárez-Lepe JA, Vilela A, Capozzi V. Wine yeast selection in the Iberian Peninsula: Saccharomyces and non- Saccharomyces as drivers of innovation in Spanish and Portuguese wine industries. Crit Rev Food Sci Nutr 2022; 63:10899-10927. [PMID: 35687346 DOI: 10.1080/10408398.2022.2083574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Yeast selection for the wine industry in Spain started in 1950 for the understanding of the microbial ecology, and for the selection of optimal strains to improve the performance of alcoholic fermentation and the overall wine quality. This process has been strongly developed over the last 30 years, firstly on Saccharomyces cerevisiae, and, lately, with intense activity on non-Saccharomyces. Several thousand yeast strains have been isolated, identified and tested to select those with better performance and/or specific technological properties. The present review proposes a global survey of this massive ex-situ preservation of eukaryotic microorganisms, a reservoir of biotechnological solutions for the wine sector, overviewing relevant screenings that led to the selection of strains from 12 genera and 22 species of oenological significance. In the first part, the attention goes to the selection programmes related to relevant wine-producing areas (i.e. Douro, Extremadura, Galicia, La Mancha and Uclés, Ribera del Duero, Rioja, Sherry area, and Valencia). In the second part, the focus shifted on specific non-Saccharomyces genera/species selected from different Spanish and Portuguese regions, exploited to enhance particular attributes of the wines. A fil rouge of the dissertation is the design of tailored biotechnological solutions for wines typical of given geographic areas.
Collapse
Affiliation(s)
- A Morata
- EnotecUPM, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - T Arroyo
- Departamento de Investigación Agroalimentaria, IMIDRA, Finca El Encín, Madrid, Spain
| | - M A Bañuelos
- EnotecUPM, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - P Blanco
- Estación de Viticultura e Enoloxía de Galicia (EVEGA-AGACAL), Leiro, Ourense, Spain
| | - A Briones
- Tecnología de alimentos, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - J M Cantoral
- Laboratorio de Microbiología. Dept. de Biomedicina, Biotecnología y Salud Pública. Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | - D Castrillo
- Estación de Viticultura e Enoloxía de Galicia (EVEGA-AGACAL), Leiro, Ourense, Spain
| | - G Cordero-Bueso
- Laboratorio de Microbiología. Dept. de Biomedicina, Biotecnología y Salud Pública. Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | - J M Del Fresno
- EnotecUPM, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - C Escott
- EnotecUPM, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - R Escribano-Viana
- Finca La Grajera, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Logroño, Spain
| | - M Fernández-González
- Tecnología de alimentos, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - S Ferrer
- ENOLAB, Institut de Biotecnologia i Biomedicina (BioTecMed), Universitat de València, Valencia, Spain
| | - M García
- Departamento de Investigación Agroalimentaria, IMIDRA, Finca El Encín, Madrid, Spain
| | - C González
- EnotecUPM, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - A R Gutiérrez
- Finca La Grajera, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Logroño, Spain
| | - I Loira
- EnotecUPM, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - M Malfeito-Ferreira
- Departamento Recursos Naturais Ambiente e Território (DRAT), Linking Landscape Environment Agriculture and Food Research Centre (LEAF), Instituto Superior de Agronomía, Tapada da Ajuda, Lisboa, Portugal
| | - A Martínez
- Departamento de Ciencias Biomédicas, Facultad de Ciencias (Edificio Antiguo Rectorado), Universidad de Extremadura, Badajoz, Spain
| | - I Pardo
- ENOLAB, Institut de Biotecnologia i Biomedicina (BioTecMed), Universitat de València, Valencia, Spain
| | - M Ramírez
- Departamento de Ciencias Biomédicas, Facultad de Ciencias (Edificio Antiguo Rectorado), Universidad de Extremadura, Badajoz, Spain
| | - M Ruiz-Muñoz
- Laboratorio de Microbiología. Dept. de Biomedicina, Biotecnología y Salud Pública. Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | - P Santamaría
- Finca La Grajera, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Logroño, Spain
| | - J A Suárez-Lepe
- EnotecUPM, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - A Vilela
- CQ-VR, Chemistry Research Centre, School of Life and Environmental Sciences (ECVA), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - V Capozzi
- National Research Council (CNR) of Italy, c/o CS-DAT, Institute of Sciences of Food Production, Foggia, Italy
| |
Collapse
|
4
|
Vinification without Saccharomyces: Interacting Osmotolerant and "Spoilage" Yeast Communities in Fermenting and Ageing Botrytised High-Sugar Wines (Tokaj Essence). Microorganisms 2020; 9:microorganisms9010019. [PMID: 33374579 PMCID: PMC7822429 DOI: 10.3390/microorganisms9010019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 11/16/2022] Open
Abstract
The conversion of grape juice to wine starts with complex yeast communities consisting of strains that have colonised the harvested grape and/or reside in the winery environment. As the conditions in the fermenting juice gradually become inhibitory for most species, they are rapidly overgrown by the more adaptable Saccharomyces strains, which then complete the fermentation. However, there are environmental factors that even Saccharomyces cannot cope with. We show that when the sugar content is extremely high, osmotolerant yeasts, usually considered as “spoilage yeasts“, ferment the must. The examination of the yeast biota of 22 botrytised Tokaj Essence wines of sugar concentrations ranging from 365 to 752 g∙L−1 identified the osmotolerant Zygosaccharomyces rouxii, Candida (Starmerella) lactis-condensi and Candida zemplinina (Starmerella bacillaris) as the dominating species. Ten additional species, mostly known as osmotolerant spoilage yeasts or biofilm-producing yeasts, were detected as minor components of the populations. The high phenotypical and molecular (karyotype, mtDNA restriction fragment length polymorphism (RFLP) and microsatellite-primed PCR (MSP-PCR)) diversity of the conspecific strains indicated that diverse clones of the species coexisted in the wines. Genetic segregation of certain clones and interactions (antagonism and crossfeeding) of the species also appeared to shape the fermenting yeast biota.
