1
|
Wang H, Li C, Wang Y, Zhang H. Bacterial Species in Engineered Living Materials: Strategies and Future Directions. Microb Biotechnol 2025; 18:e70164. [PMID: 40407296 PMCID: PMC12100766 DOI: 10.1111/1751-7915.70164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 04/28/2025] [Accepted: 05/08/2025] [Indexed: 05/26/2025] Open
Abstract
In recent years, there has been a notable increase interest in engineered living materials (ELMs) owing to their considerable potential. One key area of research within this field is the utilisation of various species of bacteria to create innovative living materials. In order to accelerate the advancement of bacterial-based living materials, a systematic summary of bacterial species and their design strategies is essential. Yet, up to this point, no applicable reviews have been documented. This review offers a concise introduction to living materials derived from bacteria, delves into the strategies and applications of each bacterial species in this realm, and provides perspectives and future outlooks in this field.
Collapse
Affiliation(s)
- Hu Wang
- School of Statistics and Applied MathematicsAnhui University of Finance and EconomicsBengbuAnhuiChina
| | - Chunzhong Li
- School of Statistics and Applied MathematicsAnhui University of Finance and EconomicsBengbuAnhuiChina
| | - Yanmin Wang
- School of Statistics and Applied MathematicsAnhui University of Finance and EconomicsBengbuAnhuiChina
| | - Huanming Zhang
- School of Statistics and Applied MathematicsAnhui University of Finance and EconomicsBengbuAnhuiChina
- School of Mathematics and StatisticsHuaibei Normal UniversityHuaibeiAnhuiChina
| |
Collapse
|
2
|
Takemoto N, Hao W, Matsuzawa H, Sakurai J, Tsuge Y. Controlling the carbon flux between glycolysis and the pentose phosphate pathway via targeted protein degradation in Corynebacterium glutamicum. J Biosci Bioeng 2025; 139:377-383. [PMID: 40011106 DOI: 10.1016/j.jbiosc.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/23/2025] [Accepted: 02/03/2025] [Indexed: 02/28/2025]
Abstract
Controlling the carbon flux is important for efficient production of value-added chemicals using microbial cell factories. In this study, we developed a system to control the carbon flux in Corynebacterium glutamicum via targeted protein degradation. We employed an SspB-dependent protein degradation system targeting the SsrA tag and applied it to control the carbon flux. First, we selected a degradation tag efficiently recognized by the ClpXP protease in C. glutamicum using green fluorescent protein (GFP) as a model protein. Among the four tags examined in this study, a mutant SsrA tag with DAS residues from Escherichia coli resulted in specific GFP degradation only when the adaptor SspB was induced in C. glutamicum. Next, we applied this system to control the carbon flux. We selected phosphoglucoisomerase (PGI) encoded by pgi, as a target protein, to control the carbon flux between glycolysis and pentose phosphate pathway (PPP) and 1,5-diaminopentane as a model product to evaluate this control system. Compared with the parental strain, the specific growth rate of the engineered strain decreased by 36 %, whereas the yield and production rate of 1,5-diaminopentane increased by 193 % and 70 %, respectively. This is the first report on the application of a protein degradation system to control carbon flux in C. glutamicum. The system developed in this study can be widely applied for designing C. glutamicum cell factories for efficient production of varied value-added chemicals.
Collapse
Affiliation(s)
- Norihiko Takemoto
- Pathogenic Microbe Laboratory, Research Institute, National Center for Global Health and Medicine, Shinjuku, Tokyo 162-8655, Japan
| | - Wenhui Hao
- Division of Transdisciplinary Sciences, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroki Matsuzawa
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Jun Sakurai
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Yota Tsuge
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan; Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan.
| |
Collapse
|
3
|
Pérez-García F, Brito LF, Bakken TI, Brautaset T. Riboflavin overproduction from diverse feedstocks with engineered Corynebacterium glutamicum. Biofabrication 2024; 16:045012. [PMID: 38996414 DOI: 10.1088/1758-5090/ad628e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/12/2024] [Indexed: 07/14/2024]
Abstract
Riboflavin overproduction byCorynebacterium glutamicumwas achieved by screening synthetic operons, enabling fine-tuned expression of the riboflavin biosynthetic genesribGCAH.The synthetic operons were designed by means of predicted translational initiation rates of each open reading frame, with the best-performing selection enabling riboflavin overproduction without negatively affecting cell growth. Overexpression of the fructose-1,6-bisphosphatase (fbp) and 5-phosphoribosyl 1-pyrophosphate aminotransferase (purF) encoding genes was then done to redirect the metabolic flux towards the riboflavin precursors. The resulting strain produced 8.3 g l-1of riboflavin in glucose-based fed-batch fermentations, which is the highest reported riboflavin titer withC. glutamicum. Further genetic engineering enabled both xylose and mannitol utilization byC. glutamicum, and we demonstrated riboflavin overproduction with the xylose-rich feedstocks rice husk hydrolysate and spent sulfite liquor, and the mannitol-rich feedstock brown seaweed hydrolysate. Remarkably, rice husk hydrolysate provided 30% higher riboflavin yields compared to glucose in the bioreactors.
Collapse
Affiliation(s)
- Fernando Pérez-García
- Department of Biotechnology and Food Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Luciana Fernandes Brito
- Department of Biotechnology and Food Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Thea Isabel Bakken
- Department of Biotechnology and Food Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Trygve Brautaset
- Department of Biotechnology and Food Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
4
|
Puertas-Bartolomé M, Gutiérrez-Urrutia I, Teruel-Enrico LL, Duong CN, Desai K, Trujillo S, Wittmann C, Del Campo A. Self-Lubricating, Living Contact Lenses. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313848. [PMID: 38583064 DOI: 10.1002/adma.202313848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/04/2024] [Indexed: 04/08/2024]
Abstract
The increasing prevalence of dry eye syndrome in aging and digital societies compromises long-term contact lens (CL) wear and forces users to regular eye drop instillation to alleviate discomfort. Here a novel approach with the potential to improve and extend the lubrication properties of CLs is presented. This is achieved by embedding lubricant-secreting biofactories within the CL material. The self-replenishable reservoirs autonomously produce and release hyaluronic acid (HA), a natural lubrication and wetting agent, long term. The hydrogel matrix regulates the growth of the biofactories and the HA production, and allows the diffusion of nutrients and HA for at least 3 weeks. The continuous release of HA sustainably reduces the friction coefficient of the CL surface. A self-lubricating CL prototype is presented, where the functional biofactories are contained in a functional ring at the lens periphery, outside of the vision area. The device is cytocompatible and fulfils physicochemical requirements of commercial CLs. The fabrication process is compatible with current manufacturing processes of CLs for vision correction. It is envisioned that the durable-by-design approach in living CL could enable long-term wear comfort for CL users and minimize the need for lubricating eye drops.
Collapse
Affiliation(s)
- María Puertas-Bartolomé
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
- Chemistry Department, Saarland University, 66123, Saarbrücken, Germany
| | | | | | - Cao Nguyen Duong
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Krupansh Desai
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Sara Trujillo
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Christoph Wittmann
- Institute for Systems Biotechnology, Saarland University, Campus A1 5, 66123, Saarbrücken, Germany
| | - Aránzazu Del Campo
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
- Chemistry Department, Saarland University, 66123, Saarbrücken, Germany
| |
Collapse
|
5
|
Yin L, Zhou Y, Ding N, Fang Y. Recent Advances in Metabolic Engineering for the Biosynthesis of Phosphoenol Pyruvate-Oxaloacetate-Pyruvate-Derived Amino Acids. Molecules 2024; 29:2893. [PMID: 38930958 PMCID: PMC11206799 DOI: 10.3390/molecules29122893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The phosphoenol pyruvate-oxaloacetate-pyruvate-derived amino acids (POP-AAs) comprise native intermediates in cellular metabolism, within which the phosphoenol pyruvate-oxaloacetate-pyruvate (POP) node is the switch point among the major metabolic pathways existing in most living organisms. POP-AAs have widespread applications in the nutrition, food, and pharmaceutical industries. These amino acids have been predominantly produced in Escherichia coli and Corynebacterium glutamicum through microbial fermentation. With the rapid increase in market requirements, along with the global food shortage situation, the industrial production capacity of these two bacteria has encountered two bottlenecks: low product conversion efficiency and high cost of raw materials. Aiming to push forward the update and upgrade of engineered strains with higher yield and productivity, this paper presents a comprehensive summarization of the fundamental strategy of metabolic engineering techniques around phosphoenol pyruvate-oxaloacetate-pyruvate node for POP-AA production, including L-tryptophan, L-tyrosine, L-phenylalanine, L-valine, L-lysine, L-threonine, and L-isoleucine. Novel heterologous routes and regulation methods regarding the carbon flux redistribution in the POP node and the formation of amino acids should be taken into consideration to improve POP-AA production to approach maximum theoretical values. Furthermore, an outlook for future strategies of low-cost feedstock and energy utilization for developing amino acid overproducers is proposed.
Collapse
Affiliation(s)
- Lianghong Yin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (L.Y.); (Y.Z.)
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Yanan Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (L.Y.); (Y.Z.)
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Nana Ding
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (L.Y.); (Y.Z.)
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Yu Fang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (L.Y.); (Y.Z.)
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
6
|
Lee YG, Jo HY, Lee DH, Yoon JW, Song YH, Kweon DH, Kim KH, Park YC, Seo JH. De novo biosynthesis of 2'-fucosyllactose by bioengineered Corynebacterium glutamicum. Biotechnol J 2024; 19:e2300461. [PMID: 37968827 DOI: 10.1002/biot.202300461] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/27/2023] [Accepted: 11/12/2023] [Indexed: 11/17/2023]
Abstract
2'-Fucosyllactose (2'-FL) which is well-known human milk oligosaccharide was biotechnologically synthesized using engineered Corynebacterium glutamicum, a GRAS microbial workhorse. By construction of the complete de novo pathway for GDP-L-fucose supply and heterologous expression of Escherichia coli lactose permease and Helicobacter pylori α-1,2-fucosyltransferase, bioengineered C. glutamicum BCGW_TL successfully biosynthesized 0.25 g L-1 2'-FL from glucose. The additional genetic perturbations including the expression of a putative 2'-FL exporter and disruption of the chromosomal pfkA gene allowed C. glutamicum BCGW_cTTLEΔP to produce 2.5 g L-1 2'-FL batchwise. Finally, optimized fed-batch cultivation of the BCGW_cTTLEΔP using glucose, fructose, and lactose resulted in 21.5 g L-1 2'-FL production with a productivity of 0.12 g L-1 •h, which were more than 3.3 times higher value relative to the batch culture of the BCGW_TL. Conclusively, it would be a groundwork to adopt C. glutamicum for biotechnological production of other food additives including human milk oligosaccharides.
