1
|
Zhang N, Zhu X, Tao X, Li J, Tang Q, Liu X, Luo LM, Zhang P, Zhang LQ, He YX, Ge H. Interspecies signaling modulates the biosynthesis of antimicrobial secondary metabolites related to biological control activities of Pseudomonas fluorescens 2P24. Microbiol Spectr 2025; 13:e0188624. [PMID: 39898669 PMCID: PMC11878095 DOI: 10.1128/spectrum.01886-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/18/2024] [Indexed: 02/04/2025] Open
Abstract
Signaling between rhizosphere microorganisms is crucial in bacteria interaction and communication, shaping the rhizomicrobiome. Plant growth-promoting bacterium Pseudomonas produces a spectrum of important antibiotics to inhibit plant pathogens, albeit with an associated metabolic burden. Antibiotics could function as intra- and interspecies signals at subinhibitory concentrations to coordinate gene expression and microbial behaviors. In this work, we characterized pyoluteorin as an interspecies signal that modulates the biosynthesis of 2,4-diacetylphloroglucinol (2,4-DAPG), a broad-spectrum biocontrol agent, in non-pyoluteorin-producing Pseudomonas fluorescens 2P24. We demonstrated that the key transcriptional repressor PhlF from the 2,4-DAPG biosynthetic gene cluster spontaneously senses pyoluteorin, enhancing repression of the phlA promoter activity and inhibiting 2,4-DAPG synthesis in P. fluorescens 2P24. Pyoluteorin also binds to another transcriptional repressor, PhlH, from the 2,4-DAPG biosynthetic gene cluster, subsequently releasing the transcription of phlG, which facilitates the hydrolysis of 2,4-DAPG. Both PhlF and PhlH are simultaneously involved in sensing exogenous pyoluteorin to regulate the 2,4-DAPG biosynthetic operon, playing a crucial role in controlling antibiotic metabolites in response to environmental changes. Further phylogenetic and structural analyses demonstrated that PhlH and PhlF are widely distributed across Pseudomonas spp. with conserved ligand-binding domains. The findings shed new light on the regulatory mechanism of 2,4-DAPG biosynthesis underlying interspecies signaling by pyoluteorin and provide invaluable clues for the rational design of co-inhabiting Pseudomonas spp. as biocontrol agents. IMPORTANCE Rhizosphere microorganisms release vital signals that shape microbial communities, with antibiotics at low concentrations acting as intra- and interspecies signals. However, the mechanisms of these signals in coordinating gene expression are unclear. In non-pyoluteorin-producing Pseudomonas fluorescens 2P24, pyoluteorin was identified as an interspecies signal that regulates the phl biosynthesis gene cluster for 2,4-DAPG production. TetR family repressors PhlH and PhlF were found to positively regulate 2,4-DAPG hydrolysis and negatively regulate its synthesis in response to pyoluteorin. Structural modeling and docking analyses revealed the interactions between pyoluteorin and both PhlH and PhlF, modulating gene expression. Phylogenetic analyses showed a wide distribution of PhlH and PhlF across Pseudomonas spp. with conserved ligand-binding domains. These findings deepen our understanding of interspecies signaling mechanisms and highlight the potential for designing co-inhabiting Pseudomonas spp. as effective biocontrol agents.
Collapse
Affiliation(s)
- Nannan Zhang
- School of Life Sciences, Anhui University, Hefei, China
| | - Xianfeng Zhu
- Institute of Health Sciences and Technology, Anhui University, Hefei, China
| | - Xuanying Tao
- School of Life Sciences, Anhui University, Hefei, China
| | - Jie Li
- Institute of Health Sciences and Technology, Anhui University, Hefei, China
| | - Qi Tang
- Institute of Health Sciences and Technology, Anhui University, Hefei, China
| | - Xiaochun Liu
- Institute of Health Sciences and Technology, Anhui University, Hefei, China
| | - Li-Ming Luo
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- School of Veterinary Medicine and Biosecurity, Lanzhou University, Lanzhou, China
| | | | - Li-Qun Zhang
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Yong-Xing He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- School of Veterinary Medicine and Biosecurity, Lanzhou University, Lanzhou, China
| | - Honghua Ge
- School of Life Sciences, Anhui University, Hefei, China
- Institute of Health Sciences and Technology, Anhui University, Hefei, China
| |
Collapse
|
2
|
Baukova A, Bogun A, Sushkova S, Minkina T, Mandzhieva S, Alliluev I, Jatav HS, Kalinitchenko V, Rajput VD, Delegan Y. New Insights into Pseudomonas spp.-Produced Antibiotics: Genetic Regulation of Biosynthesis and Implementation in Biotechnology. Antibiotics (Basel) 2024; 13:597. [PMID: 39061279 PMCID: PMC11273644 DOI: 10.3390/antibiotics13070597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Pseudomonas bacteria are renowned for their remarkable capacity to synthesize antibiotics, namely mupirocin, gluconic acid, pyrrolnitrin, and 2,4-diacetylphloroglucinol (DAPG). While these substances are extensively employed in agricultural biotechnology to safeguard plants against harmful bacteria and fungi, their potential for human medicine and healthcare remains highly promising for common science. However, the challenge of obtaining stable producers that yield higher quantities of these antibiotics continues to be a pertinent concern in modern biotechnology. Although the interest in antibiotics of Pseudomonas bacteria has persisted over the past century, many uncertainties still surround the regulation of the biosynthetic pathways of these compounds. Thus, the present review comprehensively studies the genetic organization and regulation of the biosynthesis of these antibiotics and provides a comprehensive summary of the genetic organization of antibiotic biosynthesis pathways in pseudomonas strains, appealing to both molecular biologists and biotechnologists. In addition, attention is also paid to the application of antibiotics in plant protection.
Collapse
Affiliation(s)
- Alexandra Baukova
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (A.B.); (A.B.)
- Pushchino Branch of Federal State Budgetary Educational Institution of Higher Education “Russian Biotechnology University (ROSBIOTECH)”, 142290 Pushchino, Moscow Region, Russia
| | - Alexander Bogun
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (A.B.); (A.B.)
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology behalf D.I. Ivanovskyi, Southern Federal University, 344006 Rostov-on-Don, Russia; (S.S.); (T.M.); (S.M.); (I.A.); (V.D.R.)
| | - Tatiana Minkina
- Academy of Biology and Biotechnology behalf D.I. Ivanovskyi, Southern Federal University, 344006 Rostov-on-Don, Russia; (S.S.); (T.M.); (S.M.); (I.A.); (V.D.R.)
| | - Saglara Mandzhieva
- Academy of Biology and Biotechnology behalf D.I. Ivanovskyi, Southern Federal University, 344006 Rostov-on-Don, Russia; (S.S.); (T.M.); (S.M.); (I.A.); (V.D.R.)
| | - Ilya Alliluev
- Academy of Biology and Biotechnology behalf D.I. Ivanovskyi, Southern Federal University, 344006 Rostov-on-Don, Russia; (S.S.); (T.M.); (S.M.); (I.A.); (V.D.R.)
| | - Hanuman Singh Jatav
- Soil Science & Agricultural Chemistry, S.K.N. Agriculture University-Jobner, Jaipur 303329, Rajasthan, India;
| | - Valery Kalinitchenko
- Institute of Fertility of Soils of South Russia, 346493 Persianovka, Rostov Region, Russia;
- All-Russian Research Institute for Phytopathology of the Russian Academy of Sciences, Institute St., 5, 143050 Big Vyazyomy, Moscow Region, Russia
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology behalf D.I. Ivanovskyi, Southern Federal University, 344006 Rostov-on-Don, Russia; (S.S.); (T.M.); (S.M.); (I.A.); (V.D.R.)
| | - Yanina Delegan
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (A.B.); (A.B.)
- Academy of Biology and Biotechnology behalf D.I. Ivanovskyi, Southern Federal University, 344006 Rostov-on-Don, Russia; (S.S.); (T.M.); (S.M.); (I.A.); (V.D.R.)
| |
Collapse
|
3
|
Luo LM, Xu H, Zhang N, Ge H, Xiang Y, Yang H, He YX. Pyoluteorin regulates the biosynthesis of 2,4-DAPG through the TetR family transcription factor PhlH in Pseudomonas protegens Pf-5. Appl Environ Microbiol 2024; 90:e0174323. [PMID: 38470180 PMCID: PMC11022555 DOI: 10.1128/aem.01743-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/20/2024] [Indexed: 03/13/2024] Open
Abstract
Soil and rhizosphere bacteria act as a rich source of secondary metabolites, effectively fighting against a diverse array of pathogens. Certain Pseudomonas species harbor biosynthetic gene clusters for producing both pyoluteorin and 2,4-diacetylphloroglucinol (2,4-DAPG), which are polyketides that exhibit highly similar antimicrobial spectrum against bacteria and fungi or oomycete. A complex cross talk exists between pyoluteorin and 2,4-DAPG biosynthesis, and production of 2,4-DAPG was strongly repressed by pyoluteorin, yet the underlying mechanism is still elusive. In this study, we find that the TetR family transcription factor PhlH is involved in the cross talk between pyoluteorin and 2,4-DAPG biosynthesis. PhlH binds to a palindromic sequence within the promoter of phlG (PphlG), which encodes a C-C bond hydrolase responsible for degrading 2,4-DAPG. As a signaling molecule, pyoluteorin disrupts the PhlH-PphlG complex by binding to PhlH, leading to decreased levels of 2,4-DAPG. Proteomics data suggest that pyoluteorin regulates multiple physiological processes including fatty acid biosynthesis and transportation of taurine, siderophore, and amino acids. Our work not only reveals a novel mechanism of cross talk between pyoluteorin and 2,4-DAPG biosynthesis, but also highlights pyoluteorin's role as a messenger in the complex communication network of Pseudomonas.IMPORTANCEAntibiosis serves as a crucial defense mechanism for microbes against invasive bacteria and resource competition. These bacteria typically orchestrate the production of multiple antibiotics in a coordinated fashion, wherein the synthesis of one antibiotic inhibits the generation of another. This strategic coordination allows the bacterium to focus its resources on producing the most advantageous antibiotic under specific circumstances. However, the underlying mechanisms of distinct antibiotic production in bacterial cells remain largely elusive. In this study, we reveal that the TetR family transcription factor PhlH detects the secondary metabolite pyoluteorin and mediates the cross talk between pyoluteorin and 2,4-DAPG biosynthesis in the biocontrol strain Pseudomonas protegens Pf-5. These findings hold promise for future research, potentially informing the manipulation of these systems to enhance the effectiveness of biocontrol agents.