Collapse
|
5
|
Velázquez R, Martínez A, Zamora E, Álvarez ML, Bautista-Gallego J, Hernández LM, Ramírez M. Genetic Improvement of Torulaspora delbrueckii for Wine Fermentation: Eliminating Recessive Growth-Retarding Alleles and Obtaining New Mutants Resistant to SO 2, Ethanol, and High CO 2 Pressure. Microorganisms 2020; 8:E1372. [PMID: 32906752 PMCID: PMC7564342 DOI: 10.3390/microorganisms8091372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 11/17/2022] Open
Abstract
The use of Torulaspora delbrueckii has been repeatedly proposed to improve a wine's organoleptic quality. This yeast has lower efficiency in completing wine fermentation than Saccharomyces cerevisiae since it has less fermentation capability and greater sensitivity to SO2, ethanol, and CO2 pressure. Therefore, the completion of fermentation is not guaranteed when must or wine is single-inoculated with T. delbrueckii. To solve this problem, new strains of T. delbrueckii with enhanced resistance to winemaking conditions were obtained. A genetic study of four wine T. delbrueckii strains was carried out. Spore clones free of possible recessive growth-retarding alleles were obtained from these yeasts. These spore clones were used to successively isolate mutants resistant to SO2, then those resistant to ethanol, and finally those resistant to high CO2 pressure. Most of these mutants showed better capability for base wine fermentation than the parental strain, and some of them approached the fermentation capability of S. cerevisiae. The genetic stability of the new mutants was good enough to be used in industrial-level production in commercial wineries. Moreover, their ability to ferment sparkling wine could be further improved by the continuous addition of oxygen in the culture adaptation stage prior to base wine inoculation.
Collapse
Affiliation(s)
- Rocío Velázquez
- Departamento de Ciencias Biomédicas (Área de Microbiología), Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (R.V.); (A.M.); (J.B.-G.); (L.M.H.)
| | - Alberto Martínez
- Departamento de Ciencias Biomédicas (Área de Microbiología), Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (R.V.); (A.M.); (J.B.-G.); (L.M.H.)
| | - Emiliano Zamora
- Estación Enológica, Junta de Extremadura, 06200 Almendralejo, Spain; (E.Z.); (M.L.Á.)
| | - María L. Álvarez
- Estación Enológica, Junta de Extremadura, 06200 Almendralejo, Spain; (E.Z.); (M.L.Á.)
| | - Joaquín Bautista-Gallego
- Departamento de Ciencias Biomédicas (Área de Microbiología), Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (R.V.); (A.M.); (J.B.-G.); (L.M.H.)
| | - Luis M. Hernández
- Departamento de Ciencias Biomédicas (Área de Microbiología), Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (R.V.); (A.M.); (J.B.-G.); (L.M.H.)
| | - Manuel Ramírez
- Departamento de Ciencias Biomédicas (Área de Microbiología), Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (R.V.); (A.M.); (J.B.-G.); (L.M.H.)
| |
Collapse
|
6
|
Ramírez M, López-Piñeiro A, Velázquez R, Muñoz A, Regodón JA. Analysing the vineyard soil as a natural reservoir for wine yeasts. Food Res Int 2020; 129:108845. [DOI: 10.1016/j.foodres.2019.108845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 11/14/2019] [Accepted: 11/18/2019] [Indexed: 12/15/2022]
|
7
|
Nakagawa Y, Fujita R, Yamamura H, Hayakawa M. Identification of CDC25-P1306L, a novel mutant allele of CDC25, conferring tolerance to multiple stresses associated with food production on Saccharomyces cerevisiae. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2018.1559094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Youji Nakagawa
- Division of Life and Agricultural Sciences, Faculty of Life and Environmental Sciences, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Kofu, Japan
| | - Risa Fujita
- Division of Biotechnology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Kofu, Japan
| | - Hideki Yamamura
- Division of Life and Agricultural Sciences, Faculty of Life and Environmental Sciences, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Kofu, Japan
| | - Masayuki Hayakawa
- Division of Life and Agricultural Sciences, Faculty of Life and Environmental Sciences, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Kofu, Japan
| |
Collapse
|
8
|
Using Torulaspora delbrueckii killer yeasts in the elaboration of base wine and traditional sparkling wine. Int J Food Microbiol 2018; 289:134-144. [PMID: 30240984 DOI: 10.1016/j.ijfoodmicro.2018.09.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 09/11/2018] [Accepted: 09/13/2018] [Indexed: 11/23/2022]
Abstract
For still wines, killer strains of Torulaspora delbrueckii can be used instead of non-killer strains to improve this species' domination during must fermentation, with an ensured, reliable impact on the final wine quality. The present work analysed the usefulness of these killer yeasts for sparkling-wine making. After the first fermentation, the foaming capacity of T. delbrueckii base wines was very low compared to Saccharomyces cerevisiae base wines. Significant positive correlations of foaming parameters were found with the amounts of C4-C16 ethyl esters and proteins, and negative with some anti-foaming alcohols produced by each yeast species. There were, however, no evident positive effects of polysaccharides on those parameters. The organoleptic quality of the T. delbrueckii base wines was judged inappropriate for sparkling-wine making, so that the following second-fermentation experiments only used a single assemblage of S. cerevisiae base-wines. While second fermentation was completed with inoculation of S. cerevisiae (both alone and mixed with T. delbrueckii) to yield dry sparkling wines with high CO2 pressure, single inoculation with T. delbrueckii did not complete this fermentation, leaving sweet wines with poor CO2 pressure. Yeast death due to CO2 pressure was much greater in T. delbrueckii than in S. cerevisiae, making any killer effect of S. cerevisiae over T. delbrueckii irrelevant because no autolysed cells were found during the first days of mixed-inoculated second fermentation. Nonetheless, the organoleptic quality of the mixed-inoculated sparkling wines was better than that of wines single-inoculated with S. cerevisiae, and showed no deterioration in foam quality. This seemed mainly to be because T. delbrueckii increased the amounts of ethyl propanoate and some acids (e.g., isobutyric and butanoic), alcohols (e.g., 3‑ethoxy‑1‑propanol), and phenols (e.g., 4‑vinylguaiacol). For these sparkling wines, no significant correlations between foaming parameters and aroma compounds were found, probably because the differences in foaming parameter values among these wines were fairly small. This is unlike the case for the base wines for which there were large differences in these parameters, which facilitated the analysis of the influence of aroma compounds on base-wine foamability.