Collapse
Affiliation(s)
- Ye-Gi Lee
- Department of Bio and Fermentation Convergence Technology and Center for Bioconvergence, Kookmin University, Seoul, South Korea
- Department of Agricultural Biotechnology and Center for Food Bioconvergence, Seoul National University, Seoul, South Korea
| | - Hae-Yong Jo
- Department of Agricultural Biotechnology and Center for Food Bioconvergence, Seoul National University, Seoul, South Korea
| | - Do-Haeng Lee
- Department of Agricultural Biotechnology and Center for Food Bioconvergence, Seoul National University, Seoul, South Korea
| | - Jong-Won Yoon
- Advanced Protein Technologies Corp. Yeongtong-gu, Suwon, Gyeonggi, South Korea
| | - Young-Ha Song
- Advanced Protein Technologies Corp. Yeongtong-gu, Suwon, Gyeonggi, South Korea
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, South Korea
| | - Yong-Cheol Park
- Department of Bio and Fermentation Convergence Technology and Center for Bioconvergence, Kookmin University, Seoul, South Korea
| | - Jin-Ho Seo
- Department of Agricultural Biotechnology and Center for Food Bioconvergence, Seoul National University, Seoul, South Korea
| |
Collapse
|
7
|
Son HF, Park W, Kim S, Kim IK, Kim KJ. Structure-based functional analysis of a novel NADPH-producing glyceraldehyde-3-phosphate dehydrogenase from Corynebacterium glutamicum. Int J Biol Macromol 2024; 255:128103. [PMID: 37992937 DOI: 10.1016/j.ijbiomac.2023.128103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
Corynebacterium glutamicum is an industrial workhorse applied in the production of valuable biochemicals. In the process of bio-based chemical production, improving cofactor recycling and mitigating cofactor imbalance are considered major solutions for enhancing the production yield and efficiency. Although, glyceraldehyde-3-phosphate dehydrogenase (GapDH), a glycolytic enzyme, can be a promising candidate for a sufficient NADPH cofactor supply, however, most microorganisms have only NAD-dependent GapDHs. In this study, we performed functional characterization and structure determination of novel NADPH-producing GapDH from C. glutamicum (CgGapX). Based on the crystal structure of CgGapX in complex with NADP cofactor, the unique structural features of CgGapX for NADP stabilization were elucidated. Also, N-terminal additional region (Auxiliary domain, AD) appears to have an effect on enzyme stabilization. In addition, through structure-guided enzyme engineering, we developed a CgGapX variant that exhibited 4.3-fold higher kcat, and 1.2-fold higher kcat/KM values when compared with wild-type. Furthermore, a bioinformatic analysis of 100 GapX-like enzymes from 97 microorganisms in the KEGG database revealed that the GapX-like enzymes possess a variety of AD, which seem to determine enzyme stability. Our findings are expected to provide valuable information for supplying NADPH cofactor pools in bio-based value-added chemical production.
Collapse
Affiliation(s)
- Hyeoncheol Francis Son
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Woojin Park
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sangwoo Kim
- KNU Institute for Microorganisms, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Il-Kwon Kim
- KNU Institute for Microorganisms, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyung-Jin Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea; KNU Institute for Microorganisms, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
8
|
Wang Y, Bai Y, Zeng Q, Jiang Z, Liu Y, Wang X, Liu X, Liu C, Min W. Recent advances in the metabolic engineering and physiological opportunities for microbial synthesis of L-aspartic acid family amino acids: A review. Int J Biol Macromol 2023; 253:126916. [PMID: 37716660 DOI: 10.1016/j.ijbiomac.2023.126916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
L-aspartic acid, L-threonine, L-isoleucine, l-lysine, and L-methionine constitute the l-aspartate amino acids (AFAAs). Except for L-aspartic acid, these are essential amino acids that cannot be synthesized by humans or animals themselves. E. coli and C. glutamicum are the main model organisms for AFAA production. It is necessary to reconstitute microbial cell factories and the physiological state of industrial fermentation cells for in-depth research into strains with higher AFAA production levels and optimal growth states. Considering that the anabolic pathways of the AFAAs and engineering modifications have rarely been reviewed in the latest progress, this work reviews the central metabolic pathways of two strains and strategies for the metabolic engineering of AFAA synthetic pathways. The challenges posed by microbial physiology in AFAA production and possible strategies to address them, as well as future research directions for constructing strains with high AFAA production levels, are discussed in this review article.
Collapse
Affiliation(s)
- Yusheng Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Yunlong Bai
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Qi Zeng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Zeyuan Jiang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Yuzhe Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Xiyan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Xiaoting Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Chunlei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China.
| | - Weihong Min
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China.
| |
Collapse
|
9
|
Son HF, Yu H, Hong J, Lee D, Kim IK, Kim KJ. Structure-Guided Protein Engineering of Glyceraldehyde-3-phosphate Dehydrogenase from Corynebacterium glutamicum for Dual NAD/NADP Cofactor Specificity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17852-17859. [PMID: 37935620 DOI: 10.1021/acs.jafc.3c06176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Since the discovery of l-glutamate-producing Corynebacterium glutamicum, it has evolved to be an industrial workhorse. For biobased chemical production, suppling sufficient amounts of the NADPH cofactor is crucial. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a glycolytic enzyme that converts glyceraldehyde-3-phosphate (G3P) to 1,3-bisphosphoglycerate and produces NADH, is a major prospective solution for the cofactor imbalance issue. In this study, we determined the crystal structure of GAPDH from C. glutamicum ATCC13032 (CgGAPDH). Based on the structural information, we generated six CgGAPDH variants, CgGAPDHL36S, CgGAPDHL36S/T37K, CgGAPDHL36S/T37K/P192S, CgGAPDHL36S/T37K/F100V/P192S, CgGAPDHL36S/T37K/F100L/P192S, and CgGAPDHL36S/T37K/F100I/P192S, that can produce both NADH and NAPDH. The final CgGAPDHL36S/T37K/F100V/P192S variant showed a 212-fold increase in enzyme activity for NADP as well as 200% and 30% increased activity for the G3P substrate under NAD and NADP cofactor conditions, respectively. In addition, crystal structures of CgGAPDH variants in complex with NAD(P) permit the elucidation of differences between wild-type CgGAPDH and variants in relation to cofactor stabilization.
Collapse
Affiliation(s)
- Hyeoncheol Francis Son
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Hyeonjeong Yu
- School of Life Sciences, BK21 Four KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jiyeon Hong
- School of Life Sciences, BK21 Four KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
- KNU Institute for Microorganisms, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Donghoon Lee
- School of Life Sciences, BK21 Four KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Il-Kwon Kim
- KNU Institute for Microorganisms, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyung-Jin Kim
- School of Life Sciences, BK21 Four KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
- KNU Institute for Microorganisms, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
10
|
Nonaka K, Osamura T, Takahashi F. A 4-hydroxybenzoate 3-hydroxylase mutant enables 4-amino-3-hydroxybenzoic acid production from glucose in Corynebacterium glutamicum. Microb Cell Fact 2023; 22:168. [PMID: 37644492 PMCID: PMC10466732 DOI: 10.1186/s12934-023-02179-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Microbial production of aromatic chemicals is an attractive method for obtaining high-performance materials from biomass resources. A non-proteinogenic amino acid, 4-amino-3-hydroxybenzoic acid (4,3-AHBA), is expected to be a precursor of highly functional polybenzoxazole polymers; however, methods for its microbial production have not been reported. In this study, we attempted to produce 4,3-AHBA from glucose by introducing 3-hydroxylation of 4-aminobenzoic acid (4-ABA) into the metabolic pathway of an industrially relevant bacterium, Corynebacterium glutamicum. RESULTS Six different 4-hydroxybenzoate 3-hydroxylases (PHBHs) were heterologously expressed in C. glutamicum strains, which were then screened for the production of 4,3-AHBA by culturing with glucose as a carbon source. The highest concentration of 4,3-AHBA was detected in the strain expressing PHBH from Caulobacter vibrioides (CvPHBH). A combination of site-directed mutagenesis in the active site and random mutagenesis via laccase-mediated colorimetric assay allowed us to obtain CvPHBH mutants that enhanced 4,3-AHBA productivity under deep-well plate culture conditions. The recombinant C. glutamicum strain expressing CvPHBHM106A/T294S and having an enhanced 4-ABA biosynthetic pathway produced 13.5 g/L (88 mM) 4,3-AHBA and 0.059 g/L (0.43 mM) precursor 4-ABA in fed-batch culture using a nutrient-rich medium. The culture of this strain in the chemically defined CGXII medium yielded 9.8 C-mol% of 4,3-AHBA from glucose, corresponding to 12.8% of the theoretical maximum yield (76.8 C-mol%) calculated using a genome-scale metabolic model of C. glutamicum. CONCLUSIONS Identification of PHBH mutants that could efficiently catalyze the 3-hydroxylation of 4-ABA in C. glutamicum allowed us to construct an artificial biosynthetic pathway capable of producing 4,3-AHBA on a gram-scale using glucose as the carbon source. These findings will contribute to a better understanding of enzyme-catalyzed regioselective hydroxylation of aromatic chemicals and to the diversification of biomass-derived precursors for high-performance materials.
Collapse
Affiliation(s)
- Kyoshiro Nonaka
- Biological Science Research, Kao Corporation, 1334 Minato, Wakayama, Wakayama, 640-8580, Japan.
| | - Tatsuya Osamura
- Biological Science Research, Kao Corporation, 1334 Minato, Wakayama, Wakayama, 640-8580, Japan
| | - Fumikazu Takahashi
- Biological Science Research, Kao Corporation, 1334 Minato, Wakayama, Wakayama, 640-8580, Japan
| |
Collapse
|
11
|
Pauli S, Kohlstedt M, Lamber J, Weiland F, Becker J, Wittmann C. Systems metabolic engineering upgrades Corynebacterium glutamicum for selective high-level production of the chiral drug precursor and cell-protective extremolyte L-pipecolic acid. Metab Eng 2023; 77:100-117. [PMID: 36931556 DOI: 10.1016/j.ymben.2023.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/02/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
The nonproteinogenic cyclic metabolite l-pipecolic acid is a chiral precursor for the synthesis of various commercial drugs and functions as a cell-protective extremolyte and mediator of defense in plants, enabling high-value applications in the pharmaceutical, medical, cosmetic, and agrochemical markets. To date, the production of the compound is unfavorably fossil-based. Here, we upgraded the strain Corynebacterium glutamicum for l-pipecolic acid production using systems metabolic engineering. Heterologous expression of the l-lysine 6-dehydrogenase pathway, apparently the best route to be used in the microbe, yielded a family of strains that enabled successful de novo synthesis from glucose but approached a limit of performance at a yield of 0.18 mol mol-1. Detailed analysis of the producers at the transcriptome, proteome, and metabolome levels revealed that the requirements of the introduced route were largely incompatible with the cellular environment, which could not be overcome after several further rounds of metabolic engineering. Based on the gained knowledge, we based the strain design on l-l-lysine 6-aminotransferase instead, which enabled a substantially higher in vivo flux toward l-pipecolic acid. The tailormade producer C. glutamicum PIA-7 formed l-pipecolic acid up to a yield of 562 mmol mol-1, representing 75% of the theoretical maximum. Ultimately, the advanced mutant PIA-10B achieved a titer of 93 g L-1 in a fed-batch process on glucose, outperforming all previous efforts to synthesize this valuable molecule de novo and even approaching the level of biotransformation from l-lysine. Notably, the use of C. glutamicum allows the safe production of GRAS-designated l-pipecolic acid, providing extra benefit toward addressing the high-value pharmaceutical, medical, and cosmetic markets. In summary, our development sets a milestone toward the commercialization of biobased l-pipecolic acid.