Collapse
Affiliation(s)
- Li-Ming Luo
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Hang Xu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Nannan Zhang
- School of Life Sciences, Anhui University, Hefei, China
| | - Honghua Ge
- School of Life Sciences, Anhui University, Hefei, China
| | - Yun Xiang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Hao Yang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou, China
| | - Yong-Xing He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- School of Veterinary Medicine and Biosecurity, Lanzhou University, Lanzhou, China
| |
Collapse
|
4
|
Huang Z, Liang X, Wang Y, Mo M, Qiu Y, Liu B. Ginger blotches on Agaricus bisporus due to monoacetylphloroglucinol production by the pathogen Pseudomonas 'gingeri'. PEST MANAGEMENT SCIENCE 2023; 79:5197-5207. [PMID: 37591799 DOI: 10.1002/ps.7725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/20/2023] [Accepted: 08/18/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND Agaricus bisporus is the most widely cultivated and consumed mushroom worldwide. Pseudomonas 'gingeri' is the only pathogenic causative agent of ginger blotch in A. bisporus. Current research on mushroom pathogenic biotoxins is limited to P. tolaasii, which causes brown blotch, while understanding of P. 'gingeri' is lacking, therefore identifying the toxins produced by P. 'gingeri' and evaluating their toxicity on A. bisporus is essential for understanding its pathogenic mechanisms. RESULTS A pathogenic bacterium isolated from fruiting bodies of A. bisporus with ginger blotch was identified as P. 'gingeri', and its main toxin identified as 2', 4', 6'-trihydroxyacetophenone monohydrate, also known as monoacetylphloroglucinol (MAPG). Its first known extraction from a mushroom pathogen is reported here. MAPG at 250 μg/mL significantly inhibited the host's mycelial growth, increased branching, caused the structure to become dense and resulted in folds appearing on the surface. An MAPG concentration of 750 μg/mL MAPG led to mycelial death. P. 'gingeri' had high MAPG production in medium containing 0.1 mol/L of either glucose or mannitol (4.30 and 1.85 μg/mL, respectively), and mycelia were inhibited by 69.6% and 41.1%, respectively. The MAPG content was significantly lower in other carbon source media. CONCLUSION This work provides a detailed description of the structure and virulence of the P. 'gingeri' biotoxin, which has implications for understanding its pathogenic mechanism and for exploring precise control strategies for A. bisporus ginger blotch disease, such as the development of MAPG inhibitory factors. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zaixing Huang
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Nanning, China
| | - Xishen Liang
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Nanning, China
| | - Yifan Wang
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Nanning, China
| | - Minqi Mo
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Nanning, China
| | - Ying Qiu
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Nanning, China
| | - Bin Liu
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Nanning, China
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, China
| |
Collapse
|
5
|
Yu X, Mao C, Wang W, Kulshrestha S, Zhang P, Usman M, Zong S, Hilal MG, Fang Y, Han H, Li X. Reduction of metronidazole in municipal wastewater and protection of activated sludge system using a novel immobilized Aspergillus tabacinus LZ-M. BIORESOURCE TECHNOLOGY 2023; 369:128509. [PMID: 36538960 DOI: 10.1016/j.biortech.2022.128509] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Metronidazole (MNZ) accumulation inhibits municipal wastewater treatment bio-systems, and an effective solution to augment anaerobic activated sludge (AAS) is required. This research discovered that Aspergillus tabacinus LZ-M could degrade 77.39% of MNZ at 5 mg/L. MNZ was metabolized into urea, and the enzymes involved in its degradation were aminotransferase, methyltransferase, monooxygenase, and CN cleavage hydrolase. The strain was immobilized in polyurethane foam and used in AAS for the treatment of MNZ-containing municipal wastewater. The results showed that, using immobilized LZ-M, MNZ was completely removed, and the degradation efficiency of wastewater's chemical oxygen demand (COD) was increased from 11.7% to 83.31%. The extracellular polymer and ROS levels indicated that MNZ's toxicity on AAS was reduced. Furthermore, bioaugmentation stabilized its microbial community, and decreased MNZ resistance genes. These observations confirm that the immobilized fungi are effective in protecting AAS against antibiotic contamination in the treatment process of municipal wastewater.
Collapse
Affiliation(s)
- Xuan Yu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, Gansu, China
| | - Chunlan Mao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, Gansu, China
| | - Wenxue Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, Gansu, China
| | - Saurabh Kulshrestha
- School of Biotechnology Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan 173212, Himachal Pradesh, India
| | - Peng Zhang
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou 730020, Gansu, China
| | - Muhammad Usman
- State Key Laboratory of Grassland Agroecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, Gansu, China
| | - Simin Zong
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, Gansu, China
| | - Mian Gul Hilal
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, Gansu, China
| | - Yitian Fang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huawen Han
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, Gansu, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, Gansu, China.
| |
Collapse
|
6
|
Wani KI, Naeem M, Aftab T. Chromium in plant-soil nexus: Speciation, uptake, transport and sustainable remediation techniques. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120350. [PMID: 36209933 DOI: 10.1016/j.envpol.2022.120350] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/22/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Heavy metal (HM) pollution has become a serious global problem due to the non-biodegradable nature of the HMs and their persistence in the environment. Agricultural soil is a non-renewable resource that requires careful management so that it can fulfill the increasing demand for agricultural food production. However, different anthropogenic activities have resulted in a large-scale accumulation of HMs in soil which is detrimental to soil and plant health. Due to their ubiquity, increased bioavailability, toxicity, and non-biodegradable nature, HM contamination has formed a roadblock in the way of achieving food security, safety, and sustainability in the future. Chromium (Cr), specifically Cr(VI) is a highly bioavailable HM with no proven role in the physiology of plants. Chromium has been found to be highly toxic to plants, with its toxicity also influenced by chemical speciation, which is in turn controlled by different factors, such as soil pH, redox potential, organic matter, and microbial population. In this review, the different factors that influence Cr speciation were analyzed and the relationship between biogeochemical transformations of Cr and its bioavailability which may be beneficial for devising different Cr remediation strategies has been discussed. Also, the uptake and transport mechanism of Cr in plants, with particular reference to sulfate and phosphate transporters has been presented. The biological solutions for the remediation of Cr contaminated sites which offer safe and viable alternatives to old-style physical and chemical remediation strategies have been discussed in detail. This review provides theoretical guidance in developing suitable approaches for the better management of these remediation strategies.
Collapse
Affiliation(s)
- Kaiser Iqbal Wani
- Department of Botany, Aligarh Muslim University, Aligarh, 202 002, India
| | - M Naeem
- Department of Botany, Aligarh Muslim University, Aligarh, 202 002, India
| | - Tariq Aftab
- Department of Botany, Aligarh Muslim University, Aligarh, 202 002, India.
| |
Collapse
|
7
|
Zhang QX, Xiong ZW, Li SY, Yin Y, Xing CL, Wen DY, Xu J, Liu Q. Regulatory roles of RpoS in the biosynthesis of antibiotics 2,4-diacetyphloroglucinol and pyoluteorin of Pseudomonas protegens FD6. Front Microbiol 2022; 13:993732. [PMID: 36583049 PMCID: PMC9793710 DOI: 10.3389/fmicb.2022.993732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
The rhizosphere microbe Pseudomonas protegens FD6 possesses beneficial traits such as the production of antibiotics like pyoluteorin (Plt) and 2,4-diacetylphloroglucinol (2,4-DAPG). The alternative RpoS (σ38 factor), as a master regulator, activates or inhibits the transcription of stationary phase genes in several biocontrol organisms. Here, we investigated the complicated function and regulatory mechanism of RpoS in the biosynthesis of 2,4-DAPG and Plt in strain FD6. Phenotypic assays suggested that ΔrpoS was impaired in biofilm formation, swimming motility, swarming motility, and resistance to stress, such as heat, H2O2 and 12% ethanol. The RpoS mutation significantly increased both 2,4-DAPG and Plt production and altered the transcription and translation of the biosynthetic genes phlA and pltL, indicating that RpoS inhibited antibiotic production by FD6 at both the transcriptional and translational levels. RpoS negatively controlled 2,4-DAPG biosynthesis and transcription of the 2,4-DAPG operon phlACBD by directly interacting with the promoter sequences of phlG and phlA. In addition, RpoS significantly inhibited Plt production and the expression of its operon pltLABCDEFG by directly binding to the promoter regions of pltR, pltL and pltF. Further analyzes demonstrated that a putative R147 mutation in the RpoS binding domain abolished its inhibitory activity on the expression of pltL and phlA. Overall, our results reveal the pleiotropic regulatory function of RpoS in P. protegens FD6 and provide the basis for improving antibiotic biosynthesis by genetic engineering in biocontrol organisms.
Collapse
Affiliation(s)
- Qing Xia Zhang
- College of Plant Protection, Yangzhou University, Yangzhou, China,*Correspondence: Qing Xia Zhang,
| | - Zheng Wen Xiong
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Shen Yu Li
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Yue Yin
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Cheng Lin Xing
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - De Yu Wen
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Jian Xu
- Jiangsu Lixiahe District Institute of Agricultural Sciences, Yangzhou, China
| | - Qin Liu
- Jiangsu Lixiahe District Institute of Agricultural Sciences, Yangzhou, China,Qin Liu,
| |
Collapse
|
8
|
Hansen ML, Wibowo M, Jarmusch SA, Larsen TO, Jelsbak L. Sequential interspecies interactions affect production of antimicrobial secondary metabolites in Pseudomonas protegens DTU9.1. THE ISME JOURNAL 2022; 16:2680-2690. [PMID: 36123523 PMCID: PMC9666462 DOI: 10.1038/s41396-022-01322-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 12/15/2022]
Abstract
Soil and rhizosphere microbiomes play important roles in suppression of plant pathogens through production of antagonistic secondary metabolites, yet mechanisms that determine the strength of pathogen control are not well understood. Many Pseudomonas species are associated with soil and rhizosphere microbiomes, and their ability to suppress pathogens is well documented. Here, we investigate how interactions within the Pseudomonas genus affect their production of antimicrobial metabolites. From a biosensor-based screen, we identify P. capeferrum species as capable of modulating secondary metabolite production in P. protegens. We show that P. capeferrum alters production of pyoluteorin and 2,4-diacetylphloroglucinol (DAPG) in P. protegens via two distinct and sequential mechanisms that depends on spatial proximity of the two species. Specifically, P. capeferrum secretes a diffusible signal that induce pyoluteorin production up to 100-fold in neighboring P. protegens colonies. In contrast, the interaction results in reduced DAPG production, but only within mixed-species colonies. Additionally, we found that increased pyoluteorin production and cell lysis of P. capeferrum is required for inhibition of DAPG production, suggesting that pyoluteorin-facilitated antibiosis of P. protegens on P. capeferrum leads to release of cell-associated metabolites and subsequent inhibition of DAPG production in P. protegens. As the interaction modulates in vitro bioactivity of the species, genus-specific interactions may assist in improving efficacy of biocontrol strains and consortia.
