1
|
Wilkes R, Zhou N, Carroll AL, Aryal O, Teitel KP, Wilson RS, Zhang L, Kapoor A, Castaneda E, Guss AM, Waldbauer JR, Aristilde L. Mechanisms of Polyethylene Terephthalate Pellet Fragmentation into Nanoplastics and Assimilable Carbons by Wastewater Comamonas. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19338-19352. [PMID: 39360733 PMCID: PMC11526368 DOI: 10.1021/acs.est.4c06645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 10/30/2024]
Abstract
Comamonadaceae bacteria are enriched on poly(ethylene terephthalate) (PET) microplastics in wastewaters and urban rivers, but the PET-degrading mechanisms remain unclear. Here, we investigated these mechanisms with Comamonas testosteroniKF-1, a wastewater isolate, by combining microscopy, spectroscopy, proteomics, protein modeling, and genetic engineering. Compared to minor dents on PET films, scanning electron microscopy revealed significant fragmentation of PET pellets, resulting in a 3.5-fold increase in the abundance of small nanoparticles (<100 nm) during 30-day cultivation. Infrared spectroscopy captured primarily hydrolytic cleavage in the fragmented pellet particles. Solution analysis further demonstrated double hydrolysis of a PET oligomer, bis(2-hydroxyethyl) terephthalate, to the bioavailable monomer terephthalate. Supplementation with acetate, a common wastewater co-substrate, promoted cell growth and PET fragmentation. Of the multiple hydrolases encoded in the genome, intracellular proteomics detected only one, which was found in both acetate-only and PET-only conditions. Homology modeling of this hydrolase structure illustrated substrate binding analogous to reported PET hydrolases, despite dissimilar sequences. Mutants lacking this hydrolase gene were incapable of PET oligomer hydrolysis and had a 21% decrease in PET fragmentation; re-insertion of the gene restored both functions. Thus, we have identified constitutive production of a key PET-degrading hydrolase in wastewater Comamonas, which could be exploited for plastic bioconversion.
Collapse
Affiliation(s)
- Rebecca
A. Wilkes
- Department
of Civil and Environmental Engineering, McCormick School of Engineering
and Applied Science, Northwestern University, Evanston, Illinois 60208, United States
| | - Nanqing Zhou
- Department
of Civil and Environmental Engineering, McCormick School of Engineering
and Applied Science, Northwestern University, Evanston, Illinois 60208, United States
| | - Austin L. Carroll
- Biosciences
Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Ojaswi Aryal
- Department
of Civil and Environmental Engineering, McCormick School of Engineering
and Applied Science, Northwestern University, Evanston, Illinois 60208, United States
| | - Kelly P. Teitel
- Department
of Civil and Environmental Engineering, McCormick School of Engineering
and Applied Science, Northwestern University, Evanston, Illinois 60208, United States
| | - Rebecca S. Wilson
- Department
of Civil and Environmental Engineering, McCormick School of Engineering
and Applied Science, Northwestern University, Evanston, Illinois 60208, United States
| | - Lichun Zhang
- Department
of the Geophysical Sciences, University
of Chicago, Chicago, Illinois 60637, United States
| | - Arushi Kapoor
- Department
of Civil and Environmental Engineering, McCormick School of Engineering
and Applied Science, Northwestern University, Evanston, Illinois 60208, United States
| | - Edgar Castaneda
- Northwestern
Center for Synthetic Biology, Northwestern
University, Evanston, Illinois 60208, United States
| | - Adam M. Guss
- Biosciences
Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jacob R. Waldbauer
- Department
of the Geophysical Sciences, University
of Chicago, Chicago, Illinois 60637, United States
| | - Ludmilla Aristilde
- Department
of Civil and Environmental Engineering, McCormick School of Engineering
and Applied Science, Northwestern University, Evanston, Illinois 60208, United States
- Northwestern
Center for Synthetic Biology, Northwestern
University, Evanston, Illinois 60208, United States
| |
Collapse
|
2
|
Malhotra H, Dhamale T, Kaur S, Kasarlawar ST, Phale PS. Metabolic engineering of Pseudomonas bharatica CSV86 T to degrade Carbaryl (1-naphthyl- N-methylcarbamate) via the salicylate-catechol route. Microbiol Spectr 2024; 12:e0028424. [PMID: 38869268 PMCID: PMC11302072 DOI: 10.1128/spectrum.00284-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/22/2024] [Indexed: 06/14/2024] Open
Abstract
Pseudomonas bharatica CSV86T displays the unique property of preferential utilization of aromatic compounds over simple carbon sources like glucose and glycerol and their co-metabolism with organic acids. Well-characterized growth conditions, aromatic compound metabolic pathways and their regulation, genome sequence, and advantageous eco-physiological traits (indole acetic acid production, alginate production, fusaric acid resistance, organic sulfur utilization, and siderophore production) make it an ideal host for metabolic engineering. Strain CSV86T was engineered for Carbaryl (1-naphthyl-N-methylcarbamate) degradation via salicylate-catechol route by expression of a Carbaryl hydrolase (CH) and a 1-naphthol 2-hydroxylase (1NH). Additionally, the engineered strain exhibited faster growth on Carbaryl upon expression of the McbT protein (encoded by the mcbT gene, a part of Carbaryl degradation upper operon of Pseudomonas sp. C5pp). Bioinformatic analyses predict McbT to be an outer membrane protein, and Carbaryl-dependent expression suggests its probable role in Carbaryl uptake. Enzyme activity and protein analyses suggested periplasmic localization of CH (carrying transmembrane domain plus signal peptide sequence at the N-terminus) and 1NH, enabling compartmentalization of the pathway. Enzyme activity, whole-cell oxygen uptake, spent media analyses, and qPCR results suggest that the engineered strain preferentially utilizes Carbaryl over glucose. The plasmid-encoded degradation property was stable for 75-90 generations even in the absence of selection pressure (kanamycin or Carbaryl). These results indicate the utility of P. bharatica CSV86T as a potential host for engineering various aromatic compound degradation pathways.IMPORTANCEThe current study describes engineering of Carbaryl metabolic pathway in Pseudomonas bharatica CSV86T. Carbaryl, a naphthalene-derived carbamate pesticide, is known to act as an endocrine disruptor, mutagen, cytotoxin, and carcinogen. Removal of xenobiotics from the environment using bioremediation faces challenges, such as slow degradation rates, instability of the degradation phenotype, and presence of simple carbon sources in the environment. The engineered CSV86-MEC2 overcomes these disadvantages as Carbaryl was degraded preferentially over glucose. Furthermore, the plasmid-borne degradation phenotype is stable, and presence of glucose and organic acids does not repress Carbaryl metabolism in the strain. The study suggests the role of outer membrane protein McbT in Carbaryl transport. This work highlights the suitability of P. bharatica CSV86T as an ideal host for engineering aromatic pollutant degradation pathways.
Collapse
Affiliation(s)
- Harshit Malhotra
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Tushar Dhamale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Sukhjeet Kaur
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Sravanti T. Kasarlawar
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Prashant S. Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| |
Collapse
|
3
|
Martínez-Castillo L, González-Ramírez C, Cortazar-Martínez A, González-Reyes J, Otazo-Sánchez E, Villagómez-Ibarra J, Velázquez-Jiménez R, Vázquez-Cuevas G, Madariaga-Navarrete A, Acevedo-Sandoval O, Romo-Gómez C. Mathematical modeling for operative improvement of the decoloration of Acid Red 27 by a novel microbial consortium of Trametes versicolor and Pseudomonas putida: A multivariate sensitivity analysis. Heliyon 2023; 9:e21793. [PMID: 38027625 PMCID: PMC10661207 DOI: 10.1016/j.heliyon.2023.e21793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/14/2023] [Accepted: 10/28/2023] [Indexed: 12/01/2023] Open
Abstract
In this work, it is presented a first approach of a mathematical and kinetic analysis for improving the decoloration and further degradation process of an azo dye named acid red 27 (AR27), by means of a novel microbial consortium formed by the fungus Trametes versicolor and the bacterium Pseudomonas putida. A multivariate analysis was carried out by simulating scenarios with different operating conditions and developing a specific mathematical model based on kinetic equations describing all stages of the biological process, from microbial growth and substrate consuming to decoloration and degradation of intermediate compounds. Additionally, a sensitivity analysis was performed by using a factorial design and the Response Surface Method (RSM), for determining individual and interactive effects of variables like, initial glucose concentration, initial dye concentration and the moment in time for bacterial inoculation, on response variables assessed in terms of the minimum time for: full decoloration of AR27 (R1 = 2.375 days); maximum production of aromatic metabolites (R2 = 1.575 days); and full depletion of aromatic metabolites (R3 = 12.9 days). Using RSM the following conditions improved the biological process, being: an initial glucose concentration of 20 g l-1, an initial AR27 concentration of 0.2 g l-1 and an inoculation moment in time of P. putida at day 1. The mathematical model is a feasible tool for describing AR27 decoloration and its further degradation by the microbial consortium of T. versicolor and P. putida, this model will also work as a mathematical basis for designing novel bio-reaction systems than can operate with the same principle of the described consortium.
