1
|
Pracser N, Zaiser A, Ciolacu L, Roch FF, Quijada NM, Thalguter S, Dzieciol M, Conrady B, Wagner M, Rychli K. The type of food influences the behaviour of Listeria monocytogenes in a food-gastrointestinal-infection model. NPJ Sci Food 2025; 9:79. [PMID: 40389416 PMCID: PMC12089613 DOI: 10.1038/s41538-025-00436-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 04/30/2025] [Indexed: 05/21/2025] Open
Abstract
Food contaminated with Listeria (L.) monocytogenes is the main source of human listeriosis, but how different food matrices affect the survival and invasion in the gastrointestinal (GI) tract is still unclear. This study examined three ready-to-eat foods - soft-cheese, smoked salmon, and sausage - using a food-GI-infection model. We observed strain-dependent growth rates, but food matrices did not significantly impact growth. However, nutrient sources altered gene expression. Passage through the GI model upregulated 23 stress genes and 29 virulence genes (e.g., clpE, hly, and plcB). L. monocytogenes survival was higher in cheese and fish compared to sausage, due to their lower buffer capacity. Invasion efficiency into Caco-2 cells was highest in fish, potentially linked to its fatty acid composition. Food matrices and GI conditions influenced the transcriptional profiles of stress-associated and virulence genes. This study highlights the significant role of food matrices in L. monocytogenes survival and infection.
Collapse
Grants
- P27920-B22 Austrian Science Fund (FWF)
- P27920-B22 Austrian Science Fund (FWF)
- 881882 The Austrian COMET-K1 competence centre for Feed and Food Quality, Safety and Innovation (FFoQSI) is funded by the Austrian federal ministries BMK, BMDW and the Austrian provinces Lower Austria, Upper Austria and Vienna within the scope of COMET.
- 881882 The Austrian COMET-K1 competence centre for Feed and Food Quality, Safety and Innovation (FFoQSI) is funded by the Austrian federal ministries BMK, BMDW and the Austrian provinces Lower Austria, Upper Austria and Vienna within the scope of COMET.
- 881882 The Austrian COMET-K1 competence centre for Feed and Food Quality, Safety and Innovation (FFoQSI) is funded by the Austrian federal ministries BMK, BMDW and the Austrian provinces Lower Austria, Upper Austria and Vienna within the scope of COMET.
- 881882 The Austrian COMET-K1 competence centre for Feed and Food Quality, Safety and Innovation (FFoQSI) is funded by the Austrian federal ministries BMK, BMDW and the Austrian provinces Lower Austria, Upper Austria and Vienna within the scope of COMET.
Collapse
Affiliation(s)
- Nadja Pracser
- Centre for Food Science and Veterinary Public Health, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Vienna, Austria
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Tulln, Austria
| | - Andreas Zaiser
- Centre for Food Science and Veterinary Public Health, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Luminita Ciolacu
- Centre for Food Science and Veterinary Public Health, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Franz-Ferdinand Roch
- Centre for Food Science and Veterinary Public Health, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Narciso M Quijada
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Tulln, Austria
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca, Salamanca, Spain
| | - Sarah Thalguter
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Tulln, Austria
| | - Monika Dzieciol
- Centre for Food Science and Veterinary Public Health, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Beate Conrady
- Centre for Food Science and Veterinary Public Health, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Vienna, Austria
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Copenhagen, Denmark
| | - Martin Wagner
- Centre for Food Science and Veterinary Public Health, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Vienna, Austria
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Tulln, Austria
| | - Kathrin Rychli
- Centre for Food Science and Veterinary Public Health, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Khadka R, Maravich B, Demarest N, Hartwig M, Tom A, Das NK, Cabeen MT. Stressosome-independent but RsbT-dependent environmental stress sensing in Bacillus subtilis. Nat Commun 2025; 16:1591. [PMID: 39939311 PMCID: PMC11821858 DOI: 10.1038/s41467-025-56871-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 01/28/2025] [Indexed: 02/14/2025] Open
Abstract
Bacillus subtilis uses cytoplasmic complexes called stressosomes to initiate the σB-mediated general stress response to environmental stress. Each stressosome comprises two types of proteins - RsbS and four paralogous RsbR proteins - that are thought to sequester the RsbT protein until stress causes RsbT release and subsequent σB activation. RsbR proteins have been assumed to sense stress, but evidence for their sensing function has been elusive, and the identity of the true sensor has remained unknown. Here, we conduct an alanine-scanning analysis of the putative sensing domain of one of the RsbR paralogs, RsbRA. We find that single substitutions impact but do not abolish the σB response, suggesting that RsbRA has a key role in σB response dynamics and is "tunable" and robust to substitution, but not directly supporting a sensing function. Surprisingly, deletion of the stressosome does not abolish environmental stress-inducible σB activity and instead leads to a stronger and longer-lived response than in strains with stressosomes. Finally, we show that RsbT is necessary for the stressosome-independent response and that its kinase activity is also important. RsbT thus has a previously unappreciated role in initiating stress responses and may itself be a stress sensor in the general stress response.
Collapse
Affiliation(s)
- Rabindra Khadka
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Brannon Maravich
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Natalie Demarest
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Mitchell Hartwig
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Andrew Tom
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Niloy Kumar Das
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Matthew T Cabeen
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA.
| |
Collapse
|
3
|
Liu M, Ding Y, Ye Q, Wu S, Gu Q, Chen L, Zhang Y, Wei X, Deng M, Zhang J, Wu Q, Wang J. Cold-tolerance mechanisms in foodborne pathogens: Escherichia coli and Listeria monocytogenes as examples. Crit Rev Food Sci Nutr 2024; 65:2031-2045. [PMID: 38441497 DOI: 10.1080/10408398.2024.2322141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2025]
Abstract
The cold chain is an integral part of the modern food industry. Low temperatures can effectively alleviate food loss and the transmission of foodborne diseases caused by microbial reproduction. However, recent reports have highlighted shortcomings in the current cold chain technology's ability to prevent and control cold-tolerant foodborne pathogens. Furthermore, it has been observed that certain cold-chain foods have emerged as new sources of infection for foodborne disease outbreaks. Consequently, there is a pressing need to enhance control measures targeting cold-tolerant pathogens within the existing cold chain system. This paper aims to review the recent advancements in understanding the cold tolerance mechanisms of key model organisms, identify key issues in current research, and explore the potential of utilizing big data and omics technology in future studies.
Collapse
Affiliation(s)
- Ming Liu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, National Health Commission, Guangzhou, China
| | - Yu Ding
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Qinghua Ye
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, National Health Commission, Guangzhou, China
| | - Shi Wu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, National Health Commission, Guangzhou, China
| | - Qihui Gu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, National Health Commission, Guangzhou, China
| | - Ling Chen
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, National Health Commission, Guangzhou, China
| | - Youxiong Zhang
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, National Health Commission, Guangzhou, China
| | - Xianhu Wei
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, National Health Commission, Guangzhou, China
| | - Meiqing Deng
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, National Health Commission, Guangzhou, China
| | - Jumei Zhang
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, National Health Commission, Guangzhou, China
| | - Qingping Wu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, National Health Commission, Guangzhou, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
4
|
Pracser N, Zaiser A, Ying HMK, Pietzka A, Wagner M, Rychli K. Diverse Listeria monocytogenes in-house clones are present in a dynamic frozen vegetable processing environment. Int J Food Microbiol 2024; 410:110479. [PMID: 37977080 DOI: 10.1016/j.ijfoodmicro.2023.110479] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
Listeria (L.) monocytogenes is of global concern for food safety as the listeriosis-causing pathogen is widely distributed in the food processing environments, where it can survive for a long time. Frozen vegetables contaminated with L. monocytogenes were recently identified as the source of two large listeriosis outbreaks in the EU and US. So far, only a few studies have investigated the occurrence and behavior of Listeria in frozen vegetables and the associated processing environment. This study investigates the occurrence of L. monocytogenes and other Listeria spp. in a frozen vegetable processing environment and in frozen vegetable products. Using whole genome sequencing (WGS), the distribution of sequence types (MLST-STs) and core genome sequence types (cgMLST-CT) of L. monocytogenes were assessed, and in-house clones were identified. Comparative genomic analyses and phenotypical characterization of the different MLST-STs and isolates were performed, including growth ability under low temperatures, as well as survival of freeze-thaw cycles. Listeria were widely disseminated in the processing environment and five in-house clones namely ST451-CT4117, ST20-CT3737, ST8-CT1349, ST8-CT6243, ST224-CT5623 were identified among L. monocytogenes isolates present in environmental swab samples. Subsequently, the identified in-house clones were also detected in product samples. Conveyor belts were a major source of contamination in the processing environment. A wide repertoire of stress resistance markers supported the colonization and survival of L. monocytogenes in the frozen vegetable processing facility. The presence of ArgB was significantly associated with in-house clones. Significant differences were also observed in the growth rate between different MLST-STs at low temperatures (4 °C and 10 °C), but not between in-house and non-in-house isolates. All isolates harbored major virulence genes such as full length InlA and InlB and LIPI-1, yet there were differences between MLST-STs in the genomic content. The results of this study demonstrate that WGS is a strong tool for tracing contamination sources and transmission routes, and for identifying in-house clones. Further research targeting the co-occurring microbiota and the presence of biofilms is needed to fully understand the mechanism of colonization and persistence in a food processing environment.
Collapse
Affiliation(s)
- Nadja Pracser
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1D, 3430 Tulln, Austria.
| | - Andreas Zaiser
- Unit of Food Microbiology, Institute for Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Hui Min Katharina Ying
- Unit of Food Microbiology, Institute for Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Ariane Pietzka
- Austrian National Reference Laboratory for Listeria monocytogenes, Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Beethovenstrasse 6, 8010 Graz, Austria.
| | - Martin Wagner
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1D, 3430 Tulln, Austria; Unit of Food Microbiology, Institute for Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Kathrin Rychli
- Unit of Food Microbiology, Institute for Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| |
Collapse
|
5
|
Ładziak M, Prochwicz E, Gut K, Gomza P, Jaworska K, Ścibek K, Młyńska-Witek M, Kadej-Zajączkowska K, Lillebaek EMS, Kallipolitis BH, Krawczyk-Balska A. Inactivation of lmo0946 ( sif) induces the SOS response and MGEs mobilization and silences the general stress response and virulence program in Listeria monocytogenes. Front Microbiol 2024; 14:1324062. [PMID: 38239729 PMCID: PMC10794523 DOI: 10.3389/fmicb.2023.1324062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/05/2023] [Indexed: 01/22/2024] Open
Abstract
Bacteria have evolved numerous regulatory pathways to survive in changing environments. The SOS response is an inducible DNA damage repair system that plays an indispensable role in bacterial adaptation and pathogenesis. Here we report a discovery of the previously uncharacterized protein Lmo0946 as an SOS response interfering factor (Sif) in the human pathogen Listeria monocytogenes. Functional genetic studies demonstrated that sif is indispensable for normal growth of L. monocytogenes in stress-free as well as multi-stress conditions, and sif contributes to susceptibility to β-lactam antibiotics, biofilm formation and virulence. Absence of Sif promoted the SOS response and elevated expression of mobilome genes accompanied by mobilization of the A118 prophage and ICELm-1 mobile genetic elements (MGEs). These changes were found to be associated with decreased expression of general stress response genes from the σB regulon as well as virulence genes, including the PrfA regulon. Together, this study uncovers an unexpected role of a previously uncharacterized factor, Sif, as an inhibitor of the SOS response in L. monocytogenes.
Collapse
Affiliation(s)
- Magdalena Ładziak
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Emilia Prochwicz
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Karina Gut
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Patrycja Gomza
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Karolina Jaworska
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Katarzyna Ścibek
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Marta Młyńska-Witek
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Katarzyna Kadej-Zajączkowska
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Eva M. S. Lillebaek
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Birgitte H. Kallipolitis
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Agata Krawczyk-Balska
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
6
|
Zhang Q, Lyu S. iTRAQ-based proteomics analysis of Bacillus pumilus responses to acid stress and quorum sensing in a vitamin C fermentation system. Front Microbiol 2023; 14:1131000. [PMID: 37025640 PMCID: PMC10070982 DOI: 10.3389/fmicb.2023.1131000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/07/2023] [Indexed: 04/08/2023] Open
Abstract
Microbial consortia play a key role in human health, bioenergy, and food manufacturing due to their strong stability, robustness and versatility. One of the microbial consortia consisting of Ketogulonicigenium vulgare and Bacillus megaterium for the production of the vitamin C precursor, 2-keto-L-gulonic acid (2-KLG), has been widely used for large-scale industrial production. To further investigate the cell-cell communication in microbial consortia, a microbial consortium consisting of Ketogulonicigenium vulgare and Bacillus pumilus was constructed and the differences in protein expression at different fermentation time points (18 h and 40 h) were analyzed by iTRAQ-based proteomics. The results indicated that B. pumilus was subjected to acid shocks in the coculture fermentation system and responded to it. In addition, the quorum sensing system existed in the coculture fermentation system, and B. pumilus could secrete quorum-quenching lactonase (YtnP) to inhibit the signaling pathway of K. vulgare. This study offers valuable guidance for further studies of synthetic microbial consortia.