Collapse
Affiliation(s)
- Morten Lindqvist Hansen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800, Kgs Lyngby, Denmark
| | - Mario Wibowo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800, Kgs Lyngby, Denmark
| | - Scott Alexander Jarmusch
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800, Kgs Lyngby, Denmark
| | - Thomas Ostenfeld Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800, Kgs Lyngby, Denmark
| | - Lars Jelsbak
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800, Kgs Lyngby, Denmark.
| |
Collapse
|
9
|
Oliver Huidobro M, Tica J, Wachter GKA, Isalan M. Synthetic spatial patterning in bacteria: advances based on novel diffusible signals. Microb Biotechnol 2022; 15:1685-1694. [PMID: 34843638 PMCID: PMC9151330 DOI: 10.1111/1751-7915.13979] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/14/2021] [Accepted: 11/14/2021] [Indexed: 12/22/2022] Open
Abstract
Engineering multicellular patterning may help in the understanding of some fundamental laws of pattern formation and thus may contribute to the field of developmental biology. Furthermore, advanced spatial control over gene expression may revolutionize fields such as medicine, through organoid or tissue engineering. To date, foundational advances in spatial synthetic biology have often been made in prokaryotes, using artificial gene circuits. In this review, engineered patterns are classified into four levels of increasing complexity, ranging from spatial systems with no diffusible signals to systems with complex multi-diffusor interactions. This classification highlights how the field was held back by a lack of diffusible components. Consequently, we provide a summary of both previously characterized and some new potential candidate small-molecule signals that can regulate gene expression in Escherichia coli. These diffusive signals will help synthetic biologists to successfully engineer increasingly intricate, robust and tuneable spatial structures.
Collapse
Affiliation(s)
| | - Jure Tica
- Department of Life SciencesImperial College LondonLondonSW7 2AZUK
| | | | - Mark Isalan
- Department of Life SciencesImperial College LondonLondonSW7 2AZUK
| |
Collapse
|
10
|
PGPR in Biofilm Formation and Antibiotic Production. Fungal Biol 2022. [DOI: 10.1007/978-3-031-04805-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Zhang Q, Xing C, Kong X, Wang C, Chen X. ChIP-seq Analysis of the Global Regulator Vfr Reveals Novel Insights Into the Biocontrol Agent Pseudomonas protegens FD6. Front Microbiol 2021; 12:667637. [PMID: 34054776 PMCID: PMC8160232 DOI: 10.3389/fmicb.2021.667637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/19/2021] [Indexed: 11/13/2022] Open
Abstract
Many Pseudomonas protegens strains produce the antibiotics pyoluteorin (PLT) and 2,4-diacetylphloroglucinol (2,4-DAPG), both of which have antimicrobial properties. The biosynthesis of these metabolites is typically controlled by multiple regulatory factors. Virulence factor regulator (Vfr) is a multifunctional DNA-binding regulator that modulates 2,4-DAPG biosynthesis in P. protegens FD6. However, the mechanism by which Vfr regulates this process remains unclear. In the present study, chromatin immunoprecipitation of FLAG-tagged Vfr and nucleotide sequencing analysis were used to identify 847 putative Vfr binding sites in P. protegens FD6. The consensus P. protegens Vfr binding site predicted from nucleotide sequence alignment is TCACA. The qPCR data showed that Vfr positively regulates the expression of phlF and phlG, and the expression of these genes was characterized in detail. The purified recombinant Vfr bound to an approximately 240-bp fragment within the phlF and phlG upstream regions that harbor putative Vfr consensus sequences. Using electrophoretic mobility shift assays, we localized Vfr binding to a 25-bp fragment that contains part of the Vfr binding region. Vfr binding was eliminated by mutating the TACG and CACA sequences in phlF and phlG, respectively. Taken together, our results show that Vfr directly regulates the expression of the 2,4-DAPG operon by binding to the upstream regions of both the phlF and phlG genes. However, unlike other Vfr-targeted genes, Vfr binding to P. protegens FD6 does not require an intact binding consensus motif. Furthermore, we demonstrated that vfr expression is autoregulated in this bacterium. These results provide novel insights into the regulatory role of Vfr in the biocontrol agent P. protegens.
Collapse
Affiliation(s)
- Qingxia Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Chenglin Xing
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Xiangwei Kong
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Cheng Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Xijun Chen
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
12
|
Biessy A, Filion M. Phloroglucinol Derivatives in Plant-Beneficial Pseudomonas spp.: Biosynthesis, Regulation, and Functions. Metabolites 2021; 11:metabo11030182. [PMID: 33804595 PMCID: PMC8003664 DOI: 10.3390/metabo11030182] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 11/16/2022] Open
Abstract
Plant-beneficial Pseudomonas spp. aggressively colonize the rhizosphere and produce numerous secondary metabolites, such as 2,4-diacetylphloroglucinol (DAPG). DAPG is a phloroglucinol derivative that contributes to disease suppression, thanks to its broad-spectrum antimicrobial activity. A famous example of this biocontrol activity has been previously described in the context of wheat monoculture where a decline in take-all disease (caused by the ascomycete Gaeumannomyces tritici) has been shown to be associated with rhizosphere colonization by DAPG-producing Pseudomonas spp. In this review, we discuss the biosynthesis and regulation of phloroglucinol derivatives in the genus Pseudomonas, as well as investigate the role played by DAPG-producing Pseudomonas spp. in natural soil suppressiveness. We also tackle the mode of action of phloroglucinol derivatives, which can act as antibiotics, signalling molecules and, in some cases, even as pathogenicity factors. Finally, we discuss the genetic and genomic diversity of DAPG-producing Pseudomonas spp. as well as its importance for improving the biocontrol of plant pathogens.
Collapse
|
13
|
A Whole-Cell Biosensor for Detection of 2,4-Diacetylphloroglucinol (DAPG)-Producing Bacteria from Grassland Soil. Appl Environ Microbiol 2021; 87:AEM.01400-20. [PMID: 33218996 DOI: 10.1128/aem.01400-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/16/2020] [Indexed: 11/20/2022] Open
Abstract
Fluorescent Pseudomonas spp. producing the antibiotic 2,4-diacetylphloroglucinol (DAPG) are ecologically important in the rhizosphere, as they can control phytopathogens and contribute to disease suppression. DAPG can also trigger a systemic resistance response in plants and stimulate root exudation and branching as well as induce plant-beneficial activities in other rhizobacteria. While studies of DAPG-producing Pseudomonas have predominantly focused on rhizosphere niches, the ecological role of DAPG as well as the distribution and dynamics of DAPG-producing bacteria remains less well understood for other environments, such as bulk soil and grassland, where the level of DAPG producers are predicted to be low. In this study, we constructed a whole-cell biosensor for detection of DAPG and DAPG-producing bacteria from environmental samples. The constructed biosensor contains a phlF response module and either lacZ or lux genes as output modules assembled on a pSEVA plasmid backbone for easy transfer to different host species and to enable easy future genetic modifications. We show that the sensor is highly specific toward DAPG, with a sensitivity in the low nanomolar range (>20 nM). This sensitivity is comparable to the DAPG levels identified in rhizosphere samples by chemical analysis. The biosensor enables guided isolation of DAPG-producing Pseudomonas Using the biosensor, we probed the same grassland soil sampling site to isolate genetically related DAPG-producing Pseudomonas kilonensis strains over a period of 12 months. Next, we used the biosensor to determine the frequency of DAPG-producing pseudomonads within three different grassland soil sites and showed that DAPG producers can constitute part of the Pseudomonas population in the range of 0.35 to 17% at these sites. Finally, we showed that the biosensor enables detection of DAPG produced by non-Pseudomonas species. Our study shows that a whole-cell biosensor for DAPG detection can facilitate isolation of bacteria that produce this important secondary metabolite and provide insight into the population dynamics of DAPG producers in natural grassland soil.IMPORTANCE The interest in bacterial biocontrol agents as biosustainable alternatives to pesticides to increase crop yields has grown. To date, we have a broad knowledge of antimicrobial compounds, such as DAPG, produced by bacteria growing in the rhizosphere surrounding plant roots. However, compared to the rhizosphere niches, the ecological role of DAPG as well as the distribution and dynamics of DAPG-producing bacteria remains less well understood for other environments, such as bulk and grassland soil. Currently, we are restricted to chemical methods with detection limits and time-consuming PCR-based and probe hybridization approaches to detect DAPG and its respective producer. In this study, we developed a whole-cell biosensor, which can circumvent the labor-intensive screening process as well as increase the sensitivity at which DAPG can be detected. This enables quantification of relative amounts of DAPG producers, which, in turn, increases our understanding of the dynamics and ecology of these producers in natural soil environments.