Collapse
|
9
|
Ramírez M, Velázquez R, López-Piñeiro A, Naranjo B, Roig F, Llorens C. New Insights into the Genome Organization of Yeast Killer Viruses Based on "Atypical" Killer Strains Characterized by High-Throughput Sequencing. Toxins (Basel) 2017; 9:E292. [PMID: 28925975 PMCID: PMC5618225 DOI: 10.3390/toxins9090292] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/15/2017] [Accepted: 09/16/2017] [Indexed: 01/04/2023] Open
Abstract
Viral M-dsRNAs encoding yeast killer toxins share similar genomic organization, but no overall sequence identity. The dsRNA full-length sequences of several known M-viruses either have yet to be completed, or they were shorter than estimated by agarose gel electrophoresis. High-throughput sequencing was used to analyze some M-dsRNAs previously sequenced by traditional techniques, and new dsRNAs from atypical killer strains of Saccharomyces cerevisiae and Torulaspora delbrueckii. All dsRNAs expected to be present in a given yeast strain were reliably detected and sequenced, and the previously-known sequences were confirmed. The few discrepancies between viral variants were mostly located around the central poly(A) region. A continuous sequence of the ScV-M2 genome was obtained for the first time. M1 virus was found for the first time in wine yeasts, coexisting with Mbarr-1 virus in T. delbrueckii. Extra 5'- and 3'-sequences were found in all M-genomes. The presence of repeated short sequences in the non-coding 3'-region of most M-genomes indicates that they have a common phylogenetic origin. High identity between amino acid sequences of killer toxins and some unclassified proteins of yeast, bacteria, and wine grapes suggests that killer viruses recruited some sequences from the genome of these organisms, or vice versa, during evolution.
Collapse
Affiliation(s)
- Manuel Ramírez
- Departamento de Ciencias Biomédicas (Área de Microbiología, Antiguo Rectorado), Facultad de Ciencias, Universidad de Extremadura, Badajoz 06071, Spain.
| | - Rocío Velázquez
- Departamento de Ciencias Biomédicas (Área de Microbiología, Antiguo Rectorado), Facultad de Ciencias, Universidad de Extremadura, Badajoz 06071, Spain.
| | - Antonio López-Piñeiro
- Departamento de Biología Vegetal, Ecología y Ciencias de la Tierra, Facultad de Ciencias, Universidad de Extremadura, Badajoz 06071, Spain.
| | - Belén Naranjo
- Departamento de Ciencias Biomédicas (Área de Microbiología, Antiguo Rectorado), Facultad de Ciencias, Universidad de Extremadura, Badajoz 06071, Spain.
| | - Francisco Roig
- Biotechvana, Parc Científic, Universitat de València, Calle Catedrático José Beltrán 2, Paterna 46980 (València), Spain.
| | - Carlos Llorens
- Biotechvana, Parc Científic, Universitat de València, Calle Catedrático José Beltrán 2, Paterna 46980 (València), Spain.
| |
Collapse
|
10
|
Guillamón JM, Barrio E. Genetic Polymorphism in Wine Yeasts: Mechanisms and Methods for Its Detection. Front Microbiol 2017; 8:806. [PMID: 28522998 PMCID: PMC5415627 DOI: 10.3389/fmicb.2017.00806] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/19/2017] [Indexed: 01/09/2023] Open
Abstract
The processes of yeast selection for using as wine fermentation starters have revealed a great phenotypic diversity both at interspecific and intraspecific level, which is explained by a corresponding genetic variation among different yeast isolates. Thus, the mechanisms involved in promoting these genetic changes are the main engine generating yeast biodiversity. Currently, an important task to understand biodiversity, population structure and evolutionary history of wine yeasts is the study of the molecular mechanisms involved in yeast adaptation to wine fermentation, and on remodeling the genomic features of wine yeast, unconsciously selected since the advent of winemaking. Moreover, the availability of rapid and simple molecular techniques that show genetic polymorphisms at species and strain levels have enabled the study of yeast diversity during wine fermentation. This review will summarize the mechanisms involved in generating genetic polymorphisms in yeasts, the molecular methods used to unveil genetic variation, and the utility of these polymorphisms to differentiate strains, populations, and species in order to infer the evolutionary history and the adaptive evolution of wine yeasts, and to identify their influence on their biotechnological and sensorial properties.