Collapse
Affiliation(s)
- L.A. Martínez-Castillo
- Universidad Autónoma del Estado de Hidalgo, Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Carr. Pachuca-Tulancingo km. 4.5, Col. Carboneras, Mineral de la Reforma, Hidalgo, C.P. 42184, Mexico
| | - C.A. González-Ramírez
- Universidad Autónoma del Estado de Hidalgo, Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Carr. Pachuca-Tulancingo km. 4.5, Col. Carboneras, Mineral de la Reforma, Hidalgo, C.P. 42184, Mexico
| | - A. Cortazar-Martínez
- Universidad Autónoma del Estado de Hidalgo, Escuela Superior de Apan, Carr. Apan-Calpulalpan, S/N, Col. Chimalpa Tlalayote, Apan, Hidalgo, C.P. 43920, Mexico
| | - J.R. González-Reyes
- Investigación Aplicada al Bienestar Social y Ambiental (INABISA), A.C., Río Papagayo S/N, Col. Amp. El Palmar, Pachuca, Hidalgo, C.P. 42088, Mexico
| | - E.M. Otazo-Sánchez
- Universidad Autónoma del Estado de Hidalgo, Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Carr. Pachuca-Tulancingo km. 4.5, Col. Carboneras, Mineral de la Reforma, Hidalgo, C.P. 42184, Mexico
| | - J.R. Villagómez-Ibarra
- Universidad Autónoma del Estado de Hidalgo, Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Carr. Pachuca-Tulancingo km. 4.5, Col. Carboneras, Mineral de la Reforma, Hidalgo, C.P. 42184, Mexico
| | - R. Velázquez-Jiménez
- Universidad Autónoma del Estado de Hidalgo, Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Carr. Pachuca-Tulancingo km. 4.5, Col. Carboneras, Mineral de la Reforma, Hidalgo, C.P. 42184, Mexico
| | - G.M. Vázquez-Cuevas
- Universidad Autónoma del Estado de Hidalgo, Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Carr. Pachuca-Tulancingo km. 4.5, Col. Carboneras, Mineral de la Reforma, Hidalgo, C.P. 42184, Mexico
| | - A. Madariaga-Navarrete
- Universidad Autónoma del Estado de Hidalgo, Área Académica de Ciencias Agrícolas y Forestales, Instituto de Ciencias Agropecuarias, Carr. Tulancingo-Santiago Tulantepec S/N, Tulancingo, Hidalgo, C.P. 43600, Mexico
| | - O.A. Acevedo-Sandoval
- Universidad Autónoma del Estado de Hidalgo, Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Carr. Pachuca-Tulancingo km. 4.5, Col. Carboneras, Mineral de la Reforma, Hidalgo, C.P. 42184, Mexico
| | - C. Romo-Gómez
- Universidad Autónoma del Estado de Hidalgo, Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Carr. Pachuca-Tulancingo km. 4.5, Col. Carboneras, Mineral de la Reforma, Hidalgo, C.P. 42184, Mexico
| |
Collapse
|
4
|
Shrestha S, Awasthi D, Chen Y, Gin J, Petzold CJ, Adams PD, Simmons BA, Singer SW. Simultaneous carbon catabolite repression governs sugar and aromatic co-utilization in Pseudomonas putida M2. Appl Environ Microbiol 2023; 89:e0085223. [PMID: 37724856 PMCID: PMC10617552 DOI: 10.1128/aem.00852-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/14/2023] [Indexed: 09/21/2023] Open
Abstract
Pseudomonas putida have emerged as promising biocatalysts for the conversion of sugars and aromatic compounds obtained from lignocellulosic biomass. Understanding the role of carbon catabolite repression (CCR) in these strains is critical to optimize biomass conversion to fuels and chemicals. The CCR functioning in P. putida M2, a strain capable of consuming both hexose and pentose sugars as well as aromatic compounds, was investigated by cultivation experiments, proteomics, and CRISPRi-based gene repression. Strain M2 co-utilized sugars and aromatic compounds simultaneously; however, during cultivation with glucose and aromatic compounds (p-coumarate and ferulate) mixture, intermediates (4-hydroxybenzoate and vanillate) accumulated, and substrate consumption was incomplete. In contrast, xylose-aromatic consumption resulted in transient intermediate accumulation and complete aromatic consumption, while xylose was incompletely consumed. Proteomics analysis revealed that glucose exerted stronger repression than xylose on the aromatic catabolic proteins. Key glucose (Eda) and xylose (XylX) catabolic proteins were also identified at lower abundance during cultivation with aromatic compounds implying simultaneous catabolite repression by sugars and aromatic compounds. Reduction of crc expression via CRISPRi led to faster growth and glucose and p-coumarate uptake in the CRISPRi strains compared to the control, while no difference was observed on xylose+p-coumarate. The increased abundances of Eda and amino acid biosynthesis proteins in the CRISPRi strain further supported these observations. Lastly, small RNAs (sRNAs) sequencing results showed that CrcY and CrcZ homologues levels in M2, previously identified in P. putida strains, were lower under strong CCR (glucose+p-coumarate) condition compared to when repression was absent (p-coumarate or glucose only).IMPORTANCEA newly isolated Pseudomonas putida strain, P. putida M2, can utilize both hexose and pentose sugars as well as aromatic compounds making it a promising host for the valorization of lignocellulosic biomass. Pseudomonads have developed a regulatory strategy, carbon catabolite repression, to control the assimilation of carbon sources in the environment. Carbon catabolite repression may impede the simultaneous and complete metabolism of sugars and aromatic compounds present in lignocellulosic biomass and hinder the development of an efficient industrial biocatalyst. This study provides insight into the cellular physiology and proteome during mixed-substrate utilization in P. putida M2. The phenotypic and proteomics results demonstrated simultaneous catabolite repression in the sugar-aromatic mixtures, while the CRISPRi and sRNA sequencing demonstrated the potential role of the crc gene and small RNAs in carbon catabolite repression.
Collapse
Affiliation(s)
- Shilva Shrestha
- Joint BioEnergy Institute, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Deepika Awasthi
- Joint BioEnergy Institute, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Yan Chen
- Joint BioEnergy Institute, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Jennifer Gin
- Joint BioEnergy Institute, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Christopher J. Petzold
- Joint BioEnergy Institute, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Paul D. Adams
- Joint BioEnergy Institute, Emeryville, California, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Blake A. Simmons
- Joint BioEnergy Institute, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Steven W. Singer
- Joint BioEnergy Institute, Emeryville, California, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
5
|
Malhotra H, Saha BK, Phale PS. Development of efficient modules for recombinant protein expression and periplasmic localiszation in Pseudomonas bharatica CSV86 T. Protein Expr Purif 2023; 210:106310. [PMID: 37211150 DOI: 10.1016/j.pep.2023.106310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
Escherichia coli has been widely employed as a host for heterologous protein expression. However, due to certain limitations, alternative hosts like Pseudomonas, Lactococcus and Bacillus are being explored. Pseudomonas bharatica CSV86T, a novel soil isolate, preferentially degrades wide range of aromatics over simple carbon sources like glucose and glycerol. Strain also possesses advantageous eco-physiological traits, making it an ideal host for engineering xenobiotic degradation pathways, which necessitates the development of heterologous expression systems. Based on the efficient growth, short lag-phase and rapid metabolism of naphthalene, Pnah and Psal promoters (regulated by NahR) were selected for expression. Pnah was found to be strong and leaky as compared to Psal, using 1-naphthol 2-hydroxylase (1NH, ∼66 kDa) as reporter gene in strain CSV86T. The Carbaryl hydrolase (CH, ∼72kDa) from Pseudomonas sp. C5pp was expressed under Pnah in strain CSV86T and could successfully be translocated to the periplasm due to the presence of the Tmd + Sp sequence. The recombinant CH was purified from the periplasmic fraction and the kinetic characteristics were found to be similar to the native protein from strain C5pp. These results potentiate the suitability of P. bharatica CSV86T as a desirable host, while Pnah and the Tmd + Sp can be employed for overexpression and periplasmic localisation, respectively. Such tools find application in heterologous protein expression and metabolic engineering applications.