Collapse
|
14
|
Liu W, Zhang R, Xian M. Biosynthesis of 2,4-diacetylphloroglucinol from glucose using engineered Escherichia coli. World J Microbiol Biotechnol 2020; 36:130. [PMID: 32712706 DOI: 10.1007/s11274-020-02906-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/19/2020] [Indexed: 11/24/2022]
Abstract
In order to produce 2,4-diacetylphloroglucinol (2,4-DAPG) in E. coli, the key synthases coding by phlACBD gene cluster from the strain Pseudomonas fluorescens CHA0 were overexpressed in E. coli BL21 (DE3). The marA, phlE and acc genes were also overexpressed to enhance 2,4-DAPG biosynthesis. Then the fermentation conditions were optimized to improve the concentration of 2,4-DAPG. The results showed that the recombinant E. coli could produce few 2,4-DAPG with only the phlACBD gene cluster. The synthetic ability of 2,4-DAPG could be increased by expressing the acc, marA and phlE genes in shake-flasks cultivation. The effects of phloroglucinol, initial pH, temperature and trace elements on 2,4-DAPG biosynthesis were also investigated. Based on the optimal fermentation conditions obtained from the shake-flasks cultivation, fed-batch fermentation of strain Z3 in a 5 L bioreactor was conducted to produce 2,4-DAPG. Finally, the concentration of 2,4-DAPG was 179 mg/L after induction for 36 h by fed-batch fermentation. To the best of our knowledge, this is the highest 2,4-DAPG production reported in E. coli. This work showed the potential application of engineered E. coli to get high production of target compounds.
Collapse
Affiliation(s)
- Wen Liu
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Rubing Zhang
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
| | - Mo Xian
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
| |
Collapse
|
15
|
Chae DH, Kim DR, Cheong MS, Lee YB, Kwak YS. Investigating the Induced Systemic Resistance Mechanism of 2,4-Diacetylphloroglucinol (DAPG) using DAPG Hydrolase-Transgenic Arabidopsis. THE PLANT PATHOLOGY JOURNAL 2020; 36:255-266. [PMID: 32547341 PMCID: PMC7272852 DOI: 10.5423/ppj.oa.02.2020.0031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/09/2020] [Accepted: 03/06/2020] [Indexed: 05/29/2023]
Abstract
Plant immune responses can be triggered by chemicals, microbes, pathogens, insects, or abiotic stresses. In particular, induced systemic resistance (ISR) refers to the activation of the immune system due to a plant's interaction with beneficial microorganisms. The phenolic compound, 2,4-diacetylphloroglucinol (DAPG), which is produced by beneficial Pseudomonas spp., acts as an ISR elicitor, yet DAPG's mechanism in ISR remains unclear. In this study, transgenic Arabidopsis thaliana plants overexpressing the DAPG hydrolase gene (phlG) were generated to investigate the functioning of DAPG in ISR. DAPG was applied onto 3-week-old A. thaliana Col-0 and these primed plants showed resistance to the pathogens Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000. However, in the phlG transgenic A. thaliana, the ISR was not triggered against these pathogens. The DAPG-mediated ISR phenotype was impaired in transgenic A. thaliana plants overexpressing phlG, thus showing similar disease severity when compared to untreated control plants. Furthermore, the DAPG-treated A. thaliana Col-0 showed an increase in their gene expression levels of PDF1.2 and WRKY70 but this failed to occur in the phlG transgenic lines. Collectively, these experimental results indicate that jasmonic acid/ethylene signal-based defense system is effectively disabled in phlG transgenic A. thaliana lines.
Collapse
Affiliation(s)
- Dae-Han Chae
- Division of Applied Life Science (BK21Plus) and Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Da-Ran Kim
- Department of Plant Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Mi Sun Cheong
- Division of Applied Life Science (BK21Plus) and Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Yong Bok Lee
- Division of Applied Life Science (BK21Plus) and Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Youn-Sig Kwak
- Division of Applied Life Science (BK21Plus) and Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Korea
- Department of Plant Medicine, Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
16
|
Luo Y, Zhou M, Zhao Q, Wang F, Gao J, Sheng H, An L. Complete genome sequence of Sphingomonas sp. Cra20, a drought resistant and plant growth promoting rhizobacteria. Genomics 2020; 112:3648-3657. [PMID: 32334112 DOI: 10.1016/j.ygeno.2020.04.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/19/2020] [Accepted: 04/17/2020] [Indexed: 01/02/2023]
Abstract
Sphingomonas sp. Cra20 is a rhizobacteria isolated from the root surface of Leontopodium leontopodioides in the Tianshan Mountains of China and was found to influence root system architecture. We analyzed its ability for plant-growth promotion and the molecular mechanism involved by combining the physiological and genome information. The results indicated that the bacterium enhanced the drought resistance of Arabidopsis thaliana and promoted growth mainly through the strain-released volatile organic compounds. The genome consisted of one circular chromosome and one circular plasmid, containing a series of genes related to the plant-growth promotion. Furthermore, multiple copies of cold-associated genes, general stress response genes, oxidative stress genes and DNA repair mechanisms supported its survivability in extreme environments. In addition, the strain had the ability to degrade xylene and 2, 4-D via a variety of monooxygenases and dioxygenases. This provides further information and will promote the application of Cra20 as a biofertilizer in agriculture.
Collapse
Affiliation(s)
- Yang Luo
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Meng Zhou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qi Zhao
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Fang Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jiangli Gao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hongmei Sheng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Lizhe An
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; The College of Forestry, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
17
|
Zhao MM, Lyu N, Wang D, Wu XG, Zhao YZ, Zhang LQ, Zhou HY. PhlG mediates the conversion of DAPG to MAPG in Pseudomonas fluorescens 2P24. Sci Rep 2020; 10:4296. [PMID: 32152338 PMCID: PMC7062750 DOI: 10.1038/s41598-020-60555-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 02/12/2020] [Indexed: 11/25/2022] Open
Abstract
The antibiotic 2,4-diacetylphoroglucinol (2,4-DAPG), produced by the Gram-negative rod-shaped bacterium Pseudomonas fluorescens 2P24, is active against various soil-borne bacterial and fungal pathogens that cause plant diseases. Biosynthesis of 2,4-DAPG is controlled by regulating expression of the phlACBD operon at the post-transcriptional level. The phlG gene is located between the phlF and phlH genes, upstream of the phlACBD biosynthetic operon. Herein, we cloned the phlG gene, generated a phlG deletion mutant, and investigated its regulatory role in 2,4-DAPG biosynthesis. The results showed that deletion of phlG had no effect on the biosynthesis of 2,4-DAPG, but it affected conversion of 2,4-DAPG to its precursor monoacetylphloroglucinol (MAPG). The global regulatory factor encoded by gacS positively regulated expression of phlG, while rsmE negatively regulated its expression. Deleting phlG did not alter the ability of the bacterium to colonise plants or promote plant growth. These results suggest that phlG collaborates with other factors to regulate production of the antibiotic 2,4-DAPG in P. fluorescens 2P24.
Collapse
Affiliation(s)
- Ming-Min Zhao
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010019, China
| | - Ning Lyu
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010019, China
| | - Dong Wang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010019, China
| | - Xiao-Gang Wu
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Yuan-Zheng Zhao
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, Inner Mongolia, 010031, China
| | - Li-Qun Zhang
- College of Agriculture, Guangxi University, Nanning, 530004, China.,Key Laboratory of Plant Pathology, Ministry of Agriculture, Beijing, 100193, China
| | - Hong-You Zhou
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010019, China.
| |
Collapse
|
18
|
Zhang B, Zhao H, Wu X, Zhang LQ. The Oxidoreductase DsbA1 negatively influences 2,4-diacetylphloroglucinol biosynthesis by interfering the function of Gcd in Pseudomonas fluorescens 2P24. BMC Microbiol 2020; 20:39. [PMID: 32093646 PMCID: PMC7041245 DOI: 10.1186/s12866-020-1714-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/27/2020] [Indexed: 02/03/2023] Open
Abstract
Background The polyketide antibiotic 2,4-diacetylphloroglucinol (2,4-DAPG), produced by Pseudomonas fluorescens 2P24, is positively regulated by the GacS-GacA two-component system. Results Here we reported on the characterization of DsbA1 (disulfide oxidoreductase) as novel regulator of biocontrol activity in P. fluorescens. Our data showed that mutation of dsbA1 caused the accumulation of 2,4-DAPG in a GacA-independent manner. Further analysis indicated that DsbA1 interacts with membrane-bound glucose dehydrogenase Gcd, which positively regulates the production of 2,4-DAPG. Mutation of cysteine (C)-235, C275, and C578 of Gcd, significantly reduced the interaction with DsbA1, enhanced the activity of Gcd and increased 2,4-DAPG production. Conclusions Our results suggest that DsbA1 regulates the 2,4-DAPG concentration via fine-tuning the function of Gcd in P. fluorescens 2P24.
Collapse
Affiliation(s)
- Bo Zhang
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Hui Zhao
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xiaogang Wu
- College of Agriculture, Guangxi University, Nanning, 530004, China.
| | - Li-Qun Zhang
- College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
19
|
Han JT, Zhang SP, Jia WJ, Zhang Z, Wang Y, He YX. Discovery and structural analysis of a phloretin hydrolase from the opportunistic human pathogen Mycobacterium abscessus. FEBS J 2019; 286:1959-1971. [PMID: 30784195 DOI: 10.1111/febs.14792] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/25/2019] [Accepted: 02/18/2019] [Indexed: 11/28/2022]
Abstract
The family of PhlG proteins catalyses the hydrolysis of carbon-carbon bonds and is widely distributed across diverse bacterial species. Two members of the PhlG family have been separately identified as 2,4-diacetylphloroglucinol (2,4-DAPG) hydrolase and phloretin hydrolase; however, the extent of functional divergence and catalytic substrates for most members of this family is still unknown. Here, using sequence similarity network and gene co-occurrence analysis, we categorized PhlG proteins into several subgroups and inferred that PhlG proteins from Mycobacterium abscessus (MaPhlG) are likely to be functionally equivalent to phloretin hydrolase. Indeed, we confirmed the hydrolytic activity of MaPhlG towards phloretin and its analog monoacetylphloroglucinol (MAPG), and the crystal structure of MaPhlG in complex with MAPG revealed the key residues involved in catalysis and substrate binding. Through mutagenesis and enzymatic assays, we demonstrated that H160, I162, A213 and Q266, which are substituted in 2,4-DAPG hydrolase, are essential for the activity towards phloretin. Based on the conservation of these residues, potential phloretin hydrolases were identified from Frankia, Colletotrichum tofieldiae and Magnaporthe grisea, which are rhizosphere inhabitants. These enzymes may be important for rhizosphere adaptation of the producing microbes by providing a carbon source through anaerobic degradation of flavonoids. Taken together, our results provided a framework for understanding the mechanism of functional divergence of PhlG proteins.