Collapse
Affiliation(s)
- Sarah Pauli
- Institute for Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Michael Kohlstedt
- Institute for Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Jessica Lamber
- Institute for Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Fabia Weiland
- Institute for Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Judith Becker
- Institute for Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Christoph Wittmann
- Institute for Systems Biotechnology, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
12
|
Lignin Valorization: Production of High Value-Added Compounds by Engineered Microorganisms. Catalysts 2023. [DOI: 10.3390/catal13030555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
Lignin is the second most abundant polymer in nature, which is also widely generated during biomass fractionation in lignocellulose biorefineries. At present, most of technical lignin is simply burnt for energy supply although it represents the richest natural source of aromatics, and thus it is a promising feedstock for generation of value-added compounds. Lignin is heterogeneous in composition and recalcitrant to degradation, with this substantially hampering its use. Notably, microbes have evolved particular enzymes and specialized metabolic pathways to degrade this polymer and metabolize its various aromatic components. In recent years, novel pathways have been designed allowing to establish engineered microbial cell factories able to efficiently funnel the lignin degradation products into few metabolic intermediates, representing suitable starting points for the synthesis of a variety of valuable molecules. This review focuses on recent success cases (at the laboratory/pilot scale) based on systems metabolic engineering studies aimed at generating value-added and specialty chemicals, with much emphasis on the production of cis,cis-muconic acid, a building block of recognized industrial value for the synthesis of plastic materials. The upgrade of this global waste stream promises a sustainable product portfolio, which will become an industrial reality when economic issues related to process scale up will be tackled.
Collapse
|
13
|
Yim SS, Choi JW, Lee YJ, Jeong KJ. Rapid combinatorial rewiring of metabolic networks for enhanced poly(3-hydroxybutyrate) production in Corynebacterium glutamicum. Microb Cell Fact 2023; 22:29. [PMID: 36803485 PMCID: PMC9936768 DOI: 10.1186/s12934-023-02037-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/07/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND The disposal of plastic waste is a major environmental challenge. With recent advances in microbial genetic and metabolic engineering technologies, microbial polyhydroxyalkanoates (PHAs) are being used as next-generation biomaterials to replace petroleum-based synthetic plastics in a sustainable future. However, the relatively high production cost of bioprocesses hinders the production and application of microbial PHAs on an industrial scale. RESULTS Here, we describe a rapid strategy to rewire metabolic networks in an industrial microorganism, Corynebacterium glutamicum, for the enhanced production of poly(3-hydroxybutyrate) (PHB). A three-gene PHB biosynthetic pathway in Rasltonia eutropha was refactored for high-level gene expression. A fluorescence-based quantification assay for cellular PHB content using BODIPY was devised for the rapid fluorescence-activated cell sorting (FACS)-based screening of a large combinatorial metabolic network library constructed in C. glutamicum. Rewiring metabolic networks across the central carbon metabolism enabled highly efficient production of PHB up to 29% of dry cell weight with the highest cellular PHB productivity ever reported in C. glutamicum using a sole carbon source. CONCLUSIONS We successfully constructed a heterologous PHB biosynthetic pathway and rapidly optimized metabolic networks across central metabolism in C. glutamicum for enhanced production of PHB using glucose or fructose as a sole carbon source in minimal media. We expect that this FACS-based metabolic rewiring framework will accelerate strain engineering processes for the production of diverse biochemicals and biopolymers.
Collapse
Affiliation(s)
- Sung Sun Yim
- grid.37172.300000 0001 2292 0500Department of Biological Sciences, KAIST, Daejeon, Republic of Korea ,grid.37172.300000 0001 2292 0500Institute for BioCentury, KAIST, Daejeon, Republic of Korea
| | - Jae Woong Choi
- grid.418974.70000 0001 0573 0246Traditional Food Research Group, Korea Food Research Institute, Jeonju, Republic of Korea
| | - Yong Jae Lee
- grid.249967.70000 0004 0636 3099Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141 Korea ,grid.412786.e0000 0004 1791 8264Major of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Ki Jun Jeong
- Department of Chemical and Biomolecular Engineering, KAIST, Daejeon, Republic of Korea. .,Institute for BioCentury, KAIST, Daejeon, Republic of Korea.
| |
Collapse
|
14
|
Systems metabolic engineering upgrades Corynebacterium glutamicum to high-efficiency cis, cis-muconic acid production from lignin-based aromatics. Metab Eng 2023; 75:153-169. [PMID: 36563956 DOI: 10.1016/j.ymben.2022.12.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Lignin displays a highly challenging renewable. To date, massive amounts of lignin, generated in lignocellulosic processing facilities, are for the most part merely burned due to lacking value-added alternatives. Aromatic lignin monomers of recognized relevance are in particular vanillin, and to a lesser extent vanillate, because they are accessible at high yield from softwood-lignin using industrially operated alkaline oxidative depolymerization. Here, we metabolically engineered C. glutamicum towards cis, cis-muconate (MA) production from these key aromatics. Starting from the previously created catechol-based producer C. glutamicum MA-2, systems metabolic engineering first discovered an unspecific aromatic aldehyde reductase that formed aromatic alcohols from vanillin, protocatechualdehyde, and p- hydroxybenzaldehyde, and was responsible for the conversion up to 57% of vanillin into vanillyl alcohol. The alcohol was not re-consumed by the microbe later, posing a strong drawback on the producer. The identification and subsequent elimination of the encoding fudC gene completely abolished vanillyl alcohol formation. Second, the initially weak flux through the native vanillin and vanillate metabolism was enhanced up to 2.9-fold by implementing synthetic pathway modules. Third, the most efficient protocatechuate decarboxylase AroY for conversion of the midstream pathway intermediate protocatechuate into catechol was identified out of several variants in native and codon optimized form and expressed together with the respective helper proteins. Fourth, the streamlined modules were all genomically combined which yielded the final strain MA-9. MA-9 produced bio-based MA from vanillin, vanillate, and seven structurally related aromatics at maximum selectivity. In addition, MA production from softwood-based vanillin, obtained through alkaline depolymerization, was demonstrated.
Collapse
|
15
|
Kim GY, Kim J, Park G, Kim HJ, Yang J, Seo SW. Synthetic biology tools for engineering Corynebacterium glutamicum. Comput Struct Biotechnol J 2023; 21:1955-1965. [PMID: 36942105 PMCID: PMC10024154 DOI: 10.1016/j.csbj.2023.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023] Open
Abstract
Corynebacterium glutamicum is a promising organism for the industrial production of amino acids, fuels, and various value-added chemicals. From the whole genome sequence release, C. glutamicum has been valuable in the field of industrial microbiology and biotechnology. Continuous discovery of genetic manipulations and regulation mechanisms has developed C. glutamicum as a synthetic biology platform chassis. This review summarized diverse genomic manipulation technologies and gene expression tools for static, dynamic, and multiplex control at transcription and translation levels. Moreover, we discussed the current challenges and applicable tools to C. glutamicum for future advancements.
Collapse
Affiliation(s)
- Gi Yeon Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Jinyoung Kim
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Geunyung Park
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Hyeon Jin Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Jina Yang
- Department of Chemical Engineering, Jeju National University, 102, Jejudaehak-ro, Jeju-si, Jeju-do 63243, South Korea
- Corresponding author.
| | - Sang Woo Seo
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
- Institute of Chemical Processes, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
- Bio-MAX Institute, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
- Institute of Engineering Research Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
- Corresponding author at: School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea.
| |
Collapse
|
16
|
Jungmann L, Hoffmann SL, Lang C, De Agazio R, Becker J, Kohlstedt M, Wittmann C. High-efficiency production of 5-hydroxyectoine using metabolically engineered Corynebacterium glutamicum. Microb Cell Fact 2022; 21:274. [PMID: 36578077 PMCID: PMC9798599 DOI: 10.1186/s12934-022-02003-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/17/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Extremolytes enable microbes to withstand even the most extreme conditions in nature. Due to their unique protective properties, the small organic molecules, more and more, become high-value active ingredients for the cosmetics and the pharmaceutical industries. While ectoine, the industrial extremolyte flagship, has been successfully commercialized before, an economically viable route to its highly interesting derivative 5-hydroxyectoine (hydroxyectoine) is not existing. RESULTS Here, we demonstrate high-level hydroxyectoine production, using metabolically engineered strains of C. glutamicum that express a codon-optimized, heterologous ectD gene, encoding for ectoine hydroxylase, to convert supplemented ectoine in the presence of sucrose as growth substrate into the desired derivative. Fourteen out of sixteen codon-optimized ectD variants from phylogenetically diverse bacterial and archaeal donors enabled hydroxyectoine production, showing the strategy to work almost regardless of the origin of the gene. The genes from Pseudomonas stutzeri (PST) and Mycobacterium smegmatis (MSM) worked best and enabled hydroxyectoine production up to 97% yield. Metabolic analyses revealed high enrichment of the ectoines inside the cells, which, inter alia, reduced the synthesis of other compatible solutes, including proline and trehalose. After further optimization, C. glutamicum Ptuf ectDPST achieved a titre of 74 g L-1 hydroxyectoine at 70% selectivity within 12 h, using a simple batch process. In a two-step procedure, hydroxyectoine production from ectoine, previously synthesized fermentatively with C. glutamicum ectABCopt, was successfully achieved without intermediate purification. CONCLUSIONS C. glutamicum is a well-known and industrially proven host, allowing the synthesis of commercial products with granted GRAS status, a great benefit for a safe production of hydroxyectoine as active ingredient for cosmetic and pharmaceutical applications. Because ectoine is already available at commercial scale, its use as precursor appears straightforward. In the future, two-step processes might provide hydroxyectoine de novo from sugar.