Collapse
Affiliation(s)
- José M Guillamón
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos - Consejo Superior de Investigaciones Científicas (CSIC)Valencia, Spain
| | - Eladio Barrio
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos - Consejo Superior de Investigaciones Científicas (CSIC)Valencia, Spain.,Departamento de Genética, Universidad de ValenciaValencia, Spain
| |
Collapse
|
11
|
Nakagawa Y, Ogihara H, Mochizuki C, Yamamura H, Iimura Y, Hayakawa M. Development of intra-strain self-cloning procedure for breeding baker's yeast strains. J Biosci Bioeng 2017; 123:319-326. [DOI: 10.1016/j.jbiosc.2016.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/09/2016] [Accepted: 10/12/2016] [Indexed: 10/20/2022]
|
12
|
Using mixed inocula of Saccharomyces cerevisiae killer strains to improve the quality of traditional sparkling-wine. Food Microbiol 2016; 59:150-60. [PMID: 27375256 DOI: 10.1016/j.fm.2016.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 05/20/2016] [Accepted: 06/07/2016] [Indexed: 12/30/2022]
Abstract
The quality of traditional sparkling-wine depends on the aging process in the presence of dead yeast cells. These cells undergo a slow autolysis process thereby releasing some compounds, mostly colloidal polymers such as polysaccharides and mannoproteins, which influence the wine's foam properties and mouthfeel. Saccharomyces cerevisiae killer yeasts were tested to increase cell death and autolysis during mixed-yeast-inoculated second fermentation and aging. These yeasts killed sensitive strains in killer plate assays done under conditions of low pH and temperature similar to those used in sparkling-wine making, although some strains showed a different killer behaviour during the second fermentation. The fast killer effect improved the foam quality and mouthfeel of the mixed-inoculated wines, while the slow killer effect gave small improvements over single-inoculated wines. The effect was faster under high-pressure than under low-pressure conditions. Wine quality improvement did not correlate with the polysaccharide, protein, mannan, or aromatic compound concentrations, suggesting that the mouthfeel and foaming quality of sparkling wine are very complex properties influenced by other wine compounds and their interactions, as well as probably by the specific chemical composition of a given wine.
Collapse
|
13
|
García M, Greetham D, Wimalasena T, Phister T, Cabellos J, Arroyo T. The phenotypic characterization of yeast strains to stresses inherent to wine fermentation in warm climates. J Appl Microbiol 2016; 121:215-33. [DOI: 10.1111/jam.13139] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 02/05/2016] [Accepted: 03/11/2016] [Indexed: 11/30/2022]
Affiliation(s)
- M. García
- Departamento de Calidad Agroalimentaria; IMIDRA; Alcalá de Henares Spain
| | - D. Greetham
- Bioenergy & Brewing Science; School of Biosciences; University of Nottingham; Loughborough UK
| | - T.T. Wimalasena
- Bioenergy & Brewing Science; School of Biosciences; University of Nottingham; Loughborough UK
| | | | - J.M. Cabellos
- Departamento de Calidad Agroalimentaria; IMIDRA; Alcalá de Henares Spain
| | - T. Arroyo
- Departamento de Calidad Agroalimentaria; IMIDRA; Alcalá de Henares Spain
| |
Collapse
|
14
|
Velázquez R, Zamora E, Álvarez ML, Hernández LM, Ramírez M. Effects of new Torulaspora delbrueckii killer yeasts on the must fermentation kinetics and aroma compounds of white table wine. Front Microbiol 2015; 6:1222. [PMID: 26579114 PMCID: PMC4630308 DOI: 10.3389/fmicb.2015.01222] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 10/19/2015] [Indexed: 11/25/2022] Open
Abstract
Torulaspora delbrueckii is becoming widely recommended for improving some specific characteristics of wines. However, its impact on wine quality is still far from satisfactory at the winery level, mostly because it is easily replaced by Saccharomyces cerevisiae-like yeasts during must fermentation. New T. delbrueckii killer strains were here isolated and selected for winemaking. They killed S. cerevisiae yeasts and were able to dominate and complete the fermentation of sterile grape must. Sequential yeast inoculation of non-sterile white must with T. delbrueckii followed by S. cerevisiae did not ensure T. delbrueckii dominance or wine quality improvement. Only a single initial must inoculation at high cell concentrations allowed the T. delbrueckii killer strains to dominate and complete the must fermentation to reach above 11% ethanol, but not the non-killer strains. None of the wines underwent malolactic fermentation as long as the must had low turbidity and pH. Although no statistically significant differences were found in the wine quality score, the S. cerevisiae-dominated wines were preferred over the T. delbrueckii-dominated ones because the former had high-intensity fresh fruit aromas while the latter had lower intensity, but nevertheless nice and unusual dried fruit/pastry aromas. Except for ethyl propanoate and 3-ethoxy-1-propanol, which were more abundant in the T. delbrueckii–dominated wines, most of the compounds with fresh fruit odor descriptors, including those with the greatest odor activity values (isoamyl acetate, ethyl hexanoate, and ethyl octanoate), were more abundant in the S. cerevisiae–dominated wines. The low relative concentrations of these fruity compounds made it possible to detect in the T. delbrueckii–dominated wines the low-relative-concentration compounds with dried fruit and pastry odors. An example was γ-ethoxy-butyrolactone which was significantly more abundant in these wines than in those dominated by S. cerevisiae.
