1
|
Schöllkopf AI, Almeida L, Krammer K, Rivero CG, Liebl W, Ehrenreich A. Deletion of atypical type II restriction genes in Clostridium cellulovorans using a Cas9-based gene editing system. Appl Microbiol Biotechnol 2025; 109:31. [PMID: 39878871 PMCID: PMC11779793 DOI: 10.1007/s00253-025-13404-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/31/2025]
Abstract
The anaerobic bacterium Clostridium cellulovorans is a promising candidate for the sustainable production of biofuels and platform chemicals due to its cellulolytic properties. However, the genomic engineering of the species is hampered because of its poor genetic accessibility and the lack of genetic tools. To overcome this limitation, a protocol for triparental conjugation was established that enables the reliable transfer of vectors for markerless chromosomal modification into C. cellulovorans. The availability of reporter genes is another requirement for strain engineering and biotechnological applications. In this work, the oxygen-free fluorescence absorption-shift tag (FAST) system was used to characterize promoter strength in C. cellulovorans. Selected promoters were used to establish a CRISPR/Cas system for markerless chromosomal modifications. For stringent control of expression of Cas9, a theophylline-dependent riboswitch was used, and additionally, the anti-CRISPR protein AcrIIA4 was used to reduce the basal activity of the Cas9 in the off-state of the riboswitch. Finally, the newly established CRISPR/Cas system was used for the markerless deletion of the genes encoding two restriction endonucleases of a type II restriction-modification (RS) system from the chromosome of C. cellulovorans. In comparison to the WT, the conjugation efficiency when using the deletion mutant as the recipient strain was improved by about one order of magnitude, without the need for prior C. cellulovorans-specific in vivo methylation of the conjugative plasmid in the E. coli donor strain. KEY POINTS: • Quantification of heterologous promoters enables rational choice for genetic engineering. • CRISPR/Cas with riboswitch and anti-CRISPR allows efficient gene deletion in C. cellulovorans. • Conjugation protocol and type II REase deletion enhance genetic accessibility.
Collapse
Affiliation(s)
- Aline I Schöllkopf
- Chair of Microbiology, Technical University of Munich, TUM School of Life Science, Emil-Ramann-Str. 4, 85354, Freising, Germany
| | - Luciana Almeida
- Chair of Microbiology, Technical University of Munich, TUM School of Life Science, Emil-Ramann-Str. 4, 85354, Freising, Germany
| | - Karina Krammer
- Chair of Microbiology, Technical University of Munich, TUM School of Life Science, Emil-Ramann-Str. 4, 85354, Freising, Germany
- Current address: Max Von Pettenkofer-Institut, Pettenkoferstraße 9A, Munich, Germany
| | - Cristina González Rivero
- Chair of Microbiology, Technical University of Munich, TUM School of Life Science, Emil-Ramann-Str. 4, 85354, Freising, Germany
- Current address: Bayerische Landesanstalt Für Landwirtschaft, Lange Point 4, Freising, Germany
| | - Wolfgang Liebl
- Chair of Microbiology, Technical University of Munich, TUM School of Life Science, Emil-Ramann-Str. 4, 85354, Freising, Germany
| | - Armin Ehrenreich
- Chair of Microbiology, Technical University of Munich, TUM School of Life Science, Emil-Ramann-Str. 4, 85354, Freising, Germany.
| |
Collapse
|
2
|
Kelleher P, Ortiz Charneco G, Kampff Z, Diaz-Garrido N, Bottacini F, McDonnell B, Lugli G, Ventura M, Fomenkov A, Quénée P, Kulakauskas S, de Waal P, van Peij NME, Cambillau C, Roberts RJ, van Sinderen D, Mahony J. Phage defence loci of Streptococcus thermophilus-tip of the anti-phage iceberg? Nucleic Acids Res 2024; 52:11853-11869. [PMID: 39315705 PMCID: PMC11514479 DOI: 10.1093/nar/gkae814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
Bacteria possess (bacterio)phage defence systems to ensure their survival. The thermophilic lactic acid bacterium, Streptococcus thermophilus, which is used in dairy fermentations, harbours multiple CRISPR-Cas and restriction and modification (R/M) systems to protect itself against phage attack, with limited reports on other types of phage-resistance. Here, we describe the systematic identification and functional analysis of the phage resistome of S. thermophilus using a collection of 27 strains as representatives of the species. In addition to CRISPR-Cas and R/M systems, we uncover nine distinct phage-resistance systems including homologues of Kiwa, Gabija, Dodola, defence-associated sirtuins and classical lactococcal/streptococcal abortive infection systems. The genes encoding several of these newly identified S. thermophilus antiphage systems are located in proximity to the genetic determinants of CRISPR-Cas systems thus constituting apparent Phage Defence Islands. Other phage-resistance systems whose encoding genes are not co-located with genes specifying CRISPR-Cas systems may represent anchors to identify additional Defence Islands harbouring, as yet, uncharacterised phage defence systems. We estimate that up to 2.5% of the genetic material of the analysed strains is dedicated to phage defence, highlighting that phage-host antagonism plays an important role in driving the evolution and shaping the composition of dairy streptococcal genomes.
Collapse
Affiliation(s)
- Philip Kelleher
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - Guillermo Ortiz Charneco
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - Zoe Kampff
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - Natalia Diaz-Garrido
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - Francesca Bottacini
- Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | - Brian McDonnell
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - Gabriele A Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, and Interdepartmental Research Centre Microbiome Research Hub, University of Parma, Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, and Interdepartmental Research Centre Microbiome Research Hub, University of Parma, Parma, Italy
| | | | - Pascal Quénée
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Saulius Kulakauskas
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Paul de Waal
- DSM-Firmenich, Taste, Texture & Health, Center for Food Innovation, Alexander Fleminglaan 1, 2613 AX Delft, The Netherlands
| | - Noël N M E van Peij
- DSM-Firmenich, Taste, Texture & Health, Center for Food Innovation, Alexander Fleminglaan 1, 2613 AX Delft, The Netherlands
| | - Christian Cambillau
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies et Biotechnologie (IMM), Aix-Marseille Université – CNRS, UMR 7255, Marseille, France
| | | | - Douwe van Sinderen
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - Jennifer Mahony
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| |
Collapse
|
3
|
Ortiz Charneco G, McDonnell B, Kelleher P, Buivydas A, Dashko S, de Waal PP, van Rijswijck I, van Peij NNME, Mahony J, Van Sinderen D. Plasmid-mediated horizontal gene mobilisation: Insights from two lactococcal conjugative plasmids. Microb Biotechnol 2024; 17:e14421. [PMID: 38752994 PMCID: PMC11097999 DOI: 10.1111/1751-7915.14421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 05/18/2024] Open
Abstract
The distinct conjugation machineries encoded by plasmids pNP40 and pUC11B represent the most prevalent plasmid transfer systems among lactococcal strains. In the current study, we identified genetic determinants that underpin pNP40- and pUC11B-mediated, high-frequency mobilisation of other, non-conjugative plasmids. The mobilisation frequencies of the smaller, non-conjugative plasmids and the minimal sequences required for their mobilisation were determined, owing to the determination of the oriT sequences of both pNP40 and pUC11B, which allowed the identification of similar sequences in some of the non-conjugative plasmids that were shown to promote their mobilisation. Furthermore, the auxiliary gene mobC, two distinct functional homologues of which are present in several plasmids harboured by the pNP40- and pUC11B-carrying host strains, was observed to confer a high-frequency mobilisation phenotype. These findings provide mechanistic insights into how lactococcal conjugative plasmids achieve conjugation and promote mobilisation of non-conjugative plasmids. Ultimately, these insights would be harnessed to optimise conjugation and mobilisation strategies for the rapid and predictable development of robust and technologically improved strains.
Collapse
Affiliation(s)
| | - Brian McDonnell
- School of Microbiology & APC Microbiome IrelandUniversity College CorkCorkIreland
| | - Philip Kelleher
- School of Microbiology & APC Microbiome IrelandUniversity College CorkCorkIreland
| | - Andrius Buivydas
- School of Microbiology & APC Microbiome IrelandUniversity College CorkCorkIreland
| | - Sofia Dashko
- dsm‐firmenich, Taste, Texture & Health, Center for Food InnovationDelftThe Netherlands
| | - Paul P. de Waal
- dsm‐firmenich, Taste, Texture & Health, Center for Food InnovationDelftThe Netherlands
| | - Irma van Rijswijck
- dsm‐firmenich, Taste, Texture & Health, Center for Food InnovationDelftThe Netherlands
| | | | - Jennifer Mahony
- School of Microbiology & APC Microbiome IrelandUniversity College CorkCorkIreland
| | - Douwe Van Sinderen
- School of Microbiology & APC Microbiome IrelandUniversity College CorkCorkIreland
| |
Collapse
|
4
|
Ortiz Charneco G, Kelleher P, Buivydas A, de Waal PP, van Rijswijck IM, van Peij NN, Cambillau C, Mahony J, Van Sinderen D. Discovering genetic determinants for cell-to-cell adhesion in two prevalent conjugative lactococcal plasmids. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 6:100239. [PMID: 38706493 PMCID: PMC11067333 DOI: 10.1016/j.crmicr.2024.100239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024] Open
Abstract
Plasmids pNP40 and pUC11B encode two prevalent yet divergent conjugation systems, which have been characterized in detail recently. Here, we report the elucidation of the putative adhesins of the pNP40 and pUC11B conjugation systems, encoded by traAd and trsAd, respectively. Despite their significant sequence divergence, TraAd and TrsAd represent the most conserved component between the pNP40- and the pUC11B-encoded conjugation systems and share similar peptidoglycan-hydrolase domains. Protein structure prediction using AlphaFold2 highlighted the structural similarities between their predicted domains, as well as the potential homo-dimeric state of both proteins. Expression of the putative surface adhesins resulted in a cell clumping phenotype not only among cells expressing these surface adhesins but also between adhesin-expressing and non-producing cells. Furthermore, mutant derivatives of plasmids pNP40 or pUC11B carrying a mutation in traAd or trsAd, respectively, were shown to act as efficient donors provided the corresponding recipient expresses either traAd or trsAd, thus demonstrating in trans reciprocal complementarity of these proteins in conjugation systems.