Collapse
Affiliation(s)
- Lukas Jungmann
- grid.11749.3a0000 0001 2167 7588Institute of Systems Biotechnology, Saarland University, Campus A1.5, Saarbrücken, Germany
| | - Sarah Lisa Hoffmann
- grid.11749.3a0000 0001 2167 7588Institute of Systems Biotechnology, Saarland University, Campus A1.5, Saarbrücken, Germany
| | - Caroline Lang
- grid.11749.3a0000 0001 2167 7588Institute of Systems Biotechnology, Saarland University, Campus A1.5, Saarbrücken, Germany
| | - Raphaela De Agazio
- grid.11749.3a0000 0001 2167 7588Institute of Systems Biotechnology, Saarland University, Campus A1.5, Saarbrücken, Germany
| | - Judith Becker
- grid.11749.3a0000 0001 2167 7588Institute of Systems Biotechnology, Saarland University, Campus A1.5, Saarbrücken, Germany
| | - Michael Kohlstedt
- grid.11749.3a0000 0001 2167 7588Institute of Systems Biotechnology, Saarland University, Campus A1.5, Saarbrücken, Germany
| | - Christoph Wittmann
- grid.11749.3a0000 0001 2167 7588Institute of Systems Biotechnology, Saarland University, Campus A1.5, Saarbrücken, Germany
| |
Collapse
|
17
|
Han X, Liu J, Tian S, Tao F, Xu P. Microbial cell factories for bio-based biodegradable plastics production. iScience 2022; 25:105462. [DOI: 10.1016/j.isci.2022.105462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
18
|
Rohles C, Pauli S, Gießelmann G, Kohlstedt M, Becker J, Wittmann C. Systems metabolic engineering of Corynebacterium glutamicum eliminates all by-products for selective and high-yield production of the platform chemical 5-aminovalerate. Metab Eng 2022; 73:168-181. [PMID: 35917915 DOI: 10.1016/j.ymben.2022.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/01/2022] [Accepted: 07/13/2022] [Indexed: 11/29/2022]
Abstract
5-aminovalerate (AVA) is a platform chemical of substantial commercial value to derive nylon-5 and five-carbon derivatives like δ-valerolactam, 1,5-pentanediol, glutarate, and 5-hydroxyvalerate. De-novo bio-production synthesis of AVA using metabolically engineered cell factories is regarded as exemplary route to provide this chemical in a sustainable way. So far, this route is limited by low titers, rates and yields and suffers from high levels of by-products. To overcome these limitations, we developed a novel family of AVA producing C. glutamicum cell factories. Stepwise optimization included (i) improved AVA biosynthesis by expression balancing of the heterologous davAB genes from P. putida, (ii) reduced formation of the by-product glutarate by disruption of the catabolic y-aminobutyrate pathway (iii), increased AVA export, and (iv) reduced AVA re-import via native and heterologous transporters to account for the accumulation of intracellular AVA up to 300 mM. Strain C. glutamicum AVA-5A, obtained after several optimization rounds, produced 48.3 g L-1 AVA in a fed-batch process and achieved a high yield of 0.21 g g-1. Surprisingly in later stages, the mutant suddenly accumulated glutarate to an extent equivalent to 30% of the amount of AVA formed, tenfold more than in the early process, displaying a severe drawback toward industrial production. Further exploration led to the discovery that ArgD, naturally aminating N-acetyl-l-ornithine during l-arginine biosynthesis, exhibits deaminating side activity on AVA toward glutarate formation. This promiscuity became relevant because of the high intracellular AVA level and the fact that ArgD became unoccupied with the gradually stronger switch-off of anabolism during production. Glutarate formation was favorably abolished in the advanced strains AVA-6A, AVA-6B, and AVA-7, all lacking argD. In a fed-batch process, C. glutamicum AVA-7 produced 46.5 g L-1 AVA at a yield of 0.34 g g-1 and a maximum productivity of 1.52 g L-1 h-1, outperforming all previously reported efforts and stetting a milestone toward industrial manufacturing of AVA. Notably, the novel cell factories are fully genome-based, offering high genetic stability and requiring no selection markers.
Collapse
Affiliation(s)
- Christina Rohles
- Institute of Systems Biotechnology, Saarland University, Germany
| | - Sarah Pauli
- Institute of Systems Biotechnology, Saarland University, Germany
| | | | | | - Judith Becker
- Institute of Systems Biotechnology, Saarland University, Germany
| | | |
Collapse
|
19
|
Jie-Liu, Xu JZ, Rao ZM, Zhang WG. Industrial production of L-lysine in Corynebacterium glutamicum: progress and prospects. Microbiol Res 2022; 262:127101. [DOI: 10.1016/j.micres.2022.127101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/11/2022] [Accepted: 06/22/2022] [Indexed: 11/24/2022]
|
20
|
Kohlstedt M, Weimer A, Weiland F, Stolzenberger J, Selzer M, Sanz M, Kramps L, Wittmann C. Biobased PET from lignin using an engineered cis, cis-muconate-producing Pseudomonas putida strain with superior robustness, energy and redox properties. Metab Eng 2022; 72:337-352. [DOI: 10.1016/j.ymben.2022.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/18/2022] [Accepted: 05/04/2022] [Indexed: 11/26/2022]
|
21
|
Liu B, Sun X, Liu Y, Yang M, Wang L, Li Y, Wang J. Increased NADPH Supply Enhances Glycolysis Metabolic Flux and L-methionine Production in Corynebacterium glutamicum. Foods 2022; 11:foods11071031. [PMID: 35407118 PMCID: PMC8998051 DOI: 10.3390/foods11071031] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/19/2022] [Accepted: 03/31/2022] [Indexed: 11/16/2022] Open
Abstract
Corynebacterium glutamicum is an important strain for the industrial production of amino acids, but the fermentation of L-methionine has not been realized. The purpose of this study is to clarify the effect of reducing power NADPH on L-methionine synthesis. Site-directed mutagenesis of zwf and gnd genes in pentose phosphate pathway relieved feedback inhibition, increased NADPH supply by 151.8%, and increased L-methionine production by 28.3%; Heterologous expression of gapC gene to introduce NADP+ dependent glyceraldehyde-3-phosphate dehydrogenase increased NADPH supply by 75.0% and L-methionine production by 48.7%; Heterologous expression of pntAB gene to introduce membrane-integral nicotinamide nucleotide transhydrogenase increased NADPH by 89.2% and L-methionine production by 35.9%. Finally, the engineering strain YM6 with a high NADPH supply was constructed, which increased the NADPH supply by 348.2% and the L-methionine production by 64.1%. The analysis of metabolic flux showed that YM6 significantly increased the glycolytic flux, including the metabolic flux of metabolites such as glycosyldehyde-3-phosphate, dihydroxyacetate phosphate, 3-phosphoglycate and pyruvate, and the significant increase of L-methionine flux also confirmed the increase of its synthesis. This study provides a research basis for the systematic metabolic engineering construction of L-methionine high-yield engineering strains.
Collapse
Affiliation(s)
- Bingnan Liu
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China; (B.L.); (X.S.); (Y.L.); (M.Y.); (L.W.)
| | - Xinyu Sun
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China; (B.L.); (X.S.); (Y.L.); (M.Y.); (L.W.)
| | - Yue Liu
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China; (B.L.); (X.S.); (Y.L.); (M.Y.); (L.W.)
| | - Mengmeng Yang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China; (B.L.); (X.S.); (Y.L.); (M.Y.); (L.W.)
| | - Liang Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China; (B.L.); (X.S.); (Y.L.); (M.Y.); (L.W.)
| | - Ying Li
- School of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
- Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Dalian 116600, China
- Correspondence: (Y.L.); (J.W.); Tel.: +86-411-863-24050 (Y.L.); +86-769-222-61545 (J.W.)
| | - Jihui Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China; (B.L.); (X.S.); (Y.L.); (M.Y.); (L.W.)
- Engineering Research Center of Health Food Design & Nutrition Regulation, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China
- Correspondence: (Y.L.); (J.W.); Tel.: +86-411-863-24050 (Y.L.); +86-769-222-61545 (J.W.)
| |
Collapse
|
22
|
Schwardmann LS, Dransfeld AK, Schäffer T, Wendisch VF. Metabolic Engineering of Corynebacterium glutamicum for Sustainable Production of the Aromatic Dicarboxylic Acid Dipicolinic Acid. Microorganisms 2022; 10:microorganisms10040730. [PMID: 35456781 PMCID: PMC9024752 DOI: 10.3390/microorganisms10040730] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 02/04/2023] Open
Abstract
Dipicolinic acid (DPA) is an aromatic dicarboxylic acid that mediates heat-stability and is easily biodegradable and non-toxic. Currently, the production of DPA is fossil-based, but bioproduction of DPA may help to replace fossil-based plastics as it can be used for the production of polyesters or polyamides. Moreover, it serves as a stabilizer for peroxides or organic materials. The antioxidative, antimicrobial and antifungal effects of DPA make it interesting for pharmaceutical applications. In nature, DPA is essential for sporulation of Bacillus and Clostridium species, and its biosynthesis shares the first three reactions with the L-lysine pathway. Corynebacterium glutamicum is a major host for the fermentative production of amino acids, including the million-ton per year production of L-lysine. This study revealed that DPA reduced the growth rate of C. glutamicum to half-maximal at about 1.6 g·L−1. The first de novo production of DPA by C. glutamicum was established by overexpression of dipicolinate synthase genes from Paenibacillus sonchi genomovar riograndensis SBR5 in a C. glutamicum L-lysine producer strain. Upon systems metabolic engineering, DPA production to 2.5 g·L−1 in shake-flask and 1.5 g·L−1 in fed-batch bioreactor cultivations was shown. Moreover, DPA production from the alternative carbon substrates arabinose, xylose, glycerol, and starch was established. Finally, expression of the codon-harmonized phosphite dehydrogenase gene from P. stutzeri enabled phosphite-dependent non-sterile DPA production.
Collapse
Affiliation(s)
- Lynn S. Schwardmann
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany; (L.S.S.); (A.K.D.)
| | - Aron K. Dransfeld
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany; (L.S.S.); (A.K.D.)
| | - Thomas Schäffer
- Multiscale Bioengineering, Technical Faculty and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany;
| | - Volker F. Wendisch
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany; (L.S.S.); (A.K.D.)
- Correspondence: ; Tel.: +49-521-106-5611
| |
Collapse
|
23
|
Weixler D, Berghoff M, Ovchinnikov KV, Reich S, Goldbeck O, Seibold GM, Wittmann C, Bar NS, Eikmanns BJ, Diep DB, Riedel CU. Recombinant production of the lantibiotic nisin using Corynebacterium glutamicum in a two-step process. Microb Cell Fact 2022; 21:11. [PMID: 35033086 PMCID: PMC8760817 DOI: 10.1186/s12934-022-01739-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/03/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The bacteriocin nisin is naturally produced by Lactococcus lactis as an inactive prepeptide that is modified posttranslationally resulting in five (methyl-)lanthionine rings characteristic for class Ia bacteriocins. Export and proteolytic cleavage of the leader peptide results in release of active nisin. By targeting the universal peptidoglycan precursor lipid II, nisin has a broad target spectrum including important human pathogens such as Listeria monocytogenes and methicillin-resistant Staphylococcus aureus strains. Industrial nisin production is currently performed using natural producer strains resulting in rather low product purity and limiting its application to preservation of dairy food products. RESULTS We established heterologous nisin production using the biotechnological workhorse organism Corynebacterium glutamicum in a two-step process. We demonstrate successful biosynthesis and export of fully modified prenisin and its activation to mature nisin by a purified, soluble variant of the nisin protease NisP (sNisP) produced in Escherichia coli. Active nisin was detected by a L. lactis sensor strain with strictly nisin-dependent expression of the fluorescent protein mCherry. Following activation by sNisP, supernatants of the recombinant C. glutamicum producer strain cultivated in standard batch fermentations contained at least 1.25 mg/l active nisin. CONCLUSIONS We demonstrate successful implementation of a two-step process for recombinant production of active nisin with C. glutamicum. This extends the spectrum of bioactive compounds that may be produced using C. glutamicum to a bacteriocin harboring complex posttranslational modifications. Our results provide a basis for further studies to optimize product yields, transfer production to sustainable substrates and purification of pharmaceutical grade nisin.
Collapse
Affiliation(s)
- Dominik Weixler
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Max Berghoff
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Kirill V Ovchinnikov
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Sebastian Reich
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Oliver Goldbeck
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Gerd M Seibold
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Nadav S Bar
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bernhard J Eikmanns
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Dzung B Diep
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Christian U Riedel
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
24
|
Liu S, Xu JZ, Zhang WG. Advances and prospects in metabolic engineering of Escherichia coli for L-tryptophan production. World J Microbiol Biotechnol 2022; 38:22. [PMID: 34989926 DOI: 10.1007/s11274-021-03212-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/15/2021] [Indexed: 10/19/2022]
Abstract
As an important raw material for pharmaceutical, food and feed industry, highly efficient production of L-tryptophan by Escherichia coli has attracted a considerable attention. However, there are complicated and multiple layers of regulation networks in L-tryptophan biosynthetic pathway and thus have difficulty to rewrite the biosynthetic pathway for producing L-tryptophan with high efficiency in E. coli. This review summarizes the biosynthetic pathway of L-tryptophan and highlights the main regulatory mechanisms in E. coli. In addition, we discussed the latest metabolic engineering strategies achieved in E. coli to reconstruct the L-tryptophan biosynthetic pathway. Moreover, we also review a few strategies that can be used in E. coli to improve robustness and streamline of L-tryptophan high-producing strains. Lastly, we also propose the potential strategies to further increase L-tryptophan production by systematic metabolic engineering and synthetic biology techniques.