Collapse
Affiliation(s)
- Harshit Malhotra
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Powai, Mumbai, 400076, India
| | - Braja Kishor Saha
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Powai, Mumbai, 400076, India
| | - Prashant S Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
6
|
Shah BA, Kasarlawar ST, Phale PS. Glucose-6-Phosphate Dehydrogenase, ZwfA, a Dual Cofactor-Specific Isozyme Is Predominantly Involved in the Glucose Metabolism of Pseudomonas bharatica CSV86 T. Microbiol Spectr 2022; 10:e0381822. [PMID: 36354357 PMCID: PMC9769727 DOI: 10.1128/spectrum.03818-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/12/2022] [Indexed: 11/12/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase (Zwf) is an important enzyme in glucose metabolism via the Entner-Doudoroff pathway and the first enzyme in the oxidative pentose-phosphate pathway. It generates NAD(P)H during the conversion of glucose-6-phosphate (G6P) to 6-phosphogluconolactone, thus aiding in anabolic processes, energy yield, and oxidative stress responses. Pseudomonas bharatica CSV86T preferentially utilized aromatic compounds over glucose and exhibited a significantly lower growth rate on glucose (0.24 h-1) with a prolonged lag phase (~10 h). In strain CSV86T, glucose was metabolized via the intracellular phosphorylative route only because it lacked an oxidative (gluconate and 2-ketogluconate) route. The genome harbored three genes zwfA, zwfB, and zwfC encoding three Zwf isozymes. The present study aimed to understand gene arrangement, gene expression profiling, and molecular and kinetic properties of the purified enzymes to unveil their physiological significance in the strain CSV86T. The zwfA was found to be a part of the zwfA-pgl-eda operon, which was proximal to other glucose transport and metabolic clusters. The zwfB was found to be arranged as a gnd-zwfB operon, while zwfC was present independently. Among the three, zwfA was transcribed maximally, and the purified ZwfA displayed the highest catalytic efficiency, cooperativity with respect to G6P, and dual cofactor specificity. Isozymes ZwfB and ZwfC were NADP+-preferring and NADP+-specific, respectively. Among other functionally characterized Zwfs, ZwfA from strain CSV86T displayed poor catalytic efficiency and the further absence of oxidative routes of glucose metabolism reflected its lower growth rate on glucose compared to P. putida KT2440 and could be probable reasons for the unique carbon source utilization hierarchy. IMPORTANCE Pseudomonas bharatica CSV86T metabolizes glucose exclusively via the intracellular phosphorylative Entner-Doudoroff pathway leading the entire glucose flux through Zwf as the strain lacks oxidative routes. This may lead to limiting the concentration of downstream metabolic intermediates. The strain CSV86T possesses three isoforms of glucose-6-phosphate dehydrogenase, ZwfA, ZwfB, and ZwfC. The expression profile and kinetic properties of purified enzymes will help to understand glucose metabolism. Isozyme ZwfA dominated in terms of expression and displayed cooperativity with dual cofactor specificity. ZwfB preferred NADP+, and ZwfC was NADP+ specific, which may aid in redox cofactor balance. Such beneficial metabolic flexibility facilitated the regulation of metabolic pathways giving survival/fitness advantages in dynamic environments. Additionally, multiple genes allowed the distribution of function among these isoforms where the primary function was allocated to one of the isoforms.
Collapse
Affiliation(s)
- Bhavik A. Shah
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Mumbai, Mumbai, India
| | - Sravanti T. Kasarlawar
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Mumbai, Mumbai, India
| | - Prashant S. Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Mumbai, Mumbai, India
| |
Collapse
|
7
|
Mohammad SH, Bhukya B. Biotransformation of toxic lignin and aromatic compounds of lignocellulosic feedstock into eco-friendly biopolymers by Pseudomonas putida KT2440. BIORESOURCE TECHNOLOGY 2022; 363:128001. [PMID: 36150429 DOI: 10.1016/j.biortech.2022.128001] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Lignin and its derivatives are the most neglected compounds in bio-processing industry due to their toxic and recalcitrant nature. Considering this, the present study aimed at valorizing these toxic compounds by employing Pseudomonas putida KT2440. Acclimatization resulted in improved tolerance with considerable lag phase reduction and aromatics degradation. Glucose as co-substrate enhanced growth and degradation in the toxic environment. The strain was able to degrade 30 % (1.60 g·L-1) lignin, 45 mM benzoate, 40 mM p-coumarate, 35 mM ferulate, 10 mM phenol, 10 mM pyrocatechol and 8 mM aromatics mixture. The strain synthesized biopolymers using these compounds under feast and famine conditions. Characterization using GC-MS, FT-IR, H1 NMR revealed them to be Polyhydroxyalkanoate (PHA) heteropolymers. All the analyzed PHAs contained versatile monomers with Hexadecanoic acid being the major one. This is a novel attempt towards lignin and aromatics degradation coupled with biopolymers synthesis without any genetic manipulation of the strain.
Collapse
Affiliation(s)
- Saddam Hussain Mohammad
- Centre for Microbial and Fermentation Technology, Department of Microbiology, University College of Science, Osmania University, Hyderabad 500007, Telangana State, India
| | - Bhima Bhukya
- Centre for Microbial and Fermentation Technology, Department of Microbiology, University College of Science, Osmania University, Hyderabad 500007, Telangana State, India.
| |
Collapse
|
8
|
Dhamale T, Saha BK, Papade SE, Singh S, Phale PS. A unique global metabolic trait of Pseudomonas bharatica CSV86 T: metabolism of aromatics over simple carbon sources and co-metabolism with organic acids. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35925665 DOI: 10.1099/mic.0.001206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hierarchical utilization of substrate by microbes (utilization of simple carbon sources prior to complex ones) poses a major limitation to the efficient remediation of aromatic pollutants. Aromatic compounds, being complex and reduced in nature, appear to be a deferred choice as the carbon source in the presence of a plethora of simple organic compounds in the environment. The soil bacterium Pseudomonas bharatica CSV86T displays a unique carbon source utilization hierarchy. It preferentially utilizes aromatics over glucose and co-metabolizes them with succinate or pyruvate (Basu et al., 2006, Applied and Environmental Microbiology, 72 : 22226-2230). In the present study, the substrate utilization hierarchy for strain CSV86T was tested for additional simple carbon sources such as glycerol, acetate, and tri-carboxylic acid (TCA) cycle intermediates like α-ketoglutarate and fumarate. When grown on a mixture of aromatics (benzoate or naphthalene) plus glycerol, the strain displayed a diauxic growth profile with significantly high activity of aromatic utilization enzymes (catechol 1,2- or 2,3-dioxygenase, respectively) in the first-log phase. This suggests utilization of aromatics in the first-log phase followed by glycerol in the second-log phase. On a mixture of an aromatic plus organic acid (acetate, α-ketoglutarate or fumarate), the strain displayed a monoauxic growth profile, indicating co-metabolism. Interestingly, the presence of glycerol, acetate, α-ketoglutarate or fumarate does not repress metabolism/utilization of the aromatic. Thus, the substrate utilization hierarchy of strain CSV86T is aromatics=organic acids>glucose/glycerol, which is unique as compared to other Pseudomonas species, where degradation of aromatics is repressed by glycerol, glucose, acetate or organic acids, including TCA cycle intermediates. This novel substrate utilization hierarchy appears to be a global metabolic phenomenon in strain CSV86T, thus implying it to be an ideal host for metabolic engineering as well as for its potential application in bioremediation.