Collapse
Affiliation(s)
- Rocío Velázquez
- Departamento de Ciencias Biomédicas (Área de Microbiología), Facultad de Ciencias, Universidad de Extremadura Badajoz, Spain
| | - Emiliano Zamora
- Estación Enológica, Junta de Extremadura Almendralejo, Spain
| | - María L Álvarez
- Estación Enológica, Junta de Extremadura Almendralejo, Spain
| | - Luis M Hernández
- Departamento de Ciencias Biomédicas (Área de Microbiología), Facultad de Ciencias, Universidad de Extremadura Badajoz, Spain
| | - Manuel Ramírez
- Departamento de Ciencias Biomédicas (Área de Microbiología), Facultad de Ciencias, Universidad de Extremadura Badajoz, Spain
| |
Collapse
|
15
|
Ramírez M, Velázquez R, Maqueda M, López-Piñeiro A, Ribas JC. A new wine Torulaspora delbrueckii killer strain with broad antifungal activity and its toxin-encoding double-stranded RNA virus. Front Microbiol 2015; 6:983. [PMID: 26441913 PMCID: PMC4569859 DOI: 10.3389/fmicb.2015.00983] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/03/2015] [Indexed: 12/12/2022] Open
Abstract
Wine Torulaspora delbrueckii strains producing a new killer toxin (Kbarr-1) were isolated and selected for wine making. They killed all the previously known Saccharomyces cerevisiae killer strains, in addition to other non-Saccharomyces yeasts. The Kbarr-1 phenotype is encoded by a medium-size 1.7 kb dsRNA, TdV-Mbarr-1, which seems to depend on a large-size 4.6 kb dsRNA virus (TdV-LAbarr) for stable maintenance and replication. The TdV-Mbarr-1 dsRNA was sequenced by new generation sequencing techniques. Its genome structure is similar to those of S. cerevisiae killer M dsRNAs, with a 5'-end coding region followed by an internal A-rich sequence and a 3'-end non-coding region. Mbarr-1 RNA positive strand carries cis acting signals at its 5' and 3' termini for transcription and replication respectively, similar to those RNAs of yeast killer viruses. The ORF at the 5' region codes for a putative preprotoxin with an N-terminal secretion signal, potential Kex2p/Kexlp processing sites, and N-glycosylation sites. No relevant sequence identity was found either between the full sequence of Mbarr-1 dsRNA and other yeast M dsRNAs, or between their respective toxin-encoded proteins. However, a relevant identity of TdV-Mbarr-1 RNA regions to the putative replication and packaging signals of most of the M-virus RNAs suggests that they are all evolutionarily related.
Collapse
Affiliation(s)
- Manuel Ramírez
- Departamento de Ciencias Biomédicas (Área de Microbiología, Antiguo Rectorado), Facultad de Ciencias, Universidad de ExtremaduraBadajoz, Spain
| | - Rocío Velázquez
- Departamento de Ciencias Biomédicas (Área de Microbiología, Antiguo Rectorado), Facultad de Ciencias, Universidad de ExtremaduraBadajoz, Spain
| | - Matilde Maqueda
- Departamento de Ciencias Biomédicas (Área de Microbiología, Antiguo Rectorado), Facultad de Ciencias, Universidad de ExtremaduraBadajoz, Spain
| | - Antonio López-Piñeiro
- Departamento de Biología Vegetal, Ecología y Ciencias de la Tierra, Facultad de Ciencias, Universidad de ExtremaduraBadajoz, Spain
| | - Juan C. Ribas
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de SalamancaSalamanca, Spain
| |
Collapse
|
16
|
Wnuk M, Panek A, Golec E, Magda M, Deregowska A, Adamczyk J, Lewinska A. Genetic profiling of yeast industrial strains using in situ comparative genomic hybridization (CGH). J Biotechnol 2015; 210:52-6. [PMID: 26116136 DOI: 10.1016/j.jbiotec.2015.06.407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 06/12/2015] [Accepted: 06/19/2015] [Indexed: 10/23/2022]
Abstract
The genetic differences and changes in genomic stability may affect fermentation processes involving baker's, brewer's and wine yeast strains. Thus, it seems worthwhile to monitor the changes in genomic DNA copy number of industrial strains. In the present study, we developed an in situ comparative genomic hybridization (CGH) to investigate the ploidy and genetic differences between selected industrial yeast strains. The CGH-based system was validated using the laboratory Saccharomyces cerevisiae yeast strains (haploid BY4741 and diploid BY4743). DNA isolated from BY4743 cells was considered a reference DNA. The ploidy and DNA gains and losses of baker's, brewer's and wine strains were revealed. Taken together, the in situ CGH was shown a helpful molecular tool to identify genomic differences between yeast industrial strains. Moreover, the in situ CGH-based system may be used at the single-cell level of analysis to supplement array-based techniques and high-throughput analyses at the population scale.
Collapse
Affiliation(s)
- Maciej Wnuk
- Department of Genetics, University of Rzeszow, Rejtana 16C, PL 35-959 Rzeszow, Poland.
| | - Anita Panek
- Department of Genetics, University of Rzeszow, Rejtana 16C, PL 35-959 Rzeszow, Poland
| | - Ewelina Golec
- Department of Genetics, University of Rzeszow, Rejtana 16C, PL 35-959 Rzeszow, Poland
| | - Michal Magda
- Department of Genetics, University of Rzeszow, Rejtana 16C, PL 35-959 Rzeszow, Poland
| | - Anna Deregowska
- Department of Genetics, University of Rzeszow, Rejtana 16C, PL 35-959 Rzeszow, Poland
| | - Jagoda Adamczyk
- Department of Genetics, University of Rzeszow, Rejtana 16C, PL 35-959 Rzeszow, Poland
| | - Anna Lewinska
- Department of Biochemistry and Cell Biology, University of Rzeszow, Poland
| |
Collapse
|
17
|
Characterization of yeast starter cultures used in household alcoholic beverage preparation by a few ethnic communities of Northeast India. ANN MICROBIOL 2012. [DOI: 10.1007/s13213-012-0537-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
18
|
Maqueda M, Zamora E, Álvarez ML, Ramírez M. Characterization, ecological distribution, and population dynamics of Saccharomyces sensu stricto killer yeasts in the spontaneous grape must fermentations of southwestern Spain. Appl Environ Microbiol 2012; 78:735-43. [PMID: 22101056 PMCID: PMC3264118 DOI: 10.1128/aem.06518-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 11/12/2011] [Indexed: 11/20/2022] Open
Abstract
Killer yeasts secrete protein toxins that are lethal to sensitive strains of the same or related yeast species. Among the four types of Saccharomyces killer yeasts already described (K1, K2, K28, and Klus), we found K2 and Klus killer yeasts in spontaneous wine fermentations from southwestern Spain. Both phenotypes were encoded by medium-size double-stranded RNA (dsRNA) viruses, Saccharomyces cerevisiae virus (ScV)-M2 and ScV-Mlus, whose genome sizes ranged from 1.3 to 1.75 kb and from 2.1 to 2.3 kb, respectively. The K2 yeasts were found in all the wine-producing subareas for all the vintages analyzed, while the Klus yeasts were found in the warmer subareas and mostly in the warmer ripening/harvest seasons. The middle-size isotypes of the M2 dsRNA were the most frequent among K2 yeasts, probably because they encoded the most intense K2 killer phenotype. However, the smallest isotype of the Mlus dsRNA was the most frequent for Klus yeasts, although it encoded the least intense Klus killer phenotype. The killer yeasts were present in most (59.5%) spontaneous fermentations. Most were K2, with Klus being the minority. The proportion of killer yeasts increased during fermentation, while the proportion of sensitive yeasts decreased. The fermentation speed, malic acid, and wine organoleptic quality decreased in those fermentations where the killer yeasts replaced at least 15% of a dominant population of sensitive yeasts, while volatile acidity and lactic acid increased, and the amount of bacteria in the tumultuous and the end fermentation stages also increased in an unusual way.