Collapse
Affiliation(s)
- Shuai Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi, 214122, People's Republic of China
| | - Jian-Zhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi, 214122, People's Republic of China.
| | - Wei-Guo Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi, 214122, People's Republic of China.
| |
Collapse
|
25
|
Advances in microbial production of feed amino acid. ADVANCES IN APPLIED MICROBIOLOGY 2022; 119:1-33. [DOI: 10.1016/bs.aambs.2022.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
26
|
Kawaguchi H, Hasunuma T, Ohnishi Y, Sazuka T, Kondo A, Ogino C. Enhanced production of γ-amino acid 3-amino-4-hydroxybenzoic acid by recombinant Corynebacterium glutamicum under oxygen limitation. Microb Cell Fact 2021; 20:228. [PMID: 34949178 PMCID: PMC8697445 DOI: 10.1186/s12934-021-01714-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/29/2021] [Indexed: 11/10/2022] Open
Abstract
Background Bio-based aromatic compounds are of great interest to the industry, as commercial production of aromatic compounds depends exclusively on the unsustainable use of fossil resources or extraction from plant resources. γ-amino acid 3-amino-4-hydroxybenzoic acid (3,4-AHBA) serves as a precursor for thermostable bioplastics. Results Under aerobic conditions, a recombinant Corynebacterium glutamicum strain KT01 expressing griH and griI genes derived from Streptomyces griseus produced 3,4-AHBA with large amounts of amino acids as by-products. The specific productivity of 3,4-AHBA increased with decreasing levels of dissolved oxygen (DO) and was eightfold higher under oxygen limitation (DO = 0 ppm) than under aerobic conditions (DO ≥ 2.6 ppm). Metabolic profiles during 3,4-AHBA production were compared at three different DO levels (0, 2.6, and 5.3 ppm) using the DO-stat method. Results of the metabolome analysis revealed metabolic shifts in both the central metabolic pathway and amino acid metabolism at a DO of < 33% saturated oxygen. Based on this metabolome analysis, metabolic pathways were rationally designed for oxygen limitation. An ldh deletion mutant, with the loss of lactate dehydrogenase, exhibited 3.7-fold higher specific productivity of 3,4-AHBA at DO = 0 ppm as compared to the parent strain KT01 and produced 5.6 g/L 3,4-AHBA in a glucose fed-batch culture. Conclusions Our results revealed changes in the metabolic state in response to DO concentration and provided insights into oxygen supply during fermentation and the rational design of metabolic pathways for improved production of related amino acids and their derivatives. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01714-z.
Collapse
Affiliation(s)
- Hideo Kawaguchi
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.,Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.,Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo, Tokyo, 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | - Takashi Sazuka
- Bioscience and Biotechnology Center, Nagoya University, Furo, Chikusa, Nagoya, 464-8601, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan. .,Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan. .,Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan. .,Biomass Engineering Research Division, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
| | - Chiaki Ogino
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.,Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| |
Collapse
|
27
|
Liu S, Hu W, Wang Z, Chen T. Rational Engineering of Escherichia coli for High-Level Production of Riboflavin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12241-12249. [PMID: 34623820 DOI: 10.1021/acs.jafc.1c04471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Riboflavin is widely used as a food additive. Here, multiple strategies were used to increase riboflavin production in Escherichia coli LS31T. First, purR deletion and co-overexpression of fbp, purF, prs, gmk, and ndk genes resulted in an increase of 18.6% in riboflavin titer (reaching 729.7 mg/L). Second, optimization of reduced nicotinamide adenine dinucleotide phosphate/nicotinamide adenine dinucleotide ratio and respiratory chain activity in LS31T increased the titer up to 1020.2 mg/L. Third, the expression level of the guaC gene in LS31T was downregulated by ribosome binding site replacement, and the riboflavin production was increased by 10.6% to 658.5 mg/L. Then, all the favorable modifications were integrated together, and the resulting strain LS72T produced 1339 mg/L of riboflavin. Moreover, the riboflavin titer of LS72T reached 21 g/L in fed-batch cultivation, with a yield of 110 mg riboflavin/g glucose. To our knowledge, both the riboflavin titer and yield obtained in fed-batch fermentation are the highest ones among all the rationally engineered strains.
Collapse
Affiliation(s)
- Shuang Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Wenya Hu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Zhiwen Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Tao Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| |
Collapse
|
28
|
Becker J, Wittmann C. Metabolic Engineering of
Corynebacterium glutamicum. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
29
|
Hoffmann SL, Kohlstedt M, Jungmann L, Hutter M, Poblete-Castro I, Becker J, Wittmann C. Cascaded valorization of brown seaweed to produce l-lysine and value-added products using Corynebacterium glutamicum streamlined by systems metabolic engineering. Metab Eng 2021; 67:293-307. [PMID: 34314893 DOI: 10.1016/j.ymben.2021.07.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 06/23/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022]
Abstract
Seaweeds emerge as promising third-generation renewable for sustainable bioproduction. In the present work, we valorized brown seaweed to produce l-lysine, the world's leading feed amino acid, using Corynebacterium glutamicum, which was streamlined by systems metabolic engineering. The mutant C. glutamicum SEA-1 served as a starting point for development because it produced small amounts of l-lysine from mannitol, a major seaweed sugar, because of the deletion of its arabitol repressor AtlR and its engineered l-lysine pathway. Starting from SEA-1, we systematically optimized the microbe to redirect excess NADH, formed on the sugar alcohol, towards NADPH, required for l-lysine synthesis. The mannitol dehydrogenase variant MtlD D75A, inspired by 3D protein homology modelling, partly generated NADPH during the oxidation of mannitol to fructose, leading to a 70% increased l-lysine yield in strain SEA-2C. Several rounds of strain engineering further increased NADPH supply and l-lysine production. The best strain, SEA-7, overexpressed the membrane-bound transhydrogenase pntAB together with codon-optimized gapN, encoding NADPH-dependent glyceraldehyde 3-phosphate dehydrogenase, and mak, encoding fructokinase. In a fed-batch process, SEA-7 produced 76 g L-1l-lysine from mannitol at a yield of 0.26 mol mol-1 and a maximum productivity of 2.1 g L-1 h-1. Finally, SEA-7 was integrated into seaweed valorization cascades. Aqua-cultured Laminaria digitata, a major seaweed for commercial alginate, was extracted and hydrolyzed enzymatically, followed by recovery and clean-up of pure alginate gum. The residual sugar-based mixture was converted to l-lysine at a yield of 0.27 C-mol C-mol-1 using SEA-7. Second, stems of the wild-harvested seaweed Durvillaea antarctica, obtained as waste during commercial processing of the blades for human consumption, were extracted using acid treatment. Fermentation of the hydrolysate using SEA-7 provided l-lysine at a yield of 0.40 C-mol C-mol-1. Our findings enable improvement of the efficiency of seaweed biorefineries using tailor-made C. glutamicum strains.
Collapse
Affiliation(s)
- Sarah Lisa Hoffmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Michael Kohlstedt
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Lukas Jungmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Michael Hutter
- Centre for Bioinformatics, Saarland University, Saarbrücken, Germany
| | | | - Judith Becker
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
30
|
Huang J, Chen J, Wang Y, Shi T, Ni X, Pu W, Liu J, Zhou Y, Cai N, Han S, Zheng P, Sun J. Development of a Hyperosmotic Stress Inducible Gene Expression System by Engineering the MtrA/MtrB-Dependent NCgl1418 Promoter in Corynebacterium glutamicum. Front Microbiol 2021; 12:718511. [PMID: 34367120 PMCID: PMC8334368 DOI: 10.3389/fmicb.2021.718511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Corynebacterium glutamicum is an important workhorse for industrial production of diversiform bioproducts. Precise regulation of gene expression is crucial for metabolic balance and enhancing production of target molecules. Auto-inducible promoters, which can be activated without expensive inducers, are ideal regulatory tools for industrial-scale application. However, few auto-inducible promoters have been identified and applied in C. glutamicum. Here, a hyperosmotic stress inducible gene expression system was developed and used for metabolic engineering of C. glutamicum. The promoter of NCgl1418 (P NCgl1418 ) that was activated by the two-component signal transduction system MtrA/MtrB was found to exhibit a high inducibility under hyperosmotic stress conditions. A synthetic promoter library was then constructed by randomizing the flanking and space regions of P NCgl1418 , and mutant promoters exhibiting high strength were isolated via fluorescence activated cell sorting (FACS)-based high-throughput screening. The hyperosmotic stress inducible gene expression system was applied to regulate the expression of lysE encoding a lysine exporter and repress four genes involved in lysine biosynthesis (gltA, pck, pgi, and hom) by CRISPR interference, which increased the lysine titer by 64.7% (from 17.0 to 28.0 g/L) in bioreactors. The hyperosmotic stress inducible gene expression system developed here is a simple and effective tool for gene auto-regulation in C. glutamicum and holds promise for metabolic engineering of C. glutamicum to produce valuable chemicals and fuels.
Collapse
Affiliation(s)
- Jingwen Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China.,Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jiuzhou Chen
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yu Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Tuo Shi
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xiaomeng Ni
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Wei Pu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jiao Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yingyu Zhou
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Ningyun Cai
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Shuangyan Han
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Ping Zheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jibin Sun
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China.,Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
31
|
Millard P, Sokol S, Kohlstedt M, Wittmann C, Létisse F, Lippens G, Portais JC. IsoSolve: An Integrative Framework to Improve Isotopic Coverage and Consolidate Isotopic Measurements by Mass Spectrometry and/or Nuclear Magnetic Resonance. Anal Chem 2021; 93:9428-9436. [PMID: 34197087 DOI: 10.1021/acs.analchem.1c01064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Stable-isotope labeling experiments are widely used to investigate the topology and functioning of metabolic networks. Label incorporation into metabolites can be quantified using a broad range of mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy methods, but in general, no single approach can completely cover isotopic space, even for small metabolites. The number of quantifiable isotopic species could be increased and the coverage of isotopic space improved by integrating measurements obtained by different methods; however, this approach has remained largely unexplored because no framework able to deal with partial, heterogeneous isotopic measurements has yet been developed. Here, we present a generic computational framework based on symbolic calculus that can integrate any isotopic data set by connecting measurements to the chemical structure of the molecules. As a test case, we apply this framework to isotopic analyses of amino acids, which are ubiquitous to life, central to many biological questions, and can be analyzed by a broad range of MS and NMR methods. We demonstrate how this integrative framework helps to (i) clarify and improve the coverage of isotopic space, (ii) evaluate the complementarity and redundancy of different techniques, (iii) consolidate isotopic data sets, (iv) design experiments, and (v) guide future analytical developments. This framework, which can be applied to any labeled element, isotopic tracer, metabolite, and analytical platform, has been implemented in IsoSolve (available at https://github.com/MetaSys-LISBP/IsoSolve and https://pypi.org/project/IsoSolve), an open-source software that can be readily integrated into data analysis pipelines.