Collapse
|
7
|
Berdejo D, Gayán E, Pagán E, Merino N, Campillo R, Pagán R, García-Gonzalo D. Carvacrol Selective Pressure Allows the Occurrence of Genetic Resistant Variants of Listeria monocytogenes EGD-e. Foods 2022; 11:3282. [PMID: 37431028 PMCID: PMC9602272 DOI: 10.3390/foods11203282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 09/07/2024] Open
Abstract
Essential oils and their constituents, such as carvacrol, are potential food preservatives because of their great antimicrobial properties. However, the long-term effects of these compounds are unknown and raise the question of whether resistance to these antimicrobials could emerge. This work aims to evaluate the occurrence of genetic resistant variants (RVs) in Listeria monocytogenes EGD-e by exposure to carvacrol. Two protocols were performed for the RVs selection: (a) by continuous exposure to sublethal doses, where LmSCar was isolated, and (b) by reiterative exposure to short lethal treatments of carvacrol, where LmLCar was isolated. Both RVs showed an increase in carvacrol resistance. Moreover, LmLCar revealed an increased cross-resistance to heat treatments at acid conditions and to ampicillin. Whole-genome sequencing identified two single nucleotide variations in LmSCar and three non-silent mutations in LmLCar. Among them, those located in the genes encoding the transcriptional regulators RsbT (in LmSCar) and ManR (in LmLCar) could contribute to their increased carvacrol resistance. These results provide information regarding the mode of action of this antimicrobial and support the importance of knowing how RVs appear. Further studies are required to determine the emergence of RVs in food matrices and their impact on food safety.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Diego García-Gonzalo
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
| |
Collapse
|
8
|
Abdelhamed H, Ramachandran R, Narayanan L, Islam S, Ozan O, Freitag N, Lawrence ML. Role of FruR transcriptional regulator in virulence of Listeria monocytogenes and identification of its regulon. PLoS One 2022; 17:e0274005. [PMID: 36054213 PMCID: PMC9439231 DOI: 10.1371/journal.pone.0274005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/19/2022] [Indexed: 11/29/2022] Open
Abstract
Listeria monocytogenes is a ubiquitous opportunistic foodborne pathogen capable of survival in various adverse environmental conditions. Pathogenesis of L. monocytogenes is tightly controlled by a complex regulatory network of transcriptional regulators that are necessary for survival and adaptations to harsh environmental conditions both inside and outside host cells. Among these regulatory pathways are members of the DeoR-family transcriptional regulators that are known to play a regulatory role in sugar metabolism. In this study, we deciphered the role of FruR, a DeoR family protein, which is a fructose operon transcriptional repressor protein, in L. monocytogenes pathogenesis and growth. Following intravenous (IV) inoculation in mice, a mutant strain with deletion of fruR exhibited a significant reduction in bacterial burden in liver and spleen tissues compared to the parent strain. Further, the ΔfruR strain had a defect in cell-to-cell spread in L2 fibroblast monolayers. Constitutive activation of PrfA, a pleiotropic activator of L. monocytogenes virulence factors, did not restore virulence to the ΔfruR strain, suggesting that the attenuation was not a result of impaired PrfA activation. Transcriptome analysis revealed that FruR functions as a positive regulator for genes encoding enzymes involved in the pentose phosphate pathway (PPP) and as a repressor for genes encoding enzymes in the glycolysis pathway. These results suggested that FruR may function to facilitate NADPH regeneration, which is necessary for full protection from oxidative stress. Interestingly, deletion of fruR increased sensitivity of L. monocytogenes to H2O2, confirming a role for FruR in survival of L. monocytogenes during oxidative stress. Using anti-mouse neutrophil/monocyte monoclonal antibody RB6-8C5 (RB6) in an in vivo infection model, we found that FruR has a specific function in protecting L. monocytogenes from neutrophil/monocyte-mediated killing. Overall, this work clarifies the role of FruR in controlling L. monocytogenes carbon flow between glycolysis and PPP for NADPH homeostasis, which provides a new mechanism allowing metabolic adaptation of L. monocytogenes to oxidative stress.
Collapse
Affiliation(s)
- Hossam Abdelhamed
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States of America
- * E-mail:
| | - Reshma Ramachandran
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States of America
- Department of Poultry Science, Mississippi State University, Starkville, MS, United States of America
| | - Lakshmi Narayanan
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States of America
| | - Shamima Islam
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States of America
| | - Ozdemir Ozan
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States of America
| | - Nancy Freitag
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Mark L. Lawrence
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States of America
| |
Collapse
|
9
|
Sibanda T, Buys EM. Listeria monocytogenes Pathogenesis: The Role of Stress Adaptation. Microorganisms 2022; 10:microorganisms10081522. [PMID: 36013940 PMCID: PMC9416357 DOI: 10.3390/microorganisms10081522] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 12/13/2022] Open
Abstract
Adaptive stress tolerance responses are the driving force behind the survival ability of Listeria monocytogenes in different environmental niches, within foods, and ultimately, the ability to cause human infections. Although the bacterial stress adaptive responses are primarily a necessity for survival in foods and the environment, some aspects of the stress responses are linked to bacterial pathogenesis. Food stress-induced adaptive tolerance responses to acid and osmotic stresses can protect the pathogen against similar stresses in the gastrointestinal tract (GIT) and, thus, directly aid its virulence potential. Moreover, once in the GIT, the reprogramming of gene expression from the stress survival-related genes to virulence-related genes allows L. monocytogenes to switch from an avirulent to a virulent state. This transition is controlled by two overlapping and interlinked transcriptional networks for general stress response (regulated by Sigma factor B, (SigB)) and virulence (regulated by the positive regulatory factor A (PrfA)). This review explores the current knowledge on the molecular basis of the connection between stress tolerance responses and the pathogenesis of L. monocytogenes. The review gives a detailed background on the currently known mechanisms of pathogenesis and stress adaptation. Furthermore, the paper looks at the current literature and theories on the overlaps and connections between the regulatory networks for SigB and PrfA.
Collapse
Affiliation(s)
- Thulani Sibanda
- Department of Consumer and Food Sciences, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa;
- Department of Applied Biology and Biochemistry, National University of Science and Technology, Bulawayo P.O. Box AC939, Zimbabwe
| | - Elna M. Buys
- Department of Consumer and Food Sciences, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa;
- Correspondence:
| |
Collapse
|
10
|
Guerreiro DN, Wu J, McDermott E, Garmyn D, Dockery P, Boyd A, Piveteau P, O’Byrne CP. In Vitro Evolution of Listeria monocytogenes Reveals Selective Pressure for Loss of SigB and AgrA Function at Different Incubation Temperatures. Appl Environ Microbiol 2022; 88:e0033022. [PMID: 35583325 PMCID: PMC9195950 DOI: 10.1128/aem.00330-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/15/2022] [Indexed: 12/15/2022] Open
Abstract
The alternative sigma factor B (σB) contributes to the stress tolerance of the foodborne pathogen Listeria monocytogenes by upregulating the general stress response. We previously showed that σB loss-of-function mutations arise frequently in strains of L. monocytogenes and suggested that mild stresses might favor the selection of such mutations. In this study, we performed in vitro evolution experiments (IVEE) where L. monocytogenes was allowed to evolve over 30 days at elevated (42°C) or lower (30°C) incubation temperatures. Isolates purified throughout the IVEE revealed the emergence of sigB operon mutations at 42°C. However, at 30°C, independent alleles in the agr locus arose, resulting in the inactivation of Agr quorum sensing. Colonies of both sigB mutants and agr mutants exhibited a greyer coloration on 7-days-old agar plates than those of the parental strain. Scanning electron microscopy revealed a more complex colony architecture in the wild type than in the mutant strains. sigB mutant strains outcompeted the parental strain at 42°C but not at 30°C, while agr mutant strains showed a small increase in competitive fitness at 30°C. Analysis of 40,080 L. monocytogenes publicly available genome sequences revealed a high occurrence rate of premature stop codons in both the sigB and agrCA loci. An analysis of a local L. monocytogenes strain collection revealed 5 out of 168 strains carrying agrCA alleles. Our results suggest that the loss of σB or Agr confer an increased competitive fitness in some specific conditions and this likely contributes to the emergence of these alleles in strains of L. monocytogenes. IMPORTANCE To withstand environmental aggressions, L. monocytogenes upregulates a large regulon through the action of the alternative sigma factor B (σB). However, σB becomes detrimental for L. monocytogenes growth under mild stresses, which confer a competitive advantage to σB loss-of-function alleles. Temperatures of 42°C, a mild stress, are often employed in mutagenesis protocols of L. monocytogenes and promote the emergence of σB loss-of-function alleles in the sigB operon. In contrast, lower temperatures of 30°C promote the emergence of Agr loss-of-function alleles, a cell-cell communication mechanism in L. monocytogenes. Our findings demonstrate that loss-of-function alleles emerge spontaneously in laboratory-grown strains. These alleles rise in the population as a consequence of the trade-off between growth and survival imposed by the activation of σB in L. monocytogenes. Additionally, our results demonstrate the importance of identifying unwanted hitchhiker mutations in newly constructed mutant strains.
Collapse
Affiliation(s)
- Duarte N. Guerreiro
- Bacterial Stress Response Group, Microbiology, Ryan Institute, School of Biological and Chemical Sciences, National University of Ireland, Galway, Ireland
| | - Jialun Wu
- Bacterial Stress Response Group, Microbiology, Ryan Institute, School of Biological and Chemical Sciences, National University of Ireland, Galway, Ireland
| | - Emma McDermott
- Centre for Microscopy and Imaging, Anatomy School of Medicine, National University of Ireland, Galway, Ireland
| | - Dominique Garmyn
- Agroécologie, AgroSup Dijon, INRAE, University Bourgogne, University Bourgogne Franche-Comté, Dijon, France
| | - Peter Dockery
- Centre for Microscopy and Imaging, Anatomy School of Medicine, National University of Ireland, Galway, Ireland
| | - Aoife Boyd
- Pathogenic Mechanisms Research Group, Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | | | - Conor P. O’Byrne
- Bacterial Stress Response Group, Microbiology, Ryan Institute, School of Biological and Chemical Sciences, National University of Ireland, Galway, Ireland
| |
Collapse
|
11
|
Guerreiro DN, Pucciarelli MG, Tiensuu T, Gudynaite D, Boyd A, Johansson J, García-del Portillo F, O’Byrne CP. Acid stress signals are integrated into the σB-dependent general stress response pathway via the stressosome in the food-borne pathogen Listeria monocytogenes. PLoS Pathog 2022; 18:e1010213. [PMID: 35275969 PMCID: PMC8942246 DOI: 10.1371/journal.ppat.1010213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/23/2022] [Accepted: 02/28/2022] [Indexed: 12/17/2022] Open
Abstract
The general stress response (GSR) in Listeria monocytogenes plays a critical role in the survival of this pathogen in the host gastrointestinal tract. The GSR is regulated by the alternative sigma factor B (σB), whose role in protection against acid stress is well established. Here, we investigated the involvement of the stressosome, a sensory hub, in transducing low pH signals to induce the GSR. Mild acid shock (15 min at pH 5.0) activated σB and conferred protection against a subsequent lethal pH challenge. A mutant strain where the stressosome subunit RsbR1 was solely present retained the ability to induce σB activity at pH 5.0. The role of stressosome phosphorylation in signal transduction was investigated by mutating the putative phosphorylation sites in the core stressosome proteins RsbR1 (rsbR1-T175A, -T209A, -T241A) and RsbS (rsbS-S56A), or the stressosome kinase RsbT (rsbT-N49A). The rsbS S56A and rsbT N49A mutations abolished the response to low pH. The rsbR1-T209A and rsbR1-T241A mutants displayed constitutive σB activity. Mild acid shock upregulates invasion genes inlAB and stimulates epithelial cell invasion, effects that were abolished in mutants with an inactive or overactive stressosome. Overall, the results show that the stressosome is required for acid-induced activation of σB in L. monocytogenes. Furthermore, they show that RsbR1 can function independently of its paralogues and signal transduction requires RsbT-mediated phosphorylation of RsbS on S56 and RsbR1 on T209 but not T175. These insights shed light on the mechanisms of signal transduction that activate the GSR in L. monocytogenes in response to acidic environments, and highlight the role this sensory process in the early stages of the infectious cycle. The stress sensing hub known as the stressosome, found in many bacterial and archaeal lineages, plays a crucial role in both stress tolerance and virulence in the food-borne pathogen Listeria monocytogenes. However, the mechanisms that lead to its activation and the subsequent activation of the general stress response have remained elusive. In this study, we examined the signal transduction mechanisms that operate in the stressosome in response to acid stress. We found that only one of the five putative sensory proteins present in L. monocytogenes, RsbR1, was required for effective transduction of acid tress signals. We further found that phosphorylation of RsbS and RsbR1, mediated by the RsbT kinase, is essential for signal transduction. Failure to phosphorylate RsbS on Serine 56 completely abolished acid sensing by the stressosome, which prevented the development of adaptive acid tolerance. The acid-induced activation of internalin gene expression was also abolished in mutants with defective stressosome signalling, suggesting a role for the stressosome in the invasion of host cells. Together the data provide new insights into the mechanisms that activate the stressosome in response to acid stress and highlight the role this sensory hub plays in virulence.