Collapse
Affiliation(s)
- Guillermo Ortiz Charneco
- School of Microbiology & APC Microbiome Ireland, University College Cork, Western Road, Cork, Ireland
| | - Philip Kelleher
- School of Microbiology & APC Microbiome Ireland, University College Cork, Western Road, Cork, Ireland
| | - Andrius Buivydas
- School of Microbiology & APC Microbiome Ireland, University College Cork, Western Road, Cork, Ireland
| | - Paul P. de Waal
- dsm-firmenich; Taste, Texture & Health, Center for Food Innovation, Alexander Fleminglaan 1, 2613 AX Delft, the Netherlands
| | - Irma M.H. van Rijswijck
- dsm-firmenich; Taste, Texture & Health, Center for Food Innovation, Alexander Fleminglaan 1, 2613 AX Delft, the Netherlands
| | - Noël N.M.E. van Peij
- dsm-firmenich; Taste, Texture & Health, Center for Food Innovation, Alexander Fleminglaan 1, 2613 AX Delft, the Netherlands
| | - Christian Cambillau
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies et Biotechnologie (IMM), Aix-Marseille Université – CNRS, UMR 7255, Marseille, France
| | - Jennifer Mahony
- School of Microbiology & APC Microbiome Ireland, University College Cork, Western Road, Cork, Ireland
| | - Douwe Van Sinderen
- School of Microbiology & APC Microbiome Ireland, University College Cork, Western Road, Cork, Ireland
| |
Collapse
|
5
|
Yu T, Jiang X, Xu X, Xu P, Qiu S, Yin J, Hamilton DP, Jiang X. Cross-Phosphorylation between AgrC Histidine Kinase and the Noncognate Response Regulator Lmo1172 in Listeria monocytogenes under Benzalkonium Chloride Stress. Microorganisms 2024; 12:392. [PMID: 38399796 PMCID: PMC10891604 DOI: 10.3390/microorganisms12020392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Benzalkonium chloride (BC) is widely used for disinfection in the food industry. However, Listeria monocytogenes strains with resistance to BC have been reported recently. In L. monocytogenes, the Agr communication system consists of a membrane-bound peptidase AgrB, a precursor peptide AgrD, a histidine kinase (HK) AgrC, and a response regulator (RR) AgrA. Our previous study showed that the agr genes are significantly upregulated by BC adaptation. This study aimed to investigate the role of the Agr system in BC resistance in L. monocytogenes. Our results showed that the Agr system was involved in BC resistance. However, a direct interaction between BC and AgrC was not observed, nor between BC and AgrA. These results indicated that BC could induce the Agr system via an indirect action. Both AgrBD and AgrC were required for growth under BC stress. Nevertheless, when exposed to BC, the gene deletion mutant ∆agrA strain exhibited better growth performance than its parental strain. The RR Lmo1172 played a role in BC resistance in the ∆agrA strain, suggesting that Lmo1172 may be an alternative to AgrA in the phosphotransfer pathway. Phosphorylation of Lmo1172 by AgrC was observed in vitro. The cognate HK Lmo1173 of Lmo1172 was not involved in BC stress, regardless of whether it was as the wild-type or the ∆agrA mutant strain. Our evidence suggests that the HK AgrC cross-phosphorylates its noncognate RR Lmo1172 to cope with BC stress when the cognate RR AgrA is absent. In vivo, further studies will be required to detect phosphotransfer of AgrC/AgrA and AgrC/Lmo1172.
Collapse
Affiliation(s)
- Tao Yu
- School of Biological Engineering, Xinxiang University, Xinxiang 453003, China; (T.Y.); (X.J.); (X.X.); (P.X.)
- Australian Rivers Institute, Griffith University, Brisbane, QLD 4111, Australia;
| | - Xiaojie Jiang
- School of Biological Engineering, Xinxiang University, Xinxiang 453003, China; (T.Y.); (X.J.); (X.X.); (P.X.)
| | - Xiaobo Xu
- School of Biological Engineering, Xinxiang University, Xinxiang 453003, China; (T.Y.); (X.J.); (X.X.); (P.X.)
| | - Ping Xu
- School of Biological Engineering, Xinxiang University, Xinxiang 453003, China; (T.Y.); (X.J.); (X.X.); (P.X.)
| | - Shuxing Qiu
- Key Laboratory of Biomedicine and Health Risk Warning of Xinxiang City, Medical College, Xinxiang University, Xinxiang 453003, China; (S.Q.); (J.Y.)
| | - Junlei Yin
- Key Laboratory of Biomedicine and Health Risk Warning of Xinxiang City, Medical College, Xinxiang University, Xinxiang 453003, China; (S.Q.); (J.Y.)
| | - David P. Hamilton
- Australian Rivers Institute, Griffith University, Brisbane, QLD 4111, Australia;
| | - Xiaobing Jiang
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
6
|
Ortiz Charneco G, Kelleher P, Buivydas A, de Waal PP, van Rijswijck IM, van Peij NN, Mahony J, Van Sinderen D. Transcriptional control of two distinct lactococcal plasmid-encoded conjugation systems. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 6:100224. [PMID: 38371911 PMCID: PMC10873654 DOI: 10.1016/j.crmicr.2024.100224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024] Open
Abstract
Lactococcal conjugative plasmids are poorly characterized compared to those harbored by numerous other Gram-positive bacteria, despite their significance in dairy fermentations and starter culture development. Furthermore, the transcriptional landscape of these lactococcal conjugation systems and their regulation have not been studied in any detail. Lactococcal plasmids pNP40 and pUC11B possess two genetically distinct and prevalent conjugation systems. Here, we describe the detailed transcriptional analysis of the pNP40 and pUC11B conjugation-associated gene clusters, revealing three and five promoters, respectively, for which the corresponding transcriptional start sites were identified. Regulation of several of these promoters, and therefore conjugation, is shown to involve the individual or concerted activities of the corresponding relaxase and transcriptional repressor(s) encoded by each conjugative plasmid. This work highlights how the conjugative potential of these systems may be unlocked, with significant implications for the starter culture and food fermentation industry.
Collapse
Affiliation(s)
- Guillermo Ortiz Charneco
- School of Microbiology & APC Microbiome Ireland, University College Cork, Western Road, Cork, Ireland
| | - Philip Kelleher
- School of Microbiology & APC Microbiome Ireland, University College Cork, Western Road, Cork, Ireland
| | - Andrius Buivydas
- School of Microbiology & APC Microbiome Ireland, University College Cork, Western Road, Cork, Ireland
| | - Paul P. de Waal
- dsm-firmenich; Taste, Texture & Health, Center for Food Innovation, Alexander Fleminglaan 1, 2613 AX Delft, the Netherlands
| | - Irma M.H. van Rijswijck
- dsm-firmenich; Taste, Texture & Health, Center for Food Innovation, Alexander Fleminglaan 1, 2613 AX Delft, the Netherlands
| | - Noël N.M.E. van Peij
- dsm-firmenich; Taste, Texture & Health, Center for Food Innovation, Alexander Fleminglaan 1, 2613 AX Delft, the Netherlands
| | - Jennifer Mahony
- School of Microbiology & APC Microbiome Ireland, University College Cork, Western Road, Cork, Ireland
| | - Douwe Van Sinderen
- School of Microbiology & APC Microbiome Ireland, University College Cork, Western Road, Cork, Ireland
| |
Collapse
|
7
|
Chen D, Yin Y, Hu Y, Cao L, Zhao C, Li B. Transposon-aided capture (TRACA) of plasmids from the human gut. Lett Appl Microbiol 2023; 76:ovad132. [PMID: 38031336 DOI: 10.1093/lambio/ovad132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/12/2023] [Accepted: 11/28/2023] [Indexed: 12/01/2023]
Abstract
The gut microbiota consists of a vast and diverse assemblage of microorganisms that play a pivotal role in maintaining host health. Nevertheless, a significant portion of the human gut microbiota remains uncultivated. Plasmids, a type of MGE, assume a critical function in the biological evolution and adaptation of bacteria to varying environments. To investigate the plasmids present within the gut microbiota community, we used the transposon-aided capture method (TRACA) to explore plasmids derived from the gut microbiota. In this study, fecal samples were collected from two healthy human volunteers and subsequently subjected to the TRACA method for plasmid isolation. Then, the complete sequence of the plasmids was obtained using the genome walking method, and sequence identity was also analyzed. A total of 15 plasmids were isolated. At last, 13 plasmids were successfully sequenced, of which 12 plasmids were highly identical to the plasmids in the National Center for Biotechnology Information (NCBI) database and were all small plasmids. Furthermore, a putative novel plasmid, named pMRPHD, was isolated, which had mobilized elements (oriT and oriV) and a potential type II restriction-modification (R-M) system encoded by DNA cytosine methyltransferase and type II restriction enzyme (Ban I), whose specific functions and applications warrant further exploration.
Collapse
Affiliation(s)
- Dan Chen
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, Hunan Engineering Research Center for Research and Development of Plant Resources in Nanling Area, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 130 Yangzitang Road, Lingling District, Yongzhou 425199, Hunan Province, China
| | - Yeshi Yin
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, Hunan Engineering Research Center for Research and Development of Plant Resources in Nanling Area, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 130 Yangzitang Road, Lingling District, Yongzhou 425199, Hunan Province, China
| | - Yunfei Hu
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, Hunan Engineering Research Center for Research and Development of Plant Resources in Nanling Area, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 130 Yangzitang Road, Lingling District, Yongzhou 425199, Hunan Province, China
| | - Linyan Cao
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, Hunan Engineering Research Center for Research and Development of Plant Resources in Nanling Area, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 130 Yangzitang Road, Lingling District, Yongzhou 425199, Hunan Province, China
| | - Changhui Zhao
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, Hunan Engineering Research Center for Research and Development of Plant Resources in Nanling Area, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 130 Yangzitang Road, Lingling District, Yongzhou 425199, Hunan Province, China
| | - Baiyuan Li
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, Hunan Engineering Research Center for Research and Development of Plant Resources in Nanling Area, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, 130 Yangzitang Road, Lingling District, Yongzhou 425199, Hunan Province, China
| |
Collapse
|
8
|
Jiang X, Kang R, Yu T, Jiang X, Chen H, Zhang Y, Li Y, Wang H. Cinnamaldehyde Targets the LytTR DNA-Binding Domain of the Response Regulator AgrA to Attenuate Biofilm Formation of Listeria monocytogenes. Microbiol Spectr 2023; 11:e0030023. [PMID: 37140461 PMCID: PMC10269664 DOI: 10.1128/spectrum.00300-23] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/19/2023] [Indexed: 05/05/2023] Open
Abstract
The Agr quorum sensing (QS) system is known to contribute to biofilm formation in Listeria monocytogenes. Cinnamaldehyde, a natural food preservative, is considered an inhibitor of Agr-mediated QS in L. monocytogenes. However, the exact mechanism by which cinnamaldehyde acts on Agr remains unclear. In this study, we assessed the effects of cinnamaldehyde on the histidine kinase AgrC and the response regulator AgrA in the Agr system. AgrC kinase activity was not influenced by cinnamaldehyde, and binding between AgrC and cinnamaldehyde was not observed when microscale thermophoresis (MST) was performed, indicating that AgrC was not the target of cinnamaldehyde. AgrA is specifically bound to the agr promoter (P2) to activate the transcription of the Agr system. However, AgrA-P2 binding was prevented by cinnamaldehyde. The interaction between cinnamaldehyde and AgrA was further confirmed with MST. Two conserved amino acids, Asn-178 and Arg-179, located in the LytTR DNA-binding domain of AgrA, were identified as the key sites for cinnamaldehyde-AgrA binding by alanine mutagenesis and MST. Coincidentally, Asn-178 was also involved in the AgrA-P2 interaction. Taken together, these results suggest that cinnamaldehyde acts as a competitive inhibitor of AgrA in AgrA-P2 binding, which leads to suppressed transcription of the Agr system and reduced biofilm formation in L. monocytogenes. IMPORTANCE Listeria monocytogenes can form biofilms on various food contact surfaces, posing a serious threat to food safety. Biofilm formation of L. monocytogenes is positively regulated by the Agr quorum sensing system. Thus, an alternative strategy for controlling L. monocytogenes biofilms is interfering with the Agr system. Cinnamaldehyde is considered an inhibitor of the L. monocytogenes Agr system; however, its exact mechanism of action is still unclear. Here, we found that AgrA (response regulator), rather than AgrC (histidine kinase), was the target of cinnamaldehyde. The conserved Asn-178 in the LytTR DNA-binding domain of AgrA was involved in cinnamaldehyde-AgrA and AgrA-P2 binding. Therefore, the occupation of Asn-178 by cinnamaldehyde suppressed transcription of the Agr system and reduced biofilm formation in L. monocytogenes. Our findings could provide a better understanding of the mechanism by which cinnamaldehyde inhibits L. monocytogenes biofilm formation.