Collapse
Affiliation(s)
- Pierre Millard
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse 31077, France.,MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse 31077, France
| | - Serguei Sokol
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse 31077, France.,MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse 31077, France
| | - Michael Kohlstedt
- Institute of Systems Biotechnology, Saarland University, Saarbrücken 66123, Germany
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken 66123, Germany
| | - Fabien Létisse
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse 31077, France.,Université Toulouse III - Paul Sabatier, Toulouse 31077, France
| | - Guy Lippens
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse 31077, France
| | - Jean-Charles Portais
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse 31077, France.,MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse 31077, France.,Université Toulouse III - Paul Sabatier, Toulouse 31077, France.,RESTORE, Université de Toulouse, INSERM U1031, CNRS 5070, Université Toulouse III - Paul Sabatier, EFS, Toulouse 31077, France
| |
Collapse
|
32
|
Krahn I, Bonder D, Torregrosa-Barragán L, Stoppel D, Krause JP, Rosenfeldt N, Meiswinkel TM, Seibold GM, Wendisch VF, Lindner SN. Evolving a New Efficient Mode of Fructose Utilization for Improved Bioproduction in Corynebacterium glutamicum. Front Bioeng Biotechnol 2021; 9:669093. [PMID: 34124022 PMCID: PMC8193941 DOI: 10.3389/fbioe.2021.669093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/14/2021] [Indexed: 11/13/2022] Open
Abstract
Fructose utilization in Corynebacterium glutamicum starts with its uptake and concomitant phosphorylation via the phosphotransferase system (PTS) to yield intracellular fructose 1-phosphate, which enters glycolysis upon ATP-dependent phosphorylation to fructose 1,6-bisphosphate by 1-phosphofructokinase. This is known to result in a significantly reduced oxidative pentose phosphate pathway (oxPPP) flux on fructose (∼10%) compared to glucose (∼60%). Consequently, the biosynthesis of NADPH demanding products, e.g., L-lysine, by C. glutamicum is largely decreased when fructose is the only carbon source. Previous works reported that fructose is partially utilized via the glucose-specific PTS presumably generating fructose 6-phosphate. This closer proximity to the entry point of the oxPPP might increase oxPPP flux and, consequently, NADPH availability. Here, we generated deletion strains lacking either the fructose-specific PTS or 1-phosphofructokinase activity. We used these strains in short-term evolution experiments on fructose minimal medium and isolated mutant strains, which regained the ability of fast growth on fructose as a sole carbon source. In these fructose mutants, the deletion of the glucose-specific PTS as well as the 6-phosphofructokinase gene, abolished growth, unequivocally showing fructose phosphorylation via glucose-specific PTS to fructose 6-phosphate. Gene sequencing revealed three independent amino acid substitutions in PtsG (M260V, M260T, and P318S). These three PtsG variants mediated faster fructose uptake and utilization compared to native PtsG. In-depth analysis of the effects of fructose utilization via these PtsG variants revealed significantly increased ODs, reduced side-product accumulation, and increased L-lysine production by 50%.
Collapse
Affiliation(s)
- Irene Krahn
- Chair of Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Daniel Bonder
- Systems and Synthetic Metabolism, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Lucía Torregrosa-Barragán
- Systems and Synthetic Metabolism, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Dominik Stoppel
- Chair of Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Jens P Krause
- Chair of Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany
| | | | - Tobias M Meiswinkel
- Chair of Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Gerd M Seibold
- Institute of Biochemistry, University of Cologne, Cologne, Germany.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Volker F Wendisch
- Chair of Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Steffen N Lindner
- Chair of Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany.,Systems and Synthetic Metabolism, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| |
Collapse
|
33
|
Göttl VL, Schmitt I, Braun K, Peters-Wendisch P, Wendisch VF, Henke NA. CRISPRi-Library-Guided Target Identification for Engineering Carotenoid Production by Corynebacterium glutamicum. Microorganisms 2021; 9:670. [PMID: 33805131 PMCID: PMC8064071 DOI: 10.3390/microorganisms9040670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 01/24/2023] Open
Abstract
Corynebacterium glutamicum is a prominent production host for various value-added compounds in white biotechnology. Gene repression by dCas9/clustered regularly interspaced short palindromic repeats (CRISPR) interference (CRISPRi) allows for the identification of target genes for metabolic engineering. In this study, a CRISPRi-based library for the repression of 74 genes of C. glutamicum was constructed. The chosen genes included genes encoding enzymes of glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle, regulatory genes, as well as genes of the methylerythritol phosphate and carotenoid biosynthesis pathways. As expected, CRISPRi-mediated repression of the carotenogenesis repressor gene crtR resulted in increased pigmentation and cellular content of the native carotenoid pigment decaprenoxanthin. CRISPRi screening identified 14 genes that affected decaprenoxanthin biosynthesis when repressed. Carotenoid biosynthesis was significantly decreased upon CRISPRi-mediated repression of 11 of these genes, while repression of 3 genes was beneficial for decaprenoxanthin production. Largely, but not in all cases, deletion of selected genes identified in the CRISPRi screen confirmed the pigmentation phenotypes obtained by CRISPRi. Notably, deletion of pgi as well as of gapA improved decaprenoxanthin levels 43-fold and 9-fold, respectively. The scope of the designed library to identify metabolic engineering targets, transfer of gene repression to stable gene deletion, and limitations of the approach were discussed.
Collapse
Affiliation(s)
| | | | | | | | - Volker F. Wendisch
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, 33615 Bielefeld, Germany; (V.L.G.); (I.S.); (K.B.); (P.P.-W.); (N.A.H.)
| | | |
Collapse
|
34
|
Shemyakina AO, Grechishnikova EG, Novikov AD, Asachenko AF, Kalinina TI, Lavrov KV, Yanenko AS. A Set of Active Promoters with Different Activity Profiles for Superexpressing Rhodococcus Strain. ACS Synth Biol 2021; 10:515-530. [PMID: 33605147 DOI: 10.1021/acssynbio.0c00508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Rhodococcus bacteria are a promising platform for biodegradation, biocatalysis, and biosynthesis, but the use of rhodococci is hampered by the insufficient number of both platform strains for expression and promoters that are functional and thoroughly studied in these strains. To expand the list of such strains and promoters, we studied the expression capability of the Rhodococcus rhodochrous M33 strain, and the functioning of a set of recombinant promoters in it. We showed that the strain supports superexpression of the target enzyme (nitrile hydratase) using alternative inexpensive feedings-acetate and urea-without growth factor supplementation, thus being a suitable expression platform. The promoter set included Ptuf (elongation factor Tu) and Psod (superoxide dismutase) from Corynebacterium glutamicum ATCC13032, Pcpi (isocitrate lyase) from Rhodococcus erythropolis PR4, and Pnh (nitrile hydratase) from R. rhodochrous M8. Activity levels, regulation possibilities, and growth-phase-dependent activity profiles of these promoters were studied in derivatives of the M33 strain. The activities of the promoters were significantly different (Pcpi < Psod ≪ Ptuf < Pnh), covering 103-fold range, and the most active Pnh and Ptuf produced up to a 30-50% portion of target protein in soluble intracellular proteins. On the basis of the mRNA quantification and amount of target protein, the production level of Pnh was positioned close to the theoretical upper limit of expression in a bacterial cell. A selection method for the laboratory evolution of such active promoters directly in Rhodococcus was also proposed. Concerning regulation, Ptuf could not be regulated (2-fold change), while others were tunable (6-fold for Psod, 79-fold for Pnh, and 44-fold for Pcpi). The promoters possessed four different activity profiles, including three with peak of activity at different growth phases and one with constant activity throughout the growth phases. Ptuf and Pcpi did not change their activity profile under different growth conditions, whereas the Psod and Pnh profiles changed depending on the growth media. The results allow flexible construction of Rhodococcus strains using the studied promoters, and demonstrate a valuable approach for complex characterization of promoters intended for biotechnological strain construction.
Collapse
Affiliation(s)
- Anna O. Shemyakina
- NRC Kurchatov Institute-Gosniigenetika, Kurchatov Genomic Center, 1st Dorojny pr. 1, Moscow, 117545, Russia
- NRC Kurchatov Institute, Akademika Kurchatova pl. 1, Moscow, 123182, Russia
| | - Elena G. Grechishnikova
- NRC Kurchatov Institute-Gosniigenetika, Kurchatov Genomic Center, 1st Dorojny pr. 1, Moscow, 117545, Russia
- NRC Kurchatov Institute, Akademika Kurchatova pl. 1, Moscow, 123182, Russia
| | - Andrey D. Novikov
- NRC Kurchatov Institute-Gosniigenetika, Kurchatov Genomic Center, 1st Dorojny pr. 1, Moscow, 117545, Russia
- NRC Kurchatov Institute, Akademika Kurchatova pl. 1, Moscow, 123182, Russia
| | - Andrey F. Asachenko
- A. V. Topchiev Institute of Petrochemical Synthesis of Russian Academy of Sciences, Leninsky prospect 29, Moscow, 119991, Russia
| | - Tatyana I. Kalinina
- NRC Kurchatov Institute-Gosniigenetika, Kurchatov Genomic Center, 1st Dorojny pr. 1, Moscow, 117545, Russia
- NRC Kurchatov Institute, Akademika Kurchatova pl. 1, Moscow, 123182, Russia
| | - Konstantin V. Lavrov
- NRC Kurchatov Institute-Gosniigenetika, Kurchatov Genomic Center, 1st Dorojny pr. 1, Moscow, 117545, Russia
- NRC Kurchatov Institute, Akademika Kurchatova pl. 1, Moscow, 123182, Russia
| | - Alexander S. Yanenko
- NRC Kurchatov Institute-Gosniigenetika, Kurchatov Genomic Center, 1st Dorojny pr. 1, Moscow, 117545, Russia
- NRC Kurchatov Institute, Akademika Kurchatova pl. 1, Moscow, 123182, Russia
| |
Collapse
|
35
|
Wang J, Gao C, Chen X, Liu L. Expanding the lysine industry: biotechnological production of l-lysine and its derivatives. ADVANCES IN APPLIED MICROBIOLOGY 2021; 115:1-33. [PMID: 34140131 DOI: 10.1016/bs.aambs.2021.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
l-lysine is an essential amino acid that contains various functional groups including α-amino, ω-amino, and α-carboxyl groups, exhibiting high reaction potential. The derivatization of these functional groups produces a series of value-added chemicals, such as cadaverine, glutarate, and d-lysine, that are widely applied in the chemical synthesis, cosmetics, food, and pharmaceutical industries. Here, we review recent advances in the biotechnological production of l-lysine and its derivatives and expatiate key technological strategies. Furthermore, we also discuss the existing challenges and potential strategies for more efficient production of these chemicals.