Collapse
Affiliation(s)
- Duarte N. Guerreiro
- Bacterial Stress Response Group, Microbiology, School of Biological and Chemical Sciences, National University of Ireland, Galway, Ireland
| | - M. Graciela Pucciarelli
- Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB)-CSIC, Madrid, Spain
- Department of Molecular Biology, Universidad Autónoma de Madrid, Centre of Molecular Biology ‘Severo Ochoa’ (CBMSO CSIC-UAM), Madrid, Spain
| | - Teresa Tiensuu
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre of Microbial Research, Umeå, Sweden
| | - Diana Gudynaite
- Bacterial Stress Response Group, Microbiology, School of Biological and Chemical Sciences, National University of Ireland, Galway, Ireland
| | - Aoife Boyd
- Pathogenic Mechanisms Research Group, Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Jörgen Johansson
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre of Microbial Research, Umeå, Sweden
| | | | - Conor P. O’Byrne
- Bacterial Stress Response Group, Microbiology, School of Biological and Chemical Sciences, National University of Ireland, Galway, Ireland
- * E-mail:
| |
Collapse
|
12
|
Abram F, Arcari T, Guerreiro D, O'Byrne CP. Evolutionary trade-offs between growth and survival: The delicate balance between reproductive success and longevity in bacteria. Adv Microb Physiol 2021; 79:133-162. [PMID: 34836610 DOI: 10.1016/bs.ampbs.2021.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
All living cells strive to allocate cellular resources in a way that promotes maximal evolutionary fitness. While there are many competing demands for resources the main decision making process centres on whether to proceed with growth and reproduction or to "hunker down" and invest in protection and survival (or to strike an optimal balance between these two processes). The transcriptional programme active at any given time largely determines which of these competing processes is dominant. At the top of the regulatory hierarchy are the sigma factors that commandeer the transcriptional machinery and determine which set of promoters are active at any given time. The regulatory inputs controlling their activity are therefore often highly complex, with multiple layers of regulation, allowing relevant environmental information to produce the most beneficial response. The tension between growth and survival is also evident in the developmental programme necessary to promote biofilm formation, which is typically associated with low growth rates and enhanced long-term survival. Nucleotide second messengers and energy pools (ATP/ADP levels) play critical roles in determining the fate of individual cells. Regulatory small RNAs frequently play important roles in the decision making processes too. In this review we discuss the trade-off that exists between reproduction and persistence in bacteria and discuss some of the recent advances in this fascinating field.
Collapse
Affiliation(s)
- Florence Abram
- Microbiology & Ryan Institute, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Talia Arcari
- Microbiology & Ryan Institute, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Duarte Guerreiro
- Microbiology & Ryan Institute, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Conor P O'Byrne
- Microbiology & Ryan Institute, School of Natural Sciences, National University of Ireland, Galway, Ireland.
| |
Collapse
|
13
|
Moy BE, Seshu J. STAS Domain Only Proteins in Bacterial Gene Regulation. Front Cell Infect Microbiol 2021; 11:679982. [PMID: 34235094 PMCID: PMC8256260 DOI: 10.3389/fcimb.2021.679982] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/07/2021] [Indexed: 01/19/2023] Open
Abstract
Sulfate Transport Anti-Sigma antagonist domains (Pfam01740) are found in all branches of life, from eubacteria to mammals, as a conserved fold encoded by highly divergent amino acid sequences. These domains are present as part of larger SLC26/SulP anion transporters, where the STAS domain is associated with transmembrane anchoring of the larger multidomain protein. Here, we focus on STAS Domain only Proteins (SDoPs) in eubacteria, initially described as part of the Bacillus subtilis Regulation of Sigma B (RSB) regulatory system. Since their description in B. subtilis, SDoPs have been described to be involved in the regulation of sigma factors, through partner-switching mechanisms in various bacteria such as: Mycobacterium. tuberculosis, Listeria. monocytogenes, Vibrio. fischeri, Bordetella bronchiseptica, among others. In addition to playing a canonical role in partner-switching with an anti-sigma factor to affect the availability of a sigma factor, several eubacterial SDoPs show additional regulatory roles compared to the original RSB system of B. subtilis. This is of great interest as these proteins are highly conserved, and often involved in altering gene expression in response to changes in environmental conditions. For many of the bacteria we will examine in this review, the ability to sense environmental changes and alter gene expression accordingly is critical for survival and colonization of susceptible hosts.
Collapse
Affiliation(s)
- Brian E Moy
- South Texas Center for Emerging Infectious Diseases (STCEID), Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
| | - J Seshu
- South Texas Center for Emerging Infectious Diseases (STCEID), Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
14
|
Tran HT, Bonilla CY. SigB-regulated antioxidant functions in gram‐positive bacteria. World J Microbiol Biotechnol 2021; 37:38. [DOI: 10.1007/s11274-021-03004-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 01/12/2021] [Indexed: 12/26/2022]
|
15
|
Bonilla CY. Generally Stressed Out Bacteria: Environmental Stress Response Mechanisms in Gram-Positive Bacteria. Integr Comp Biol 2020; 60:126-133. [PMID: 32044998 DOI: 10.1093/icb/icaa002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The ability to monitor the environment for toxic chemical and physical disturbances is essential for bacteria that live in dynamic environments. The fundamental sensing mechanisms and physiological responses that allow bacteria to thrive are conserved even if the molecular components of these pathways are not. The bacterial general stress response (GSR) represents a conceptual model for how one pathway integrates a wide range of environmental signals, and how a generalized system with broad molecular responses is coordinated to promote survival likely through complementary pathways. Environmental stress signals such as heat, osmotic stress, and pH changes are received by sensor proteins that through a signaling cascade activate the sigma factor, SigB, to regulate over 200 genes. Additionally, the GSR plays an important role in stress priming that increases bacterial fitness to unrelated subsequent stressors such as oxidative compounds. While the GSR response is implicated during oxidative stress, the reason for its activation remains unknown and suggests crosstalk between environmental and oxidative stress sensors and responses to coordinate antioxidant functions. Systems levels studies of cellular responses such as transcriptomes, proteomes, and metabolomes of stressed bacteria and single-cell analysis could shed light into the regulated functions that protect, remediate, and minimize damage during dynamic environments. This perspective will focus on fundamental stress sensing mechanisms and responses in Gram-positive bacterial species to illustrate their commonalities at the molecular and physiological levels; summarize exciting directions; and highlight how system-level approaches can help us understand bacterial physiology.
Collapse
Affiliation(s)
- Carla Y Bonilla
- Biology Department, Gonzaga University, 502 East Boone Avenue, Spokane, WA 99258, USA
| |
Collapse
|
16
|
Wambui J, Eshwar AK, Aalto-Araneda M, Pöntinen A, Stevens MJA, Njage PMK, Tasara T. The Analysis of Field Strains Isolated From Food, Animal and Clinical Sources Uncovers Natural Mutations in Listeria monocytogenes Nisin Resistance Genes. Front Microbiol 2020; 11:549531. [PMID: 33123101 PMCID: PMC7574537 DOI: 10.3389/fmicb.2020.549531] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/02/2020] [Indexed: 12/19/2022] Open
Abstract
Nisin is a commonly used bacteriocin for controlling spoilage and pathogenic bacteria in food products. Strains possessing high natural nisin resistance that reduce or increase the potency of this bacteriocin against Listeria monocytogenes have been described. Our study sought to gather more insights into nisin resistance mechanisms in natural L. monocytogenes populations by examining a collection of 356 field strains that were isolated from different foods, food production environments, animals and human infections. A growth curve analysis-based approach was used to access nisin inhibition levels and assign the L. monocytogenes strains into three nisin response phenotypic categories; resistant (66%), intermediate (26%), and sensitive (8%). Using this categorization isolation source, serotype, genetic lineage, clonal complex (CC) and strain-dependent natural variation in nisin phenotypic resistance among L. monocytogenes field strains was revealed. Whole genome sequence analysis and comparison of high nisin resistant and sensitive strains led to the identification of new naturally occurring mutations in nisin response genes associated with increased nisin resistance and sensitivity in this bacterium. Increased nisin resistance was detected in strains harboring RsbUG77S and PBPB3V240F amino acid substitution mutations, which also showed increased detergent stress resistance as well as increased virulence in a zebra fish infection model. On the other hand, increased natural nisin sensitivity was detected among strains with mutations in sigB, vir, and dlt operons that also showed increased lysozyme sensitivity and lower virulence. Overall, our study identified naturally selected mutations involving pbpB3 (lm0441) as well as sigB, vir, and dlt operon genes that are associated with intrinsic nisin resistance in L. monocytogenes field strains recovered from various food and human associated sources. Finally, we show that combining growth parameter-based phenotypic analysis and genome sequencing is an effective approach that can be useful for the identification of novel nisin response associated genetic variants among L. monocytogenes field strains.
Collapse
Affiliation(s)
- Joseph Wambui
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Athmanya K Eshwar
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Mariella Aalto-Araneda
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Anna Pöntinen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Marc J A Stevens
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Patrick M K Njage
- Research Group for Genomic Epidemiology, Division for Global Surveillance, National Food Institute, Technical University of Denmark, Kengens Lyngby, Denmark
| | - Taurai Tasara
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Guerreiro DN, Arcari T, O'Byrne CP. The σ B-Mediated General Stress Response of Listeria monocytogenes: Life and Death Decision Making in a Pathogen. Front Microbiol 2020; 11:1505. [PMID: 32733414 PMCID: PMC7358398 DOI: 10.3389/fmicb.2020.01505] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/10/2020] [Indexed: 12/17/2022] Open
Abstract
Sensing and responding to environmental cues is critical for the adaptability and success of the food-borne bacterial pathogen Listeria monocytogenes. A supramolecular multi-protein complex known as the stressosome, which acts as a stress sensing hub, is responsible for orchestrating the activation of a signal transduction pathway resulting in the activation of σB, the sigma factor that controls the general stress response (GSR). When σB is released from the anti-sigma factor RsbW, a rapid up-regulation of the large σB regulon, comprised of ≥ 300 genes, ensures that cells respond appropriately to the new environmental conditions. A diversity of stresses including low pH, high osmolarity, and blue light are known to be sensed by the stressosome, resulting in a generalized increase in stress resistance. Appropriate activation of the stressosome and deployment of σB are critical to fitness as there is a trade-off between growth and stress protection when the GSR is deployed. We review the recent developments in this field and describe an up-to-date model of how this sensory organelle might integrate environmental signals to produce an appropriate activation of the GSR. Some of the outstanding questions and challenges in this fascinating field are also discussed.
Collapse
Affiliation(s)
- Duarte N Guerreiro
- Bacterial Stress Response Group, Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Talia Arcari
- Bacterial Stress Response Group, Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Conor P O'Byrne
- Bacterial Stress Response Group, Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
18
|
Guerreiro DN, Wu J, Dessaux C, Oliveira AH, Tiensuu T, Gudynaite D, Marinho CM, Boyd A, García-Del Portillo F, Johansson J, O'Byrne CP. Mild Stress Conditions during Laboratory Culture Promote the Proliferation of Mutations That Negatively Affect Sigma B Activity in Listeria monocytogenes. J Bacteriol 2020; 202:e00751-19. [PMID: 32094160 PMCID: PMC7148139 DOI: 10.1128/jb.00751-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/01/2020] [Indexed: 12/18/2022] Open
Abstract
In Listeria monocytogenes, the full details of how stress signals are integrated into the σB regulatory pathway are not yet available. To help shed light on this question, we investigated a collection of transposon mutants that were predicted to have compromised activity of the alternative sigma factor B (σB). These mutants were tested for acid tolerance, a trait that is known to be under σB regulation, and they were found to display increased acid sensitivity, similar to a mutant lacking σB (ΔsigB). The transposon insertions were confirmed by whole-genome sequencing, but in each case, the strains were also found to carry a frameshift mutation in the sigB operon. The changes were predicted to result in premature stop codons, with negative consequences for σB activation, independently of the transposon location. Reduced σB activation in these mutants was confirmed. Growth measurements under conditions similar to those used during the construction of the transposon library revealed that the frameshifted sigB operon alleles conferred a growth advantage at higher temperatures, during late exponential phase. Mixed-culture experiments at 42°C demonstrated that the loss of σB activity allowed mutants to take over a population of parental bacteria. Together, our results suggest that mutations affecting σB activity can arise during laboratory culture because of the growth advantage conferred by these mutations under mild stress conditions. The data highlight the significant cost of stress protection in this foodborne pathogen and emphasize the need for whole-genome sequence analysis of newly constructed strains to confirm the expected genotype.IMPORTANCE In the present study, we investigated a collection of Listeria monocytogenes strains that all carried sigB operon mutations. The mutants all had reduced σB activity and were found to have a growth advantage under conditions of mild heat stress (42°C). In mixed cultures, these mutants outcompeted the wild type when mild heat stress was present but not at an optimal growth temperature. An analysis of 22,340 published L. monocytogenes genome sequences found a high rate of premature stop codons present in genes positively regulating σB activity. Together, these findings suggest that the occurrence of mutations that attenuate σB activity can be favored under conditions of mild stress, probably highlighting the burden on cellular resources that stems from deploying the general stress response.