Collapse
Affiliation(s)
- Xiaobing Jiang
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Rui Kang
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Tao Yu
- School of Life Sciences & Basic Medicine, Xinxiang University, Xinxiang, China
- Key Laboratory of Biomedicine and Health Risk Warning of Xinxiang City, Xinxiang, China
| | - Xiaojie Jiang
- School of Life Sciences & Basic Medicine, Xinxiang University, Xinxiang, China
| | - Hong Chen
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yiping Zhang
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yi Li
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Hailei Wang
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang, China
| |
Collapse
|
9
|
Ortiz Charneco G, Kelleher P, Buivydas A, Dashko S, de Waal PP, van Peij NNME, Roberts RJ, Mahony J, van Sinderen D. Delineation of a lactococcal conjugation system reveals a restriction-modification evasion system. Microb Biotechnol 2023; 16:1250-1263. [PMID: 36942662 DOI: 10.1111/1751-7915.14221] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 03/23/2023] Open
Abstract
Plasmid pUC11B is a 49.3-kb plasmid harboured by the fermented meat isolate Lactococcus lactis subsp. lactis UC11. Among other features, pUC11B encodes a pMRC01-like conjugation system and tetracycline-resistance. In this study, we demonstrate that this plasmid can be conjugated at high frequencies to recipient strains. Mutational analysis of the 22 genes encompassing the presumed pUC11B conjugation cluster revealed the presence of several genes with essential conjugation functions, as well as a gene, trsR, encoding a putative transcriptional repressor of this conjugation cluster. Furthermore, plasmid pUC11B encodes an anti-restriction protein, TrsAR, which facilitates higher conjugation frequencies when pUC11B is transferred into recipient strains containing Type II or Type III RM systems. These findings demonstrate how RM mechanisms can be circumvented when they act as a biological barrier for conjugation events.
Collapse
Affiliation(s)
| | - Philip Kelleher
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Andrius Buivydas
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Sofia Dashko
- DSM Food and Beverage, Center for Food Innovation, Delft, The Netherlands
| | - Paul P de Waal
- DSM Food and Beverage, Center for Food Innovation, Delft, The Netherlands
| | | | | | - Jennifer Mahony
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Douwe van Sinderen
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
10
|
Goh YX, Wang M, Hou XP, He Y, Ou HY. Analysis of CRISPR-Cas Loci and their Targets in Levilactobacillus brevis. Interdiscip Sci 2023:10.1007/s12539-023-00555-1. [PMID: 36849628 DOI: 10.1007/s12539-023-00555-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 03/01/2023]
Abstract
The CRISPR‒Cas system acts as a bacterial defense mechanism by conferring adaptive immunity and limiting genetic reshuffling. However, under adverse environmental hazards, bacteria can employ their CRISPR‒Cas system to exchange genes that are vital for adaptation and survival. Levilactobacillus brevis is a lactic acid bacterium with great potential for commercial purposes because it can be genetically manipulated to enhance its functionality and nutritional value. Nevertheless, the CRISPR‒Cas system might interfere with the genetic modification process. Additionally, little is known about the CRISPR‒Cas system in this industrially important microorganism. Here, we investigate the prevalence, diversity, and targets of CRISPR‒Cas systems in the genus Levilactobacillus, further focusing on complete genomes of L. brevis. Using the CRISPRCasFinder webserver, we identified 801 putative CRISPR-Cas systems in the genus Levilactobacillus. Further investigation focusing on the complete genomes of L. brevis revealed 54 putative CRISPR-Cas systems. Of these, 46 were orphan CRISPRs, and eight were CRISPR‒Cas systems. The type II-A CRISPR‒Cas system is the most common in Levilactobacillus and L. brevis complete genomes. Analysis of the spacer's target showed that the CRISPR‒Cas systems of L. brevis mainly target the enterococcal plasmids. Comparative analysis of putative CRISPR-Cas loci in Levilactobacillus brevis.
Collapse
Affiliation(s)
- Ying-Xian Goh
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd, Qingdao, 266100, China.,State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.,UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Meng Wang
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiao-Ping Hou
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd, Qingdao, 266100, China
| | - Yang He
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd, Qingdao, 266100, China.
| | - Hong-Yu Ou
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
11
|
Zhang M, Zhang T, Yu M, Chen YL, Jin M. The Life Cycle Transitions of Temperate Phages: Regulating Factors and Potential Ecological Implications. Viruses 2022; 14:1904. [PMID: 36146712 PMCID: PMC9502458 DOI: 10.3390/v14091904] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Phages are viruses that infect bacteria. They affect various microbe-mediated processes that drive biogeochemical cycling on a global scale. Their influence depends on whether the infection is lysogenic or lytic. Temperate phages have the potential to execute both infection types and thus frequently switch their infection modes in nature, potentially causing substantial impacts on the host-phage community and relevant biogeochemical cycling. Understanding the regulating factors and outcomes of temperate phage life cycle transition is thus fundamental for evaluating their ecological impacts. This review thus systematically summarizes the effects of various factors affecting temperate phage life cycle decisions in both culturable phage-host systems and natural environments. The review further elucidates the ecological implications of the life cycle transition of temperate phages with an emphasis on phage/host fitness, host-phage dynamics, microbe diversity and evolution, and biogeochemical cycles.
Collapse
Affiliation(s)
- Menghui Zhang
- School of Advanced Manufacturing, Fuzhou University, Fuzhou 350000, China
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China
| | - Tianyou Zhang
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China
| | - Meishun Yu
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China
| | - Yu-Lei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361000, China
| | - Min Jin
- School of Advanced Manufacturing, Fuzhou University, Fuzhou 350000, China
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519000, China
| |
Collapse
|
12
|
Yu T, Jiang X, Xu X, Jiang C, Kang R, Jiang X. Andrographolide Inhibits Biofilm and Virulence in Listeria monocytogenes as a Quorum-Sensing Inhibitor. Molecules 2022; 27:molecules27103234. [PMID: 35630711 PMCID: PMC9145827 DOI: 10.3390/molecules27103234] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 12/27/2022] Open
Abstract
Listeria monocytogenes is a major foodborne pathogen that can cause listeriosis in humans and animals. Andrographolide is known as a natural antibiotic and exhibits good antibacterial activity. We aimed to investigate the effect of andrographolide on two quorum-sensing (QS) systems, LuxS/AI-2 and Agr/AIP of L. monocytogenes, as well as QS-controlled phenotypes in this study. Our results showed that neither luxS expression nor AI-2 production was affected by andrographolide. Nevertheless, andrographolide significantly reduced the expression levels of the agr genes and the activity of the agr promoter P2. Results from the crystal violet staining method, confocal laser scanning microscopy (CLSM), and field emission scanning electron microscopy (FE-SEM) demonstrated that andrographolide remarkably inhibited the biofilm-forming ability of L. monocytogenes 10403S. The preformed biofilms were eradicated when exposed to andrographolide, and reduced surviving cells were also observed in treated biofilms. L. monocytogenes treated with andrographolide exhibited decreased ability to secrete LLO and adhere to and invade Caco-2 cells. Therefore, andrographolide is a potential QS inhibitor by targeting the Agr QS system to reduce biofilm formation and virulence of L. monocytogenes.
Collapse
Affiliation(s)
- Tao Yu
- School of Life Sciences & Basic Medicine, Xinxiang University, Xinxiang 453000, China; (T.Y.); (X.J.); (X.X.)
- Key Laboratory of Biomedicine and Health Risk Warning of Xinxiang City, Xinxiang University, Xinxiang 453000, China
| | - Xiaojie Jiang
- School of Life Sciences & Basic Medicine, Xinxiang University, Xinxiang 453000, China; (T.Y.); (X.J.); (X.X.)
| | - Xiaobo Xu
- School of Life Sciences & Basic Medicine, Xinxiang University, Xinxiang 453000, China; (T.Y.); (X.J.); (X.X.)
| | - Congyi Jiang
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (C.J.); (R.K.)
| | - Rui Kang
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (C.J.); (R.K.)
| | - Xiaobing Jiang
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (C.J.); (R.K.)
- Correspondence: ; Tel.: +86-03733326340
| |
Collapse
|
13
|
Jiang X, Jiang C, Yu T, Jiang X, Ren S, Kang R, Qiu S. Benzalkonium Chloride Adaptation Increases Expression of the Agr System, Biofilm Formation, and Virulence in Listeria monocytogenes. Front Microbiol 2022; 13:856274. [PMID: 35283841 PMCID: PMC8905296 DOI: 10.3389/fmicb.2022.856274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
Benzalkonium chloride (BC) is widely used for disinfection in food industry. However, prolonged exposure to BC may lead to the emergence of BC adapted strains of Listeria monocytogenes, an important foodborne pathogen. Until now, two communication systems, the LuxS/AI-2 system and the Agr system, have been identified in L. monocytogenes. This study aimed to investigate the role of communication systems in BC adaptation and the effect of BC adaptation on two communication systems and the communication-controlled behaviors in L. monocytogenes. Results demonstrated that the Agr system rather than the LuxS system plays an important role in BC adaptation of L. monocytogenes. Neither luxS expression nor AI-2 production was affected by BC adaptation. On the other hand, the expression of the agr operon and the activity of the agr promoter were significantly increased after BC adaptation. BC adaptation enhanced biofilm formation of L. monocytogenes. However, swarming motility was reduced by BC adaptation. Data from qRT-PCR showed that flagella-mediated motility-related genes (flaA, motA, and motB) were downregulated in BC adapted strains. BC adaptation increased the ability of L. monocytogenes to adhere to and invade Caco-2 cells but did not affect the hemolytic activity. Compared with the wild-type strains, the expression levels of virulence genes prfA, plcA, mpl, actA, and plcB increased more than 2-fold in BC adapted strains; however, lower than 2-fold changes in the expression of hemolysis-associated gene hly were observed. Our study suggests that BC adaptation could increase the expression of the Agr system and enhance biofilm formation, invasion, and virulence of L. monocytogenes, which brings about threats to food safety and public health. Therefore, effective measures should be taken to avoid the emergence of BC adapted strains of L. monocytogenes.
Collapse
Affiliation(s)
- Xiaobing Jiang
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Congyi Jiang
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Tao Yu
- School of Life Sciences & Basic Medicine, Xinxiang University, Xinxiang, China.,Key Laboratory of Biomedicine and Health Risk Warning of Xinxiang City, Xinxiang, China
| | - Xiaojie Jiang
- School of Life Sciences & Basic Medicine, Xinxiang University, Xinxiang, China
| | - Siyu Ren
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Rui Kang
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Shuxing Qiu
- Key Laboratory of Biomedicine and Health Risk Warning of Xinxiang City, Xinxiang, China
| |
Collapse
|
14
|
Birkholz N, Jackson SA, Fagerlund RD, Fineran P. OUP accepted manuscript. Nucleic Acids Res 2022; 50:3348-3361. [PMID: 35286398 PMCID: PMC8989522 DOI: 10.1093/nar/gkac147] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022] Open
Abstract
Epigenetic DNA methylation plays an important role in bacteria by influencing gene expression and allowing discrimination between self-DNA and intruders such as phages and plasmids. Restriction–modification (RM) systems use a methyltransferase (MTase) to modify a specific sequence motif, thus protecting host DNA from cleavage by a cognate restriction endonuclease (REase) while leaving invading DNA vulnerable. Other REases occur solitarily and cleave methylated DNA. REases and RM systems are frequently mobile, influencing horizontal gene transfer by altering the compatibility of the host for foreign DNA uptake. However, whether mobile defence systems affect pre-existing host defences remains obscure. Here, we reveal an epigenetic conflict between an RM system (PcaRCI) and a methylation-dependent REase (PcaRCII) in the plant pathogen Pectobacterium carotovorum RC5297. The PcaRCI RM system provides potent protection against unmethylated plasmids and phages, but its methylation motif is targeted by the methylation-dependent PcaRCII. This potentially lethal co-existence is enabled through epigenetic silencing of the PcaRCII-encoding gene via promoter methylation by the PcaRCI MTase. Comparative genome analyses suggest that the PcaRCII-encoding gene was already present and was silenced upon establishment of the PcaRCI system. These findings provide a striking example for selfishness of RM systems and intracellular competition between different defences.