Collapse
Affiliation(s)
- Jiaping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China.
| |
Collapse
|
36
|
Tsuge Y, Matsuzawa H. Recent progress in production of amino acid-derived chemicals using Corynebacterium glutamicum. World J Microbiol Biotechnol 2021; 37:49. [PMID: 33569648 DOI: 10.1007/s11274-021-03007-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/17/2021] [Indexed: 01/07/2023]
Abstract
Green chemical production by microbial processes is critical for the development of a sustainable society in the twenty-first century. Among the important industrial microorganisms, the gram-positive bacterium Corynebacterium glutamicum has been utilized for amino acid fermentation, which is one of the largest microbial-based industries. To date, several amino acids, including L-glutamic acid, L-lysine, and L-threonine, have been produced by C. glutamicum. The capability to produce substantial amounts of amino acids has gained immense attention because the amino acids can be used as a precursor to produce other high-value-added chemicals. Recent developments in metabolic engineering and synthetic biology technologies have enabled the extension of metabolic pathways from amino acids. The present review provides an overview of the recent progress in the microbial production of amino acid-derived bio-based monomers such as 1,4-diaminobutane, 1,5-diaminopentane, glutaric acid, 5-aminolevulinic acid, L-pipecolic acid, 4-amino-1-butanol, and 5-aminolevulinic acid, as well as building blocks for healthcare products and pharmaceuticals such as ectoine, L-theanine, and gamma-aminobutyric acid by metabolically engineered C. glutamicum.
Collapse
Affiliation(s)
- Yota Tsuge
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan. .,Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan.
| | - Hiroki Matsuzawa
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
| |
Collapse
|
37
|
Murai K, Sasaki D, Kobayashi S, Yamaguchi A, Uchikura H, Shirai T, Sasaki K, Kondo A, Tsuge Y. Optimal Ratio of Carbon Flux between Glycolysis and the Pentose Phosphate Pathway for Amino Acid Accumulation in Corynebacterium glutamicum. ACS Synth Biol 2020; 9:1615-1622. [PMID: 32602337 DOI: 10.1021/acssynbio.0c00181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Glucose is metabolized through central metabolic pathways such as glycolysis and the pentose phosphate pathway (PPP) to synthesize downstream metabolites including amino acids. However, how the split ratio of carbon flux between glycolysis and PPP specifically affects the formation of downstream metabolites remains largely unclear. Here, we conducted a comprehensive metabolomic analysis to investigate the effect of the split ratio between glycolysis and the PPP on the intracellular concentration of amino acids and their derivatives in Corynebacterium glutamicum. The split ratio was varied by exchanging the promoter of a gene encoding glucose 6-phosphate isomerase (PGI). The ratio was correlated with the pgi transcription level and the enzyme activity. Concentrations of threonine and lysine-derivative 1,5-diaminopentane increased with an increase of the split ratio into the PPP. In contrast, concentrations of alanine, leucine, and valine were increased with an increase of the split ratio into glycolysis. These results could provide a new engineering target for improving the production of the amino acids and the derivatives.
Collapse
Affiliation(s)
- Katsuki Murai
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Daisuke Sasaki
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Shunsuke Kobayashi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Akira Yamaguchi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroto Uchikura
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Tomokazu Shirai
- Center for Sustainable Resource Science, RIKEN, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Kengo Sasaki
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan
- Center for Sustainable Resource Science, RIKEN, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yota Tsuge
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
38
|
Kobayashi S, Kawaguchi H, Shirai T, Ninomiya K, Takahashi K, Kondo A, Tsuge Y. Automatic Redirection of Carbon Flux between Glycolysis and Pentose Phosphate Pathway Using an Oxygen-Responsive Metabolic Switch in Corynebacterium glutamicum. ACS Synth Biol 2020; 9:814-826. [PMID: 32202411 DOI: 10.1021/acssynbio.9b00493] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Controlling the carbon flux into a desired pathway is important for improving product yield in metabolic engineering. After entering a cell, glucose is channeled into glycolysis and the pentose phosphate pathway (PPP), which decreases the yield of target products whose synthesis relies on NADPH as a cofactor. Here, we demonstrate redirection of carbon flux into PPP under aerobic conditions in Corynebacterium glutamicum, achieved by replacing the promoter of glucose 6-phosphate isomerase gene (pgi) with an anaerobic-specific promoter of the lactate dehydrogenase gene (ldhA). The promoter replacement increased the split ratio of carbon flux into PPP from 39 to 83% under aerobic conditions. The titer, yield, and production rate of 1,5-diaminopentane, whose synthesis requires NADPH as a cofactor, were increased by 4.6-, 4.4-, and 2.6-fold, respectively. This is the largest improvement in the production of 1,5-diaminopentane or its precursor, lysine, reported to date. After aerobic cell growth, pgi expression was automatically induced under anaerobic conditions, altering the carbon flux from PPP to glycolysis, to produce succinate in a single metabolically engineered strain. Such an automatic redirection of metabolic pathway using an oxygen-responsive switch enables two-stage fermentation for efficient production of two different compounds by a single strain, potentially reducing the production costs and time for practical applications.
Collapse
Affiliation(s)
- Shunsuke Kobayashi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Hideo Kawaguchi
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Tomokazu Shirai
- Center for Sustainable Resource Science, RIKEN, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Kazuaki Ninomiya
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Kenji Takahashi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan
- Center for Sustainable Resource Science, RIKEN, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yota Tsuge
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
39
|
Xu JZ, Ruan HZ, Yu HB, Liu LM, Zhang W. Metabolic engineering of carbohydrate metabolism systems in Corynebacterium glutamicum for improving the efficiency of L-lysine production from mixed sugar. Microb Cell Fact 2020; 19:39. [PMID: 32070345 PMCID: PMC7029506 DOI: 10.1186/s12934-020-1294-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/23/2020] [Indexed: 01/08/2023] Open
Abstract
The efficiency of industrial fermentation process mainly depends on carbon yield, final titer and productivity. To improve the efficiency of l-lysine production from mixed sugar, we engineered carbohydrate metabolism systems to enhance the effective use of sugar in this study. A functional metabolic pathway of sucrose and fructose was engineered through introduction of fructokinase from Clostridium acetobutylicum. l-lysine production was further increased through replacement of phosphoenolpyruvate-dependent glucose and fructose uptake system (PTSGlc and PTSFru) by inositol permeases (IolT1 and IolT2) and ATP-dependent glucokinase (ATP-GlK). However, the shortage of intracellular ATP has a significantly negative impact on sugar consumption rate, cell growth and l-lysine production. To overcome this defect, the recombinant strain was modified to co-express bifunctional ADP-dependent glucokinase (ADP-GlK/PFK) and NADH dehydrogenase (NDH-2) as well as to inactivate SigmaH factor (SigH), thus reducing the consumption of ATP and increasing ATP regeneration. Combination of these genetic modifications resulted in an engineered C. glutamicum strain K-8 capable of producing 221.3 ± 17.6 g/L l-lysine with productivity of 5.53 g/L/h and carbon yield of 0.71 g/g glucose in fed-batch fermentation. As far as we know, this is the best efficiency of l-lysine production from mixed sugar. This is also the first report for improving the efficiency of l-lysine production by systematic modification of carbohydrate metabolism systems.
Collapse
Affiliation(s)
- Jian-Zhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi, 214122, China.
| | - Hao-Zhe Ruan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi, 214122, China
| | - Hai-Bo Yu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi, 214122, China
| | - Li-Ming Liu
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi, 214122, China
| | - Weiguo Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi, 214122, China
| |
Collapse
|
40
|
Shimizu K, Matsuoka Y. Redox rebalance against genetic perturbations and modulation of central carbon metabolism by the oxidative stress regulation. Biotechnol Adv 2019; 37:107441. [PMID: 31472206 DOI: 10.1016/j.biotechadv.2019.107441] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/04/2019] [Accepted: 08/23/2019] [Indexed: 12/11/2022]
Abstract
The micro-aerophilic organisms and aerobes as well as yeast and higher organisms have evolved to gain energy through respiration (via oxidative phosphorylation), thereby enabling them to grow much faster than anaerobes. However, during respiration, reactive oxygen species (ROSs) are inherently (inevitably) generated, and threaten the cell's survival. Therefore, living organisms (or cells) must furnish the potent defense systems to keep such ROSs at harmless level, where the cofactor balance plays crucial roles. Namely, NADH is the source of energy generation (catabolism) in the respiratory chain reactions, through which ROSs are generated, while NADPH plays important roles not only for the cell synthesis (anabolism) but also for detoxifying ROSs. Therefore, the cell must rebalance the redox ratio by modulating the fluxes of the central carbon metabolism (CCM) by regulating the multi-level regulation machinery upon genetic perturbations and the change in the growth conditions. Here, we discuss about how aerobes accomplish such cofactor homeostasis against redox perturbations. In particular, we consider how single-gene mutants (including pgi, pfk, zwf, gnd and pyk mutants) modulate their metabolisms in relation to cofactor rebalance (and also by adaptive laboratory evolution). We also discuss about how the overproduction of NADPH (by the pathway gene mutation) can be utilized for the efficient production of useful value-added chemicals such as medicinal compounds, polyhydroxyalkanoates, and amino acids, all of which require NADPH in their synthetic pathways. We then discuss about the metabolic responses against oxidative stress, where αketoacids play important roles not only for the coordination between catabolism and anabolism, but also for detoxifying ROSs by non-enzymatic reactions, as well as for reducing the production of ROSs by repressing the activities of the TCA cycle and respiration (via carbon catabolite repression). Thus, we discuss about the mechanisms (basic strategies) that modulate the metabolism from respiration to respiro-fermentative metabolism causing overflow, based on the role of Pyk activity, affecting the NADPH production at the oxidative pentose phosphate (PP) pathway, and the roles of αketoacids for the change in the source of energy generation from the oxidative phosphorylation to the substrate level phosphorylation.
Collapse
Affiliation(s)
- Kazuyuki Shimizu
- Kyushu institute of Technology, Iizuka, Fukuoka 820-8502, Japan; Institute of Advanced Biosciences, Keio university, Tsuruoka, Yamagata 997-0017, Japan.
| | - Yu Matsuoka
- Kyushu institute of Technology, Iizuka, Fukuoka 820-8502, Japan.
| |
Collapse
|
41
|
GC-MS-based 13C metabolic flux analysis resolves the parallel and cyclic glucose metabolism of Pseudomonas putida KT2440 and Pseudomonas aeruginosa PAO1. Metab Eng 2019; 54:35-53. [DOI: 10.1016/j.ymben.2019.01.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/16/2019] [Accepted: 01/16/2019] [Indexed: 01/05/2023]
|
42
|
Zhou P, Khushk I, Gao Q, Bao J. Tolerance and transcriptional analysis of Corynebacterium glutamicum on biotransformation of toxic furaldehyde and benzaldehyde inhibitory compounds. J Ind Microbiol Biotechnol 2019; 46:951-963. [PMID: 30972584 DOI: 10.1007/s10295-019-02171-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 04/01/2019] [Indexed: 11/26/2022]
Abstract
Furaldehydes and benzaldehydes are among the most toxic inhibitors from lignocellulose pretreatment on microbial growth and metabolism. The bioconversion of aldehyde inhibitors into less toxic alcohols or acids (biotransformation) is the prerequisite condition for efficient biorefinery fermentations. This study found that Corynebacterium glutamicum S9114 demonstrated excellent tolerance and biotransformation capacity to five typical aldehyde inhibitors including two furaldehydes: 2-furaldehyde (furfural), 5-(hydroxymethyl)-2-furaldehyde, and three benzaldehydes: 4-hydroxybenzaldehyde, 4-hydroxy-3-methoxybenzaldehyde (vanillin), and 4-hydroxy-3,5-dimethoxybenzaldehyde (syringaldehyde). Transcription levels of 93 genes hypothesized to be responsible for five aldehydes biotransformation were examined by qRT-PCR. Multiple genes showed significantly up-regulated expression against furaldehydes or benzaldehydes. Overexpression of CGS9114_RS01115 in C. glutamicum resulted in the increased conversion of all five aldehyde inhibitors. The significant oxidoreductase genes responsible for each or multiple inhibitors biotransformation identified in this study will serve as a component of key gene device library for robust biorefinery fermentation strains development in the future biorefinery applications.