Collapse
Affiliation(s)
- Matilde Maqueda
- Departamento de Ciencias Biomédicas (Área de Microbiología), Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | | | | | - Manuel Ramírez
- Departamento de Ciencias Biomédicas (Área de Microbiología), Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| |
Collapse
|
19
|
Rodríguez-Cousiño N, Maqueda M, Ambrona J, Zamora E, Esteban R, Ramírez M. A new wine Saccharomyces cerevisiae killer toxin (Klus), encoded by a double-stranded rna virus, with broad antifungal activity is evolutionarily related to a chromosomal host gene. Appl Environ Microbiol 2011; 77:1822-32. [PMID: 21239561 PMCID: PMC3067279 DOI: 10.1128/aem.02501-10] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 12/30/2010] [Indexed: 11/20/2022] Open
Abstract
Wine Saccharomyces cerevisiae strains producing a new killer toxin (Klus) were isolated. They killed all the previously known S. cerevisiae killer strains, in addition to other yeast species, including Kluyveromyces lactis and Candida albicans. The Klus phenotype is conferred by a medium-size double-stranded RNA (dsRNA) virus, Saccharomyces cerevisiae virus Mlus (ScV-Mlus), whose genome size ranged from 2.1 to 2.3 kb. ScV-Mlus depends on ScV-L-A for stable maintenance and replication. We cloned and sequenced Mlus. Its genome structure is similar to that of M1, M2, or M28 dsRNA, with a 5'-terminal coding region followed by two internal A-rich sequences and a 3'-terminal region without coding capacity. Mlus positive strands carry cis-acting signals at their 5' and 3' termini for transcription and replication similar to those of killer viruses. The open reading frame (ORF) at the 5' portion codes for a putative preprotoxin with an N-terminal secretion signal, potential Kex2p/Kexlp processing sites, and N-glycosylation sites. No sequence homology was found either between the Mlus dsRNA and M1, M2, or M28 dsRNA or between Klus and the K1, K2, or K28 toxin. The Klus amino acid sequence, however, showed a significant degree of conservation with that of the product of the host chromosomally encoded ORF YFR020W of unknown function, thus suggesting an evolutionary relationship.
Collapse
Affiliation(s)
- Nieves Rodríguez-Cousiño
- Departamento de Microbiología (Antiguo Rectorado), Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
| | | | | | | | | | | |
Collapse
|
20
|
Diversity, variability and fast adaptive evolution of the wine yeast (Saccharomyces cerevisiae) genome—a review. ANN MICROBIOL 2010. [DOI: 10.1007/s13213-010-0086-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
21
|
Sahara H, Kotaka A, Kondo A, Ueda M, Hata Y. Using promoter replacement and selection for loss of heterozygosity to generate an industrially applicable sake yeast strain that homozygously overproduces isoamyl acetate. J Biosci Bioeng 2010; 108:359-64. [PMID: 19804856 DOI: 10.1016/j.jbiosc.2009.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 05/06/2009] [Accepted: 05/07/2009] [Indexed: 11/17/2022]
Abstract
By application of the high-efficiency loss of heterozygosity (HELOH) method for disrupting genes in diploid sake yeast (Kotaka et al., Appl. Microbiol. Biotechnol., 82, 387-395 (2009)), we constructed, from a heterozygous integrant, a homozygous diploid that overexpresses the alcohol acetyltransferase gene ATF2 from the SED1 promoter, without the need for sporulation and mating. Under the conditions of sake brewing, the homozygous integrant produced 1.4 times more isoamyl acetate than the parental, heterozygous strain. Furthermore, the homozygous integrant was more genetically stable than the heterozygous recombinant. Thus, the HELOH method can produce homozygous, recombinant sake yeast that is ready to be grown on an industrial scale using the well-established procedures of sake brewing. The HELOH method, therefore, facilitates genetic modification of this rarely sporulating diploid yeast strain while maintaining those characteristics required for industrial applications.
Collapse
Affiliation(s)
- Hiroshi Sahara
- Research Institute, Gekkeikan Sake Co. Ltd., 101 Shimotoba-koyanagi-cho, Fushimi-ku, Kyoto 612-8385, Japan.
| | | | | | | | | |
Collapse
|
22
|
Maqueda M, Zamora E, Rodríguez-Cousiño N, Ramírez M. Wine yeast molecular typing using a simplified method for simultaneously extracting mtDNA, nuclear DNA and virus dsRNA. Food Microbiol 2009; 27:205-9. [PMID: 20141937 DOI: 10.1016/j.fm.2009.10.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 10/01/2009] [Accepted: 10/05/2009] [Indexed: 11/25/2022]
Abstract
Quick and accurate methods are required for the identification of industrial, environmental, and clinical yeast strains. We propose a rapid method for the simultaneous extraction of yeast mtDNA, nuclear DNA, and virus dsRNA. It is simpler, cheaper, and faster than the previously reported methods. It allows one to choose among a broad range of molecular analysis approaches for yeast typing, avoiding the need to use of several different methods for the separate extraction of each nucleic acid type. The application of this method followed by the combined analysis of mtDNA and dsRNA (ScV-M and W) is a highly attractive option for fast and efficient wine yeast typing.