Collapse
Affiliation(s)
- Jian-Ting Han
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, China
| | - Si-Ping Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, China
| | - Wen-Juan Jia
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, China
| | - Zhang Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, China
| | - Yong Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, China
| | - Yong-Xing He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, China
| |
Collapse
|
20
|
Molecular cloning, expression, and characterization of acyltransferase from Pseudomonas protegens. Appl Microbiol Biotechnol 2018; 102:6057-6068. [PMID: 29754162 PMCID: PMC6013524 DOI: 10.1007/s00253-018-9052-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 04/17/2018] [Accepted: 04/24/2018] [Indexed: 10/26/2022]
Abstract
The formation of C-C bonds by using CoA independent acyltransferases may have significant impact for novel methods for biotechnology. We report the identification of Pseudomonas strains with CoA-independent acyltransferase activity as well as the heterologous expression of the enzyme in E. coli. The cloning strategies and selected expression studies are discussed. The recombinant acyltransferases were characterized with regard to thermal and storage stability, pH,- and co-solvent tolerance. Moreover, the impact of bivalent metals, inhibitors, and other additives was tested. Careful selection of expression and working conditions led to obtain recombinant acyltransferase form Pseudomonas protegens with up to 11 U mL-1 activity.
Collapse
|
21
|
Transcriptional Regulator PhlH Modulates 2,4-Diacetylphloroglucinol Biosynthesis in Response to the Biosynthetic Intermediate and End Product. Appl Environ Microbiol 2017; 83:AEM.01419-17. [PMID: 28821548 DOI: 10.1128/aem.01419-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/11/2017] [Indexed: 11/20/2022] Open
Abstract
Certain strains of biocontrol bacterium Pseudomonas fluorescens produce the secondary metabolite 2,4-diacetylphloroglucinol (2,4-DAPG) to antagonize soilborne phytopathogens in the rhizosphere. The gene cluster responsible for the biosynthesis of 2,4-DAPG is named phlACBDEFGH and it is still unclear how the pathway-specific regulator phlH within this gene cluster regulates the metabolism of 2,4-DAPG. Here, we found that PhlH in Pseudomonas fluorescens strain 2P24 represses the expression of the phlG gene encoding the 2,4-DAPG hydrolase by binding to a sequence motif overlapping with the -35 site recognized by σ70 factors. Through biochemical screening of PhlH ligands we identified the end product 2,4-DAPG and its biosynthetic intermediate monoacetylphloroglucinol (MAPG), which can act as signaling molecules to modulate the binding of PhlH to the target sequence and activate the expression of phlG Comparison of 2,4-DAPG production between the ΔphlH, ΔphlG, and ΔphlHG mutants confirmed that phlH and phlG impose negative feedback regulation over 2,4-DAPG biosynthesis. It was further demonstrated that the 2,4-DAPG degradation catalyzed by PhlG plays an insignificant role in 2,4-DAPG tolerance but contributes to bacterial growth advantages under carbon/nitrogen starvation conditions. Taken together, our data suggest that by monitoring and down-tuning in situ levels of 2,4-DAPG, the phlHG genes could dynamically modulate the metabolic loads attributed to 2,4-DAPG production and potentially contribute to rhizosphere adaptation.IMPORTANCE 2,4-DAPG, which is synthesized by biocontrol pseudomonad bacteria, is a broad-spectrum antibiotic against bacteria, fungi, oomycetes, and nematodes and plays an important role in suppressing soilborne plant pathogens. Although most of the genes in the 2,4-DAPG biosynthetic gene cluster (phl) have been characterized, it is still not clear how the pathway-specific regulator phlH is involved in 2,4-DAPG metabolism. This work revealed the role of PhlH in modulating 2,4-DAPG levels by controlling the expression of 2,4-DAPG hydrolase PhlG in response to 2,4-DAPG and MAPG. Since 2,4-DAPG biosynthesis imposes a metabolic burden on biocontrol pseudomonads, it is expected that the fine regulation of phlG by PhlH offers a way to dynamically modulate the metabolic loads attributed to 2,4-DAPG production.
Collapse
|
22
|
Almario J, Bruto M, Vacheron J, Prigent-Combaret C, Moënne-Loccoz Y, Muller D. Distribution of 2,4-Diacetylphloroglucinol Biosynthetic Genes among the Pseudomonas spp. Reveals Unexpected Polyphyletism. Front Microbiol 2017; 8:1218. [PMID: 28713346 DOI: 10.3389/fmibc.2017.01218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/15/2017] [Indexed: 05/26/2023] Open
Abstract
Fluorescent pseudomonads protecting plant roots from phytopathogens by producing 2,4-diacetylphloroglucinol (DAPG) are considered to form a monophyletic lineage comprised of DAPG+Pseudomonas strains in the "P. corrugata" and "P. protegens" subgroups of the "Pseudomonas fluorescens" group. However, DAPG production ability has not been investigated for many species of these two subgroups, and whether or not the DAPG+Pseudomonas are truly monophyletic remained to be verified. Thus, the distribution of the DAPG biosynthetic operon (phlACBD genes) in the Pseudomonas spp. was investigated in sequenced genomes and type strains. Results showed that the DAPG+Pseudomonas include species of the "P. fluorescens" group, i.e., P. protegens, P. brassicacearum, P. kilonensis, and P. thivervalensis, as expected, as well as P. gingeri in which it had not been documented. Surprisingly, they also include bacteria outside the "P. fluorescens" group, as exemplified by Pseudomonas sp. OT69, and even two Betaproteobacteria genera. The phl operon-based phylogenetic tree was substantially congruent with the one inferred from concatenated housekeeping genes rpoB, gyrB, and rrs. Contrariwise to current supposition, ancestral character reconstructions favored multiple independent acquisitions rather that one ancestral event followed by vertical inheritance. Indeed, based on synteny analyses, these acquisitions appeared to vary according to the Pseudomonas subgroup and even the phylogenetic groups within the subgroups. In conclusion, our study shows that the phl+Pseudomonas populations form a polyphyletic group and suggests that DAPG biosynthesis might not be restricted to this genus. This is important to consider when assessing the ecological significance of phl+ bacterial populations in rhizosphere ecosystems.
Collapse
Affiliation(s)
- Juliana Almario
- Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université de Lyon, Université Claude Bernard Lyon1, VetAgro Sup, UMR Ecologie MicrobienneVilleurbanne, France
| | - Maxime Bruto
- Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université de Lyon, Université Claude Bernard Lyon1, VetAgro Sup, UMR Ecologie MicrobienneVilleurbanne, France
| | - Jordan Vacheron
- Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université de Lyon, Université Claude Bernard Lyon1, VetAgro Sup, UMR Ecologie MicrobienneVilleurbanne, France
| | - Claire Prigent-Combaret
- Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université de Lyon, Université Claude Bernard Lyon1, VetAgro Sup, UMR Ecologie MicrobienneVilleurbanne, France
| | - Yvan Moënne-Loccoz
- Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université de Lyon, Université Claude Bernard Lyon1, VetAgro Sup, UMR Ecologie MicrobienneVilleurbanne, France
| | - Daniel Muller
- Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université de Lyon, Université Claude Bernard Lyon1, VetAgro Sup, UMR Ecologie MicrobienneVilleurbanne, France
| |
Collapse
|
23
|
Almario J, Bruto M, Vacheron J, Prigent-Combaret C, Moënne-Loccoz Y, Muller D. Distribution of 2,4-Diacetylphloroglucinol Biosynthetic Genes among the Pseudomonas spp. Reveals Unexpected Polyphyletism. Front Microbiol 2017; 8:1218. [PMID: 28713346 PMCID: PMC5491608 DOI: 10.3389/fmicb.2017.01218] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/15/2017] [Indexed: 11/13/2022] Open
Abstract
Fluorescent pseudomonads protecting plant roots from phytopathogens by producing 2,4-diacetylphloroglucinol (DAPG) are considered to form a monophyletic lineage comprised of DAPG+Pseudomonas strains in the "P. corrugata" and "P. protegens" subgroups of the "Pseudomonas fluorescens" group. However, DAPG production ability has not been investigated for many species of these two subgroups, and whether or not the DAPG+Pseudomonas are truly monophyletic remained to be verified. Thus, the distribution of the DAPG biosynthetic operon (phlACBD genes) in the Pseudomonas spp. was investigated in sequenced genomes and type strains. Results showed that the DAPG+Pseudomonas include species of the "P. fluorescens" group, i.e., P. protegens, P. brassicacearum, P. kilonensis, and P. thivervalensis, as expected, as well as P. gingeri in which it had not been documented. Surprisingly, they also include bacteria outside the "P. fluorescens" group, as exemplified by Pseudomonas sp. OT69, and even two Betaproteobacteria genera. The phl operon-based phylogenetic tree was substantially congruent with the one inferred from concatenated housekeeping genes rpoB, gyrB, and rrs. Contrariwise to current supposition, ancestral character reconstructions favored multiple independent acquisitions rather that one ancestral event followed by vertical inheritance. Indeed, based on synteny analyses, these acquisitions appeared to vary according to the Pseudomonas subgroup and even the phylogenetic groups within the subgroups. In conclusion, our study shows that the phl+Pseudomonas populations form a polyphyletic group and suggests that DAPG biosynthesis might not be restricted to this genus. This is important to consider when assessing the ecological significance of phl+ bacterial populations in rhizosphere ecosystems.