Collapse
Affiliation(s)
- Tushar Dhamale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Powai, Mumbai 400 076, India
| | - Braja Kishor Saha
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Powai, Mumbai 400 076, India
| | - Sandesh E Papade
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Powai, Mumbai 400 076, India
| | - Srushti Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Powai, Mumbai 400 076, India.,Present address: Presently affiliated to TCR Therapeutics, Inc., 100 Binney Street, Cambridge, MA 02142, USA
| | - Prashant S Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Powai, Mumbai 400 076, India
| |
Collapse
|
9
|
Mohapatra B, Malhotra H, Phale PS. Life Within a Contaminated Niche: Comparative Genomic Analyses of an Integrative Conjugative Element ICE nahCSV86 and Two Genomic Islands From Pseudomonas bharatica CSV86 T Suggest Probable Role in Colonization and Adaptation. Front Microbiol 2022; 13:928848. [PMID: 35875527 PMCID: PMC9298801 DOI: 10.3389/fmicb.2022.928848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/08/2022] [Indexed: 11/26/2022] Open
Abstract
Comparative genomic and functional analyses revealed the presence of three genomic islands (GIs, >50 Kb size): ICEnahCSV86, Pseudomonas bharatica genomic island-1 (PBGI-1), and PBGI-2 in the preferentially aromatic-degrading soil bacterium, Pseudomonas bharatica CSV86T. Site-specific genomic integration at or near specific transfer RNAs (tRNAs), near-syntenic structural modules, and phylogenetic relatedness indicated their evolutionary lineage to the type-4 secretion system (T4SS) ICEclc family, thus predicting these elements to be integrative conjugative elements (ICEs). These GIs were found to be present as a single copy in the genome and the encoded phenotypic traits were found to be stable, even in the absence of selection pressure. ICEnahCSV86 harbors naphthalene catabolic (nah-sal) cluster, while PBGI-1 harbors Co-Zn-Cd (czc) efflux genes as cargo modules, whereas PBGI-2 was attributed to as a mixed-function element. The ICEnahCSV86 has been reported to be conjugatively transferred (frequency of 7 × 10–8/donor cell) to Stenotrophomonas maltophilia CSV89. Genome-wide comparative analyses of aromatic-degrading bacteria revealed nah-sal clusters from several Pseudomonas spp. as part of probable ICEs, syntenic to conjugatively transferable ICEnahCSV86 of strain CSV86T, suggesting it to be a prototypical element for naphthalene degradation. It was observed that the plasmids harboring nah-sal clusters were phylogenetically incongruent with predicted ICEs, suggesting genetic divergence of naphthalene metabolic clusters in the Pseudomonas population. Gene synteny, divergence estimates, and codon-based Z-test indicated that ICEnahCSV86 is probably derived from PBGI-2, while multiple recombination events masked the ancestral lineage of PBGI-1. Diversifying selection pressure (dN-dS = 2.27–4.31) imposed by aromatics and heavy metals implied the modular exchange-fusion of various cargo clusters through events like recombination, rearrangement, domain reshuffling, and active site optimization, thus allowing the strain to evolve, adapt, and maximize the metabolic efficiency in a contaminated niche. The promoters (Pnah and Psal) of naphthalene cargo modules (nah, sal) on ICEnahCSV86 were proved to be efficient for heterologous protein expression in Escherichia coli. GI-based genomic plasticity expands the metabolic spectrum and versatility of CSV86T, rendering efficient adaptation to the contaminated niche. Such isolate(s) are of utmost importance for their application in bioremediation and are the probable ideal host(s) for metabolic engineering.
Collapse
Affiliation(s)
- Balaram Mohapatra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Harshit Malhotra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Prashant S Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
10
|
Sequential uptake of aldoses over fructose and enhanced phosphate solubilization in Rhizobium sp. RM. Appl Microbiol Biotechnol 2022; 106:4251-4268. [DOI: 10.1007/s00253-022-11997-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/19/2022] [Accepted: 05/22/2022] [Indexed: 11/02/2022]
|
11
|
Mohapatra B, Nain S, Sharma R, Phale PS. Functional genome mining and taxono-genomics reveal eco-physiological traits and species distinctiveness of aromatic-degrading Pseudomonas bharatica sp. nov. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:464-474. [PMID: 35388632 DOI: 10.1111/1758-2229.13066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Assistive eco-physiological traits are necessary for microbes to adapt and colonize at polluted niches, enabling efficient clean-up. To demarcate species distinctiveness and eco-physiological traits of aromatic compounds metabolizing Pseudomonas sp. CSV86T (earlier identified as Pseudomonas putida), an Indian isolate from a petrol station soil, comparative genome mining, taxono-genomic, and physiological analyses were performed. A 6.79 Mbp genome (62.72 G + C mol%) of CSV86T encodes 6798 CDS and 238 unique genes. Naphthalene metabolism and Co-Zn-Cd resistance gene clusters were part of distinct genomic islands. Abundance of transporters (aromatics, organic acids, amino acids, and metals) and mobile elements (integrases, transposases, conjugative proteins) differentiated CSV86T from its closest relatives. Enhanced siderophore production for Fe-uptake during aromatic metabolism, indole acetic acid production, and fusaric acid resistance wasvalidated by genomic attributes. Full-length 16S-rRNA phylogeny revealed Pseudomonas japonica WLT as a closest relative of CSV86T . However, lower genomic indices (<97% gyrB-rpoB-rpoD homology, <90% ANI, <50% DNA-DNA relatedness) and taxonomic differences (assimilation of organic acids, amino acids, fatty acids composition) substantially differentiated CSV86T from its closest relatives, indicating it to be a novel species as Pseudomonas bharatica. Preferential metabolism of aromatics with advantageous eco-physiological traits renders CSV86T an ideal candidate for bioremediation and host for metabolic engineering.
Collapse
Affiliation(s)
- Balaram Mohapatra
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Powai, Mumbai, Maharashtra, India
| | - Sonam Nain
- Microbial Biotechnology and Genomics, Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research (CSIR), Delhi, India
| | - Rakesh Sharma
- Microbial Biotechnology and Genomics, Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research (CSIR), Delhi, India
| | - Prashant S Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Powai, Mumbai, Maharashtra, India
| |
Collapse
|
12
|
Advenella mandrilli sp. nov., a bacterium isolated from the faeces of Mandrillus sphinx. Antonie van Leeuwenhoek 2022; 115:271-280. [PMID: 35031912 DOI: 10.1007/s10482-021-01695-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/26/2021] [Indexed: 10/19/2022]
Abstract
A novel Gram-negative strain WQ 585T, isolated from the faeces of mandrills (Mandrillus sphinx) collected at Yunnan Wild Animal Park, Yunnan province, China, was subjected to a polyphasic taxonomic study. Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolate belongs to the genus Advenella, sharing 98.5% and 98.2% sequence similarity with the type strain Advenella alkanexedens LAM0050T and Advenella faeciporci M-07T, respectively. The predominant ubiquinone was Q-8. The major cellular fatty acids (> 10%) were C16:0, C17:0 cyclo and Summed Feature 2. The G + C content of the genomic DNA of strain WQ 585T was 49.0%. The whole genome average nucleotide identity (gANI) values of strain WQ 585T with strain A. alkanexedens LAM0050T and A. faeciporci M-07T were 86.7% and 86.7%, and the digital DNA-DNA hybridization values of strain WQ 585T with strain A. alkanexedens LAM0050T and A. faeciporci M-07T were 64.5% and 62.5%, respectively. Growth occurred at 10-45 °C (optimally at 20-30 °C), pH 6.0-9.0 (optimally at pH 7.0), and 0-5% (w/v) NaCl (optimally at 0.5-2.0%). On the basis of the taxonomic evidence, a novel species, Advenella mandrilli sp. nov., is proposed. The type strain is WQ 585T (= KCTC 82396 T = CCTCC AA 2020028 T).
Collapse
|
13
|
Wilkes RA, Waldbauer J, Aristilde L. Analogous Metabolic Decoupling in Pseudomonas putida and Comamonas testosteroni Implies Energetic Bypass to Facilitate Gluconeogenic Growth. mBio 2021; 12:e0325921. [PMID: 34903058 PMCID: PMC8669468 DOI: 10.1128/mbio.03259-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 11/30/2022] Open
Abstract
Gluconeogenic carbon metabolism is not well understood, especially within the context of flux partitioning between energy generation and biomass production, despite the importance of gluconeogenic carbon substrates in natural and engineered carbon processing. Here, using multiple omics approaches, we elucidate the metabolic mechanisms that facilitate gluconeogenic fast-growth phenotypes in Pseudomonas putida and Comamonas testosteroni, two Proteobacteria species with distinct metabolic networks. In contrast to the genetic constraint of C. testosteroni, which lacks the enzymes required for both sugar uptake and a complete oxidative pentose phosphate (PP) pathway, sugar metabolism in P. putida is known to generate surplus NADPH by relying on the oxidative PP pathway within its characteristic cyclic connection between the Entner-Doudoroff (ED) and Embden-Meyerhoff-Parnas (EMP) pathways. Remarkably, similar to the genome-based metabolic decoupling in C. testosteroni, our 13C-fluxomics reveals an inactive oxidative PP pathway and disconnected EMP and ED pathways in P. putida during gluconeogenic feeding, thus requiring transhydrogenase reactions to supply NADPH for anabolism in both species by leveraging the high tricarboxylic acid cycle flux during gluconeogenic growth. Furthermore, metabolomics and proteomics analyses of both species during gluconeogenic feeding, relative to glycolytic feeding, demonstrate a 5-fold depletion in phosphorylated metabolites and the absence of or up to a 17-fold decrease in proteins of the PP and ED pathways. Such metabolic remodeling, which is reportedly lacking in Escherichia coli exhibiting a gluconeogenic slow-growth phenotype, may serve to minimize futile carbon cycling while favoring the gluconeogenic metabolic regime in relevant proteobacterial species. IMPORTANCE Glycolytic metabolism of sugars is extensively studied in the Proteobacteria, but gluconeogenic carbon sources (e.g., organic acids, amino acids, aromatics) that feed into the tricarboxylic acid (TCA) cycle are widely reported to produce a fast-growth phenotype, particularly in species with biotechnological relevance. Much remains unknown about the importance of glycolysis-associated pathways in the metabolism of gluconeogenic carbon substrates. Here, we demonstrate that two distinct proteobacterial species, through genetic constraints or metabolic regulation at specific metabolic nodes, bypass the oxidative PP pathway during gluconeogenic growth and avoid unnecessary carbon fluxes by depleting protein investment into connected glycolysis pathways. Both species can leverage instead the high TCA cycle flux during gluconeogenic feeding to meet NADPH demand. Importantly, lack of a complete oxidative pentose phosphate pathway is a widespread metabolic trait in Proteobacteria with a gluconeogenic carbon preference, thus highlighting the important relevance of our findings toward elucidating the metabolic architecture in these bacteria.