Collapse
Affiliation(s)
- Duarte N Guerreiro
- Bacterial Stress Response Group, Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Jialun Wu
- Bacterial Stress Response Group, Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Charlotte Dessaux
- Laboratory of Intracellular Bacterial Pathogens, National Center for Biotechnology (CNB)-CSIC, Madrid, Spain
| | - Ana H Oliveira
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Center of Microbial Research, Umeå, Sweden
| | - Teresa Tiensuu
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Center of Microbial Research, Umeå, Sweden
| | - Diana Gudynaite
- Molecular Microbiology Department, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Catarina M Marinho
- Bacterial Stress Response Group, Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
- Université Bourgogne Franche-Conté, Dijon, France
- Institut National de la Recherche Agronomique, UMR Agroécologie, Dijon, France
| | - Aoife Boyd
- Pathogenic Mechanisms Research Group, National University of Ireland, Galway, Ireland
| | | | - Jörgen Johansson
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Center of Microbial Research, Umeå, Sweden
| | - Conor P O'Byrne
- Bacterial Stress Response Group, Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| |
Collapse
|
19
|
Kragh ML, Truelstrup Hansen L. Initial Transcriptomic Response and Adaption of Listeria monocytogenes to Desiccation on Food Grade Stainless Steel. Front Microbiol 2020; 10:3132. [PMID: 32038566 PMCID: PMC6987299 DOI: 10.3389/fmicb.2019.03132] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/26/2019] [Indexed: 12/14/2022] Open
Abstract
The foodborne pathogen Listeria monocytogenes survives exposure to a variety of stresses including desiccation in the food industry. Strand-specific RNA sequencing was applied to analyze changes in the transcriptomes of two strains of L. monocytogenes (Lm 568 and Lm 08-5578) during desiccation [15°C, 43% relative humidity (RH)] on food grade stainless steel surfaces over 48 h to simulate a weekend with no food production. Both strains showed similar survival during desiccation with a 1.8-2 Log CFU/cm2 reduction after 48 h. Analysis of differentially expressed (DE) genes (>twofold, adjusted p-value <0.05) revealed that the initial response to desiccation was established after 6 h and remained constant with few new genes being DE after 12, 24, and 48 h. A core of 81 up- and 73 down-regulated DE genes were identified as a shared, strain independent response to desiccation. Among common upregulated genes were energy and oxidative stress related genes e.g., qoxABCD (cytochrome aa3) pdhABC (pyruvate dehydrogenase complex) and mntABCH (manganese transporter). Common downregulated genes related to anaerobic growth, proteolysis and the two component systems lmo1172/lmo1173 and cheA/cheY, which are involved in cold growth and flagellin production, respectively. Both strains upregulated additional genes involved in combatting oxidative stress and reactive oxygen species (ROS), including sod (superoxide dismutase), kat (catalase), tpx (thiol peroxidase) and several thioredoxins including trxAB, lmo2390 and lmo2830. Osmotic stress related genes were also upregulated in both strains, including gbuABC (glycine betaine transporter) and several chaperones clpC, cspA, and groE. Significant strain differences were also detected with the food outbreak strain Lm 08-5578 differentially expressing 1.9 × more genes (726) compared to Lm 568 (410). Unique to Lm 08-5578 was a significant upregulation of the expression of the alternative transcription factor σB and its regulon. A number of long antisense transcripts (lasRNA) were upregulated during desiccation including anti0605, anti0936, anti1846, and anti0777, with the latter controlling flagellum biosynthesis and possibly the downregulation of motility genes observed in both strains. This exploration of the transcriptomes of desiccated L. monocytogenes provides further understanding of how this bacterium encounters and survives the stress faced when exposed to dry conditions in the food industry.
Collapse
|
20
|
He K, Xin YP, Shan Y, Zhang X, Song HH, Fang WH. Phosphorylation residue T175 in RsbR protein is required for efficient induction of sigma B factor and survival of Listeria monocytogenes under acidic stress. J Zhejiang Univ Sci B 2020; 20:660-669. [PMID: 31273963 DOI: 10.1631/jzus.b1800551] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Listeria monocytogenes is an important zoonotic foodborne pathogen that can tolerate a number of environmental stresses. RsbR, an upstream regulator of the sigma B (SigB) factor, is thought to sense environmental challenges and trigger the SigB pathway. In Bacillus subtilis, two phosphorylation sites in RsbR are involved in activating the SigB pathway and a feedback mechanism, respectively. In this study, the role of RsbR in L. monocytogenes under mild and severe stresses was investigated. Strains with genetic deletion (ΔrsbR), complementation (C-ΔrsbR), and phosphorylation site mutations in the rsbR (RsbR-T175A, RsbR-T209A, and RsbR-T175A-T209A) were constructed to evaluate the roles of these RsbR sequences in listerial growth and survival. SigB was examined at the transcriptional and translational levels. Deletion of rsbR reduced listerial growxth and survival in response to acidic stress. Substitution of the phosphorylation residue RsbR-T175A disabled RsbR complementation, while RsbR-T209A significantly upregulated SigB expression and listerial survival. Our results provide clear evidence that two phosphorylation sites of RsbR are functional in L. monocytogenes under acidic conditions, similar to the situation in B. subtilis.
Collapse
Affiliation(s)
- Ke He
- College of Animal Science and Technology, Zhejiang A&F University, Lin'an 311300, China.,Zhejiang University Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China
| | - Yong-Ping Xin
- Zhejiang University Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China
| | - Ying Shan
- Zhejiang University Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China
| | - Xian Zhang
- College of Animal Science and Technology, Zhejiang A&F University, Lin'an 311300, China
| | - Hou-Hui Song
- College of Animal Science and Technology, Zhejiang A&F University, Lin'an 311300, China
| | - Wei-Huan Fang
- College of Animal Science and Technology, Zhejiang A&F University, Lin'an 311300, China.,Zhejiang University Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China
| |
Collapse
|
21
|
Patange A, O’Byrne C, Boehm D, Cullen PJ, Keener K, Bourke P. The Effect of Atmospheric Cold Plasma on Bacterial Stress Responses and Virulence Using Listeria monocytogenes Knockout Mutants. Front Microbiol 2019; 10:2841. [PMID: 31921026 PMCID: PMC6918802 DOI: 10.3389/fmicb.2019.02841] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 11/22/2019] [Indexed: 12/28/2022] Open
Abstract
Listeria monocytogenes is an opportunistic intracellular pathogen commonly associated with serious infections and multiple food-borne outbreaks. In this study, we investigated the influence of atmospheric cold plasma (80 kV, 50 Hz) on L. monocytogenes (EGD-e) and its knockout mutants of sigB, rsbR, prfA, gadD, and lmo0799 genes at different treatment time intervals. Further, to ascertain if sub-lethal environmental stress conditions could influence L. monocytogenes survival and growth responses, atmospheric cold plasma (ACP) resistance was evaluated for the cultures exposed to cold (4°C) or acid (pH 4) stress for 1 h. The results demonstrate that both wild-type and knockout mutants were similarly affected after 1 min exposure to ACP (p > 0.05), with a difference in response noted only after 3 min of treatment. While all L. monocytogenes strains exposed to acid/cold stress were hypersensitive to ACP treatment and were significantly reduced or inactivated within 1 min of treatment (p < 0.05). The results indicate sigB and prfA are important for general stress resistance and biofilm, respectively, loss of these two genes significantly reduced bacterial resistance to ACP treatment. In addition, exposure to sub-lethal 1min ACP increased the gene expression of stress associated genes. SigB showed the highest gene expression, increasing by 15.60 fold, followed by gadD2 (7.19) and lmo0799 (8.6) after 1 min exposure. Overall, an increase in gene expression was seen in all stress associated genes analyzed both at 1 min treatment; while long treatment time reduced the gene expression and some cases down-regulated prfA and gadD3 gene expression. By comparing the response of mutants under ACP exposure to key processing parameters, the experimental results presented here provide a baseline for understanding the bacterial genetic response and resistance to cold plasma stress and offers promising insights for optimizing ACP applications.
Collapse
Affiliation(s)
- Apurva Patange
- School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
| | - Conor O’Byrne
- Bacterial Stress Response Group, School of Natural Sciences, National University of Ireland, Galway, Galway, Ireland
| | - Daniela Boehm
- School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
| | - P. J. Cullen
- School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, Australia
| | - Kevin Keener
- School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
| | - Paula Bourke
- School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
- School of Biological Sciences, IGFS, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
22
|
Marinho CM, Dos Santos PT, Kallipolitis BH, Johansson J, Ignatov D, Guerreiro DN, Piveteau P, O’Byrne CP. The σ B-dependent regulatory sRNA Rli47 represses isoleucine biosynthesis in Listeria monocytogenes through a direct interaction with the ilvA transcript. RNA Biol 2019; 16:1424-1437. [PMID: 31242083 PMCID: PMC6779388 DOI: 10.1080/15476286.2019.1632776] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/06/2019] [Accepted: 06/11/2019] [Indexed: 12/25/2022] Open
Abstract
The facultative intracellular pathogen Listeria monocytogenes can persist and grow in a diverse range of environmental conditions, both outside and within its mammalian host. The alternative sigma factor Sigma B (σB) plays an important role in this adaptability and is critical for the transition into the host. While some of the functions of the σB regulon in facilitating this transition are understood the role of σB-dependent small regulatory RNAs (sRNAs) remain poorly characterized. In this study, we focused on elucidating the function of Rli47, a σB-dependent sRNA that is highly induced in the intestine and in macrophages. Using a combination of in silico and in vivo approaches, a binding interaction was predicted with the Shine-Dalgarno region of the ilvA mRNA, which encodes threonine deaminase, an enzyme required for branched-chain amino acid biosynthesis. Both ilvA transcript levels and threonine deaminase activity were increased in a deletion mutant lacking the rli47 gene. The Δrli47 mutant displayed a shorter growth lag in isoleucine-depleted growth media relative to the wild-type, and a similar phenotype was also observed in a mutant lacking σB. The impact of the Δrli47 on the global transcription profile of the cell was investigated using RNA-seq, and a significant role for Rli47 in modulating amino acid metabolism was uncovered. Taken together, the data point to a model where Rli47 is responsible for specifically repressing isoleucine biosynthesis as a way to restrict growth under harsh conditions, potentially contributing to the survival of L. monocytogenes in niches both outside and within the mammalian host.