Collapse
Affiliation(s)
- Juliana Almario
- Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université de Lyon, Université Claude Bernard Lyon1, VetAgro Sup, UMR Ecologie MicrobienneVilleurbanne, France
| | - Maxime Bruto
- Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université de Lyon, Université Claude Bernard Lyon1, VetAgro Sup, UMR Ecologie MicrobienneVilleurbanne, France
| | - Jordan Vacheron
- Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université de Lyon, Université Claude Bernard Lyon1, VetAgro Sup, UMR Ecologie MicrobienneVilleurbanne, France
| | - Claire Prigent-Combaret
- Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université de Lyon, Université Claude Bernard Lyon1, VetAgro Sup, UMR Ecologie MicrobienneVilleurbanne, France
| | - Yvan Moënne-Loccoz
- Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université de Lyon, Université Claude Bernard Lyon1, VetAgro Sup, UMR Ecologie MicrobienneVilleurbanne, France
| | - Daniel Muller
- Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université de Lyon, Université Claude Bernard Lyon1, VetAgro Sup, UMR Ecologie MicrobienneVilleurbanne, France
| |
Collapse
|
24
|
Stevens JF, Maier CS. The Chemistry of Gut Microbial Metabolism of Polyphenols. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2016; 15:425-444. [PMID: 27274718 PMCID: PMC4888912 DOI: 10.1007/s11101-016-9459-z] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 03/02/2016] [Indexed: 05/18/2023]
Abstract
Gut microbiota contribute to the metabolism of dietary polyphenols and affect the bioavailability of both the parent polyphenols and their metabolites. Although there is a large number of reports of specific polyphenol metabolites, relatively little is known regarding the chemistry and enzymology of the metabolic pathways utilized by specific microbial species and taxa, which is the focus of this review. Major classes of dietary polyphenols include monomeric and oligomeric catechins (proanthocyanidins), flavonols, flavanones, ellagitannins, and isoflavones. Gut microbial metabolism of representatives of these polyphenol classes can be classified as A- and C-ring cleavage (retro Claisen reactions), C-ring cleavage mediated by dioxygenases, dehydroxylations (decarboxylation or reduction reactions followed by release of H2O molecules), and hydrogenations of alkene moieties in polyphenols, such as resveratrol, curcumin, and isoflavones (mediated by NADPH-dependent reductases). The qualitative and quantitative metabolic output of the gut microbiota depends to a large extent on the metabolic capacity of individual taxa, which emphasizes the need for assessment of functional analysis in conjunction with determinations of gut microbiota compositions.
Collapse
Affiliation(s)
- Jan F Stevens
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97330; Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97330
| | - Claudia S Maier
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97330; Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97330
| |
Collapse
|
25
|
Clifford JC, Buchanan A, Vining O, Kidarsa TA, Chang JH, McPhail KL, Loper JE. Phloroglucinol functions as an intracellular and intercellular chemical messenger influencing gene expression in Pseudomonas protegens. Environ Microbiol 2015; 18:3296-3308. [PMID: 26337778 DOI: 10.1111/1462-2920.13043] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/24/2015] [Accepted: 08/22/2015] [Indexed: 12/13/2022]
Abstract
Bacteria can be both highly communicative and highly competitive in natural habitats and antibiotics are thought to play a role in both of these processes. The soil bacterium Pseudomonas protegens Pf-5 produces a spectrum of antibiotics, two of which, pyoluteorin and 2,4-diacetylphloroglucinol (DAPG), function in intracellular and intercellular communication, both as autoinducers of their own production. Here, we demonstrate that phloroglucinol, an intermediate in DAPG biosynthesis, can serve as an intercellular signal influencing the expression of pyoluteorin biosynthesis genes, the production of pyoluteorin, and inhibition of Pythium ultimum, a phytopathogenic oomycete sensitive to pyoluteorin. Through analysis of RNAseq data sets, we show that phloroglucinol had broad effects on the transcriptome of Pf-5, significantly altering the transcription of more than two hundred genes. The effects of nanomolar versus micromolar concentrations of phloroglucinol differed both quantitatively and qualitatively, influencing the expression of distinct sets of genes or having opposite effects on transcript abundance of certain genes. Therefore, our results support the concept of hormesis, a phenomenon associated with signalling molecules that elicit distinct responses at different concentrations. Phloroglucinol is the first example of an intermediate of antibiotic biosynthesis that functions as a chemical messenger influencing gene expression in P. protegens.
Collapse
Affiliation(s)
- Jennifer C Clifford
- US Department of Agriculture, Agricultural Research Service, Horticultural Crops Research Laboratory, Corvallis, OR, USA
| | - Alex Buchanan
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA
| | - Oliver Vining
- College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Teresa A Kidarsa
- US Department of Agriculture, Agricultural Research Service, Horticultural Crops Research Laboratory, Corvallis, OR, USA
| | - Jeff H Chang
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA
| | - Kerry L McPhail
- College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Joyce E Loper
- US Department of Agriculture, Agricultural Research Service, Horticultural Crops Research Laboratory, Corvallis, OR, USA. .,Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
26
|
Zhang Z, Jiang YL, Wu Y, He YX. Crystallization and preliminary X-ray diffraction analysis of a putative carbon-carbon bond hydrolase from Mycobacterium abscessus 103. Acta Crystallogr F Struct Biol Commun 2015; 71:239-42. [PMID: 25664803 PMCID: PMC4321483 DOI: 10.1107/s2053230x15001612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 01/24/2015] [Indexed: 11/10/2022] Open
Abstract
The PhlG protein from Mycobacterium abscessus 103 (mPhlG), which shares 30% sequence identity with phloretin hydrolase from Eubacterium ramulus and 38% sequence identity with 2,4-diacetylphloroglucinol hydrolase from Pseudomonas fluorescens Pf-5, is a putative carbon-carbon bond hydrolase. Here, the expression, purification and crystallization of mPhlG are reported. Crystals were obtained using a precipitant consisting of 100 mM citric acid pH 5.0, 1.0 M lithium chloride, 8%(w/v) polyethylene glycol 6000. The crystals diffracted to 1.87 Å resolution and belonged to space group P21, with unit-cell parameters a = 71.0, b = 63.4, c = 74.7 Å, α = 90.0, β = 103.2, γ = 90.0°. Assuming the presence of two mPhlG molecules in the asymmetric unit, VM was calculated to be 2.5 Å(3) Da(-1), which corresponds to a solvent content of 50%.
Collapse
Affiliation(s)
- Zhang Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, People’s Republic of China
| | - Yong-Liang Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People’s Republic of China
| | - Yi Wu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, People’s Republic of China
| | - Yong-Xing He
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, People’s Republic of China
| |
Collapse
|
27
|
Jousset A, Becker J, Chatterjee S, Karlovsky P, Scheu S, Eisenhauer N. Biodiversity and species identity shape the antifungal activity of bacterial communities. Ecology 2014; 95:1184-90. [PMID: 25000750 DOI: 10.1890/13-1215.1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Soils host diverse communities of interacting microbes and the nature of interspecific interactions is increasingly recognized to affect ecosystem-level processes. Antagonistic interactions between bacteria and fungi are of particular relevance for soil functioning. A number of soil bacteria produce secondary metabolites that inhibit eukaryotic growth. Antibiosis may be stimulated in the presence of competing bacteria, and we tested if biodiversity within bacterial communities affects their antagonistic activity against fungi and fungal-like species. We set up Pseudomonas communities of increasing diversity and measured the production of the broad spectrum antifungal compound 2,4-DAPG and their antagonistic activity against different eukaryotes. Diversity increased DAPG concentration and antifungal activity, an effect due to a combination of identity and interactions between species. Our results indicate that investment of pseudomonads into broad spectrum anti-eukaryotic traits is determined by both community composition and diversity and this provides new avenues to understand interactions between bacterial and fungal communities.
Collapse
|
28
|
Posttranscriptional regulation of 2,4-diacetylphloroglucinol production by GidA and TrmE in Pseudomonas fluorescens 2P24. Appl Environ Microbiol 2014; 80:3972-81. [PMID: 24747907 DOI: 10.1128/aem.00455-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas fluorescens 2P24 is a soilborne bacterium that synthesizes and excretes multiple antimicrobial metabolites. The polyketide compound 2,4-diacetylphloroglucinol (2,4-DAPG), synthesized by the phlACBD locus, is its major biocontrol determinant. This study investigated two mutants defective in antagonistic activity against Rhizoctonia solani. Deletion of the gidA (PM701) or trmE (PM702) gene from strain 2P24 completely inhibited the production of 2,4-DAPG and its precursors, monoacetylphloroglucinol (MAPG) and phloroglucinol (PG). The transcription of the phlA gene was not affected, but the translation of the phlA and phlD genes was reduced significantly. Two components of the Gac/Rsm pathway, RsmA and RsmE, were found to be regulated by gidA and trmE, whereas the other components, RsmX, RsmY, and RsmZ, were not. The regulation of 2,4-DAPG production by gidA and trmE, however, was independent of the Gac/Rsm pathway. Both the gidA and trmE mutants were unable to produce PG but could convert PG to MAPG and MAPG to 2,4-DAPG. Overexpression of PhlD in the gidA and trmE mutants could restore the production of PG and 2,4-DAPG. Taken together, these findings suggest that GidA and TrmE are positive regulatory elements that influence the biosynthesis of 2,4-DAPG posttranscriptionally.
Collapse
|
29
|
Abstract
The most common prokaryotic signal transduction mechanisms are the one-component systems in which a single polypeptide contains both a sensory domain and a DNA-binding domain. Among the >20 classes of one-component systems, the TetR family of regulators (TFRs) are widely associated with antibiotic resistance and the regulation of genes encoding small-molecule exporters. However, TFRs play a much broader role, controlling genes involved in metabolism, antibiotic production, quorum sensing, and many other aspects of prokaryotic physiology. There are several well-established model systems for understanding these important proteins, and structural studies have begun to unveil the mechanisms by which they bind DNA and recognize small-molecule ligands. The sequences for more than 200,000 TFRs are available in the public databases, and genomics studies are identifying their target genes. Three-dimensional structures have been solved for close to 200 TFRs. Comparison of these structures reveals a common overall architecture of nine conserved α helices. The most important open question concerning TFR biology is the nature and diversity of their ligands and how these relate to the biochemical processes under their control.