Collapse
Affiliation(s)
- Rebecca A. Wilkes
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois, USA
| | - Jacob Waldbauer
- Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois, USA
| | - Ludmilla Aristilde
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
14
|
Li J, Jia C, Lu Q, Hungate BA, Dijkstra P, Wang S, Wu C, Chen S, Li D, Shim H. Mechanistic insights into the success of xenobiotic degraders resolved from metagenomes of microbial enrichment cultures. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126384. [PMID: 34329005 DOI: 10.1016/j.jhazmat.2021.126384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/17/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Even though microbial communities can be more effective at degrading xenobiotics than cultured micro-organisms, yet little is known about the microbial strategies that underpin xenobiotic biodegradation by microbial communities. Here, we employ metagenomic community sequencing to explore the mechanisms that drive the development of 49 xenobiotic-degrading microbial communities, which were enriched from 7 contaminated soils or sediments with a range of xenobiotic compounds. We show that multiple microbial strategies likely drive the development of xenobiotic degrading communities, notably (i) presence of genes encoding catabolic enzymes to degrade xenobiotics; (ii) presence of genes encoding efflux pumps; (iii) auxiliary catabolic genes on plasmids; and (iv) positive interactions dominate microbial communities with efficient degradation. Overall, the integrated analyses of microbial ecological strategies advance our understanding of microbial processes driving the biodegradation of xenobiotics and promote the design of bioremediation systems.
Collapse
Affiliation(s)
- Junhui Li
- Vanderbilt Microbiome Initiative, Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ 86011, USA.
| | - Chongjian Jia
- Guangdong Eco-Engineering Polytechnic, Guangzhou 510520, China
| | - Qihong Lu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Bruce A Hungate
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ 86011, USA; Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Paul Dijkstra
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ 86011, USA; Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Shanquan Wang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Cuiyu Wu
- College of Natural Resources and Environmental Science, South China Agricultural University, Guangzhou 510642, China
| | - Shaohua Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Deqiang Li
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Hojae Shim
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau SAR 999078, China.
| |
Collapse
|
15
|
Phale PS, Mohapatra B, Malhotra H, Shah BA. Eco-physiological portrait of a novel Pseudomonas sp. CSV86: an ideal host/candidate for metabolic engineering and bioremediation. Environ Microbiol 2021; 24:2797-2816. [PMID: 34347343 DOI: 10.1111/1462-2920.15694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 11/30/2022]
Abstract
Pseudomonas sp. CSV86, an Indian soil isolate, degrades wide range of aromatic compounds like naphthalene, benzoate and phenylpropanoids, amongst others. Isolate displays the unique and novel property of preferential utilization of aromatics over glucose and co-metabolizes them with organic acids. Interestingly, as compared to other Pseudomonads, strain CSV86 harbours only high-affinity glucokinase pathway (and absence of low-affinity oxidative route) for glucose metabolism. Such lack of gluconate loop might be responsible for the novel phenotype of preferential utilization of aromatics. The genome analysis and comparative functional mining indicated a large genome (6.79 Mb) with significant enrichment of regulators, transporters as well as presence of various secondary metabolite production clusters, suggesting its eco-physiological and metabolic versatility. Strain harbours various integrative conjugative elements (ICEs) and genomic islands, probably acquired through horizontal gene transfer events, leading to genome mosaicity and plasticity. Naphthalene degradation genes are arranged as regulonic clusters and found to be part of ICECSV86nah . Various eco-physiological properties and absence of major pathogenicity and virulence factors (risk group-1) in CSV86 suggest it to be an ideal candidate for bioremediation. Further, strain can serve as an ideal chassis for metabolic engineering to degrade various xenobiotics preferentially over simple carbon sources for efficient remediation.
Collapse
Affiliation(s)
- Prashant S Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Mumbai, Maharashtra, 400076, India
| | - Balaram Mohapatra
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Mumbai, Maharashtra, 400076, India
| | - Harshit Malhotra
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Mumbai, Maharashtra, 400076, India
| | - Bhavik A Shah
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Mumbai, Maharashtra, 400076, India
| |
Collapse
|
16
|
Bharwad K, Ghoghari N, Rajkumar S. Crc Regulates Succinate-Mediated Repression of Mineral Phosphate Solubilization in Acinetobacter sp. SK2 by Modulating Membrane Glucose Dehydrogenase. Front Microbiol 2021; 12:641119. [PMID: 34322095 PMCID: PMC8312277 DOI: 10.3389/fmicb.2021.641119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 04/30/2021] [Indexed: 11/13/2022] Open
Abstract
The plant growth-promoting Acinetobacter sp. SK2 isolated from Vigna radiata rhizosphere was characterized for mineral phosphate solubilization (MPS). To understand the contribution of the membrane glucose dehydrogenase (mGDH) and soluble glucose dehydrogenase (sGDH) in glucose oxidation and MPS, insertional inactivation of the corresponding genes was carried out. The disruption of mGDH encoding gene gdhA resulted in complete loss of mGDH activity, which confirmed its role in periplasmic glucose oxidation and gluconate-mediated MPS phenotype. The inactivation of sGDH encoding gene gdhB resulted in loss of sGDH activity, which did not alter the MPS or mGDH activity. Thus, it was also concluded that the sGDH was dispensable in gluconate-mediated MPS. Supplementation of succinate in glucose-containing medium suppressed the activity of mGDH (and sGDH) and therefore repressed the MPS phenotype. The catabolite repression control protein (Crc) of Pseudomonas was implicated in Acinetobacter sp. for a similar function in the presence of preferred and non-preferred carbon sources. To understand the regulatory linkage between Crc and genes for glucose oxidation, crc mutants were generated. The inactivation of crc resulted in increased activity of the mGDH in glucose + succinate-grown cells, indicating derepression. An increase in phosphate solubilization up to 44% in glucose + succinate-grown crc - compared with glucose-grown cells was recorded, which was significantly repressed in the wild-type strain under similar conditions. It is therefore proposed that in Acinetobacter sp. SK2, Crc is involved in the succinate-provoked repression of the MPS phenotype. The gene expression data indicated that Hfq may also have a regulating role in preferential utilization of carbon source by perhaps modulating Crc-Hfq functionality. V. radiata plants inoculated with the wild type improved both root and shoot length by 1.3 to 1.4-fold. However, crc - increased the root and shoot length by 1.6-fold, compared with the uninoculated controls. In mimicking the soil condition (in the presence of multiple carbon sources, e.g., succinate along with glucose), the crc - strain of Acinetobacter sp. SK2 performed better in supporting the growth of V. radiata in pot experiments.
Collapse
|
17
|
Malhotra H, Kaur S, Phale PS. Conserved Metabolic and Evolutionary Themes in Microbial Degradation of Carbamate Pesticides. Front Microbiol 2021; 12:648868. [PMID: 34305823 PMCID: PMC8292978 DOI: 10.3389/fmicb.2021.648868] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 06/14/2021] [Indexed: 12/22/2022] Open
Abstract
Carbamate pesticides are widely used as insecticides, nematicides, acaricides, herbicides and fungicides in the agriculture, food and public health sector. However, only a minor fraction of the applied quantity reaches the target organisms. The majority of it persists in the environment, impacting the non-target biota, leading to ecological disturbance. The toxicity of these compounds to biota is mediated through cholinergic and non-cholinergic routes, thereby making their clean-up cardinal. Microbes, specifically bacteria, have adapted to the presence of these compounds by evolving degradation pathways and thus play a major role in their removal from the biosphere. Over the past few decades, various genetic, metabolic and biochemical analyses exploring carbamate degradation in bacteria have revealed certain conserved themes in metabolic pathways like the enzymatic hydrolysis of the carbamate ester or amide linkage, funnelling of aryl carbamates into respective dihydroxy aromatic intermediates, C1 metabolism and nitrogen assimilation. Further, genomic and functional analyses have provided insights on mechanisms like horizontal gene transfer and enzyme promiscuity, which drive the evolution of degradation phenotype. Compartmentalisation of metabolic pathway enzymes serves as an additional strategy that further aids in optimising the degradation efficiency. This review highlights and discusses the conclusions drawn from various analyses over the past few decades; and provides a comprehensive view of the environmental fate, toxicity, metabolic routes, related genes and enzymes as well as evolutionary mechanisms associated with the degradation of widely employed carbamate pesticides. Additionally, various strategies like application of consortia for efficient degradation, metabolic engineering and adaptive laboratory evolution, which aid in improvising remediation efficiency and overcoming the challenges associated with in situ bioremediation are discussed.