Collapse
Affiliation(s)
- Catarina M. Marinho
- Agroécologie, AgroSup Dijon, INRA, Université de Bourgogne Franche-Comté, Dijon, France
- Bacterial Stress Response Group, National University of Ireland, Galway, Ireland
| | - Patrícia T. Dos Santos
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Birgitte H. Kallipolitis
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Jörgen Johansson
- Department of Molecular Biology; Molecular Infection Medicine, Sweden (MIMS), Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Dmitriy Ignatov
- Department of Molecular Biology; Molecular Infection Medicine, Sweden (MIMS), Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Duarte N. Guerreiro
- Bacterial Stress Response Group, National University of Ireland, Galway, Ireland
| | - Pascal Piveteau
- Agroécologie, AgroSup Dijon, INRA, Université de Bourgogne Franche-Comté, Dijon, France
| | - Conor P. O’Byrne
- Bacterial Stress Response Group, National University of Ireland, Galway, Ireland
| |
Collapse
|
23
|
Tiensuu T, Guerreiro DN, Oliveira AH, O’Byrne C, Johansson J. Flick of a switch: regulatory mechanisms allowing Listeria monocytogenes to transition from a saprophyte to a killer. Microbiology (Reading) 2019; 165:819-833. [DOI: 10.1099/mic.0.000808] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Teresa Tiensuu
- Department of Molecular Biology; Molecular Infection Medicine, Sweden (MIMS); Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Duarte N. Guerreiro
- Bacterial Stress Response Group, Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway H91 TK33, Ireland
| | - Ana H. Oliveira
- Department of Molecular Biology; Molecular Infection Medicine, Sweden (MIMS); Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Conor O’Byrne
- Bacterial Stress Response Group, Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway H91 TK33, Ireland
| | - Jörgen Johansson
- Department of Molecular Biology; Molecular Infection Medicine, Sweden (MIMS); Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| |
Collapse
|
24
|
Hauf S, Herrmann J, Miethke M, Gibhardt J, Commichau FM, Müller R, Fuchs S, Halbedel S. Aurantimycin resistance genes contribute to survival of Listeria monocytogenes during life in the environment. Mol Microbiol 2019; 111:1009-1024. [PMID: 30648305 DOI: 10.1111/mmi.14205] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2019] [Indexed: 12/16/2022]
Abstract
Bacteria can cope with toxic compounds such as antibiotics by inducing genes for their detoxification. A common detoxification strategy is compound excretion by ATP-binding cassette (ABC) transporters, which are synthesized upon compound contact. We previously identified the multidrug resistance ABC transporter LieAB in Listeria monocytogenes, a Gram-positive bacterium that occurs ubiquitously in the environment, but also causes severe infections in humans upon ingestion. Expression of the lieAB genes is strongly induced in cells lacking the PadR-type transcriptional repressor LftR, but compounds leading to relief of this repression in wild-type cells were not known. Using RNA-Seq and promoter-lacZ fusions, we demonstrate highly specific repression of the lieAB and lftRS promoters through LftR. Screening of a natural compound library yielded the depsipeptide aurantimycin A - synthesized by the soil-dwelling Streptomyces aurantiacus - as the first known naturally occurring inducer of lieAB expression. Genetic and phenotypic experiments concordantly show that aurantimycin A is a substrate of the LieAB transporter and thus, lftRS and lieAB represent the first known genetic module conferring and regulating aurantimycin A resistance. Collectively, these genes may support the survival of L. monocytogenes when it comes into contact with antibiotic-producing bacteria in the soil.
Collapse
Affiliation(s)
- Samuel Hauf
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Burgstrasse 37, Wernigerode, 38855, Germany
| | - Jennifer Herrmann
- Department of Microbial Natural Products, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Campus E8.1, Saarbrücken, 66123, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, 38124, Germany
| | - Marcus Miethke
- Department of Microbial Natural Products, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Campus E8.1, Saarbrücken, 66123, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, 38124, Germany
| | - Johannes Gibhardt
- Department of General Microbiology, University of Göttingen, Grisebachstrasse 8, Göttingen, 37077, Germany
| | - Fabian M Commichau
- Department of General Microbiology, University of Göttingen, Grisebachstrasse 8, Göttingen, 37077, Germany
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Campus E8.1, Saarbrücken, 66123, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, 38124, Germany
| | - Stephan Fuchs
- FG13 Nosocomial Pathogens and Antibiotic Resistances, Robert Koch Institute, Burgstrasse 37, Wernigerode, 38855, Germany
| | - Sven Halbedel
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Burgstrasse 37, Wernigerode, 38855, Germany
| |
Collapse
|
25
|
Role and regulation of the stress activated sigma factor sigma B (σ B) in the saprophytic and host-associated life stages of Listeria monocytogenes. ADVANCES IN APPLIED MICROBIOLOGY 2019; 106:1-48. [PMID: 30798801 DOI: 10.1016/bs.aambs.2018.11.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The stress activated sigma factor sigma B (σB) plays a pivotal role in allowing the food-borne bacterial pathogen Listeria monocytogenes to modulate its transcriptional landscape in order to survive in a variety of harsh environments both outside and within the host. While we have a comparatively good understanding of the systems under the control of this sigma factor much less is known about how the activity of σB is controlled. In this review, we present a current model describing how this sigma factor is thought to be controlled including an overview of what is known about stress sensing and the early signal transduction events that trigger its activation. We discuss the known regulatory overlaps between σB and other protein and RNA regulators in the cell. Finally, we describe the role of σB in surviving both saprophytic and host-associated stresses. The complexity of the regulation of this sigma factor reflects the significant role that it plays in the persistence of this important pathogen in the natural environment, the food chain as well as within the host during the early stages of an infection. Understanding its regulation will be a critical step in helping to develop rational strategies to prevent its growth and survival in the food destined for human consumption and in the prevention of listeriosis.
Collapse
|
26
|
Bucur FI, Grigore-Gurgu L, Crauwels P, Riedel CU, Nicolau AI. Resistance of Listeria monocytogenes to Stress Conditions Encountered in Food and Food Processing Environments. Front Microbiol 2018; 9:2700. [PMID: 30555426 PMCID: PMC6282059 DOI: 10.3389/fmicb.2018.02700] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/23/2018] [Indexed: 12/17/2022] Open
Abstract
Listeria monocytogenes is a human food-borne facultative intracellular pathogen that is resistant to a wide range of stress conditions. As a consequence, L. monocytogenes is extremely difficult to control along the entire food chain from production to storage and consumption. Frequent and recent outbreaks of L. monocytogenes infections illustrate that current measures of decontamination and preservation are suboptimal to control L. monocytogenes in food. In order to develop efficient measures to prevent contamination during processing and control growth during storage of food it is crucial to understand the mechanisms utilized by L. monocytogenes to tolerate the stress conditions in food matrices and food processing environments. Food-related stress conditions encountered by L. monocytogenes along the food chain are acidity, oxidative and osmotic stress, low or high temperatures, presence of bacteriocins and other preserving additives, and stresses as a consequence of applying alternative decontamination and preservation technologies such high hydrostatic pressure, pulsed and continuous UV light, pulsed electric fields (PEF). This review is aimed at providing a summary of the current knowledge on the response of L. monocytogenes toward these stresses and the mechanisms of stress resistance employed by this important food-borne bacterium. Circumstances when L. monocytogenes cells become more sensitive or more resistant are mentioned and existence of a cross-resistance when multiple stresses are present is pointed out.
Collapse
Affiliation(s)
- Florentina Ionela Bucur
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Leontina Grigore-Gurgu
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Peter Crauwels
- Institute of Microbiology and Biotechnology, Ulm University, Ulm, Germany
| | | | - Anca Ioana Nicolau
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| |
Collapse
|
27
|
Guldimann C, Guariglia-Oropeza V, Harrand S, Kent D, Boor KJ, Wiedmann M. Stochastic and Differential Activation of σ B and PrfA in Listeria monocytogenes at the Single Cell Level under Different Environmental Stress Conditions. Front Microbiol 2017; 8:348. [PMID: 28352251 PMCID: PMC5349113 DOI: 10.3389/fmicb.2017.00348] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 02/20/2017] [Indexed: 01/03/2023] Open
Abstract
During host infection, the foodborne pathogen Listeria monocytogenes must sense and respond to rapidly changing environmental conditions. Two transcriptional regulators, the alternative sigma factor B (σB) and the Positive Regulatory Factor A (PrfA), are key contributors to the transcriptomic responses that enable bacterial survival in the host gastrointestinal tract and invasion of host duodenal cells. Increases in temperature and osmolarity induce activity of these proteins; such conditions may be encountered in food matrices as well as within the host gastrointestinal tract. Differences in PrfA and σB activity between individual cells might affect the fate of a cell during host invasion, therefore, we hypothesized that PrfA and σB activities differ among individual cells under heat and salt stress. We used fluorescent reporter fusions to determine the relative proportions of cells with active σB or PrfA following exposure to 45°C heat or 4% NaCl. Activities of both PrfA and σB were induced stochastically, with fluorescence levels ranging from below detection to high among individual cells. The proportion of cells with active PrfA was significantly higher than the proportion with active σB under all tested conditions; under some conditions, nearly all cells had active PrfA. Our findings further support the growing body of evidence illustrating the stochastic nature of bacterial gene expression under conditions that are relevant for host invasion via food-borne, oral infection.
Collapse
Affiliation(s)
- Claudia Guldimann
- Food Safety Laboratory, Department of Food Science, Cornell University Ithaca, NY, USA
| | | | - Sophia Harrand
- Food Safety Laboratory, Department of Food Science, Cornell University Ithaca, NY, USA
| | - David Kent
- Food Safety Laboratory, Department of Food Science, Cornell University Ithaca, NY, USA
| | - Kathryn J Boor
- Food Safety Laboratory, Department of Food Science, Cornell University Ithaca, NY, USA
| | - Martin Wiedmann
- Food Safety Laboratory, Department of Food Science, Cornell University Ithaca, NY, USA
| |
Collapse
|
28
|
Abstract
The stressosome is a multi-protein signal integration and transduction hub found in a wide range of bacterial species. The role that the stressosome plays in regulating the transcription of genes involved in the general stress response has been studied most extensively in the Gram-positive model organism Bacillus subtilis. The stressosome receives and relays the signal(s) that initiate a complex phosphorylation-dependent partner switching cascade, resulting in the activation of the alternative sigma factor σB. This sigma factor controls transcription of more than 150 genes involved in the general stress response. X-ray crystal structures of individual components of the stressosome and single-particle cryo-EM reconstructions of stressosome complexes, coupled with biochemical and single cell analyses, have permitted a detailed understanding of the dynamic signalling behaviour that arises from this multi-protein complex. Furthermore, bioinformatics analyses indicate that genetic modules encoding key stressosome proteins are found in a wide range of bacterial species, indicating an evolutionary advantage afforded by stressosome complexes. Interestingly, the genetic modules are associated with a variety of signalling modules encoding secondary messenger regulation systems, as well as classical two-component signal transduction systems, suggesting a diversification in function. In this chapter we review the current research into stressosome systems and discuss the functional implications of the unique structure of these signalling complexes.
Collapse
|
29
|
Resilience in the Face of Uncertainty: Sigma Factor B Fine-Tunes Gene Expression To Support Homeostasis in Gram-Positive Bacteria. Appl Environ Microbiol 2016; 82:4456-4469. [PMID: 27208112 DOI: 10.1128/aem.00714-16] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Gram-positive bacteria are ubiquitous and diverse microorganisms that can survive and sometimes even thrive in continuously changing environments. The key to such resilience is the ability of members of a population to respond and adjust to dynamic conditions in the environment. In bacteria, such responses and adjustments are mediated, at least in part, through appropriate changes in the bacterial transcriptome in response to the conditions encountered. Resilience is important for bacterial survival in diverse, complex, and rapidly changing environments and requires coordinated networks that integrate individual, mechanistic responses to environmental cues to enable overall metabolic homeostasis. In many Gram-positive bacteria, a key transcriptional regulator of the response to changing environmental conditions is the alternative sigma factor σ(B) σ(B) has been characterized in a subset of Gram-positive bacteria, including the genera Bacillus, Listeria, and Staphylococcus Recent insight from next-generation-sequencing results indicates that σ(B)-dependent regulation of gene expression contributes to resilience, i.e., the coordination of complex networks responsive to environmental changes. This review explores contributions of σ(B) to resilience in Bacillus, Listeria, and Staphylococcus and illustrates recently described regulatory functions of σ(B).
Collapse
|
30
|
O'Donoghue B, NicAogáin K, Bennett C, Conneely A, Tiensuu T, Johansson J, O'Byrne C. Blue-Light Inhibition of Listeria monocytogenes Growth Is Mediated by Reactive Oxygen Species and Is Influenced by σB and the Blue-Light Sensor Lmo0799. Appl Environ Microbiol 2016; 82:4017-4027. [PMID: 27129969 PMCID: PMC4907204 DOI: 10.1128/aem.00685-16] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/19/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Listeria monocytogenes senses blue light via the flavin mononucleotide-containing sensory protein Lmo0799, leading to activation of the general stress response sigma factor SigB (σ(B)). In this study, we investigated the physiological response of this foodborne pathogen to blue light. We show that blue light (460 to 470 nm) doses of 1.5 to 2 mW cm(-2) cause inhibition of growth on agar-based and liquid culture media. The inhibitory effects are dependent on cell density, with reduced effects evident when high cell numbers are present. The addition of 20 mM dimethylthiourea, a scavenger of reactive oxygen species, or catalase to the medium reverses the inhibitory effects of blue light, suggesting that growth inhibition is mediated by the formation of reactive oxygen species. A mutant strain lacking σ(B) (ΔsigB) was found to be less inhibited by blue light than the wild type, likely indicating the energetic cost of deploying the general stress response. When a lethal dose of light (8 mW cm(-2)) was applied to cells, the ΔsigB mutant displayed a marked increase in sensitivity to light compared to the wild type. To investigate the role of the blue-light sensor Lmo0799, mutants were constructed that either had a deletion of the gene (Δlmo0799) or alteration in a conserved cysteine residue at position 56, which is predicted to play a pivotal role in the photocycle of the protein (lmo0799 C56A). Both mutants displayed phenotypes similar to the ΔsigB mutant in the presence of blue light, providing genetic evidence that residue 56 is critical for light sensing in L. monocytogenes Taken together, these results demonstrate that L. monocytogenes is inhibited by blue light in a manner that depends on reactive oxygen species, and they demonstrate clear light-dependent phenotypes associated with σ(B) and the blue-light sensor Lmo0799. IMPORTANCE Listeria monocytogenes is a bacterial foodborne pathogen that can cause life-threatening infections in humans. It is known to be able to sense and respond to visible light. In this study, we examine the effects of blue light on the growth and survival of this pathogen. We show that growth can be inhibited at comparatively low doses of blue light, and that at higher doses, L. monocytogenes cells are killed. We present evidence suggesting that blue light inhibits this organism by causing the production of reactive oxygen species, such as hydrogen peroxide. We help clarify the mechanism of light sensing by constructing a "blind" version of the blue-light sensor protein. Finally, we show that activation of the general stress response by light has a negative effect on growth, probably because cellular resources are diverted into protective mechanisms rather than growth.