Collapse
Affiliation(s)
- Nils Birkholz
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Bioprotection Aotearoa, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Simon A Jackson
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Bioprotection Aotearoa, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Robert D Fagerlund
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Bioprotection Aotearoa, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Peter C Fineran
- To whom correspondence should be addressed: Tel: +64 3 479 7735;
| |
Collapse
|
15
|
|
16
|
Ortiz Charneco G, Kelleher P, Buivydas A, Streekstra H, van Themaat EVL, de Waal PP, Mahony J, van Sinderen D. Genetic Dissection of a Prevalent Plasmid-Encoded Conjugation System in Lactococcus lactis. Front Microbiol 2021; 12:680920. [PMID: 34122391 PMCID: PMC8194271 DOI: 10.3389/fmicb.2021.680920] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/20/2021] [Indexed: 01/02/2023] Open
Abstract
Plasmid pNP40, which was first identified nearly 40 years ago in Lactococcus lactis subsp. lactis biovar diacetylactis DRC3, encodes functions such as heavy metal-, bacteriophage-, and nisin-resistance, as well as plasmid transfer ability by conjugation. Here, we report an optimized conjugation protocol for this plasmid, yielding a transfer frequency that is approximately 4,000-fold higher than those previously reported in literature, while we also observed high-frequency plasmid co-mobilization. Individual mutations in 18 genes that encompass the presumed conjugation cluster of pNP40 were generated using ssDNA recombineering to evaluate the role of each gene in the conjugation process. A possible transcriptional repressor of this conjugation cluster, the product of the traR gene, was identified in this manner. This mutational analysis, paired with bioinformatic predictions as based on sequence and structural similarities, allowed us to generate a preliminary model of the pNP40 conjugation machinery.
Collapse
Affiliation(s)
| | - Philip Kelleher
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Andrius Buivydas
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | | | | | - Jennifer Mahony
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Douwe van Sinderen
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
17
|
Romero DA, Magill D, Millen A, Horvath P, Fremaux C. Dairy lactococcal and streptococcal phage-host interactions: an industrial perspective in an evolving phage landscape. FEMS Microbiol Rev 2021; 44:909-932. [PMID: 33016324 DOI: 10.1093/femsre/fuaa048] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022] Open
Abstract
Almost a century has elapsed since the discovery of bacteriophages (phages), and 85 years have passed since the emergence of evidence that phages can infect starter cultures, thereby impacting dairy fermentations. Soon afterward, research efforts were undertaken to investigate phage interactions regarding starter strains. Investigations into phage biology and morphology and phage-host relationships have been aimed at mitigating the negative impact phages have on the fermented dairy industry. From the viewpoint of a supplier of dairy starter cultures, this review examines the composition of an industrial phage collection, providing insight into the development of starter strains and cultures and the evolution of phages in the industry. Research advances in the diversity of phages and structural bases for phage-host recognition and an overview of the perpetual arms race between phage virulence and host defense are presented, with a perspective toward the development of improved phage-resistant starter culture systems.
Collapse
Affiliation(s)
- Dennis A Romero
- DuPont Nutrition and Biosciences, 3329 Agriculture Dr., Madison, WI 53716, USA
| | - Damian Magill
- DuPont Nutrition and Biosciences, CS 10010, Dangé-Saint-Romain 86220, France
| | - Anne Millen
- DuPont Nutrition and Biosciences, 3329 Agriculture Dr., Madison, WI 53716, USA
| | - Philippe Horvath
- DuPont Nutrition and Biosciences, CS 10010, Dangé-Saint-Romain 86220, France
| | - Christophe Fremaux
- DuPont Nutrition and Biosciences, CS 10010, Dangé-Saint-Romain 86220, France
| |
Collapse
|
18
|
Characterization of bacteriophage T7-Ah reveals its lytic activity against a subset of both mesophilic and psychrophilic Aeromonas salmonicida strains. Arch Virol 2021; 166:521-533. [PMID: 33394168 DOI: 10.1007/s00705-020-04923-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/04/2020] [Indexed: 12/16/2022]
Abstract
Aeromonas salmonicida strains cause problematic bacterial infections in the aquaculture industry worldwide. The genus Aeromonas includes both mesophilic and psychrophilic species. Bacteriophages that infect Aeromonas spp. strains are usually specific for mesophilic or psychrophilic species; only a few bacteriophages can infect both types of strains. In this study, we characterized the podophage T7-Ah, which was initially found to infect the Aeromonas salmonicida HER1209 strain. The burst size of T7-Ah against its original host is 72 new virions per infected cell, and its burst time is 30 minutes. It has been found that this phage can lyse both mesophilic and psychrophilic A. salmonicida strains, as well as one strain of Escherichia coli. Its genome comprises 40,153 bp of DNA and does not contain any recognizable toxin or antibiotic resistance genes. The adsorption rate of the phage on highly sensitive bacterial strains was variable and could not be related to the presence or absence of a functional A-layer on the surface of the bacterial strains. The lipopolysaccharide migration patterns of both resistant and sensitive bacterial strains were also studied and compared to investigate the nature of the potential receptor of this phage on the bacterial surface. This study sheds light on the surprising diversity of lifestyles of the bacterial strains sensitive to phage T7-Ah and opens the door to the potential use of this phage against A. salmonicida infections in aquaculture.
Collapse
|
19
|
Jiang X, Ren S, Geng Y, Yu T, Li Y, Liu L, Liu G, Wang H, Shi L. The sug operon involves in resistance to quaternary ammonium compounds in Listeria monocytogenes EGD-e. Appl Microbiol Biotechnol 2020; 104:7093-7104. [DOI: 10.1007/s00253-020-10741-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/02/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023]
|
20
|
Theodorou I, Courtin P, Sadovskaya I, Palussière S, Fenaille F, Mahony J, Chapot-Chartier MP, van Sinderen D. Three distinct glycosylation pathways are involved in the decoration of Lactococcus lactis cell wall glycopolymers. J Biol Chem 2020; 295:5519-5532. [PMID: 32169901 PMCID: PMC7170526 DOI: 10.1074/jbc.ra119.010844] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 03/10/2020] [Indexed: 12/16/2022] Open
Abstract
Extracytoplasmic sugar decoration of glycopolymer components of the bacterial cell wall contributes to their structural diversity. Typically, the molecular mechanism that underpins such a decoration process involves a three-component glycosylation system (TGS) represented by an undecaprenyl-phosphate (Und-P) sugar-activating glycosyltransferase (Und-P GT), a flippase, and a polytopic glycosyltransferase (PolM GT) dedicated to attaching sugar residues to a specific glycopolymer. Here, using bioinformatic analyses, CRISPR-assisted recombineering, structural analysis of cell wall-associated polysaccharides (CWPS) through MALDI-TOF MS and methylation analysis, we report on three such systems in the bacterium Lactococcus lactis On the basis of sequence similarities, we first identified three gene pairs, csdAB, csdCD, and csdEF, each encoding an Und-P GT and a PolM GT, as potential TGS component candidates. Our experimental results show that csdAB and csdCD are involved in Glc side-chain addition on the CWPS components rhamnan and polysaccharide pellicle (PSP), respectively, whereas csdEF plays a role in galactosylation of lipoteichoic acid (LTA). We also identified a potential flippase encoded in the L. lactis genome (llnz_02975, cflA) and confirmed that it participates in the glycosylation of the three cell wall glycopolymers rhamnan, PSP, and LTA, thus indicating that its function is shared by the three TGSs. Finally, we observed that glucosylation of both rhamnan and PSP can increase resistance to bacteriophage predation and that LTA galactosylation alters L. lactis resistance to bacteriocin.
Collapse
Affiliation(s)
- Ilias Theodorou
- School of Microbiology, University College Cork, Cork T12 K8AF, Ireland
| | - Pascal Courtin
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Irina Sadovskaya
- Équipe BPA, Université du Littoral Côte d'Opale, Institut Régional Charles Violette EA 7394, USC Anses-ULCO, 62202 Boulogne-sur-Mer, France
| | - Simon Palussière
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - François Fenaille
- Université Paris-Saclay, Commissariat à l'Energie Atomique, INRAE, Médicaments et Technologies pour la Santé (MTS), MetaboHUB, 91191 Gif-sur-Yvette, France
| | - Jennifer Mahony
- School of Microbiology, University College Cork, Cork T12 K8AF, Ireland
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland
| | | | - Douwe van Sinderen
- School of Microbiology, University College Cork, Cork T12 K8AF, Ireland
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland
| |
Collapse
|
21
|
Theodorou I, Courtin P, Palussière S, Kulakauskas S, Bidnenko E, Péchoux C, Fenaille F, Penno C, Mahony J, van Sinderen D, Chapot-Chartier MP. A dual-chain assembly pathway generates the high structural diversity of cell-wall polysaccharides in Lactococcus lactis. J Biol Chem 2019; 294:17612-17625. [PMID: 31582566 DOI: 10.1074/jbc.ra119.009957] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/30/2019] [Indexed: 12/12/2022] Open
Abstract
In Lactococcus lactis, cell-wall polysaccharides (CWPSs) act as receptors for many bacteriophages, and their structural diversity among strains explains, at least partially, the narrow host range of these viral predators. Previous studies have reported that lactococcal CWPS consists of two distinct components, a variable chain exposed at the bacterial surface, named polysaccharide pellicle (PSP), and a more conserved rhamnan chain anchored to, and embedded inside, peptidoglycan. These two chains appear to be covalently linked to form a large heteropolysaccharide. The molecular machinery for biosynthesis of both components is encoded by a large gene cluster, named cwps In this study, using a CRISPR/Cas-based method, we performed a mutational analysis of the cwps genes. MALDI-TOF MS-based structural analysis of the mutant CWPS combined with sequence homology, transmission EM, and phage sensitivity analyses enabled us to infer a role for each protein encoded by the cwps cluster. We propose a comprehensive CWPS biosynthesis scheme in which the rhamnan and PSP chains are independently synthesized from two distinct lipid-sugar precursors and are joined at the extracellular side of the cytoplasmic membrane by a mechanism involving a membrane-embedded glycosyltransferase with a GT-C fold. The proposed scheme encompasses a system that allows extracytoplasmic modification of rhamnan by complex substituting oligo-/polysaccharides. It accounts for the extensive diversity of CWPS structures observed among lactococci and may also have relevance to the biosynthesis of complex rhamnose-containing CWPSs in other Gram-positive bacteria.