Collapse
Affiliation(s)
- Pingping Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Imrana Khushk
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Qiuqiang Gao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jie Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
43
|
Ni M, Wu Q, Wang GS, Liu QQ, Yu MX, Tang J. Analysis of metabolic changes in Trichoderma asperellum TJ01 at different fermentation time-points by LC-QQQ-MS. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2019; 54:20-26. [PMID: 30896331 DOI: 10.1080/03601234.2018.1507227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Trichoderma spp. are among the most widely recognized biocontrol fungi used to inhibit pathogens and promote plant growth. These functions are related to primary and secondary metabolites. This study investigated the different metabolites in Trichoderma asperellum TJ01 cultured for 24 and 72 h using liquid chromatography with triple-quadrupole mass spectrometry. Compared to the 24 h culture of T. asperellum TJ01, the 72 h culture with amino acid metabolism tended to decrease while sugar and lipid metabolisms tended to increase. Furthermore, the 72 h culture had a higher proportion of upregulated flavonoids, in combination with a higher proportion of downregulated alkaloids, and equal proportions of upregulated and downregulated polyphenols and hormones. This study also identified a few valuable medicinal substances such as trigonelline and 5-hydroxytryptophan in T. asperellum TJ01 fermentation cultures.
Collapse
Affiliation(s)
- Mi Ni
- a Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation Anhui Province Key Laboratory of Environmental Hormone and Reproduction , Fuyang Normal University , Fuyang , Anhui , China
| | - Qiong Wu
- a Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation Anhui Province Key Laboratory of Environmental Hormone and Reproduction , Fuyang Normal University , Fuyang , Anhui , China
| | - Gui S Wang
- a Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation Anhui Province Key Laboratory of Environmental Hormone and Reproduction , Fuyang Normal University , Fuyang , Anhui , China
| | - Qian Q Liu
- a Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation Anhui Province Key Laboratory of Environmental Hormone and Reproduction , Fuyang Normal University , Fuyang , Anhui , China
| | - Mei X Yu
- a Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation Anhui Province Key Laboratory of Environmental Hormone and Reproduction , Fuyang Normal University , Fuyang , Anhui , China
| | - Jun Tang
- a Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation Anhui Province Key Laboratory of Environmental Hormone and Reproduction , Fuyang Normal University , Fuyang , Anhui , China
| |
Collapse
|
44
|
Ma Y, Cui Y, Du L, Liu X, Xie X, Chen N. Identification and application of a growth-regulated promoter for improving L-valine production in Corynebacterium glutamicum. Microb Cell Fact 2018; 17:185. [PMID: 30474553 PMCID: PMC6260661 DOI: 10.1186/s12934-018-1031-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/16/2018] [Indexed: 12/02/2022] Open
Abstract
Background Promoters are commonly used to regulate the expression of specific target genes or operons. Although a series of promoters have been developed in Corynebacterium glutamicum, more precise and unique expression patterns are needed that the current selection of promoters cannot produce. RNA-Seq technology is a powerful tool for helping us to screen out promoters with expected transcriptional strengths. Results The promoter PCP_2836 of an aldehyde dehydrogenase coding gene from Corynebacterium glutamicum CP was identified via RNA-seq and RT-PCR as a growth-regulated promoter. Comparing with the strong constitutive promoter Ptuf, the transcriptional strength of PCP_2836 showed a significant decrease that from about 75 to 8% in the stationary phase. By replacing the native promoters of the aceE and gltA genes with PCP_2836 in the C. glutamicum ATCC 13032-derived l-valine-producing strain AN02, the relative transcriptional levels of the aceE and gltA genes decreased from 1.2 and 1.1 to 0.35 and 0.3, and the activity of their translation products decreased to 43% and 35%, respectively. After 28 h flask fermentation, the final cell density of the obtained strains, GRaceE and GRgltA, exhibited a 7–10% decrease. However, l-valine production increased by 23.9% and 27.3%, and the yield of substrate to product increased 43.8% and 62.5%, respectively. In addition, in the stationary phase, the intracellular citrate levels in GRaceE and GRgltA decreased to 27.0% and 33.6% of AN02, and their intracellular oxaloacetate levels increased to 2.7 and 3.0 times that of AN02, respectively. Conclusions The PCP_2836 promoter displayed a significant difference on its transcriptional strength in different cell growth phases. With using PCP_2836 to replace the native promoters of aceE and gltA genes, both the transcriptional levels of the aceE and gltA genes and the activity of their translation products demonstrated a significant decrease in the stationary phase. Thus, the availability of pyruvate was significantly increased for the synthesis of l-valine without any apparent irreversible negative impacts on cell growth. Use of this promoter can enhance the selectivity and control of gene expression and could serve as a useful research tool for metabolic engineering. ![]() Electronic supplementary material The online version of this article (10.1186/s12934-018-1031-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuechao Ma
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China.,College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13 Main Street, Tianjin Economic and Technological Development Area, Tianjin, 300457, People's Republic of China
| | - Yi Cui
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China.,College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13 Main Street, Tianjin Economic and Technological Development Area, Tianjin, 300457, People's Republic of China
| | - Lihong Du
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China.,College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13 Main Street, Tianjin Economic and Technological Development Area, Tianjin, 300457, People's Republic of China
| | - Xiaoqian Liu
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China.,College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13 Main Street, Tianjin Economic and Technological Development Area, Tianjin, 300457, People's Republic of China
| | - Xixian Xie
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China. .,College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13 Main Street, Tianjin Economic and Technological Development Area, Tianjin, 300457, People's Republic of China.
| | - Ning Chen
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China. .,College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13 Main Street, Tianjin Economic and Technological Development Area, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
45
|
Metabolically engineered Corynebacterium glutamicum for bio-based production of chemicals, fuels, materials, and healthcare products. Metab Eng 2018; 50:122-141. [DOI: 10.1016/j.ymben.2018.07.008] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 01/15/2023]
|
46
|
Lee MJ, Kim P. Recombinant Protein Expression System in Corynebacterium glutamicum and Its Application. Front Microbiol 2018; 9:2523. [PMID: 30416490 PMCID: PMC6213972 DOI: 10.3389/fmicb.2018.02523] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/03/2018] [Indexed: 01/01/2023] Open
Abstract
Corynebacterium glutamicum, a soil-derived gram-positive actinobacterium, has been widely used for the production of biochemical molecules such as amino acids (i.e., L-glutamate and L-lysine), nucleic acids, alcohols, and organic acids. The metabolism of the bacterium has been engineered to increase the production of the target biochemical molecule, which requires a cytosolic enzyme expression. As recent demand for new proteinaceous biologics (such as antibodies, growth factors, and hormones) increase, C. glutamicum is attracting industrial interest as a recombinant protein expression host for therapeutic protein production due to the advantages such as low protease activity without endotoxin activity. In this review, we have summarized the recent studies on the heterologous expression of the recombinant protein in C. glutamicum for metabolic engineering, expansion of substrate availability, and recombinant protein secretion. We have also outlined the advances in genetic components such as promoters, surface anchoring systems, and secretory signal sequences in C. glutamicum for effective recombinant protein expression.
Collapse
Affiliation(s)
| | - Pil Kim
- Department of Biotechnology, The Catholirc University of Korea, Bucheon, South Korea
| |
Collapse
|
47
|
Li X, Wu B, Zhou K, Jiang C, Shen P. Deletion of gene gnd encoding 6-phosphogluconate dehydrogenase promotes l-serine biosynthesis in a genetically engineered strain of Methylobacterium sp. MB200. Biotechnol Lett 2018; 41:69-77. [DOI: 10.1007/s10529-018-2615-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 10/15/2018] [Indexed: 11/28/2022]
|
48
|
Becker J, Kuhl M, Kohlstedt M, Starck S, Wittmann C. Metabolic engineering of Corynebacterium glutamicum for the production of cis, cis-muconic acid from lignin. Microb Cell Fact 2018; 17:115. [PMID: 30029656 PMCID: PMC6054733 DOI: 10.1186/s12934-018-0963-2] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/13/2018] [Indexed: 11/25/2022] Open
Abstract
Background Cis, cis-muconic acid (MA) is a dicarboxylic acid of recognized industrial value. It provides direct access to adipic acid and terephthalic acid, prominent monomers of commercial plastics. Results In the present work, we engineered the soil bacterium Corynebacterium glutamicum into a stable genome-based cell factory for high-level production of bio-based MA from aromatics and lignin hydrolysates. The elimination of muconate cycloisomerase (catB) in the catechol branch of the β-ketoadipate pathway provided a mutant, which accumulated MA at 100% molar yield from catechol, phenol, and benzoic acid, using glucose as additional growth substrate. The production of MA was optimized by constitutive overexpression of catA, which increased the activity of the encoded catechol 1,2-dioxygenase, forming MA from catechol, tenfold. Intracellular levels of catechol were more than 30-fold lower than extracellular levels, minimizing toxicity, but still saturating the high affinity CatA enzyme. In a fed-batch process, the created strain C. glutamicum MA-2 accumulated 85 g L−1 MA from catechol in 60 h and achieved a maximum volumetric productivity of 2.4 g L−1 h−1. The strain was furthermore used to demonstrate the production of MA from lignin in a cascade process. Following hydrothermal depolymerization of softwood lignin into small aromatics, the MA-2 strain accumulated 1.8 g L−1 MA from the obtained hydrolysate. Conclusions Our findings open the door to valorize lignin, the second most abundant polymer on earth, by metabolically engineered C. glutamicum for industrial production of MA and potentially other chemicals. Electronic supplementary material The online version of this article (10.1186/s12934-018-0963-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Judith Becker
- Institute of Systems Biotechnology, Saarland University, Campus A1.5, Saarbrücken, Germany
| | - Martin Kuhl
- Institute of Systems Biotechnology, Saarland University, Campus A1.5, Saarbrücken, Germany
| | - Michael Kohlstedt
- Institute of Systems Biotechnology, Saarland University, Campus A1.5, Saarbrücken, Germany
| | - Sören Starck
- Institute of Systems Biotechnology, Saarland University, Campus A1.5, Saarbrücken, Germany
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Campus A1.5, Saarbrücken, Germany.
| |
Collapse
|
49
|
Lysine production from the sugar alcohol mannitol: Design of the cell factory Corynebacterium glutamicum SEA-3 through integrated analysis and engineering of metabolic pathway fluxes. Metab Eng 2018; 47:475-487. [DOI: 10.1016/j.ymben.2018.04.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/09/2018] [Accepted: 04/24/2018] [Indexed: 11/30/2022]
|
50
|
Kohlstedt M, Starck S, Barton N, Stolzenberger J, Selzer M, Mehlmann K, Schneider R, Pleissner D, Rinkel J, Dickschat JS, Venus J, B.J.H. van Duuren J, Wittmann C. From lignin to nylon: Cascaded chemical and biochemical conversion using metabolically engineered Pseudomonas putida. Metab Eng 2018; 47:279-293. [DOI: 10.1016/j.ymben.2018.03.003] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/02/2018] [Accepted: 03/04/2018] [Indexed: 12/31/2022]
|