Collapse
Affiliation(s)
| | | | - Prashant S. Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| |
Collapse
|
18
|
Mohapatra B, Phale PS. Microbial Degradation of Naphthalene and Substituted Naphthalenes: Metabolic Diversity and Genomic Insight for Bioremediation. Front Bioeng Biotechnol 2021; 9:602445. [PMID: 33791281 PMCID: PMC8006333 DOI: 10.3389/fbioe.2021.602445] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/09/2021] [Indexed: 12/21/2022] Open
Abstract
Low molecular weight polycyclic aromatic hydrocarbons (PAHs) like naphthalene and substituted naphthalenes (methylnaphthalene, naphthoic acids, 1-naphthyl N-methylcarbamate, etc.) are used in various industries and exhibit genotoxic, mutagenic, and/or carcinogenic effects on living organisms. These synthetic organic compounds (SOCs) or xenobiotics are considered as priority pollutants that pose a critical environmental and public health concern worldwide. The extent of anthropogenic activities like emissions from coal gasification, petroleum refining, motor vehicle exhaust, and agricultural applications determine the concentration, fate, and transport of these ubiquitous and recalcitrant compounds. Besides physicochemical methods for cleanup/removal, a green and eco-friendly technology like bioremediation, using microbes with the ability to degrade SOCs completely or convert to non-toxic by-products, has been a safe, cost-effective, and promising alternative. Various bacterial species from soil flora belonging to Proteobacteria (Pseudomonas, Pseudoxanthomonas, Comamonas, Burkholderia, and Novosphingobium), Firmicutes (Bacillus and Paenibacillus), and Actinobacteria (Rhodococcus and Arthrobacter) displayed the ability to degrade various SOCs. Metabolic studies, genomic and metagenomics analyses have aided our understanding of the catabolic complexity and diversity present in these simple life forms which can be further applied for efficient biodegradation. The prolonged persistence of PAHs has led to the evolution of new degradative phenotypes through horizontal gene transfer using genetic elements like plasmids, transposons, phages, genomic islands, and integrative conjugative elements. Systems biology and genetic engineering of either specific isolates or mock community (consortia) might achieve complete, rapid, and efficient bioremediation of these PAHs through synergistic actions. In this review, we highlight various metabolic routes and diversity, genetic makeup and diversity, and cellular responses/adaptations by naphthalene and substituted naphthalene-degrading bacteria. This will provide insights into the ecological aspects of field application and strain optimization for efficient bioremediation.
Collapse
Affiliation(s)
- Balaram Mohapatra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Prashant S Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
19
|
Xu Z, Pan C, Li X, Hao N, Zhang T, Gaffrey MJ, Pu Y, Cort JR, Ragauskas AJ, Qian WJ, Yang B. Enhancement of polyhydroxyalkanoate production by co-feeding lignin derivatives with glycerol in Pseudomonas putida KT2440. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:11. [PMID: 33413621 PMCID: PMC7792162 DOI: 10.1186/s13068-020-01861-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Efficient utilization of all available carbons from lignocellulosic biomass is critical for economic efficiency of a bioconversion process to produce renewable bioproducts. However, the metabolic responses that enable Pseudomonas putida to utilize mixed carbon sources to generate reducing power and polyhydroxyalkanoate (PHA) remain unclear. Previous research has mainly focused on different fermentation strategies, including the sequential feeding of xylose as the growth stage substrate and octanoic acid as the PHA-producing substrate, feeding glycerol as the sole carbon substrate, and co-feeding of lignin and glucose. This study developed a new strategy-co-feeding glycerol and lignin derivatives such as benzoate, vanillin, and vanillic acid in Pseudomonas putida KT2440-for the first time, which simultaneously improved both cell biomass and PHA production. RESULTS Co-feeding lignin derivatives (i.e. benzoate, vanillin, and vanillic acid) and glycerol to P. putida KT2440 was shown for the first time to simultaneously increase cell dry weight (CDW) by 9.4-16.1% and PHA content by 29.0-63.2%, respectively, compared with feeding glycerol alone. GC-MS results revealed that the addition of lignin derivatives to glycerol decreased the distribution of long-chain monomers (C10 and C12) by 0.4-4.4% and increased the distribution of short-chain monomers (C6 and C8) by 0.8-3.5%. The 1H-13C HMBC, 1H-13C HSQC, and 1H-1H COSY NMR analysis confirmed that the PHA monomers (C6-C14) were produced when glycerol was fed to the bacteria alone or together with lignin derivatives. Moreover, investigation of the glycerol/benzoate/nitrogen ratios showed that benzoate acted as an independent factor in PHA synthesis. Furthermore, 1H, 13C and 31P NMR metabolite analysis and mass spectrometry-based quantitative proteomics measurements suggested that the addition of benzoate stimulated oxidative-stress responses, enhanced glycerol consumption, and altered the intracellular NAD+/NADH and NADPH/NADP+ ratios by up-regulating the proteins involved in energy generation and storage processes, including the Entner-Doudoroff (ED) pathway, the reductive TCA route, trehalose degradation, fatty acid β-oxidation, and PHA biosynthesis. CONCLUSIONS This work demonstrated an effective co-carbon feeding strategy to improve PHA content/yield and convert lignin derivatives into value-added products in P. putida KT2440. Co-feeding lignin break-down products with other carbon sources, such as glycerol, has been demonstrated as an efficient way to utilize biomass to increase PHA production in P. putida KT2440. Moreover, the involvement of aromatic degradation favours further lignin utilization, and the combination of proteomics and metabolomics with NMR sheds light on the metabolic and regulatory mechanisms for cellular redox balance and potential genetic targets for a higher biomass carbon conversion efficiency.
Collapse
Affiliation(s)
- Zhangyang Xu
- Bioproducts, Sciences & Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, WA, 99354, USA
| | - Chunmei Pan
- Bioproducts, Sciences & Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, WA, 99354, USA
- College of Food and Bioengineering, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, Henan, China
| | - Xiaolu Li
- Bioproducts, Sciences & Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, WA, 99354, USA
| | - Naijia Hao
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Tong Zhang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Matthew J Gaffrey
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Yunqiao Pu
- Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - John R Cort
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, USA
- Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, University of Tennessee Institute of Agriculture, Knoxville, TN, 37996, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Bin Yang
- Bioproducts, Sciences & Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, WA, 99354, USA.
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| |
Collapse
|
20
|
|
21
|
Kumari S, Mangwani N, Das S. Naphthalene catabolism by biofilm forming marine bacterium Pseudomonas aeruginosa N6P6 and the role of quorum sensing in regulation of dioxygenase gene. J Appl Microbiol 2020; 130:1217-1231. [PMID: 33025721 DOI: 10.1111/jam.14867] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/31/2020] [Accepted: 09/17/2020] [Indexed: 11/27/2022]
Abstract
AIM This study aims to establish the role of quorum sensing (QS) system on the regulation of naphthalene ring cleaving gene ndo (encoding naphthalene dioxygenase) in biofilm forming marine bacterium Pseudomonas aeruginosa N6P6 for naphthalene degradation. METHODS AND RESULTS Total cell count of P. aeruginosa N6P6 during biofilm mode of growth was slightly higher (7·3 × 108 CFU per ml) than its planktonic mid-exponential phase culture (4·7 × 108 CFU per ml). Naphthalene degradation in 20h by biofilm (48-h old) and planktonic culture was 99·4 ± 0·002% and 77 ± 3·25%, respectively. Pseudomonas aeruginosa N6P6 was able to degrade 64·3 ± 4·7% naphthalene in sterile soil microcosm in 24 h. The bacterium showed the presence of 136 bp ndo gene which was upregulated in a dose-dependent manner in presence of naphthalene. QS inhibitor (QSI) tannic acid downregulated the expression of ndo gene, naphthalene 1, 2-dioxygenase (N12O) enzyme activity and naphthalene degradation (by biofilm culture). CONCLUSIONS P. aeruginosa N6P6 shows chemotaxis towards naphthalene and adapts well in terrestrial environment for naphthalene degradation. SIGNIFICANCE AND IMPACT THE OF STUDY This study provides the information that the QS plays crucial role in biofilm formation in P. aeruginosa N6P6 and QS regulatory genes subsequently control the ndo gene for enzymatic degradation of naphthalene.