Collapse
Affiliation(s)
- Ilias Theodorou
- School of Microbiology, University College Cork, Western Road, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Western Road, Cork, Ireland
| | - Pascal Courtin
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Simon Palussière
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Saulius Kulakauskas
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Elena Bidnenko
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Christine Péchoux
- INRA, UMR 1313 Génétique Animale et Biologie Intégrative (GABI), Plate-forme MIMA2, 78350 Jouy-en-Josas, France
| | - François Fenaille
- CEA, Institut Joliot, Service de Pharmacologie et d'Immunoanalyse, UMR 0496, Laboratoire d'Etude du Métabolisme des Médicaments, MetaboHUB-Paris, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Christophe Penno
- School of Microbiology, University College Cork, Western Road, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Western Road, Cork, Ireland
| | - Jennifer Mahony
- School of Microbiology, University College Cork, Western Road, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Western Road, Cork, Ireland
| | - Douwe van Sinderen
- School of Microbiology, University College Cork, Western Road, Cork, Ireland .,APC Microbiome Ireland, University College Cork, Western Road, Cork, Ireland
| | | |
Collapse
|
22
|
The VirAB-VirSR-AnrAB Multicomponent System Is Involved in Resistance of Listeria monocytogenes EGD-e to Cephalosporins, Bacitracin, Nisin, Benzalkonium Chloride, and Ethidium Bromide. Appl Environ Microbiol 2019; 85:AEM.01470-19. [PMID: 31399408 DOI: 10.1128/aem.01470-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/01/2019] [Indexed: 02/06/2023] Open
Abstract
In Listeria monocytogenes, it has been proposed that the VirSR two-component signal transduction systems (TCSs) and two ATP-binding cassette (ABC) transporters, VirAB and AnrAB, constitute a complex TCS/ABC transporter system which has been recognized as a unique resistance mode. The role of the putative VirAB-VirSR-AnrAB system in antimicrobial resistance and the respective contributions of the members of the system to resistance were investigated in this study. We constructed gene deletion mutants of L. monocytogenes EGD-e and complemented strains of the mutants and determined MICs of antimicrobial agents against these strains against using the agar dilution method. We assessed the relative expression levels of target genes by reverse transcription-quantitative PCR (RT-qPCR) and measured promoter activity levels by β-galactosidase assays. Our results showed that the VirAB-VirSR-AnrAB system mediates not only nisin and bacitracin resistance but also resistance to cephalosporins, ethidium bromide (EtBr), and benzalkonium chloride (BC). In this system, two ABC transporters, VirAB and AnrAB, play distinct roles in cefotaxime resistance: the former is responsible only for antimicrobial sensing and signaling by VirSR, while the latter contributes to transportation of antimicrobials. Notably, VirAB itself, rather than the VirAB-VirSR-AnrAB system as a whole, contributes to kanamycin and tetracycline resistance. On the basis of the results obtained from this study, we speculate that VirAB acts as a sensor for VirSR in response to cephalosporins, bacitracin, nisin, EtBr, and BC, while VirAB itself plays a role in response to kanamycin and tetracycline in L. monocytogenes EGD-e.IMPORTANCE This report describes TCS/ABC transporter modules characterized in Listeria monocytogenes EGD-e. The modules consist of the VirSR TCS and the VirAB and AnrAB ABC transporters. Our results showed that this system is involved in nisin and bacitracin resistance, as well as resistance to cephalosporins, ethidium bromide (EtBr), and benzalkonium chloride (BC). In this system, VirAB is responsible only for antimicrobial sensing and signaling by VirSR, while AnrAB contributes to transportation of antimicrobials. Interestingly, VirAB itself, rather than the VirAB-VirSR-AnrAB system as a whole, contributes to kanamycin and tetracycline resistance.
Collapse
|
23
|
Kelleher P, Mahony J, Bottacini F, Lugli GA, Ventura M, van Sinderen D. The Lactococcus lactis Pan-Plasmidome. Front Microbiol 2019; 10:707. [PMID: 31019500 PMCID: PMC6458302 DOI: 10.3389/fmicb.2019.00707] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/20/2019] [Indexed: 01/01/2023] Open
Abstract
Plasmids are autonomous, self-replicating, extrachromosomal genetic elements that are typically not essential for growth of their host. They may encode metabolic capabilities, which promote the maintenance of these genetic elements, and may allow adaption to specific ecological niches and consequently enhance survival. Genome sequencing of 16 Lactococcus lactis strains revealed the presence of 83 plasmids, including two megaplasmids. The limitations of Pacific Biosciences SMRT sequencing in detecting the total plasmid complement of lactococcal strains is examined, while a combined Illumina/SMRT sequencing approach is proposed to combat these issues. Comparative genome analysis of these plasmid sequences combined with other publicly available plasmid sequence data allowed the definition of the lactococcal plasmidome, and facilitated an investigation into (bio) technologically important plasmid-encoded traits such as conjugation, bacteriocin production, exopolysaccharide (EPS) production, and (bacterio) phage resistance.
Collapse
Affiliation(s)
- Philip Kelleher
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jennifer Mahony
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Gabriele A. Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Douwe van Sinderen
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
24
|
MdrL, a major facilitator superfamily efflux pump of
Listeria monocytogenes
involved in tolerance to benzalkonium chloride. Appl Microbiol Biotechnol 2018; 103:1339-1350. [DOI: 10.1007/s00253-018-9551-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/21/2018] [Accepted: 11/30/2018] [Indexed: 12/16/2022]
|
25
|
O'Connell Motherway M, Houston A, O’Callaghan G, Reunanen J, O’Brien F, O’Driscoll T, Casey PG, de Vos WM, van Sinderen D, Shanahan F. A Bifidobacterial pilus-associated protein promotes colonic epithelial proliferation. Mol Microbiol 2018; 111:287-301. [DOI: 10.1111/mmi.14155] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2018] [Indexed: 01/15/2023]
Affiliation(s)
- Mary O'Connell Motherway
- APC Microbiome Ireland, National University of Ireland; Western Road Cork Ireland
- School of Microbiology; National University of Ireland; Western Road Cork Ireland
| | - Aileen Houston
- APC Microbiome Ireland, National University of Ireland; Western Road Cork Ireland
- Department of Medicine; National University of Ireland, Cork University Hospital; Cork Ireland
| | - Grace O’Callaghan
- APC Microbiome Ireland, National University of Ireland; Western Road Cork Ireland
- Department of Medicine; National University of Ireland, Cork University Hospital; Cork Ireland
| | - Justus Reunanen
- Research Programme Unit Immunobiology, Department of Bacteriology and Immunology; Helsinki University; Helsinki Finland
- Cancer and Translational Medicine Research Unit and Biocenter Oulu; University of Oulu; Oulu Finland
| | - Frances O’Brien
- APC Microbiome Ireland, National University of Ireland; Western Road Cork Ireland
| | - Tara O’Driscoll
- APC Microbiome Ireland, National University of Ireland; Western Road Cork Ireland
| | - Patrick G. Casey
- APC Microbiome Ireland, National University of Ireland; Western Road Cork Ireland
| | - Willem M. de Vos
- Research Programme Unit Immunobiology, Department of Bacteriology and Immunology; Helsinki University; Helsinki Finland
- Laboratory of Microbiology; Wageningen University; The Netherlands
| | - Douwe van Sinderen
- APC Microbiome Ireland, National University of Ireland; Western Road Cork Ireland
- School of Microbiology; National University of Ireland; Western Road Cork Ireland
| | - Fergus Shanahan
- APC Microbiome Ireland, National University of Ireland; Western Road Cork Ireland
- Department of Medicine; National University of Ireland, Cork University Hospital; Cork Ireland
| |
Collapse
|
26
|
Abstract
P. aeruginosa is a soil dwelling bacterium and a plant pathogen, and it also causes life-threatening infections in humans. Thus, P. aeruginosa thrives in diverse environments and over a broad range of temperatures. Some P. aeruginosa strains rely on the CRISPR-Cas adaptive immune system as a phage defense mechanism. Our discovery that low temperatures increase CRISPR adaptation suggests that the rarely occurring but crucial naive adaptation events may take place predominantly under conditions of slow growth, e.g., during the bacterium’s soil dwelling existence and during slow growth in biofilms. Clustered regularly interspaced short palindromic repeat (CRISPR)-associated (CRISPR-Cas) systems are adaptive defense systems that protect bacteria and archaea from invading genetic elements. In Pseudomonas aeruginosa, quorum sensing (QS) induces the CRISPR-Cas defense system at high cell density when the risk of bacteriophage infection is high. Here, we show that another cue, temperature, modulates P. aeruginosa CRISPR-Cas. Increased CRISPR adaptation occurs at environmental (i.e., low) temperatures compared to that at body (i.e., high) temperature. This increase is a consequence of the accumulation of CRISPR-Cas complexes, coupled with reduced P. aeruginosa growth rate at the lower temperature, the latter of which provides additional time prior to cell division for CRISPR-Cas to patrol the cell and successfully eliminate and/or acquire immunity to foreign DNA. Analyses of a QS mutant and synthetic QS compounds show that the QS and temperature cues act synergistically. The diversity and level of phage encountered by P. aeruginosa in the environment exceed that in the human body, presumably warranting increased reliance on CRISPR-Cas at environmental temperatures.
Collapse
|
27
|
Hosford CJ, Chappie JS. The crystal structure of the Helicobacter pylori LlaJI.R1 N-terminal domain provides a model for site-specific DNA binding. J Biol Chem 2018; 293:11758-11771. [PMID: 29895618 PMCID: PMC6066307 DOI: 10.1074/jbc.ra118.001888] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/04/2018] [Indexed: 12/11/2022] Open
Abstract
Restriction modification systems consist of an endonuclease that cleaves foreign DNA site-specifically and an associated methyltransferase that protects the corresponding target site in the host genome. Modification-dependent restriction systems, in contrast, specifically recognize and cleave methylated and/or glucosylated DNA. The LlaJI restriction system contains two 5-methylcytosine (5mC) methyltransferases (LlaJI.M1 and LlaJI.M2) and two restriction proteins (LlaJI.R1 and LlaJI.R2). LlaJI.R1 and LlaJI.R2 are homologs of McrB and McrC, respectively, which in Escherichia coli function together as a modification-dependent restriction complex specific for 5mC-containing DNA. Lactococcus lactis LlaJI.R1 binds DNA site-specifically, suggesting that the LlaJI system uses a different mode of substrate recognition. Here we present the structure of the N-terminal DNA-binding domain of Helicobacter pylori LlaJI.R1 at 1.97-Å resolution, which adopts a B3 domain fold. Structural comparison to B3 domains in plant transcription factors and other restriction enzymes identifies key recognition motifs responsible for site-specific DNA binding. Moreover, biochemistry and structural modeling provide a rationale for how H. pylori LlaJI.R1 may bind a target site that differs from the 5-bp sequence recognized by other LlaJI homologs and identify residues critical for this recognition activity. These findings underscore the inherent structural plasticity of B3 domains, allowing recognition of a variety of substrates using the same structural core.
Collapse
Affiliation(s)
- Christopher J Hosford
- From the Department of Molecular Medicine, Cornell University, Ithaca, New York 14853
| | - Joshua S Chappie
- From the Department of Molecular Medicine, Cornell University, Ithaca, New York 14853
| |
Collapse
|
28
|
Górski A, Międzybrodzki R, Łobocka M, Głowacka-Rutkowska A, Bednarek A, Borysowski J, Jończyk-Matysiak E, Łusiak-Szelachowska M, Weber-Dąbrowska B, Bagińska N, Letkiewicz S, Dąbrowska K, Scheres J. Phage Therapy: What Have We Learned? Viruses 2018; 10:E288. [PMID: 29843391 PMCID: PMC6024844 DOI: 10.3390/v10060288] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/11/2018] [Accepted: 05/22/2018] [Indexed: 02/07/2023] Open
Abstract
In this article we explain how current events in the field of phage therapy may positively influence its future development. We discuss the shift in position of the authorities, academia, media, non-governmental organizations, regulatory agencies, patients, and doctors which could enable further advances in the research and application of the therapy. In addition, we discuss methods to obtain optimal phage preparations and suggest the potential of novel applications of phage therapy extending beyond its anti-bacterial action.
Collapse
Affiliation(s)
- Andrzej Górski
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, Nowogrodzka Street 59, 02-006 Warsaw, Poland.
| | - Ryszard Międzybrodzki
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, Nowogrodzka Street 59, 02-006 Warsaw, Poland.
| | - Małgorzata Łobocka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego Street 5 A, 02-106 Warsaw, Poland.