Collapse
Affiliation(s)
- Beth O'Donoghue
- Bacterial Stress Response Group, Microbiology, School of Natural Sciences, National University of Ireland, Galway, Galway, Ireland
| | - Kerrie NicAogáin
- Bacterial Stress Response Group, Microbiology, School of Natural Sciences, National University of Ireland, Galway, Galway, Ireland
| | - Claire Bennett
- National Centre for Laser Applications, School of Physics, National University of Ireland, Galway, Galway, Ireland
| | - Alan Conneely
- National Centre for Laser Applications, School of Physics, National University of Ireland, Galway, Galway, Ireland
| | - Teresa Tiensuu
- Department of Molecular Biology, Molecular Infection Medicine, Sweden, and Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Jörgen Johansson
- Department of Molecular Biology, Molecular Infection Medicine, Sweden, and Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Conor O'Byrne
- Bacterial Stress Response Group, Microbiology, School of Natural Sciences, National University of Ireland, Galway, Galway, Ireland
| |
Collapse
|
31
|
Krawczyk-Balska A, Markiewicz Z. The intrinsic cephalosporin resistome of Listeria monocytogenes in the context of stress response, gene regulation, pathogenesis and therapeutics. J Appl Microbiol 2015; 120:251-65. [PMID: 26509460 DOI: 10.1111/jam.12989] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/18/2015] [Accepted: 08/28/2015] [Indexed: 12/22/2022]
Abstract
Intrinsic resistance to antibiotics is a serious therapeutic problem in the case of many bacterial species. The Gram-positive human pathogen Listeria monocytogenes is intrinsically resistant to broad spectrum cephalosporin antibiotics, which are commonly used in therapy of bacterial infections. Besides three penicillin-binding proteins the intrinsic cephalosporin resistome of L. monocytogenes includes multidrug resistance transporter transporters, proteins involved in peptidoglycan biosynthesis and modification, cell envelope proteins with structural or general detoxification function, cytoplasmic proteins with unknown function and regulatory proteins. Analysis of the regulation of the expression of genes involved in the intrinsic resistance of L. monocytogenes to cephalosporins highlights the high complexity of control of the intrinsic resistance phenotype. The regulation of the transcription of the intrinsic resistome determinants involves the activity of eight regulators, namely LisR, CesR, LiaR, VirR, σ(B) , σ(H) , σ(L) and PrfA, of which the most prominent role play LisR, CesR and σ(B) . Furthermore, the vast majority of the intrinsic resistome determinants contribute to the tolerance of different stress conditions and virulence. A study indicates that O-acetyltransferase OatA is the most promising candidate for co-drug development since an agent targeting OatA should sensitize L. monocytogenes to certain antibiotics, therefore improving the efficacy of listeriosis treatment as well as food preservation measures.
Collapse
Affiliation(s)
- A Krawczyk-Balska
- Department of Applied Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Z Markiewicz
- Department of Applied Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
32
|
To Modulate Survival under Secondary Stress Conditions, Listeria monocytogenes 10403S Employs RsbX To Downregulate σB Activity in the Poststress Recovery Stage or Stationary Phase. Appl Environ Microbiol 2015; 82:1126-1135. [PMID: 26637594 DOI: 10.1128/aem.03218-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 11/27/2015] [Indexed: 01/12/2023] Open
Abstract
Listeria monocytogenes is a saprophytic bacterium that thrives in diverse environments and causes listeriosis via ingestion of contaminated food. RsbX, a putative sigma B (σ(B)) regulator, is thought to maintain the ready state in the absence of stress and reset the bacterium to the initial state in the poststress stage in Bacillus subtilis. We wondered whether RsbX is functional in L. monocytogenes under different stress scenarios. Genetic deletion and complementation of the rsbX gene were combined with survival tests and transcriptional and translational analyses of σ(B) expression in response to stresses. We found that deletion of rsbX increased survival under secondary stress following recovery of growth after primary stress or following stationary-phase culturing. The ΔrsbX mutant had higher expression of σ(B) than its parent strain in the recovery stage following primary sodium stress and in stationary-phase cultures. Apparently, increased σ(B) expression had contributed to improved survival in the absence of RsbX. There were no significant differences in survival rates or σ(B) expression levels in response to primary stresses between the rsbX mutant and its parent strain during the exponential phase. Therefore, we provide clear evidence that RsbX is a negative regulator of L. monocytogenes σ(B) during the recovery period after a primary stress or in the stationary phase, thus affecting its survival under secondary stress.
Collapse
|
33
|
Role of sigB and osmolytes in desiccation survival of Listeria monocytogenes in simulated food soils on the surface of food grade stainless steel. Food Microbiol 2015; 46:443-451. [DOI: 10.1016/j.fm.2014.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/05/2014] [Accepted: 09/12/2014] [Indexed: 11/24/2022]
|
34
|
Milillo SR, Lungu B, O'Bryan CA, Dowd SE, Muthaiyan A, Johnson MG, Ricke SC. Listeria monocytogenes batch culture growth response to metabolic inhibitors. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2015; 50:146-150. [PMID: 25587784 DOI: 10.1080/03601234.2015.975626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In certain environments nutrient and energy sources available to microorganisms can be limited. Foodborne pathogens must efficiently adapt in order to be successfully transmitted through the food chain to their hosts. For the intracellular foodborne pathogen Listeria monocytogenes, little is known regarding its response to nutrient/energy-limiting conditions. The alternative stress responsive sigma factor σ(B) has been reported to contribute to survival under specific stresses. Therefore, the effects of several metabolic inhibitors on growth of L. monocytogenes wild-type and a ΔsigB mutant were examined. In the absence of inhibitors, both strains reached stationary phase after 18 h at 23°C and 10 h at 37°C. All of the metabolic inhibitors slowed growth of either strain, with few differences observed among the different inhibitors.
Collapse
Affiliation(s)
- S R Milillo
- a Department of Food Science and Center for Food Safety , University of Arkansas , Fayetteville , Arkansas , USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Eshghi A, Becam J, Lambert A, Sismeiro O, Dillies MA, Jagla B, Wunder EA, Ko AI, Coppee JY, Goarant C, Picardeau M. A putative regulatory genetic locus modulates virulence in the pathogen Leptospira interrogans. Infect Immun 2014; 82:2542-2552. [PMID: 24686063 PMCID: PMC4019197 DOI: 10.1128/iai.01803-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 03/24/2014] [Indexed: 02/03/2023] Open
Abstract
Limited research has been conducted on the role of transcriptional regulators in relation to virulence in Leptospira interrogans, the etiological agent of leptospirosis. Here, we identify an L. interrogans locus that encodes a sensor protein, an anti-sigma factor antagonist, and two genes encoding proteins of unknown function. Transposon insertion into the gene encoding the sensor protein led to dampened transcription of the other 3 genes in this locus. This lb139 insertion mutant (the lb139(-) mutant) displayed attenuated virulence in the hamster model of infection and reduced motility in vitro. Whole-transcriptome analyses using RNA sequencing revealed the downregulation of 115 genes and the upregulation of 28 genes, with an overrepresentation of gene products functioning in motility and signal transduction and numerous gene products with unknown functions, predicted to be localized to the extracellular space. Another significant finding encompassed suppressed expression of the majority of the genes previously demonstrated to be upregulated at physiological osmolarity, including the sphingomyelinase C precursor Sph2 and LigB. We provide insight into a possible requirement for transcriptional regulation as it relates to leptospiral virulence and suggest various biological processes that are affected due to the loss of native expression of this genetic locus.
Collapse
Affiliation(s)
- Azad Eshghi
- Institut Pasteur, Biology of Spirochetes Unit, Paris, France
| | - Jérôme Becam
- Institut Pasteur de Nouvelle-Calédonie, Association Pasteur International Network, Nouméa, New Caledonia
| | | | - Odile Sismeiro
- Plate-Forme Transcriptome et Epigenome, Departement Génomes et Génétique, Institut Pasteur, Paris, France
| | - Marie-Agnès Dillies
- Plate-Forme Transcriptome et Epigenome, Departement Génomes et Génétique, Institut Pasteur, Paris, France
| | - Bernd Jagla
- Plate-Forme Transcriptome et Epigenome, Departement Génomes et Génétique, Institut Pasteur, Paris, France
| | - Elsio A. Wunder
- Yale School of Public Health, Department of Epidemiology of Microbial Disease, New Haven, Connecticut, USA
| | - Albert I. Ko
- Yale School of Public Health, Department of Epidemiology of Microbial Disease, New Haven, Connecticut, USA
| | - Jean-Yves Coppee
- Plate-Forme Transcriptome et Epigenome, Departement Génomes et Génétique, Institut Pasteur, Paris, France
| | - Cyrille Goarant
- Institut Pasteur de Nouvelle-Calédonie, Association Pasteur International Network, Nouméa, New Caledonia
| | | |
Collapse
|
36
|
Effects of growth phase and temperature on σB activity within a Listeria monocytogenes population: evidence for RsbV-independent activation of σB at refrigeration temperatures. BIOMED RESEARCH INTERNATIONAL 2014; 2014:641647. [PMID: 24734238 PMCID: PMC3964741 DOI: 10.1155/2014/641647] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/05/2013] [Indexed: 12/04/2022]
Abstract
The alternative sigma factor σB of Listeria monocytogenes is responsible for regulating the transcription of many of the genes necessary for adaptation to both food-related stresses and to conditions found within the gastrointestinal tract of the host. The present study sought to investigate the influence of growth phase and temperature on the activation of σB within populations of L. monocytogenes EGD-e wild-type, ΔsigB, and ΔrsbV throughout growth at both 4°C and 37°C, using a reporter fusion that couples expression of EGFP to the strongly σB-dependent promoter of lmo2230. A similar σB activation pattern within the population was observed in wt-egfp at both temperatures, with the highest induction of σB occurring in the early exponential phase of growth when the fluorescent population rapidly increased, eventually reaching the maximum in early stationary phase. Interestingly, induction of σB activity was heterogeneous, with only a proportion of the cells in the wt-egfp population being fluorescent above the background autofluorescence level. Moreover, significant RsbV-independent activation of σB was observed during growth at 4°C. This result suggests that an alternative route to σB activation exists in the absence of RsbV, a finding that is not explained by the current model for σB regulation.
Collapse
|
37
|
Ferreira V, Wiedmann M, Teixeira P, Stasiewicz MJ. Listeria monocytogenes persistence in food-associated environments: epidemiology, strain characteristics, and implications for public health. J Food Prot 2014; 77:150-70. [PMID: 24406014 DOI: 10.4315/0362-028x.jfp-13-150] [Citation(s) in RCA: 490] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Over the last 10 to 15 years, increasing evidence suggests that persistence of Listeria monocytogenes in food processing plants for years or even decades is an important factor in the transmission of this foodborne pathogen and the root cause of a number of human listeriosis outbreaks. L. monocytogenes persistence in other food-associated environments (e.g., farms and retail establishments) may also contribute to food contamination and transmission of the pathogen to humans. Although L. monocytogenes persistence is typically identified through isolation of a specific molecular subtype from samples collected in a given environment over time, formal (statistical) criteria for identification of persistence are undefined. Environmental factors (e.g., facilities and equipment that are difficult to clean) have been identified as key contributors to persistence; however, the mechanisms are less well understood. Although some researchers have reported that persistent strains possess specific characteristics that may facilitate persistence (e.g., biofilm formation and better adaptation to stress conditions), other researchers have not found significant differences between persistent and nonpersistent strains in the phenotypic characteristics that might facilitate persistence. This review includes a discussion of our current knowledge concerning some key issues associated with the persistence of L. monocytogenes, with special focus on (i) persistence in food processing plants and other food-associated environments, (ii) persistence in the general environment, (iii) phenotypic and genetic characteristics of persistent strains, (iv) niches, and (v) public health and economic implications of persistence. Although the available data clearly indicate that L. monocytogenes persistence at various stages of the food chain contributes to contamination of finished products, continued efforts to quantitatively integrate data on L. monocytogenes persistence (e.g., meta-analysis or quantitative microbial risk assessment) will be needed to advance our understanding of persistence of this pathogen and its economic and public health impacts.