Collapse
Affiliation(s)
- Matilde Maqueda
- Departamento de Ciencias Biomédicas (Area de Microbiología), Facultad de Ciencias (Antiguo Rectorado), Universidad de Extremadura, 06071 Badajoz, Spain
| | | | | | | |
Collapse
|
23
|
Kotaka A, Sahara H, Kondo A, Ueda M, Hata Y. Efficient generation of recessive traits in diploid sake yeast by targeted gene disruption and loss of heterozygosity. Appl Microbiol Biotechnol 2009; 82:387-95. [DOI: 10.1007/s00253-008-1833-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 12/16/2008] [Accepted: 12/17/2008] [Indexed: 11/28/2022]
|
24
|
Zara G, Mannazzu I, Sanna ML, Orro D, Farris GA, Budroni M. Exploitation of the semi-homothallic life cycle ofSaccharomyces cerevisiaefor the development of breeding strategies. FEMS Yeast Res 2008; 8:1147-54. [DOI: 10.1111/j.1567-1364.2008.00393.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
25
|
Ramírez M, Ambrona J. Construction of sterile ime1Delta-transgenic Saccharomyces cerevisiae wine yeasts unable to disseminate in nature. Appl Environ Microbiol 2008; 74:2129-34. [PMID: 18245242 PMCID: PMC2292588 DOI: 10.1128/aem.01840-07] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 01/24/2008] [Indexed: 11/20/2022] Open
Abstract
The use of new transgenic yeasts in industry carries a potential environmental risk because their dispersal, introducing new artificial genetic combinations into nature, could have unpredictable consequences. This risk could be avoided by using sterile transgenic yeasts that are unable to sporulate and mate with wild yeasts. These sterile yeasts would not survive the annual cyclic harvesting periods, being condemned to disappear in the wineries and vineyards in less than a year. We have constructed new ime1Delta wine yeasts that are unable to sporulate and mate, bear easy-to-detect genetic markers, and quickly disappear in grape must fermentation immediately after sporulation of the yeast population. These sterile yeasts maintained the same biotechnological properties as their parent yeasts without any detectable deleterious effect of the ime1Delta mutation. These yeasts are therefore interesting biotechnologically for food industry applications and for genetically modified microorganism environmental monitoring studies.
Collapse
Affiliation(s)
- Manuel Ramírez
- Departamento de Microbiología (Antiguo Rectorado), Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain.
| | | |
Collapse
|
26
|
Genetic and physiological alterations occurring in a yeast population continuously propagated at increasing temperatures with cell recycling. World J Microbiol Biotechnol 2007; 23:1667. [DOI: 10.1007/s11274-007-9414-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Accepted: 02/07/2007] [Indexed: 10/23/2022]
|
27
|
Ambrona J, Ramírez M. Analysis of homothallic Saccharomyces cerevisiae strain mating during must fermentation. Appl Environ Microbiol 2007; 73:2486-90. [PMID: 17322328 PMCID: PMC1855609 DOI: 10.1128/aem.02431-06] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Accepted: 02/13/2007] [Indexed: 11/20/2022] Open
Abstract
Genetic instability and genome renewal may cause loss of heterozygosity (LOH) in homothallic wine yeasts (Saccharomyces cerevisiae), leading to the elimination of the recessive lethal or deleterious alleles that decrease yeast fitness. LOH was not detected in genetically stable wine yeasts during must fermentation. However, after sporulation, the heterozygosity of the new yeast population decreased during must fermentation. The frequency of mating between just-germinated haploid cells from different tetrads was very low, and the mating of haploid cells from the same ascus was favored because of the physical proximity. Also, mating restriction between haploid cells from the same ascus was found, leading to a very low frequency of self spore clone mating. This mating restriction slowed down the LOH process of the yeast population, maintaining the heterozygote frequency higher than would be expected assuming a fully random mating of the haploid yeasts or according to the Mortimer genome renewal proposal. The observed LOH occurs because of the linkage of the locus MAT to the chromosome III centromere, without the necessity for self spore clone mating or the high frequency of gene conversion and rapid asymmetric LOH observed in genetically unstable yeasts. This phenomenon is enough in itself to explain the high level of homozygosis found in natural populations of wine yeasts. The LOH process for centromere-linked markers would be slower than that for the nonlinked markers, because the linkage decreases the frequency of newly originated heterozygous yeasts after each round of sporulation and mating. This phenomenon is interesting in yeast evolution and may cause important sudden phenotype changes in genetically stable wine yeasts.
Collapse
Affiliation(s)
- Jesús Ambrona
- Departamento de Microbiología (Antiguo Rectorado), Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | | |
Collapse
|
28
|
Ambrona J, Vinagre A, Ramírez M. Rapid asymmetrical evolution of Saccharomyces cerevisiae wine yeasts. Yeast 2006; 22:1299-306. [PMID: 16358308 DOI: 10.1002/yea.1331] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Genetic instability causes very rapid asymmetrical loss of heterozygosity (LOH) at the cyh2 locus and loss of killer K2 phenotype in some wine yeasts under the usual laboratory propagation conditions or after long freeze-storage. The direction of this asymmetrical evolution in heterozygous cyh2(R)/CYH2(S) hybrids is determined by the mechanism of asymmetrical LOH. However, the speed of the process is affected by the differences in cell viability between the new homozygous yeasts and the original heterozygous hybrid cells. The concomitant loss of ScV-M2 virus in the LOH process may increase cell viability of cyh2(R)/cyh2(R) yeasts and so favour asymmetrical evolution. The presence of active killer K2 toxin, however, abolishes the asymmetrical evolution of the hybrid populations. This phenomenon may cause important sudden phenotype changes in industrial and pathogenic yeasts.