- Autonomous Department of Microbial Biology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland.
| | - Aleksandra Głowacka-Rutkowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego Street 5 A, 02-106 Warsaw, Poland.
| | - Agnieszka Bednarek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego Street 5 A, 02-106 Warsaw, Poland.
| | - Jan Borysowski
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, Nowogrodzka Street 59, 02-006 Warsaw, Poland.
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
| | - Marzanna Łusiak-Szelachowska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
| | - Beata Weber-Dąbrowska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
| | - Natalia Bagińska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
| | - Sławomir Letkiewicz
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
- Medical Sciences Institute, Katowice School of Economics, Harcerzy Września Street 3, 40-659 Katowice, Poland.
| | - Krystyna Dąbrowska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
- Research and Development Center, Regional Specialized Hospital, Kamieńskiego 73a, 51-124 Wrocław, Poland.
| | - Jacques Scheres
- National Institute of Public Health NIZP, Chocimska Street 24, 00-971 Warsaw, Poland.
| |
Collapse
|
29
|
Convergence of DNA methylation and phosphorothioation epigenetics in bacterial genomes. Proc Natl Acad Sci U S A 2017; 114:4501-4506. [PMID: 28400512 DOI: 10.1073/pnas.1702450114] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Explosive growth in the study of microbial epigenetics has revealed a diversity of chemical structures and biological functions of DNA modifications in restriction-modification (R-M) and basic genetic processes. Here, we describe the discovery of shared consensus sequences for two seemingly unrelated DNA modification systems, 6mA methylation and phosphorothioation (PT), in which sulfur replaces a nonbridging oxygen in the DNA backbone. Mass spectrometric analysis of DNA from Escherichia coli B7A and Salmonella enterica serovar Cerro 87, strains possessing PT-based R-M genes, revealed d(GPS6mA) dinucleotides in the GPS6mAAC consensus representing ∼5% of the 1,100 to 1,300 PT-modified d(GPSA) motifs per genome, with 6mA arising from a yet-to-be-identified methyltransferase. To further explore PT and 6mA in another consensus sequence, GPS6mATC, we engineered a strain of E. coli HST04 to express Dnd genes from Hahella chejuensis KCTC2396 (PT in GPSATC) and Dam methyltransferase from E. coli DH10B (6mA in G6mATC). Based on this model, in vitro studies revealed reduced Dam activity in GPSATC-containing oligonucleotides whereas single-molecule real-time sequencing of HST04 DNA revealed 6mA in all 2,058 GPSATC sites (5% of 37,698 total GATC sites). This model system also revealed temperature-sensitive restriction by DndFGH in KCTC2396 and B7A, which was exploited to discover that 6mA can substitute for PT to confer resistance to restriction by the DndFGH system. These results point to complex but unappreciated interactions between DNA modification systems and raise the possibility of coevolution of interacting systems to facilitate the function of each.
Collapse
|
30
|
Cui Y, Hu T, Qu X, Zhang L, Ding Z, Dong A. Plasmids from Food Lactic Acid Bacteria: Diversity, Similarity, and New Developments. Int J Mol Sci 2015; 16:13172-202. [PMID: 26068451 PMCID: PMC4490491 DOI: 10.3390/ijms160613172] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 05/09/2015] [Accepted: 05/22/2015] [Indexed: 12/24/2022] Open
Abstract
Plasmids are widely distributed in different sources of lactic acid bacteria (LAB) as self-replicating extrachromosomal genetic materials, and have received considerable attention due to their close relationship with many important functions as well as some industrially relevant characteristics of the LAB species. They are interesting with regard to the development of food-grade cloning vectors. This review summarizes new developments in the area of lactic acid bacteria plasmids and aims to provide up to date information that can be used in related future research.
Collapse
Affiliation(s)
- Yanhua Cui
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Tong Hu
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Xiaojun Qu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China.
| | - Lanwei Zhang
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Zhongqing Ding
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Aijun Dong
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
31
|
Kelleher P, Murphy J, Mahony J, van Sinderen D. Next-generation sequencing as an approach to dairy starter selection. DAIRY SCIENCE & TECHNOLOGY 2015; 95:545-568. [PMID: 26798445 PMCID: PMC4712225 DOI: 10.1007/s13594-015-0227-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/25/2015] [Accepted: 04/02/2015] [Indexed: 02/06/2023]
Abstract
Lactococcal and streptococcal starter strains are crucial ingredients to manufacture fermented dairy products. As commercial starter culture suppliers and dairy producers attempt to overcome issues of phage sensitivity and develop new product ranges, there is an ever increasing need to improve technologies for the rational selection of novel starter culture blends. Whole genome sequencing, spurred on by recent advances in next-generation sequencing platforms, is a promising approach to facilitate rapid identification and selection of such strains based on gene-trait matching. This review provides a comprehensive overview of the available methodologies to analyse the technological potential of candidate starter strains and highlights recent advances in the area of dairy starter genomics.
Collapse
Affiliation(s)
- Philip Kelleher
- School of Microbiology, University College Cork, Cork, Ireland
| | - James Murphy
- School of Microbiology, University College Cork, Cork, Ireland
| | - Jennifer Mahony
- School of Microbiology, University College Cork, Cork, Ireland
| | - Douwe van Sinderen
- School of Microbiology, University College Cork, Cork, Ireland
- Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork, Cork, Ireland
| |
Collapse
|
32
|
Shan J, Korbsrisate S, Withatanung P, Adler NL, Clokie MRJ, Galyov EE. Temperature dependent bacteriophages of a tropical bacterial pathogen. Front Microbiol 2014; 5:599. [PMID: 25452746 PMCID: PMC4231975 DOI: 10.3389/fmicb.2014.00599] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 10/22/2014] [Indexed: 11/27/2022] Open
Abstract
There is an increasing awareness of the multiple ways that bacteriophages (phages) influence bacterial evolution, population dynamics, physiology, and pathogenicity. By studying a novel group of phages infecting a soil borne pathogen, we revealed a paradigm shifting observation that the phages switch their lifestyle according to temperature. We sampled soil from an endemic area of the serious tropical pathogen Burkholderia pseudomallei, and established that podoviruses infecting the pathogen are frequently present in soil, and many of them are naturally occurring variants of a common virus type. Experiments on one phage in the related model B. thailandensis demonstrated that temperature defines the outcome of phage-bacteria interactions. At higher temperatures (37°C), the phage predominantly goes through a lytic cycle, but at lower temperatures (25°C), the phage remains temperate. This is the first report of a naturally occurring phage that follows a lytic or temperate lifestyle according to temperature. These observations fundamentally alter the accepted views on the abundance, population biology and virulence of B. pseudomallei. Furthermore, when taken together with previous studies, our findings suggest that the phenomenon of temperature dependency in phages is widespread. Such phages are likely to have a profound effect on bacterial biology, and on our ability to culture and correctly enumerate viable bacteria.
Collapse
Affiliation(s)
- Jinyu Shan
- Department of Infection, Immunity and Inflammation, University of LeicesterLeicester, UK
| | - Sunee Korbsrisate
- Department of Immunology, Faculty of Medicine, Siriraj Hospital, Mahidol UniversityBangkok, Thailand
| | - Patoo Withatanung
- Department of Immunology, Faculty of Medicine, Siriraj Hospital, Mahidol UniversityBangkok, Thailand
| | - Natalie Lazar Adler
- Department of Infection, Immunity and Inflammation, University of LeicesterLeicester, UK
| | - Martha R. J. Clokie
- Department of Infection, Immunity and Inflammation, University of LeicesterLeicester, UK
| | - Edouard E. Galyov
- Department of Infection, Immunity and Inflammation, University of LeicesterLeicester, UK
| |
Collapse
|
33
|
The plasmid complement of Lactococcus lactis UC509.9 encodes multiple bacteriophage resistance systems. Appl Environ Microbiol 2014; 80:4341-9. [PMID: 24814781 DOI: 10.1128/aem.01070-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Lactococcus lactis subsp. cremoris strains are used globally for the production of fermented dairy products, particularly hard cheeses. Believed to be of plant origin, L. lactis strains that are used as starter cultures have undergone extensive adaptation to the dairy environment, partially through the acquisition of extrachromosomal DNA in the form of plasmids that specify technologically important phenotypic traits. Here, we present a detailed analysis of the eight plasmids of L. lactis UC509.9, an Irish dairy starter strain. Key industrial phenotypes were mapped, and genes that are typically associated with lactococcal plasmids were identified. Four distinct, plasmid-borne bacteriophage resistance systems were identified, including two abortive infection systems, AbiB and AbiD1, thereby supporting the observed phage resistance of L. lactis UC509.9. AbiB escape mutants were generated for phage sk1, which were found to carry mutations in orf6, which encodes the major capsid protein of this phage.
Collapse
|
34
|
Ainsworth S, Sadovskaya I, Vinogradov E, Courtin P, Guerardel Y, Mahony J, Grard T, Cambillau C, Chapot-Chartier MP, van Sinderen D. Differences in lactococcal cell wall polysaccharide structure are major determining factors in bacteriophage sensitivity. mBio 2014; 5:e00880-14. [PMID: 24803515 PMCID: PMC4010823 DOI: 10.1128/mbio.00880-14] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 03/31/2014] [Indexed: 01/01/2023] Open
Abstract
ABSTRACT Analysis of the genetic locus encompassing a cell wall polysaccharide (CWPS) biosynthesis operon of eight strains of Lactococcus lactis, identified as belonging to the same CWPS type C genotype, revealed the presence of a variable region among the strains examined. The results allowed the identification of five subgroups of the C type named subtypes C1 to C5. This variable region contains genes encoding glycosyltransferases that display low or no sequence homology between the subgroups. In this study, we purified an acidic polysaccharide from the cell wall of L. lactis 3107 (subtype C2) and confirmed that it is structurally different from the previously established CWPS of subtype C1 L. lactis MG1363. The CWPS of L. lactis 3107 is composed of pentasaccharide repeating units linked by phosphodiester bonds with the structure 6-α-Glc-3-β-Galf-3-β-GlcNAc-2-β-Galf-6-α-GlcNAc-1-P. Combinations of genes from the variable region of subtype C2 were introduced into a mutant of subtype C1 L. lactis NZ9000 deficient in CWPS biosynthesis. The resulting recombinant mutant synthesized a polysaccharide with a composition characteristic of that of subtype C2 L. lactis 3107 and not wild-type C1 L. lactis NZ9000. By challenging the recombinant mutant with various lactococcal phages, we demonstrated that CWPS is the host cell surface receptor of tested bacteriophages of both the P335 and 936 groups and that differences between the CWPS structures play a crucial role in determining phage host range. IMPORTANCE Despite the efforts of nearly 80 years of lactococcal phage research, the precise nature of the cell surface receptors of the P335 and 936 phage group receptors has remained elusive. This work demonstrates the molecular nature of a P335 group receptor while bolstering the evidence of its role in host recognition by phages of the 936 group and at least partially explains why such phages have a very narrow host range. The information generated will be instrumental in understanding the molecular mechanisms of how phages recognize specific saccharidic receptors located on the surface of their bacterial host.