Collapse
|
30
|
Niranjana SR, Hariprasad P. Understanding the Mechanism Involved in PGPR-Mediated Growth Promotion and Suppression of Biotic and Abiotic Stress in Plants. Fungal Biol 2014. [DOI: 10.1007/978-1-4939-1188-2_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
|
32
|
Mutational Analysis of the C–C Bond Cleaving Enzyme Phloretin Hydrolase from Eubacterium ramulus. Top Catal 2013. [DOI: 10.1007/s11244-013-0196-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
|
34
|
Troppens DM, Chu M, Holcombe LJ, Gleeson O, O'Gara F, Read ND, Morrissey JP. The bacterial secondary metabolite 2,4-diacetylphloroglucinol impairs mitochondrial function and affects calcium homeostasis in Neurospora crassa. Fungal Genet Biol 2013; 56:135-46. [PMID: 23624246 DOI: 10.1016/j.fgb.2013.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 03/25/2013] [Accepted: 04/12/2013] [Indexed: 10/26/2022]
Abstract
The bacterial secondary metabolite 2,4-diacetylphloroglucinol (DAPG) is of interest as an active ingredient of biological control strains of Pseudomonas fluorescens and as a potential lead pharmaceutical molecule because of its capacity to inhibit growth of diverse microbial and non-microbial cells. The mechanism by which this occurs is unknown and in this study the filamentous fungus Neurospora crassa was used as a model to investigate the effects of DAPG on a eukaryotic cell. Colony growth, conidial germination and cell fusion assays confirmed the inhibitory nature of DAPG towards N. crassa. A number of different fluorescent dyes and fluorescent protein reporters were used to assess the effects of DAPG treatment on mitochondrial and other cellular functions. DAPG treatment led to changes in mitochondrial morphology, and rapid loss of mitochondrial membrane potential. These effects are likely to be responsible for the toxicity of DAPG. It was also found that DAPG treatment caused extracellular calcium to be taken up by conidial germlings leading to a transient increase in cytosolic free Ca(2+) with a distinct concentration dependent Ca(2+) signature.
Collapse
|
35
|
Troppens DM, Dmitriev RI, Papkovsky DB, O'Gara F, Morrissey JP. Genome-wide investigation of cellular targets and mode of action of the antifungal bacterial metabolite 2,4-diacetylphloroglucinol in Saccharomyces cerevisiae. FEMS Yeast Res 2013; 13:322-34. [PMID: 23445507 DOI: 10.1111/1567-1364.12037] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 02/01/2013] [Accepted: 02/02/2013] [Indexed: 01/18/2023] Open
Abstract
Saccharomyces cerevisiae is a proven model to investigate the effects of small molecules and drugs on fungal and eukaryotic cells. In this study, the mode of action of an antifungal metabolite, 2,4-diacetylphloroglucinol (DAPG), was determined. Applying a combination of genetic and physiological approaches, it was established that this bacterial metabolite acts as a proton ionophore and dissipates the proton gradient across the mitochondrial membrane. The uncoupling of respiration and ATP synthesis ultimately leads to growth inhibition and is the primary toxic effect of DAPG. A genome-wide screen identified 154 DAPG-tolerant mutants and showed that there are many alterations in cellular metabolism that can confer at least some degree of tolerance to this uncoupler. One mutant, ydc1, was studied in some more detail as it displayed increased tolerance to both DAPG and the uncoupler carbonylcyanide m-chlorophenylhydrazone (CCCP) and appears to be unconnected to other tolerant mutant strains. Deleting YDC1 alters sphingolipid homoeostasis in the cell, and we suggest here that this may be linked to reduced drug sensitivity. Sphingolipids and their derivatives are important eukaryotic signal molecules, and the observation that altering homoeostasis may affect yeast response to metabolic uncoupling agents raises some intriguing questions for future studies.
Collapse
|
36
|
Fighting Plant Diseases Through the Application of Bacillus and Pseudomonas Strains. SOIL BIOLOGY 2013. [DOI: 10.1007/978-3-642-39317-4_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
37
|
Molecular and catalytic properties of 2,4-diacetylphloroglucinol hydrolase (PhlG) from Pseudomonas sp. YGJ3. Biosci Biotechnol Biochem 2012; 76:1239-41. [PMID: 22790955 DOI: 10.1271/bbb.120054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Gene phlG encoding 2,4-diacetylphloroglucinol hydrolase was cloned from Pseudomonas sp. YGJ3 and expressed in Escherichia coli. Recombinant PhlG was purified homogeneously. It required 2-mercaptoethanol for stability. Km for 2,4-diacetylphloroglucinol and kcat were determined to be 24 µM and 5.8 s(-1) respectively. CoCl2 specifically and significantly activated PhlG.
Collapse
|
38
|
Yang F, Cao Y. Biosynthesis of phloroglucinol compounds in microorganisms--review. Appl Microbiol Biotechnol 2011; 93:487-95. [PMID: 22101786 DOI: 10.1007/s00253-011-3712-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 10/23/2011] [Accepted: 11/05/2011] [Indexed: 12/24/2022]
Abstract
Phloroglucinol derivatives are a major class of secondary metabolites of wide occurrence in biological systems. In the bacteria kingdom, these compounds can only be synthesized by some species of Pseudomonads. Pseudomonas spp. could produce 2,4-diacetylphloroglucinol (DAPG) that plays an important role in the biological control of many plant pathogens. In this review, we summarize knowledge about synthesis of phloroglucinol compounds based on the DAPG biosynthetic pathway. Recent advances that have been made in understanding phloroglucinol compound biosynthesis and regulation are highlighted. From these studies, researchers have identified the biosynthesis pathway of DAPG. Most of the genes involved in the biosynthesis pathway have been cloned and characterized. Additionally, heterologous systems of the model microorganism Escherichia coli are constructed to produce phloroglucinol. Although further work is still required, a full understanding of phloroglucinol compound biosynthesis is almost within reach. This review also suggests new directions and attempts to gain some insights for better understanding of the biosynthesis and regulation of DAPG. The combination of traditional biochemistry and molecular biology with new systems biology and synthetic biology tools will provide a better view of phloroglucinol compound biosynthesis and a greater potential of microbial production.
Collapse
Affiliation(s)
- Fang Yang
- Ningbo Institute of Material Technology & Engineering, Chinese Academy of Sciences, 315201, Ningbo, China
| | | |
Collapse
|
39
|
Kidarsa TA, Goebel NC, Zabriskie TM, Loper JE. Phloroglucinol mediates cross-talk between the pyoluteorin and 2,4-diacetylphloroglucinol biosynthetic pathways in Pseudomonas fluorescens Pf-5. Mol Microbiol 2011; 81:395-414. [PMID: 21564338 DOI: 10.1111/j.1365-2958.2011.07697.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The antibiotics pyoluteorin and 2,4-diacetylphloroglucinol (DAPG) contribute to the biological control of soilborne plant diseases by some strains of Pseudomonas fluorescens, including Pf-5. These secondary metabolites also have signalling functions with each compound reported to induce its own production and repress the other's production. The first step in DAPG biosynthesis is production of phloroglucinol (PG) by PhlD. In this study, we show that PG is required at nanomolar concentrations for pyoluteorin production in Pf-5. At higher concentrations, PG is responsible for the inhibition of pyoluteorin production previously attributed to DAPG. DAPG had no effect on pyoluteorin production, and monoacetylphloroglucinol showed both stimulatory and inhibitory activities but at concentrations 100-fold greater than the levels of PG required for similar effects. We also demonstrate that PG regulates pyoluteorin production in P. aeruginosa and that a phlD gene adjacent to the pyoluteorin biosynthetic gene cluster in P. aeruginosa strain LESB58 can restore pyoluteorin biosynthesis to a ΔphlD mutant of Pf-5. Bioinformatic analyses show that the dual role of PhlD in the biosynthesis of DAPG and the regulation of pyoluteorin production could have arisen within the pseudomonads during the assembly of these biosynthetic gene clusters from genes and gene subclusters of diverse origins.
Collapse
Affiliation(s)
- Teresa A Kidarsa
- USDA-ARS-Horticultural Crops Research Laboratory, Corvallis, OR 97330, USA
| | | | | | | |
Collapse
|
40
|
Combes-Meynet E, Pothier JF, Moënne-Loccoz Y, Prigent-Combaret C. The Pseudomonas secondary metabolite 2,4-diacetylphloroglucinol is a signal inducing rhizoplane expression of Azospirillum genes involved in plant-growth promotion. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:271-84. [PMID: 21043573 DOI: 10.1094/mpmi-07-10-0148] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
During evolution, plants have become associated with guilds of plant-growth-promoting rhizobacteria (PGPR), which raises the possibility that individual PGPR populations may have developed mechanisms to cointeract with one another on plant roots. We hypothesize that this has resulted in signaling phenomena between different types of PGPR colonizing the same roots. Here, the objective was to determine whether the Pseudomonas secondary metabolite 2,4-diacetylphloroglucinol (DAPG) can act as a signal on Azospirillum PGPR and enhance the phytostimulation effects of the latter. On roots, the DAPG-producing Pseudomonas fluorescens F113 strain but not its phl-negative mutant enhanced the phytostimulatory effect of Azospirillum brasilense Sp245-Rif on wheat. Accordingly, DAPG enhanced Sp245-Rif traits involved in root colonization (cell motility, biofilm formation, and poly-β-hydroxybutyrate production) and phytostimulation (auxin production). A differential fluorescence induction promoter-trapping approach based on flow cytometry was then used to identify Sp245-Rif genes upregulated by DAPG. DAPG enhanced expression of a wide range of Sp245-Rif genes, including genes involved in phytostimulation. Four of them (i.e., ppdC, flgE, nirK, and nifX-nifB) tended to be upregulated on roots in the presence of P. fluorescens F113 compared with its phl-negative mutant. Our results indicate that DAPG can act as a signal by which some beneficial pseudomonads may stimulate plant-beneficial activities of Azospirillum PGPR.
Collapse
|
41
|
He YX, Huang L, Xue Y, Fei X, Teng YB, Rubin-Pitel SB, Zhao H, Zhou CZ. Crystal structure and computational analyses provide insights into the catalytic mechanism of 2,4-diacetylphloroglucinol hydrolase PhlG from Pseudomonas fluorescens. J Biol Chem 2010; 285:4603-11. [PMID: 20018877 PMCID: PMC2836065 DOI: 10.1074/jbc.m109.044180] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 11/03/2009] [Indexed: 12/24/2022] Open
Abstract
2,4-Diacetylphloroglucinol hydrolase PhlG from Pseudomonas fluorescens catalyzes hydrolytic carbon-carbon (C-C) bond cleavage of the antibiotic 2,4-diacetylphloroglucinol to form monoacetylphloroglucinol, a rare class of reactions in chemistry and biochemistry. To investigate the catalytic mechanism of this enzyme, we determined the three-dimensional structure of PhlG at 2.0 A resolution using x-ray crystallography and MAD methods. The overall structure includes a small N-terminal domain mainly involved in dimerization and a C-terminal domain of Bet v1-like fold, which distinguishes PhlG from the classical alpha/beta-fold hydrolases. A dumbbell-shaped substrate access tunnel was identified to connect a narrow interior amphiphilic pocket to the exterior solvent. The tunnel is likely to undergo a significant conformational change upon substrate binding to the active site. Structural analysis coupled with computational docking studies, site-directed mutagenesis, and enzyme activity analysis revealed that cleavage of the 2,4-diacetylphloroglucinol C-C bond proceeds via nucleophilic attack by a water molecule, which is coordinated by a zinc ion. In addition, residues Tyr(121), Tyr(229), and Asn(132), which are predicted to be hydrogen-bonded to the hydroxyl groups and unhydrolyzed acetyl group, can finely tune and position the bound substrate in a reactive orientation. Taken together, these results revealed the active sites and zinc-dependent hydrolytic mechanism of PhlG and explained its substrate specificity as well.