Collapse
Affiliation(s)
- Jesús Ambrona
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
| | | | | |
Collapse
|
29
|
Bradbury JE, Richards KD, Niederer HA, Lee SA, Rod Dunbar P, Gardner RC. A homozygous diploid subset of commercial wine yeast strains. Antonie van Leeuwenhoek 2005; 89:27-37. [PMID: 16328862 DOI: 10.1007/s10482-005-9006-1] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Accepted: 08/04/2005] [Indexed: 11/26/2022]
Abstract
Genetic analysis was performed on 45 commercial yeasts which are used in winemaking because of their superior fermentation properties. Genome sizes were estimated by propidium iodide fluorescence and flow cytometry. Forty strains had genome sizes consistent with their being diploid, while five had a range of aneuploid genome sizes that ranged from 1.2 to 1.8 times larger. The diploid strains are all Saccharomyces cerevisiae, based on genetic analysis of microsatellite and minisatellite markers and on DNA sequence analysis of the internal transcribed spacer (ITS) region of nuclear ribosomal DNA of four strains. Four of the five aneuploid strains appeared to be interspecific hybrids between Saccharomyces kudriavzevii and Saccharomyces cerevisiae, with the fifth a hybrid between two S. cerevisiae strains. An identification fingerprint was constructed for the commercial yeast strains using 17 molecular markers. These included six published trinucleotide microsatellites, seven new dinucleotide microsatellites, and four published minisatellite markers. The markers provided unambiguous identification of the majority of strains; however, several had identical or similar patterns, and likely represent the same strain or mutants derived from it. The combined use of all 17 polymorphic loci allowed us to identify a set of eleven commercial wine yeast strains that appear to be genetically homozygous. These strains are presumed to have undergone inbreeding to maintain their homozygosity, a process referred to previously as 'genome renewal'.
Collapse
Affiliation(s)
- John E Bradbury
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
30
|
Dunn B, Levine RP, Sherlock G. Microarray karyotyping of commercial wine yeast strains reveals shared, as well as unique, genomic signatures. BMC Genomics 2005; 6:53. [PMID: 15833139 PMCID: PMC1097725 DOI: 10.1186/1471-2164-6-53] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2004] [Accepted: 04/16/2005] [Indexed: 11/10/2022] Open
Abstract
Background Genetic differences between yeast strains used in wine-making may account for some of the variation seen in their fermentation properties and may also produce differing sensory characteristics in the final wine product itself. To investigate this, we have determined genomic differences among several Saccharomyces cerevisiae wine strains by using a "microarray karyotyping" (also known as "array-CGH" or "aCGH") technique. Results We have studied four commonly used commercial wine yeast strains, assaying three independent isolates from each strain. All four wine strains showed common differences with respect to the laboratory S. cerevisiae strain S288C, some of which may be specific to commercial wine yeasts. We observed very little intra-strain variation; i.e., the genomic karyotypes of different commercial isolates of the same strain looked very similar, although an exception to this was seen among the Montrachet isolates. A moderate amount of inter-strain genomic variation between the four wine strains was observed, mostly in the form of depletions or amplifications of single genes; these differences allowed unique identification of each strain. Many of the inter-strain differences appear to be in transporter genes, especially hexose transporters (HXT genes), metal ion sensors/transporters (CUP1, ZRT1, ENA genes), members of the major facilitator superfamily, and in genes involved in drug response (PDR3, SNQ1, QDR1, RDS1, AYT1, YAR068W). We therefore used halo assays to investigate the response of these strains to three different fungicidal drugs (cycloheximide, clotrimazole, sulfomethuron methyl). Strains with fewer copies of the CUP1 loci showed hypersensitivity to sulfomethuron methyl. Conclusion Microarray karyotyping is a useful tool for analyzing the genome structures of wine yeasts. Despite only small to moderate variations in gene copy numbers between different wine yeast strains and within different isolates of a given strain, there was enough variation to allow unique identification of strains; additionally, some of the variation correlated with drug sensitivity. The relatively small number of differences seen by microarray karyotyping between the strains suggests that the differences in fermentative and organoleptic properties ascribed to these different strains may arise from a small number of genetic changes, making it possible to test whether the observed differences do indeed confer different sensory properties in the finished wine.
Collapse
Affiliation(s)
- Barbara Dunn
- Dept. of Genetics, Stanford University Medical Ctr., Stanford, CA 94305-5120, USA
| | - R Paul Levine
- Dept. of Biological Sciences, Stanford University, Stanford, CA 94305-5020, USA
| | - Gavin Sherlock
- Dept. of Genetics, Stanford University Medical Ctr., Stanford, CA 94305-5120, USA
| |
Collapse
|
31
|
Current awareness on yeast. Yeast 2005. [PMID: 15773059 PMCID: PMC7169799 DOI: 10.1002/yea.1158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to keep subscribers up‐to‐date with the latest developments in their field, this current awareness service is provided by John Wiley & Sons and contains newly‐published material on yeasts. Each bibliography is divided into 10 sections. 1 Books, Reviews & Symposia; 2 General; 3 Biochemistry; 4 Biotechnology; 5 Cell Biology; 6 Gene Expression; 7 Genetics; 8 Physiology; 9 Medical Mycology; 10 Recombinant DNA Technology. Within each section, articles are listed in alphabetical order with respect to author. If, in the preceding period, no publications are located relevant to any one of these headings, that section will be omitted. (4 weeks journals ‐ search completed 10th. Nov. 2004)
Collapse
|