Collapse
Affiliation(s)
- S Kumari
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - N Mangwani
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - S Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| |
Collapse
|
22
|
Aravind M, Kappen J, Varalakshmi P, John SA, Ashokkumar B. Bioengineered Graphene Oxide Microcomposites Containing Metabolically Versatile Paracoccus sp. MKU1 for Enhanced Catechol Degradation. ACS OMEGA 2020; 5:16752-16761. [PMID: 32685843 PMCID: PMC7364705 DOI: 10.1021/acsomega.0c01693] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Paracoccus sp. MKU1, a metabolically versatile bacterium that encompasses diverse metabolic pathways in its genome for the degradation of aromatic compounds, was investigated for catechol bioremediation here for the first time to our knowledge. Paracoccus sp. MKU1 degraded catechol at an optimal pH of 7.5 and a temperature of 37 °C, wherein 100 mg/L catechol was completely mineralized in 96 h but required 192 h for complete mineralization of 500 mg/L catechol. While investigating the molecular mechanisms of its degradation potential, it was unveiled that Paracoccus sp. MKU1 employed both the ortho and meta pathways by inducing the expression of catechol 1,2-dioxygenase (C12O) and catechol 2,3-dioxygenase (C23O), respectively. C23O expression at transcriptional levels was significantly more abundant than C12O, which indicated that catechol degradation was primarily mediated by extradiol cleavage by MKU1. Furthermore, poly(MAA-co-BMA)-GO (PGO) microcomposites containing Paracoccus sp. MKU1 were synthesized, which degraded catechol (100 mg/L) completely within 48 h with excellent recycling performance for three cycles. Thus, PGO@Paracoccus microcomposites proved to be efficient in catechol degradation at not only faster rates but also with excellent recycling performances than free cells. These findings accomplish that Paracoccus sp. MKU1 could serve as a potential tool for bioremediation of catechol-polluted industrial wastewater and soil.
Collapse
Affiliation(s)
- Manikka
Kubendran Aravind
- Department
of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Jincymol Kappen
- Centre
for Nanoscience and Nanotechnology, Department of Chemistry, Gandhigram Rural Institute, Gandhigram 624302, Tamil Nadu, India
| | - Perumal Varalakshmi
- Department
of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Swamidoss Abraham John
- Centre
for Nanoscience and Nanotechnology, Department of Chemistry, Gandhigram Rural Institute, Gandhigram 624302, Tamil Nadu, India
| | - Balasubramaniem Ashokkumar
- Department
of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| |
Collapse
|
23
|
Phale PS, Malhotra H, Shah BA. Degradation strategies and associated regulatory mechanisms/features for aromatic compound metabolism in bacteria. ADVANCES IN APPLIED MICROBIOLOGY 2020; 112:1-65. [PMID: 32762865 DOI: 10.1016/bs.aambs.2020.02.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
As a result of anthropogenic activity, large number of recalcitrant aromatic compounds have been released into the environment. Consequently, microbial communities have adapted and evolved to utilize these compounds as sole carbon source, under both aerobic and anaerobic conditions. The constitutive expression of enzymes necessary for metabolism imposes a heavy energy load on the microbe which is overcome by arrangement of degradative genes as operons which are induced by specific inducers. The segmentation of pathways into upper, middle and/or lower operons has allowed microbes to funnel multiple compounds into common key aromatic intermediates which are further metabolized through central carbon pathway. Various proteins belonging to diverse families have evolved to regulate the transcription of individual operons participating in aromatic catabolism. These proteins, complemented with global regulatory mechanisms, carry out the regulation of aromatic compound metabolic pathways in a concerted manner. Additionally, characteristics like chemotaxis, preferential utilization, pathway compartmentalization and biosurfactant production confer an advantage to the microbe, thus making bioremediation of the aromatic pollutants more efficient and effective.
Collapse
Affiliation(s)
- Prashant S Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India.
| | - Harshit Malhotra
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Bhavik A Shah
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| |
Collapse
|
24
|
Bharwad K, Rajkumar S. Modulation of PQQ-dependent glucose dehydrogenase (mGDH and sGDH) activity by succinate in phosphate solubilizing plant growth promoting Acinetobacter sp. SK2. 3 Biotech 2020; 10:5. [PMID: 31824816 DOI: 10.1007/s13205-019-1991-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022] Open
Abstract
Prospective plant growth promoting rhizobacteria isolated from the rhizosphere of Vigna radiata was identified as Acinetobacter sp. SK2 that solubilized 682 μg ml-1 of tricalcium phosphate (TCP) and 86 μg ml-1 of rock phosphate (RP) with concomitant decrease in pH up to 4 due to the production of gluconate. The biochemical basis of the P solubilization suggested that the gluconate production was mediated by mGDH and sGDH enzymes. Our results illustrate the role of succinate in repression of P solubilization via suppression of mGDH and sGDH activity which correlated with repression of expression of respective genes, gdhA and gdhB. SK2 also produced IAA (117 μg ml-1), siderophore (87% units), HCN, ammonia and solubilized minerals of Zn and K. Our findings imply that it is important to understand the cause of failure of several phosphate solubilizing bacteria in field conditions where catabolite repression may control the expression of several genes and pathways including that of mineral phosphate solubilization. Furthermore, Acinetobacter sp. SK2 bearing two glucose dehydrogenase (gdhA and gdhB) genes was recognized as promising strain for P biofortification and enhanced plant growth promotion.
Collapse
|
25
|
Bharwad K, Rajkumar S. Rewiring the functional complexity between Crc, Hfq and sRNAs to regulate carbon catabolite repression in Pseudomonas. World J Microbiol Biotechnol 2019; 35:140. [DOI: 10.1007/s11274-019-2717-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/22/2019] [Indexed: 10/26/2022]
|
26
|
Kukurugya MA, Mendonca CM, Solhtalab M, Wilkes RA, Thannhauser TW, Aristilde L. Multi-omics analysis unravels a segregated metabolic flux network that tunes co-utilization of sugar and aromatic carbons in Pseudomonas putida. J Biol Chem 2019; 294:8464-8479. [PMID: 30936206 DOI: 10.1074/jbc.ra119.007885] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/26/2019] [Indexed: 11/06/2022] Open
Abstract
Pseudomonas species thrive in different nutritional environments and can catabolize divergent carbon substrates. These capabilities have important implications for the role of these species in natural and engineered carbon processing. However, the metabolic phenotypes enabling Pseudomonas to utilize mixed substrates remain poorly understood. Here, we employed a multi-omics approach involving stable isotope tracers, metabolomics, fluxomics, and proteomics in Pseudomonas putida KT2440 to investigate the constitutive metabolic network that achieves co-utilization of glucose and benzoate, respectively a monomer of carbohydrate polymers and a derivative of lignin monomers. Despite nearly equal consumption of both substrates, metabolite isotopologues revealed nonuniform assimilation throughout the metabolic network. Gluconeogenic flux of benzoate-derived carbons from the tricarboxylic acid cycle did not reach the upper Embden-Meyerhof-Parnas pathway nor the pentose-phosphate pathway. These latter two pathways were populated exclusively by glucose-derived carbons through a cyclic connection with the Entner-Doudoroff pathway. We integrated the 13C-metabolomics data with physiological parameters for quantitative flux analysis, demonstrating that the metabolic segregation of the substrate carbons optimally sustained biosynthetic flux demands and redox balance. Changes in protein abundance partially predicted the metabolic flux changes in cells grown on the glucose:benzoate mixture versus on glucose alone. Notably, flux magnitude and directionality were also maintained by metabolite levels and regulation of phosphorylation of key metabolic enzymes. These findings provide new insights into the metabolic architecture that affords adaptability of P. putida to divergent carbon substrates and highlight regulatory points at different metabolic nodes that may underlie the high nutritional flexibility of Pseudomonas species.