Collapse
Affiliation(s)
- V Ferreira
- Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa Porto, Rua Dr. António Bernardino Almeida, 4200-072 Porto, Portugal; Department of Food Science, Cornell University, Ithaca, New York 14853, USA
| | - M Wiedmann
- Department of Food Science, Cornell University, Ithaca, New York 14853, USA
| | - P Teixeira
- Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa Porto, Rua Dr. António Bernardino Almeida, 4200-072 Porto, Portugal
| | - M J Stasiewicz
- Department of Food Science, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
38
|
Oliver HF, Orsi RH, Wiedmann M, Boor KJ. σ(B) plays a limited role in the ability of Listeria monocytogenes strain F2365 to survive oxidative and acid stress and in its virulence characteristics. J Food Prot 2013; 76:2079-86. [PMID: 24290686 DOI: 10.4315/0362-028x.jfp-12-542] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Listeria monocytogenes strain F2365 was the first strain representative of serotype 4b (lineage I) to be sequenced in 2004, suggesting it could become the model organism for this serotype, which is associated with most human outbreaks of listeriosis worldwide to date. F2365 itself is an outbreak strain that was involved in the listeriosis outbreak associated with Mexican-style soft cheese in California in 1985. In this study, we show through phenotypic and transcriptomic analysis that L. monocytogenes strain F2365 has reduced ability to respond to acid and oxidative stress. F2365 has neither the σ(B)-dependent ability to survive acid or oxidative stress nor the σ(B)-dependent ability to infect Caco-2 epithelial cells in vitro or guinea pigs in vivo. More studies are needed to determine whether the atypical σ(B)-independent response to stress observed in F2365 is strain specific, serotype specific, or even lineage specific.
Collapse
Affiliation(s)
- H F Oliver
- Department of Food Science, Purdue University, West Lafayette, Indiana 47907, USA.
| | | | | | | |
Collapse
|
39
|
Mujahid S, Orsi RH, Boor KJ, Wiedmann M. Protein level identification of the Listeria monocytogenes sigma H, sigma L, and sigma C regulons. BMC Microbiol 2013; 13:156. [PMID: 23841528 PMCID: PMC3721983 DOI: 10.1186/1471-2180-13-156] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 07/04/2013] [Indexed: 12/12/2022] Open
Abstract
Background Transcriptional regulation by alternative sigma (σ) factors represents an important mechanism that allows bacteria to rapidly regulate transcript and protein levels in response to changing environmental conditions. While the role of the alternative σ factor σB has been comparatively well characterized in L. monocytogenes, our understanding of the roles of the three other L. monocytogenes alternative σ factors is still limited. In this study, we employed a quantitative proteomics approach using Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) to characterize the L. monocytogenes σL, σH, and σC protein regulons. Proteomic comparisons used a quadruple alternative σ factor mutant strain (ΔBCHL) and strains expressing a single alternative σ factor (i.e., σL, σH, and σC; strains ΔBCH, ΔBCL, and ΔBHL) to eliminate potential redundancies between σ factors. Results Among the three alternative σ factors studied here, σH provides positive regulation for the largest number of proteins, consistent with previous transcriptomic studies, while σL appears to contribute to negative regulation of a number of proteins. σC was found to regulate a small number of proteins in L. monocytogenes grown to stationary phase at 37°C. Proteins identified as being regulated by multiple alternative σ factors include MptA, which is a component of a PTS system with a potential role in regulation of PrfA activity. Conclusions This study provides initial insights into global regulation of protein production by the L. monocytogenes alternative σ factors σL, σH, and σC. While, among these σ factors, σH appears to positively regulate the largest number of proteins, we also identified PTS systems that appear to be co-regulated by multiple alternative σ factors. Future studies should not only explore potential roles of alternative σ factors in activating a “cascade” of PTS systems that potentially regulate PrfA, but also may want to explore the σL and σC regulons under different environmental conditions to identify conditions where these σ factors may regulate larger numbers of proteins or genes.
Collapse
Affiliation(s)
- Sana Mujahid
- Department of Food Science, Cornell University, 412 Stocking Hall, Ithaca, NY, USA
| | | | | | | |
Collapse
|
40
|
Neuhaus K, Satorhelyi P, Schauer K, Scherer S, Fuchs TM. Acid shock of Listeria monocytogenes at low environmental temperatures induces prfA, epithelial cell invasion, and lethality towards Caenorhabditis elegans. BMC Genomics 2013; 14:285. [PMID: 23622257 PMCID: PMC3648428 DOI: 10.1186/1471-2164-14-285] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 03/13/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The saprophytic pathogen Listeria monocytogenes has to cope with a variety of acidic habitats during its life cycle. The impact of low-temperature coupled with pH decrease for global gene expression and subsequent virulence properties, however, has not been elucidated. RESULTS qRT-PCR revealed for the first time a transient, acid triggered prfA induction of approximately 4-fold, 5.7-fold, 7-fold and 9.3-fold 60 to 90 min after acid shock of L. monocytogenes at 37°C, 25°C, 18°C, and 10°C, respectively. Comparable data were obtained for seven different L. monocytogenes strains, demonstrating that prfA induction under these conditions is a general response of L. monocytogenes. Transcriptome analysis revealed that the in vivo-relevant genes bsh, clpP, glpD, hfq, inlA, inlB, inlE, lisR, and lplA1 as well as many other genes with a putative role during infection are transiently induced upon acid shock conducted at 25°C and 37°C. Twenty-five genes repressed upon acid shock are known to be down regulated during intracellular growth or by virulence regulators. These data were confirmed by qRT-PCR of twelve differentially regulated genes and by the identification of acid shock-induced genes influenced by σB. To test if up regulation of virulence genes at temperatures below 37°C correlates with pathogenicity, the capacity of L. monocytogenes to invade epithelial cells after acid shock at 25°C was measured. A 12-fold increased number of intracellular bacteria was observed (acid shock, t = 60 min) that was reduced after adaptation to the level of the unshocked control. This increased invasiveness was shown to be in line with the induction of inlAB. Using a nematode infection assay, we demonstrated that Caenorhabditis elegans fed with acid-shocked L. monocytogenes exhibits a shorter time to death of 50% (TD50) of the worms (6.4 days) compared to infection with unshocked bacteria (TD50 = 10.2 days). CONCLUSIONS PrfA and other listerial virulence genes are induced by an inorganic acid in a temperature-dependent manner. The data presented here suggest that low pH serves as a trigger for listerial pathogenicity at environmental temperatures.
Collapse
Affiliation(s)
- Klaus Neuhaus
- Department für biowissenschaftliche Grundlagen, Technische Universität München, Freising, Germany
| | | | | | | | | |
Collapse
|
41
|
Mujahid S, Orsi RH, Vangay P, Boor KJ, Wiedmann M. Refinement of the Listeria monocytogenes σB regulon through quantitative proteomic analysis. MICROBIOLOGY-SGM 2013; 159:1109-1119. [PMID: 23618998 DOI: 10.1099/mic.0.066001-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
σ(B) is an alternative σ factor that regulates stress response and virulence genes in the foodborne pathogen Listeria monocytogenes. To gain further insight into σ(B)-dependent regulatory mechanisms in L. monocytogenes, we (i) performed quantitative proteomic comparisons between the L. monocytogenes parent strain 10403S and an isogenic ΔsigB mutant and (ii) conducted a meta-analysis of published microarray studies on the 10403S σ(B) regulon. A total of 134 genes were found to be significantly positively regulated by σ(B) at the transcriptomic level with >75 % of these genes preceded by putative σ(B)-dependent promoters; 21 of these 134 genes were also found to be positively regulated by σ(B) through proteomics. In addition, 15 proteins were only found to be positively regulated by σ(B) through proteomics analyses, including Lmo1349, a putative glycine cleavage system protein. The lmo1349 gene is preceded by a 5' UTR that functions as a glycine riboswitch, which suggests regulation of glycine metabolism by σ(B) in L. monocytogenes. Herein, we propose a model where σ(B) upregulates pathways that facilitate biosynthesis and uptake of glycine, which may then activate this riboswitch. Our data also (i) identified a number of σ(B)-dependent proteins that appear to be encoded by genes that are co-regulated by multiple transcriptional regulators, in particular PrfA, and (ii) found σ(B)-dependent genes and proteins to be overrepresented in the 'energy metabolism' role category, highlighting contributions of the σ(B) regulon to L. monocytogenes energy metabolism as well as a role of PrfA and σ(B) interaction in regulating aspects of energy metabolism in L. monocytogenes.
Collapse
Affiliation(s)
- S Mujahid
- Department of Food Science, Cornell University, Ithaca, NY, USA
| | - R H Orsi
- Department of Food Science, Cornell University, Ithaca, NY, USA
| | - P Vangay
- Department of Food Science, Cornell University, Ithaca, NY, USA
| | - K J Boor
- Department of Food Science, Cornell University, Ithaca, NY, USA
| | - M Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, USA
| |
Collapse
|
42
|
Fluoro-phenyl-styrene-sulfonamide, a novel inhibitor of σB activity, prevents the activation of σB by environmental and energy stresses in Bacillus subtilis. J Bacteriol 2013; 195:2509-17. [PMID: 23524614 DOI: 10.1128/jb.00107-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Sigma B (σ(B)) is an alternative sigma factor that regulates the general stress response in Bacillus subtilis and in many other Gram-positive organisms. σ(B) activity in B. subtilis is tightly regulated via at least three distinct pathways within a complex signal transduction cascade in response to a variety of stresses, including environmental stress, energy stress, and growth at high or low temperatures. We probed the ability of fluoro-phenyl-styrene-sulfonamide (FPSS), a small-molecule inhibitor of σ(B) activity in Listeria monocytogenes, to inhibit σ(B) activity in B. subtilis through perturbation of signal transduction cascades under various stress conditions. FPSS inhibited the activation of σ(B) in response to multiple categories of stress known to induce σ(B) activity in B. subtilis. Specifically, FPSS prevented the induction of σ(B) activity in response to energy stress, including entry into stationary phase, phosphate limitation, and azide stress. FPSS also inhibited chill induction of σ(B) activity in a ΔrsbV strain, suggesting that FPSS does not exclusively target the RsbU and RsbP phosphatases or the anti-anti-sigma factor RsbV, all of which contribute to posttranslational regulation of σ(B) activity. Genetic and biochemical experiments, including artificial induction of σ(B), analysis of the phosphorylation state of the anti-anti-sigma factor RsbV, and in vitro transcription assays, indicate that while FPSS does not bind directly to σ(B) to inhibit activity, it appears to prevent the release of B. subtilis σ(B) from its anti-sigma factor RsbW.
Collapse
|
43
|
Liu Y, Morgan S, Ream A, Huang L. Gene expression profiling of a nisin-sensitive Listeria monocytogenes Scott A ctsR deletion mutant. J Ind Microbiol Biotechnol 2013; 40:495-505. [PMID: 23494707 DOI: 10.1007/s10295-013-1243-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 02/12/2013] [Indexed: 02/07/2023]
Abstract
Listeria monocytogenes is a food-borne pathogen of significant threat to public health. Nisin is the only bacteriocin that can be used as a food preservative. Due to its antimicrobial activity, it can be used to control L. monocytogenes in food; however, the antimicrobial mechanism of nisin activity against L. monocytogenes is not fully understood. The CtsR (class III stress gene repressor) protein negatively regulates the expression of class III heat shock genes. A spontaneous pressure-tolerant ctsR deletion mutant that showed increased sensitivity to nisin has been identified. Microarray technology was used to monitor the gene expression profiles of the ctsR mutant under treatments with nisin. Compared to the nisin-treated wild type, 113 genes were up-regulated (>2-fold increase) in the ctsR deletion mutant whereas four genes were down-regulated (<-2-fold decrease). The up-regulated genes included genes that encode for ribosomal proteins, membrane proteins, cold-shock domain proteins, translation initiation and elongation factors, cell division, an ATP-dependent ClpC protease, a putative accessory gene regulator protein D, transport and binding proteins, a beta-glucoside-specific phosphotransferase system IIABC component, as well as hypothetical proteins. The down-regulated genes consisted of genes that encode for virulence, a transcriptional regulator, a stress protein, and a hypothetical protein. The gene expression changes determined by microarray assays were confirmed by quantitative real-time PCR analyses. Moreover, an in-frame deletion mutant for one of the induced genes (LMOf2365_1877) was constructed in the wild-type L. monocytogenes F2365 background. ΔLMOf2365_1877 had increased nisin sensitivity compared to the wild-type strain. This study enhances our understanding of how nisin interacts with the ctsR gene product in L. monocytogenes and may contribute to the understanding of the antibacterial mechanisms of nisin.