Collapse
Affiliation(s)
- Stuart Ainsworth
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Irina Sadovskaya
- Université du Littoral-Côte d’Opale, Bassin Napoléon, Boulogne-sur-Mer, France
| | - Evguenii Vinogradov
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, Canada
| | | | - Yann Guerardel
- Université Lille 1, UGSF, CNRS UMR 8576, Villeneuve d’Ascq, France
| | - Jennifer Mahony
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Thierry Grard
- Université du Littoral-Côte d’Opale, Bassin Napoléon, Boulogne-sur-Mer, France
| | - Christian Cambillau
- Centre National de la Recherche Scientifique & Aix Marseille Université Architecture et Fonction des Macromolécules Biologiques, UMR 6098, Marseille, France
| | | | | |
Collapse
|
35
|
O′Connell Motherway M, Watson D, Bottacini F, Clark TA, Roberts RJ, Korlach J, Garault P, Chervaux C, van Hylckama Vlieg JET, Smokvina T, van Sinderen D. Identification of restriction-modification systems of Bifidobacterium animalis subsp. lactis CNCM I-2494 by SMRT sequencing and associated methylome analysis. PLoS One 2014; 9:e94875. [PMID: 24743599 PMCID: PMC3990576 DOI: 10.1371/journal.pone.0094875] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 03/20/2014] [Indexed: 01/25/2023] Open
Abstract
Bifidobacterium animalis subsp. lactis CNCM I-2494 is a component of a commercialized fermented dairy product for which beneficial effects on health has been studied by clinical and preclinical trials. To date little is known about the molecular mechanisms that could explain the beneficial effects that bifidobacteria impart to the host. Restriction-modification (R-M) systems have been identified as key obstacles in the genetic accessibility of bifidobacteria, and circumventing these is a prerequisite to attaining a fundamental understanding of bifidobacterial attributes, including the genes that are responsible for health-promoting properties of this clinically and industrially important group of bacteria. The complete genome sequence of B. animalis subsp. lactis CNCM I-2494 is predicted to harbour the genetic determinants for two type II R-M systems, designated BanLI and BanLII. In order to investigate the functionality and specificity of these two putative R-M systems in B. animalis subsp. lactis CNCM I-2494, we employed PacBio SMRT sequencing with associated methylome analysis. In addition, the contribution of the identified R-M systems to the genetic accessibility of this strain was assessed.
Collapse
Affiliation(s)
- Mary O′Connell Motherway
- Alimentary Pharmabiotic Centre and School of Microbiology, National University of Ireland, Cork, Ireland
| | - Debbie Watson
- Alimentary Pharmabiotic Centre and School of Microbiology, National University of Ireland, Cork, Ireland
| | - Francesca Bottacini
- Alimentary Pharmabiotic Centre and School of Microbiology, National University of Ireland, Cork, Ireland
| | - Tyson A. Clark
- Pacific Biosciences, Menlo Park, California, United States of America
| | | | - Jonas Korlach
- Pacific Biosciences, Menlo Park, California, United States of America
| | | | | | | | | | - Douwe van Sinderen
- Alimentary Pharmabiotic Centre and School of Microbiology, National University of Ireland, Cork, Ireland
- * E-mail:
| |
Collapse
|
36
|
Mahony J, Ainsworth S, Stockdale S, van Sinderen D. Phages of lactic acid bacteria: the role of genetics in understanding phage-host interactions and their co-evolutionary processes. Virology 2012; 434:143-50. [PMID: 23089252 DOI: 10.1016/j.virol.2012.10.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 09/12/2012] [Accepted: 10/01/2012] [Indexed: 12/26/2022]
Abstract
Dairy fermentations are among the oldest food processing applications, aimed at preservation and shelf-life extension through the use of lactic acid bacteria (LAB) starter cultures, in particular strains of Lactococcus lactis, Streptococcus thermophilus, Lactobacillus spp. and Leuconostoc spp. Traditionally this was performed by continuous passaging of undefined cultures from a finished fermentation to initiate the next fermentation. More recently, consumer demands on consistent and desired flavours and textures of dairy products have led to a more defined approach to such processes. Dairy (starter) companies have responded to the need to define the nature and complexity of the starter culture mixes, and dairy fermentations are now frequently based on defined starter cultures of low complexity, where each starter component imparts specific technological properties that are desirable to the product. Both mixed and defined starter culture approaches create the perfect environment for the proliferation of (bacterio)phages capable of infecting these LAB. The repeated use of the same starter cultures in a single plant, coupled to the drive towards higher and consistent production levels, increases the risk and negative impact of phage infection. In this review we will discuss recent advances in tracking the adaptation of phages to the dairy industry, the advances in understanding LAB phage-host interactions, including evolutionary and genomic aspects.
Collapse
Affiliation(s)
- Jennifer Mahony
- Department of Microbiology, University College Cork, Western Road, Cork, Ireland.
| | | | | | | |
Collapse
|
37
|
Field D, Begley M, O’Connor PM, Daly KM, Hugenholtz F, Cotter PD, Hill C, Ross RP. Bioengineered nisin A derivatives with enhanced activity against both Gram positive and Gram negative pathogens. PLoS One 2012; 7:e46884. [PMID: 23056510 PMCID: PMC3466204 DOI: 10.1371/journal.pone.0046884] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 09/07/2012] [Indexed: 01/20/2023] Open
Abstract
Nisin is a bacteriocin widely utilized in more than 50 countries as a safe and natural antibacterial food preservative. It is the most extensively studied bacteriocin, having undergone decades of bioengineering with a view to improving function and physicochemical properties. The discovery of novel nisin variants with enhanced activity against clinical and foodborne pathogens has recently been described. We screened a randomized bank of nisin A producers and identified a variant with a serine to glycine change at position 29 (S29G), with enhanced efficacy against S. aureus SA113. Using a site-saturation mutagenesis approach we generated three more derivatives (S29A, S29D and S29E) with enhanced activity against a range of Gram positive drug resistant clinical, veterinary and food pathogens. In addition, a number of the nisin S29 derivatives displayed superior antimicrobial activity to nisin A when assessed against a range of Gram negative food-associated pathogens, including E. coli, Salmonella enterica serovar Typhimurium and Cronobacter sakazakii. This is the first report of derivatives of nisin, or indeed any lantibiotic, with enhanced antimicrobial activity against both Gram positive and Gram negative bacteria.
Collapse
Affiliation(s)
- Des Field
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Maire Begley
- Department of Microbiology, University College Cork, Cork, Ireland
| | | | - Karen M. Daly
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Floor Hugenholtz
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Paul D. Cotter
- Teagasc, Moorepark Food Research Centre, Fermoy, Co. Cork, Ireland
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Colin Hill
- Department of Microbiology, University College Cork, Cork, Ireland
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - R. Paul Ross
- Teagasc, Moorepark Food Research Centre, Fermoy, Co. Cork, Ireland
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| |
Collapse
|
38
|
Mahony J, Murphy J, van Sinderen D. Lactococcal 936-type phages and dairy fermentation problems: from detection to evolution and prevention. Front Microbiol 2012; 3:335. [PMID: 23024644 PMCID: PMC3445015 DOI: 10.3389/fmicb.2012.00335] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 08/29/2012] [Indexed: 11/21/2022] Open
Abstract
The so-called 936-type phages are the most frequently encountered lactococcal phage species in dairy fermentations, where they cause slow or even failed fermentations with concomitant economic losses. Several dairy phage population studies, performed in different geographical locations, have detailed their dominance in dairy phage populations, while various phage-resistance mechanisms have been assessed in a bid to protect against this virulent phage group. The impact of thermal and chemical treatments on 936 phages is an important aspect for dairy technologists and has been assessed in several studies, and has indicated that these phages have adapted to better resist such treatments. The abundance of 936 phage genome sequences has permitted a focused view on genomic content and regions of variation, and the role of such variable regions in the evolution of these phages. Here, we present an overview on detection and global prevalence of the 936 phages, together with their tolerance to industrial treatments and anti-phage strategies. Furthermore, we present a comprehensive review on the comparative genomic analyses of members of this fascinating phage species.
Collapse
Affiliation(s)
- Jennifer Mahony
- Department of Microbiology, University College Cork Cork, Ireland
| | | | | |
Collapse
|
39
|
Collins B, Guinane CM, Cotter PD, Hill C, Ross RP. Assessing the contributions of the LiaS histidine kinase to the innate resistance of Listeria monocytogenes to nisin, cephalosporins, and disinfectants. Appl Environ Microbiol 2012; 78:2923-9. [PMID: 22327581 PMCID: PMC3318795 DOI: 10.1128/aem.07402-11] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 02/02/2012] [Indexed: 12/23/2022] Open
Abstract
The Listeria monocytogenes LiaSR two-component system (2CS) encoded by lmo1021 and lmo1022 plays an important role in resistance to the food preservative nisin. A nonpolar deletion in the histidine kinase-encoding component (ΔliaS) resulted in a 4-fold increase in nisin resistance. In contrast, the ΔliaS strain exhibited increased sensitivity to a number of cephalosporin antibiotics (and was also altered with respect to its response to a variety of other antimicrobials, including the active agents of a number of disinfectants). This pattern of increased nisin resistance and reduced cephalosporin resistance in L. monocytogenes has previously been associated with mutation of a second histidine kinase, LisK, which is a predicted regulator of liaS and a penicillin binding protein encoded by lmo2229. We noted that lmo2229 transcription is increased in the ΔliaS mutant and in a ΔliaS ΔlisK double mutant and that disruption of lmo2229 in the ΔliaS ΔlisK mutant resulted in a dramatic sensitization to nisin but had a relatively minor impact on cephalosporin resistance. We anticipate that further efforts to unravel the complex mechanisms by which LiaSR impacts on the antimicrobial resistance of L. monocytogenes could facilitate the development of strategies to increase the susceptibility of the pathogen to these agents.
Collapse
Affiliation(s)
- Barry Collins
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Caitriona M. Guinane
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
- Alimentary Pharmabiotic Centre, Cork, Ireland
| | - Paul D. Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
- Alimentary Pharmabiotic Centre, Cork, Ireland
| | - Colin Hill
- Department of Microbiology, University College Cork, Cork, Ireland
- Alimentary Pharmabiotic Centre, Cork, Ireland
| | - R. Paul Ross
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
- Alimentary Pharmabiotic Centre, Cork, Ireland
| |
Collapse
|
40
|
A novel restriction-modification system is responsible for temperature-dependent phage resistance in Listeria monocytogenes ECII. Appl Environ Microbiol 2012. [PMID: 22247158 DOI: 10.1128/aem.07086‐11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes epidemic clone II (ECII) strains are unusual in being completely resistant to phage when grown at low temperatures (≤30°C). In the current study we constructed and characterized a mariner-based mutant (J46C) of the ECII strain H7550-Cd(S) that lacked temperature-dependent resistance to phage. The transposon was localized in LMOh7858_2753 (open reading frame [ORF] 2753), a member of a 12-ORF genomic island unique to ECII strains. ORF 2753 and ORF 2754 exhibited homologies to restriction endonucleases and methyltransferases associated with type II restriction-modification (RM) systems. In silico-based predictions of the recognition site for this putative RM system were supported by resistance of DNA from ECII strains to digestion by BfuI, a type II restriction enzyme specific for GTATCC (N6/5). Similarly to J46C, a mutant harboring an in-frame deletion of ORF 2753 was susceptible to phage regardless of temperature of growth (25°C or 37°C). Genetic complementation restored phage resistance in 25°C-grown cells of ORF 2753 mutants. Reverse transcription (RT) and quantitative real-time PCR data suggested enhanced transcription of ORF 2753 at low temperatures (≤25°C) compared to 37°C. In contrast, available transcriptional data suggested that the putative methyltransferase (ORF 2754) was constitutively expressed at all tested temperatures (4 to 37°C). Thus, temperature-dependent resistance of L. monocytogenes ECII to phage is mediated by temperature-dependent expression of the restriction endonuclease associated with a novel RM system (LmoH7) unique to this epidemic clone.