Collapse
Affiliation(s)
- Yong-Xing He
- From the Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China and
| | - Liang Huang
- From the Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China and
| | - Yanyan Xue
- From the Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China and
| | - Xue Fei
- From the Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China and
| | - Yan-Bin Teng
- From the Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China and
| | | | - Huimin Zhao
- the Departments of Chemical and Biomolecular Engineering and
- Chemistry and
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Cong-Zhao Zhou
- From the Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China and
| |
Collapse
|
42
|
Affiliation(s)
- Ben Lugtenberg
- Leiden University, Institute of Biology, Clusius Laboratory, 2333 AL Leiden, The Netherlands; ,
| | - Faina Kamilova
- Leiden University, Institute of Biology, Clusius Laboratory, 2333 AL Leiden, The Netherlands; ,
| |
Collapse
|
43
|
Gross H, Loper JE. Genomics of secondary metabolite production by Pseudomonas spp. Nat Prod Rep 2009; 26:1408-46. [PMID: 19844639 DOI: 10.1039/b817075b] [Citation(s) in RCA: 405] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Harald Gross
- Institute for Pharmaceutical Biology, Nussallee 6, 53115, Bonn, Germany.
| | | |
Collapse
|
44
|
Paulin MM, Novinscak A, St-Arnaud M, Goyer C, DeCoste NJ, Privé JP, Owen J, Filion M. Transcriptional activity of antifungal metabolite-encoding genes phlD and hcnBC in Pseudomonas spp. using qRT-PCR. FEMS Microbiol Ecol 2009; 68:212-22. [PMID: 19573202 DOI: 10.1111/j.1574-6941.2009.00669.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Production of 2,4-diacetylphloroglucinol (2,4-DAPG) and hydrogen cyanide (HCN) by Pseudomonas spp. shows great potential for controlling soilborne plant pathogens. However, little is known about the transcriptional activity of phl and hcn genes encoding 2,4-DAPG and HCN, respectively. To progress toward a better understanding of what triggers phl and hcn expression under rhizosphere conditions, novel PCR primers and TaqMan probes were designed to monitor relative phlD and hcnBC expression in quantitative real time-PCR assays. Transcriptional activity of phlD and hcnBC was studied in time-course confrontational assays using combinations of Pseudomonas spp. isolated in this study: LBUM300 (producing 2,4-DAPG and HCN) and LBUM647 (producing HCN only); pathogens Phytophthora cactorum and Verticillium dahliae; and solid growth media King's B medium and potato dextrose agar. In correlation with the antagonistic activity observed, expression of phlD and hcnBC and production of 2,4-DAPG was detected throughout the 14-day course of the experiment in LBUM300 on both media, while hcnBC expression diminished to undetectable levels in LBUM647. In LBUM300 expression of phlD and hcnBC significantly changed over time and was also influenced by the presence of pathogen and growth media following time-dependent responses.
Collapse
Affiliation(s)
- Mélanie M Paulin
- Department of Biology, Université de Moncton, Moncton, New Brunswick, Canada
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Someya N, Akutsu K. Indigenous bacteria may interfere with the biocontrol of plant diseases. Naturwissenschaften 2009; 96:743-7. [PMID: 19288072 DOI: 10.1007/s00114-009-0524-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 02/06/2009] [Accepted: 03/02/2009] [Indexed: 11/30/2022]
Abstract
Prodigiosin is a reddish antibiotic pigment that plays an important role in the biocontrol of plant diseases by the bacterium Serratia marcescens. However, its activity is unstable under agricultural conditions; further, it can be degraded by various environmental factors. To examine the effect of epiphytic microbes on the stability of prodigiosin used for biological control processes, we collected a total of 1,280 bacterial isolates from the phylloplane of cyclamen and tomato plants. Approximately 72% of the bacterial strains isolated from the cyclamen plants and 66% of those isolated from the tomato plants grew on minimal agar medium containing 100 microg ml(-1) prodigiosin. Certain isolates obtained from both plant species exhibited prodigiosin-degrading activity. We compared the 16S rRNA gene sequences derived from the isolates with sequences in a database. The comparison revealed that the sequences determined for the prodigiosin-degrading isolates were homologous to those of the genera Pseudomonas, Caulobacter, Rhizobium, Sphingomonas, Janthinobacterium, Novosphingobium, and Rathayibacter. These results indicate that indigenous epiphytic microorganisms may interfere with the interaction between plant pathogens and biocontrol agents by degrading the antibiotics produced by the agents.
Collapse
Affiliation(s)
- Nobutaka Someya
- National Agricultural Research Center for Hokkaido Region, National Agriculture and Food Research Organization, Shinsei, Memuro-cho, Kasai-gun, Hokkaido 082-0081, Japan.
| | | |
Collapse
|
46
|
Evolutionary history of the phl gene cluster in the plant-associated bacterium Pseudomonas fluorescens. Appl Environ Microbiol 2009; 75:2122-31. [PMID: 19181839 DOI: 10.1128/aem.02052-08] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas fluorescens is of agricultural and economic importance as a biological control agent largely because of its plant association and production of secondary metabolites, in particular 2,4-diacetylphloroglucinol (2,4-DAPG). This polyketide, which is encoded by the eight-gene phl cluster, has antimicrobial effects on phytopathogens, promotes amino acid exudation from plant roots, and induces systemic resistance in plants. Despite its importance, 2,4-DAPG production is limited to a subset of P. fluorescens strains. Determination of the evolution of the phl cluster and understanding the selective pressures promoting its retention or loss in lineages of P. fluorescens will help in the development of P. fluorescens as a viable and effective inoculant for application in agriculture. In this study, genomic and sequence-based approaches were integrated to reconstruct the phylogeny of P. fluorescens and the phl cluster. It was determined that 2,4-DAPG production is an ancestral trait in the species P. fluorescens but that most lineages have lost this capacity through evolution. Furthermore, intragenomic recombination has relocated the phl cluster within the P. fluorescens genome at least three times, but the integrity of the cluster has always been maintained. The possible evolutionary and functional implications for retention of the phl cluster and 2,4-DAPG production in some lineages of P. fluorescens are discussed.
Collapse
|
47
|
Abstract
This review describes secondary metabolites that have been shown to be synthesized by symbiotic bacteria, or for which this possibility has been discussed. It includes 365 references.
Collapse
Affiliation(s)
- Jörn Piel
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany.
| |
Collapse
|
48
|
|
49
|
Alexander DC, Behr MA. Rv1773 is a transcriptional repressor deleted from BCG-Pasteur. Tuberculosis (Edinb) 2007; 87:421-5. [PMID: 17669688 DOI: 10.1016/j.tube.2007.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 04/26/2007] [Accepted: 05/08/2007] [Indexed: 12/18/2022]
Abstract
Mycobacterium bovis Bacille Calmette-Guérin (BCG) is a live attenuated vaccine for the prevention of tuberculosis. Transcriptome comparison reveals dysregulated expression of two genes, Rv1774 and Rv1775, exclusively in the Pasteur strain of BCG. We show that these genes form a bicistronic operon regulated by Rv1773, a transcriptional repressor deleted during the in vitro evolution of BCG.
Collapse
Affiliation(s)
- David C Alexander
- McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
50
|
Weller DM, Landa BB, Mavrodi OV, Schroeder KL, De La Fuente L, Blouin Bankhead S, Allende Molar R, Bonsall RF, Mavrodi DV, Thomashow LS. Role of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in the defense of plant roots. PLANT BIOLOGY (STUTTGART, GERMANY) 2007; 9:4-20. [PMID: 17058178 DOI: 10.1055/s-2006-924473] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Plants have evolved strategies of stimulating and supporting specific groups of antagonistic microorganisms in the rhizosphere as a defense against diseases caused by soilborne plant pathogens owing to a lack of genetic resistance to some of the most common and widespread soilborne pathogens. Some of the best examples of natural microbial defense of plant roots occur in disease suppressive soils. Soil suppressiveness against many different diseases has been described. Take-all is an important root disease of wheat, and soils become suppressive to take-all when wheat or barley is grown continuously in a field following a disease outbreak; this phenomenon is known as take-all decline (TAD). In Washington State, USA and The Netherlands, TAD results from the enrichment during monoculture of populations of 2,4-diacetylphloroglucinol (2,4-DAPG)-producing Pseudomonas fluorescens to a density of 10 (5) CFU/g of root, the threshold required to suppress the take-all pathogen, Gaeumannomyces graminis var. tritici. 2,4-DAPG-producing P. fluorescens also are enriched by monoculture of other crops such as pea and flax, and evidence is accumulating that 2,4-DAPG producers contribute to the defense of plant roots in many different agroecosystems. At this time, 22 distinct genotypes of 2,4-DAPG producers (designated A - T, PfY and PfZ) have been defined by whole-cell repetitive sequence-based (rep)-PCR analysis, restriction fragment length polymorphism (RFLP) analysis of PHLD, and phylogenetic analysis of PHLD, but the number of genotypes is expected to increase. The genotype of an isolate is predictive of its rhizosphere competence on wheat and pea. Multiple genotypes often occur in a single soil and the crop species grown modulates the outcome of the competition among these genotypes in the rhizosphere. 2,4-DAPG producers are highly effective biocontrol agents against a variety of plant diseases and ideally suited for serving as vectors for expressing other biocontrol traits in the rhizosphere.
Collapse
Affiliation(s)
- D M Weller
- USDA-ARS Root Disease and Biological Control Research Unit, Washington State University, P.O. Box 646430, 367 Johnson Hall, Pullman, WA 99164-6430, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|