Collapse
Affiliation(s)
- Yanhong Liu
- Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA.
| | | | | | | |
Collapse
|
44
|
Kuenne C, Billion A, Mraheil MA, Strittmatter A, Daniel R, Goesmann A, Barbuddhe S, Hain T, Chakraborty T. Reassessment of the Listeria monocytogenes pan-genome reveals dynamic integration hotspots and mobile genetic elements as major components of the accessory genome. BMC Genomics 2013; 14:47. [PMID: 23339658 PMCID: PMC3556495 DOI: 10.1186/1471-2164-14-47] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 12/15/2012] [Indexed: 12/14/2022] Open
Abstract
Background Listeria monocytogenes is an important food-borne pathogen and model organism for host-pathogen interaction, thus representing an invaluable target considering research on the forces governing the evolution of such microbes. The diversity of this species has not been exhaustively explored yet, as previous efforts have focused on analyses of serotypes primarily implicated in human listeriosis. We conducted complete genome sequencing of 11 strains employing 454 GS FLX technology, thereby achieving full coverage of all serotypes including the first complete strains of serotypes 1/2b, 3c, 3b, 4c, 4d, and 4e. These were comparatively analyzed in conjunction with publicly available data and assessed for pathogenicity in the Galleria mellonella insect model. Results The species pan-genome of L. monocytogenes is highly stable but open, suggesting an ability to adapt to new niches by generating or including new genetic information. The majority of gene-scale differences represented by the accessory genome resulted from nine hyper variable hotspots, a similar number of different prophages, three transposons (Tn916, Tn554, IS3-like), and two mobilizable islands. Only a subset of strains showed CRISPR/Cas bacteriophage resistance systems of different subtypes, suggesting a supplementary function in maintenance of chromosomal stability. Multiple phylogenetic branches of the genus Listeria imply long common histories of strains of each lineage as revealed by a SNP-based core genome tree highlighting the impact of small mutations for the evolution of species L. monocytogenes. Frequent loss or truncation of genes described to be vital for virulence or pathogenicity was confirmed as a recurring pattern, especially for strains belonging to lineages III and II. New candidate genes implicated in virulence function were predicted based on functional domains and phylogenetic distribution. A comparative analysis of small regulatory RNA candidates supports observations of a differential distribution of trans-encoded RNA, hinting at a diverse range of adaptations and regulatory impact. Conclusions This study determined commonly occurring hyper variable hotspots and mobile elements as primary effectors of quantitative gene-scale evolution of species L. monocytogenes, while gene decay and SNPs seem to represent major factors influencing long-term evolution. The discovery of common and disparately distributed genes considering lineages, serogroups, serotypes and strains of species L. monocytogenes will assist in diagnostic, phylogenetic and functional research, supported by the comparative genomic GECO-LisDB analysis server (http://bioinfo.mikrobio.med.uni-giessen.de/geco2lisdb).
Collapse
Affiliation(s)
- Carsten Kuenne
- Institute of Medical Microbiology, German Centre for Infection Research, Justus-Liebig-University, D-35392, Giessen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Smith JL, Liu Y, Paoli GC. How does Listeria monocytogenes combat acid conditions? Can J Microbiol 2012; 59:141-52. [PMID: 23540331 DOI: 10.1139/cjm-2012-0392] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Listeria monocytogenes, a major foodborne pathogen, possesses a number of mechanisms that enable it to combat the challenges posed by acidic environments, such as that of acidic foods and the gastrointestinal tract. One mechanism employed by L. monocytogenes for survival at low pH is the adaptive acid tolerance response (ATR) in which a short adaptive period at a nonlethal pH induces metabolic changes that allow the organism to survive a lethal pH. Overcoming acid conditions by L. monocytogenes involves a variety of regulatory responses, including the LisRK 2-component regulatory system, the SOS response, components of the σ(B) regulon, changes in membrane fluidity, the F0F1-ATPase proton pump, and at least 2 enzymatic systems that regulate internal hydrogen ion concentration (glutamate decarboxylase and arginine deiminase). It is not clear if these mechanisms exert their protective effects separately or in concert, but it is probable that these mechanisms overlap. Studies using mutants indicate that the glutamate decarboxylase system can protect L. monocytogenes when the organism is present in acidic juices, yogurt, salad dressing, mayonnaise, and modified CO2 atmospheres. The glutamate decarboxylase system also has a role in protecting L. monocytogenes against the acidic environment of the stomach. There is a need to study other acid resistance mechanisms of L. monocytogenes to determine their effectiveness in protecting the organism in acidic foods or during transit through the acid stomach.
Collapse
Affiliation(s)
- James L Smith
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA 19038-8598, USA.
| | | | | |
Collapse
|
46
|
Zhang Z, Meng Q, Qiao J, Yang L, Cai X, Wang G, Chen C, Zhang L. RsbV of Listeria monocytogenes contributes to regulation of environmental stress and virulence. Arch Microbiol 2012. [PMID: 23192174 DOI: 10.1007/s00203-012-0855-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
SigmaB factor is an important regulatory factor for stress response in Gram-positive bacteria such as Listeria monocytogenes (L. monocytogenes), Staphylococcus aureus and Bacillus subtilis. However, the activity of SigmaB factor is regulated by RsbV factor. Currently, the functional studies of RsbV factor are mostly focused on non-pathogenic B. subtilis, but the roles of RsbV factor in pathogenic L. monocytogenes during the regulation of environmental stress and virulence are still unclear. In the study, a ∆RsbV mutant of L. monocytogenes was constructed to explore the regulatory role of RsbV in environmental stress and virulence. The environmental stress experiments indicated that the growth and survival capability of ∆RsbV mutant obviously decreased in stress of low temperature, osmotic pressure, alcohol and acid, compared with EGD strain. The macrophage infection experiment indicated that ∆RsbV mutant had weaker survival capability than EGD strain, and the expression of PrfA, actA, PlcA and LLO was down-regulated in infected cells. Animal inoculation experiments indicated that RsbV deletion significantly reduced the pathogenicity of L. monocytogenes. Our data demonstrate that, in addition to regulating tolerance under environmental stress conditions, RsbV also contributes to regulation of L. monocytogenes virulence.
Collapse
Affiliation(s)
- Zaichao Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Bae D, Liu C, Zhang T, Jones M, Peterson SN, Wang C. Global gene expression of Listeria monocytogenes to salt stress. J Food Prot 2012; 75:906-12. [PMID: 22564940 DOI: 10.4315/0362-028x.jfp-11-282] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Outbreaks of listeriosis caused by the ingestion of Listeria-contaminated ready-to-eat foods have been reported worldwide. Many ready-to-eat foods, such as deli meat products, contain high amounts of salt, which can disrupt the maintenance of osmotic balance within bacterial cells. To understand how Listeria monocytogenes adapts to salt stress, we examined the growth and global gene expression profiles of L. monocytogenes strain F2365 under salt stress using oligonucleotide probe-based DNA array and quantitative real-time PCR (qRT-PCR) analyses. The growth of L. monocytogenes in brain heart infusion (BHI) medium with various concentrations of NaCl (2.5, 5, and 10%) was significantly inhibited (P < 0.01) when compared with growth in BHI with no NaCl supplementation. Microarray data indicated that growth in BHI medium with 1.2% NaCl upregulated 4 genes and down-regulated 24 genes in L. monocytogenes, which was confirmed by qRT-PCR. The transcript levels of genes involved in the uptake of glycine betaine/(L)-proline were increased, whereas genes associated with a putative phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS), metabolic enzymes, and virulence factor were down-regulated. Specifically, the expression levels of PTS transport genes were shown to be dependent on NaCl concentration. To further examine whether the down-regulation of PTS genes is related to decreased cell growth, the transcript levels of genes encoding components of enzyme II, involved in the uptake of various sugars used as the primary carbon source in bacteria, were also measured using qRT-PCR. Our results suggest that the decreased transcript levels of PTS genes may be caused by salt stress or reduced cell growth through salt stress. Here, we report global transcriptional profiles of L. monocytogenes in response to salt stress, contributing to an improved understanding of osmotolerance in this bacterium.
Collapse
Affiliation(s)
- Dongryeoul Bae
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | | | | | | | | | | |
Collapse
|
48
|
Listeria monocytogenes grown at 7° C shows reduced acid survival and an altered transcriptional response to acid shock compared to L. monocytogenes grown at 37° C. Appl Environ Microbiol 2012; 78:3824-36. [PMID: 22447604 DOI: 10.1128/aem.00051-12] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Survival of the food-borne pathogen Listeria monocytogenes in acidic environments (e.g., in the human stomach) is vital to its transmission. Refrigerated, ready-to-eat foods have been sources of listeriosis outbreaks. The purpose of this study was to determine whether growth at a low temperature (i.e., 7°C) affects L. monocytogenes survival or gene transcription after exposure to a simulated gastric environment (i.e., acid shock at 37°C). L. monocytogenes cells grown at 7°C were less resistant to artificial gastric fluid (AGF) or acidified brain heart infusion broth (ABHI) than bacteria grown at higher temperatures (i.e., 30°C or 37°C). For L. monocytogenes grown at 7°C, stationary-phase cells were more resistant to ABHI than log-phase cells, indicating that both temperature and growth phase affect acid survival. Microarray transcriptomic analysis revealed that the number and functional categories of genes differentially expressed after acid shock differed according to both growth temperature and growth phase. The acid response of L. monocytogenes grown to log phase at 37°C involved stress-related transcriptional regulators (i.e., σ(B), σ(H), CtsR, and HrcA), some of which have been implicated in adaptation to the intracellular environment. In contrast, for bacteria grown at 7°C to stationary phase, acid exposure did not result in differential expression of the stress regulons examined. However, two large operons encoding bacteriophage-like proteins were induced, suggesting lysogenic prophage induction. The adaptive transcriptional response observed in 37°C-grown cells was largely absent in 7°C-grown cells, suggesting that temperatures commonly encountered during food storage and distribution affect the ability of L. monocytogenes to survive gastric passage and ultimately cause disease.
Collapse
|
49
|
Utratna M, Cosgrave E, Baustian C, Ceredig R, O'Byrne C. Development and optimization of an EGFP-based reporter for measuring the general stress response in Listeria monocytogenes. Bioeng Bugs 2012; 3:93-103. [PMID: 22539028 DOI: 10.4161/bbug.19476] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A characteristic of the food-borne pathogen Listeria monocytogenes is its tolerance to the harsh conditions found both in minimally processed foods and the human gastrointestinal tract. This trait is partly under the control of the alternative sigma factor sigma B (σ(B)). To study the mechanisms that trigger the activation of σ(B) , and hence the development of stress tolerance, we have developed a fluorescent reporter fusion that allows the real-time activity of σ(B) to be monitored. The reporter, designated Plmo2230::egfp, fuses the strong σ(B)-dependent promoter from the lmo2230 gene (which encodes a putative arsenate reductase) to a gene encoding enhanced green fluorescence protein (EGFP). The reporter was integrated into the genomes of the wild-type strain L. monocytogenes EGD-e as well as two mutant derivatives lacking either sigB or rsbV. The resulting strains were used to study σ(B) activation in response to growth phase and hyperosmotic stress. The wild-type was strongly fluorescent in stationary phase or in cultures with added NaCl and this fluorescence was abolished in both the sigB and rsbV backgrounds, consistent with the σ(B)-dependency of the lmo2230 promoter. During sudden osmotic upshock (addition of 0.5 M NaCl during growth) a real-time increase in fluorescence was observed microscopically, reaching maximal activation after 30 min. Flow cytometry was used to study the activation of σ(B) at a population level by hyperosmotic stress during exponential growth. A strong and proportional increase in fluorescence was observed as the salt concentration increased from 0 to 0.9 M NaCl. Interestingly, there was considerable heterogeneity within the population and a significant proportion of cells failed to induce a high level of fluorescence, suggesting that σ(B) activation occurs stochastically in response to hyperosmotic stress. Thus the Plmo2230::egfp is a powerful tool that will allow the stress response to be better studied in this important human pathogen.
Collapse
Affiliation(s)
- Marta Utratna
- Department of Microbiology, School of Natural Sciences, National University of Ireland, Galway, Galway, Ireland
| | | | | | | | | |
Collapse
|
50
|
Rapid, transient, and proportional activation of σ(B) in response to osmotic stress in Listeria monocytogenes. Appl Environ Microbiol 2011; 77:7841-5. [PMID: 21890665 DOI: 10.1128/aem.05732-11] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The osmotic activation of sigma B (σ(B)) in Listeria monocytogenes was studied by monitoring expression of four known σ(B)-dependent genes, opuCA, lmo2230, lmo2085, and sigB. Activation was found to be rapid, transient, and proportional to the magnitude of the osmotic stress applied, features that underpin the adaptability of this pathogen.
Collapse
|