Collapse
|
41
|
A novel restriction-modification system is responsible for temperature-dependent phage resistance in Listeria monocytogenes ECII. Appl Environ Microbiol 2012; 78:1995-2004. [PMID: 22247158 DOI: 10.1128/aem.07086-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes epidemic clone II (ECII) strains are unusual in being completely resistant to phage when grown at low temperatures (≤30°C). In the current study we constructed and characterized a mariner-based mutant (J46C) of the ECII strain H7550-Cd(S) that lacked temperature-dependent resistance to phage. The transposon was localized in LMOh7858_2753 (open reading frame [ORF] 2753), a member of a 12-ORF genomic island unique to ECII strains. ORF 2753 and ORF 2754 exhibited homologies to restriction endonucleases and methyltransferases associated with type II restriction-modification (RM) systems. In silico-based predictions of the recognition site for this putative RM system were supported by resistance of DNA from ECII strains to digestion by BfuI, a type II restriction enzyme specific for GTATCC (N6/5). Similarly to J46C, a mutant harboring an in-frame deletion of ORF 2753 was susceptible to phage regardless of temperature of growth (25°C or 37°C). Genetic complementation restored phage resistance in 25°C-grown cells of ORF 2753 mutants. Reverse transcription (RT) and quantitative real-time PCR data suggested enhanced transcription of ORF 2753 at low temperatures (≤25°C) compared to 37°C. In contrast, available transcriptional data suggested that the putative methyltransferase (ORF 2754) was constitutively expressed at all tested temperatures (4 to 37°C). Thus, temperature-dependent resistance of L. monocytogenes ECII to phage is mediated by temperature-dependent expression of the restriction endonuclease associated with a novel RM system (LmoH7) unique to this epidemic clone.
Collapse
|
42
|
Douillard FP, Mahony J, Campanacci V, Cambillau C, van Sinderen D. Construction of two Lactococcus lactis expression vectors combining the Gateway and the NIsin Controlled Expression systems. Plasmid 2011; 66:129-35. [PMID: 21807023 DOI: 10.1016/j.plasmid.2011.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Revised: 07/11/2011] [Accepted: 07/15/2011] [Indexed: 11/16/2022]
Abstract
Over the last 10 years, the NIsin Controlled Expression (NICE) system has been extensively used in the food-grade bacterium Lactococcus lactis subsp. cremoris to produce homologous and heterologous proteins for academic and biotechnological purposes. Although various L. lactis molecular tools have been developed, no expression vectors harboring the popular Gateway recombination system are currently available for this widely used cloning host. In this study, we constructed two expression vectors that combine the NICE and the Gateway recombination systems and we tested their applicability by recombining and over-expressing genes encoding structural proteins of lactococcal phages Tuc2009 and TP901-1. Over-expressed phage proteins were analyzed by immunoblotting and purified by His-tag affinity chromatography with protein productions yielding 2.8-3.7 mg/l of culture. This therefore is the first description of L. lactis NICE expression vectors which integrate the Gateway cloning technology and which are suitable for the production of sufficient amounts of proteins to facilitate subsequent structural and functional analyses.
Collapse
Affiliation(s)
- François P Douillard
- Department of Microbiology, University College Cork, Western Road, Cork, Ireland.
| | | | | | | | | |
Collapse
|
43
|
Identification and characterization of the phage gene sav, involved in sensitivity to the lactococcal abortive infection mechanism AbiV. Appl Environ Microbiol 2009; 75:2484-94. [PMID: 19270128 DOI: 10.1128/aem.02093-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactococcus lactis phage mutants that are insensitive to the recently characterized abortive infection mechanism AbiV were isolated and analyzed in an effort to elucidate factors involved in the sensitivity to AbiV. Whole-genome sequencing of the phage mutants p2.1 and p2.2 revealed mutations in an orf that is transcribed early, indicating that this orf was responsible for AbiV sensitivity. Sequencing of the homologous regions in the genomes of other AbiV-insensitive mutants derived from p2 and six other lactococcal wild-type phages revealed point mutations in the homologous orf sequences. The orf was named sav (for sensitivity to AbiV), and the encoded polypeptide was named SaV. The purification of a His-tagged SaV polypeptide by gel filtration suggested that the polypeptide formed a dimer in its native form. The overexpression of SaV in L. lactis and Escherichia coli led to a rapid toxic effect. Conserved, evolutionarily related regions in SaV polypeptides of different phage groups are likely to be responsible for the AbiV-sensitive phenotype and the toxicity.
Collapse
|
44
|
Temperature-dependent phage resistance of Listeria monocytogenes epidemic clone II. Appl Environ Microbiol 2009; 75:2433-8. [PMID: 19251898 DOI: 10.1128/aem.02480-08] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes epidemic clone II (ECII) has been responsible for two multistate outbreaks in the United States in 1998-1999 and in 2002, in which contaminated ready-to-eat meat products (hot dogs and turkey deli meats, respectively) were implicated. However, ecological adaptations of ECII strains in the food-processing plant environment remain unidentified. In this study, we found that broad-host-range phages, including phages isolated from the processing plant environment, produced plaques on ECII strains grown at 37 degrees C but not when the bacteria were grown at lower temperatures (30 degrees C or below). ECII strains grown at lower temperatures were resistant to phage regardless of the temperature during infection and subsequent incubation. In contrast, the phage susceptibility of all other tested strains of serotype 4b (including epidemic clone I) and of strains of other serotypes and Listeria species was independent of the growth temperature of the bacteria. This temperature-dependent phage susceptibility of ECII bacteria was consistently observed with all surveyed ECII strains from outbreaks or from processing plants, regardless of the presence or absence of cadmium resistance plasmids. Phages adsorbed similarly on ECII bacteria grown at 25 degrees C and at 37 degrees C, suggesting that resistance of ECII strains grown at 25 degrees C was not due to failure of the phage to adsorb. Even though the underlying mechanisms remain to be elucidated, temperature-dependent phage resistance may represent an important ecological adaptation of L. monocytogenes ECII in processed, cold-stored foods and in the processing plant environment, where relatively low temperatures prevail.
Collapse
|
45
|
|
46
|
Nomoto K, Kiwaki M, Tsuji H. Genetic Modification of Probiotic Microorganisms. HANDBOOK OF PROBIOTICS AND PREBIOTICS 2008:189-255. [DOI: 10.1002/9780470432624.ch3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
47
|
Field D, Connor PMO, Cotter PD, Hill C, Ross RP. The generation of nisin variants with enhanced activity against specific Gram-positive pathogens. Mol Microbiol 2008; 69:218-30. [DOI: 10.1111/j.1365-2958.2008.06279.x] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Nagornykh MO, Bogdanova ES, Protsenko AS, Zakharova MV, Solonin AS, Severinov KV. [Regulation of gene expression in type II restriction-modification system]. RUSS J GENET+ 2008; 44:606-615. [PMID: 18672793 DOI: 10.1134/s1022795408050037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Type II restriction-modification systems are comprised of a restriction endonuclease and methyltransferase. The enzymes are coded by individual genes and recognize the same DNA sequence. Endonuclease makes a double-stranded break in the recognition site, and methyltransferase covalently modifies the DNA bases within the recognition site, thereby down-regulating endonuclease activity. Coordinated action of these enzymes plays a role of primitive immune system and protects bacterial host cell from the invasion of foreign (for example, viral) DNA. However, uncontrolled expression of the restriction-modification system genes can result in the death of bacterial host cell because of the endonuclease cleavage of host DNA. In the present review, the data on the expression regulation of the type II restriction-modification enzymes are discussed.
Collapse
|
49
|
Field D, Collins B, Cotter PD, Hill C, Ross RP. A System for the Random Mutagenesis of the Two-Peptide Lantibiotic Lacticin 3147: Analysis of Mutants Producing Reduced Antibacterial Activities. J Mol Microbiol Biotechnol 2007; 13:226-34. [PMID: 17827973 DOI: 10.1159/000104747] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Lantibiotics are antimicrobial peptides that contain several unusual amino acids resulting from a series of enzyme-mediated posttranslational modifications. As a consequence of being gene-encoded, the implementation of peptide bioengineering systems has the potential to yield lantibiotic variants with enhanced chemical and physical properties. Here we describe a functional two-plasmid expression system which has been developed to allow random mutagenesis of the two-component lantibiotic, lacticin 3147. One of these plasmids contains a randomly mutated version of the two structural genes, ltnA1 and ltnA2, and the associated promoter, Pbac, while the other encodes the remainder of the proteins required for the biosynthesis of, and immunity to, lacticin 3147. To test this system, a bank of approximately 1,500 mutant strains was generated and screened to identify mutations that have a detrimental impact on the bioactivity of lacticin 3147. This strategy established/confirmed the importance of specific residues in the structural peptides and their associated leaders and revealed that a number of alterations which mapped to the -10 or -35 regions of Pbac abolished promoter activity.
Collapse
Affiliation(s)
- Des Field
- Department of Microbiology, University College Cork, Cork, Ireland
| | | | | | | | | |
Collapse
|
50
|
Varhimo E, Savijoki K, Jalava J, Kuipers OP, Varmanen P. Identification of a novel streptococcal gene cassette mediating SOS mutagenesis in Streptococcus uberis. J Bacteriol 2007; 189:5210-22. [PMID: 17513475 PMCID: PMC1951879 DOI: 10.1128/jb.00473-07] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Accepted: 05/08/2007] [Indexed: 11/20/2022] Open
Abstract
Streptococci have been considered to lack the classical SOS response, defined by increased mutation after UV exposure and regulation by LexA. Here we report the identification of a potential self-regulated SOS mutagenesis gene cassette in the Streptococcaceae family. Exposure to UV light was found to increase mutations to antibiotic resistance in Streptococcus uberis cultures. The mutational spectra revealed mainly G:C-->A:T transitions, and Northern analyses demonstrated increased expression of a Y-family DNA polymerase resembling UmuC under DNA-damaging conditions. In the absence of the Y-family polymerase, S. uberis cells were sensitive to UV light and to mitomycin C. Furthermore, the UV-induced mutagenesis was almost completely abolished in cells deficient in the Y-family polymerase. The gene encoding the Y-family polymerase was localized in a four-gene operon including two hypothetical genes and a gene encoding a HdiR homolog. Electrophoretic mobility shift assays demonstrated that S. uberis HdiR binds specifically to an inverted repeat sequence in the promoter region of the four-gene operon. Database searches revealed conservation of the gene cassette in several Streptococcus species, including at least one genome each of Streptococcus pyogenes, Streptococcus agalactiae, Streptococcus mitis, Streptococcus sanguinis, and Streptococcus thermophilus strains. In addition, the umuC operon was localized in several mobile DNA elements of Streptococcus and Lactococcus species. We conclude that the hdiR-umuC-ORF3-ORF4 operon represents a novel gene cassette capable of mediating SOS mutagenesis among members of the Streptococcaceae.
Collapse
MESH Headings
- Amino Acid Sequence
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Base Sequence
- Blotting, Northern
- Ciprofloxacin/pharmacology
- DNA Damage
- Drug Resistance, Bacterial/genetics
- Electrophoretic Mobility Shift Assay
- Gene Expression Regulation, Bacterial/drug effects
- Gene Expression Regulation, Bacterial/radiation effects
- Genes, Bacterial
- Mitomycin/pharmacology
- Models, Genetic
- Molecular Sequence Data
- Mutagenesis
- Mutation
- Operon
- Rifampin/pharmacology
- SOS Response, Genetics/drug effects
- SOS Response, Genetics/genetics
- SOS Response, Genetics/radiation effects
- Sequence Homology, Nucleic Acid
- Streptococcus/drug effects
- Streptococcus/genetics
- Streptococcus/radiation effects
- Ultraviolet Rays
Collapse
Affiliation(s)
- Emilia Varhimo
- University of Helsinki, Department of Basic Veterinary Sciences, P.O. Box 66, FIN-00014, Finland
| | | | | | | | | |
Collapse
|