Collapse
Affiliation(s)
- Matthew A Kukurugya
- Department of Biological and Environmental Engineering, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14853, United States
| | - Caroll M Mendonca
- Department of Biological and Environmental Engineering, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14853, United States
| | - Mina Solhtalab
- Department of Biological and Environmental Engineering, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14853, United States
| | - Rebecca A Wilkes
- Department of Biological and Environmental Engineering, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14853, United States
| | | | - Ludmilla Aristilde
- Department of Biological and Environmental Engineering, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14853, United States.
| |
Collapse
|
27
|
Enhanced synthesis of medium-chain-length poly(3-hydroxyalkanoates) by inactivating the tricarboxylate transport system of Pseudomonas putida KT2440 and process development using waste vegetable oil. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.10.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Yuan K, Xie X, Wang X, Lin L, Yang L, Luan T, Chen B. Transcriptional response of Mycobacterium sp. strain A1-PYR to multiple polycyclic aromatic hydrocarbon contaminations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:824-832. [PMID: 30243191 DOI: 10.1016/j.envpol.2018.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/29/2018] [Accepted: 09/01/2018] [Indexed: 06/08/2023]
Abstract
Cometabolism mechanisms of organic pollutants in environmental microbes have not been fully understood. In this study, a global analysis of Mycobacterium sp. strain A1-PYR transcriptomes on different PAH substrates (single or binary of pyrene (PYR) and phenanthrene (PHE)) was conducted. Comparative results demonstrated that expression levels of 23 PAH degradation enzymes were significantly higher in the binary substrate than in the PYR-only one. These enzymes constituted an integrated enzymatic system to actualize all transformation steps of PYR, and most of their encoded genes formed a novel gene cascade in the genome of strain A1-PYR. The roles of different genotypes of enzymes in PYR cometabolism were also discriminated even though all of their gene sequences were presented in the genome of this strain. NidAB and PdoA2B2 instead of NidA3B3 served the initial oxidization of PAHs, and PcaL replaced PcaCD to catalyze the formation of 3-oxoadipate. Novel genes associated with PYR cometabolism was also predicted by the relationships between their transcription profiles and PYR removal. The results showed that ABC-type transporters probably played important roles in the transport of PAHs and their metabolites through cell membrane, and [4Fe-4S] ferredoxin might be essential for dioxygenases (NidAB and PdoA2B2) to achieve oxidative activities. This study provided molecular insight in that microbial degrader subtly cometabolized recalcitrant PAHs with relatively more degradable ones.
Collapse
Affiliation(s)
- Ke Yuan
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China; School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Xiuqin Xie
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Xiaowei Wang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Li Lin
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Lihua Yang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Tiangang Luan
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China; School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Baowei Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
29
|
Effect of copper on diesel degradation in Pseudomonas extremaustralis. Extremophiles 2018; 23:91-99. [PMID: 30328541 DOI: 10.1007/s00792-018-1063-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 10/09/2018] [Indexed: 10/28/2022]
Abstract
Environments co-contaminated with heavy metals and hydrocarbons have become an important problem worldwide, especially due to the effect of metals on hydrocarbon degrading microorganisms. Pseudomonas extremaustralis, a bacterium isolated from a pristine pond in Antarctica, showed high capabilities to cope with environmental stress and a very versatile metabolism that includes alkane degradation under microaerobic conditions. In this work, we analyzed P. extremaustralis' capability to resist high copper concentrations and the effect of copper presence in diesel biodegradation. We observed that P. extremaustralis resisted up to 4 mM CuSO4 in a rich medium such as LB. This copper resistance is sustained by the presence of the cus and cop operons together with other efflux systems and porins located in a single region in P. extremaustralis genome. When copper was present, diesel degradation was negatively affected, even though copper enhanced bacterial attachment to hydrocarbons. However, when a small amount of glucose (0.05% w/v) was added, the presence of CuSO4 enhanced alkane degradation. In addition, atomic force microscopy analysis showed that the presence of glucose decreased the negative effects produced by copper and diesel on the cell envelopes.
Collapse
|
30
|
Carlos C, Fan H, Currie CR. Substrate Shift Reveals Roles for Members of Bacterial Consortia in Degradation of Plant Cell Wall Polymers. Front Microbiol 2018; 9:364. [PMID: 29545786 PMCID: PMC5839234 DOI: 10.3389/fmicb.2018.00364] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 02/15/2018] [Indexed: 01/05/2023] Open
Abstract
Deconstructing the intricate matrix of cellulose, hemicellulose, and lignin poses a major challenge in biofuel production. In diverse environments in nature, some microbial communities, are able to overcome plant biomass recalcitrance. Identifying key degraders of each component of plant cell wall can help improve biological degradation of plant feedstock. Here, we sequenced the metagenome of lignocellulose-adapted microbial consortia sub-cultured on xylan and alkali lignin media. We observed a drastic shift on community composition after sub-culturing, independently of the original consortia. Proteobacteria relative abundance increased after growth in alkali lignin medium, while Bacteroidetes abundance increased after growth in xylan medium. At the genus level, Pseudomonas was more abundant in the communities growing on alkali lignin, Sphingobacterium in the communities growing on xylan and Cellulomonas abundance was the highest in the original microbial consortia. We also observed functional convergence of microbial communities after incubation in alkali lignin, due to an enrichment of genes involved in benzoate degradation and catechol ortho-cleavage pathways. Our results represent an important step toward the elucidation of key members of microbial communities on lignocellulose degradation and may aide the design of novel lignocellulolytic microbial consortia that are able to efficiently degrade plant cell wall polymers.
Collapse
Affiliation(s)
- Camila Carlos
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States.,U.S. Department of Energy, Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Huan Fan
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - Cameron R Currie
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States.,U.S. Department of Energy, Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
31
|
Choudhary A, Purohit H, Phale PS. Benzoate transport in Pseudomonas putida CSV86. FEMS Microbiol Lett 2018; 364:3861963. [PMID: 28591829 DOI: 10.1093/femsle/fnx118] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 06/06/2017] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas putida strain CSV86 metabolizes variety of aromatic compounds as the sole carbon source. Genome analysis revealed the presence of genes encoding putative transporters for benzoate, p-hydroxybenzoate, phenylacetate, p-hydroxyphenylacetate and vanillate. Bioinformatic analysis revealed that benzoate transport and metabolism genes are clustered at the ben locus as benK-catA-benE-benF. Protein topology prediction suggests that BenK (aromatic acid-H+ symporter of major facilitator superfamily) has 12 transmembrane α-helices with the conserved motif LADRXGRKX in loop 2, while BenE (benzoate-H+ symporter protein) has 11 predicted transmembrane α-helices. benF and catA encode benzoate specific porin, OprD and catechol 1,2-dioxygenase, respectively. Biochemical studies suggest that benzoate was transported by an inducible and active process. Inhibition (90%-100%) in the presence of dinitrophenol suggests that the energy for the transport process is derived from the proton motive force. The maximum rate of benzoate transport was 484 pmole min-1 mg-1 cells with an affinity constant, Kmof 4.5 μM. Transcriptional analysis of the benzoate and glucose-grown cells showed inducible expression of benF, benK and benE, suggesting that besides outer membrane porin, both inner membrane transporters probably contribute for the benzoate transport in P. putida strain CSV86.
Collapse
Affiliation(s)
- Alpa Choudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Powai, Mumbai 400076, India
| | - Hemant Purohit
- Environmental Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur 440020; India
| | - Prashant S Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
32
|
Biotechnological Applications of Microbial (Per)chlorate Reduction. Microorganisms 2017; 5:microorganisms5040076. [PMID: 29186812 PMCID: PMC5748585 DOI: 10.3390/microorganisms5040076] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/18/2017] [Accepted: 11/22/2017] [Indexed: 01/31/2023] Open
Abstract
While the microbial degradation of a chloroxyanion-based herbicide was first observed nearly ninety years ago, only recently have researchers elucidated the underlying mechanisms of perchlorate and chlorate [collectively, (per)chlorate] respiration. Although the obvious application of these metabolisms lies in the bioremediation and attenuation of (per)chlorate in contaminated environments, a diversity of alternative and innovative biotechnological applications has been proposed based on the unique metabolic abilities of dissimilatory (per)chlorate-reducing bacteria (DPRB). This is fueled in part by the unique ability of these organisms to generate molecular oxygen as a transient intermediate of the central pathway of (per)chlorate respiration. This ability, along with other novel aspects of the metabolism, have resulted in a wide and disparate range of potential biotechnological applications being proposed, including enzymatic perchlorate detection; gas gangrene therapy; enhanced xenobiotic bioremediation; oil reservoir bio-souring control; chemostat hygiene control; aeration enhancement in industrial bioreactors; and, biogenic oxygen production for planetary exploration. While previous reviews focus on the fundamental science of microbial (per)chlorate reduction (for example see Youngblut et al., 2016), here, we provide an overview of the emerging biotechnological applications of (per)chlorate respiration and the underlying organisms and enzymes to environmental and biotechnological industries.
Collapse
|
33
|
Yaguchi A, Robinson A, Mihealsick E, Blenner M. Metabolism of aromatics by Trichosporon oleaginosus while remaining oleaginous. Microb Cell Fact 2017; 16:206. [PMID: 29149902 PMCID: PMC5693591 DOI: 10.1186/s12934-017-0820-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/11/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The oleaginous yeast, Trichosporon oleaginosus, has been extensively studied for its ability to metabolize non-conventional feedstocks. These include phenol-containing waste streams, such as distillery wastewater, or streams consisting of non-conventional sugars, such as hydrolyzed biomass and various bagasse. An initial BLAST search suggests this yeast has putative aromatic metabolizing genes. Given the desirability to valorize underutilized feedstocks such as lignin, we investigated the ability of T. oleaginosus to tolerate and metabolize lignin-derived aromatic compounds. RESULTS Trichosporon oleaginosus can tolerate and metabolize model lignin monoaromatics and associated intermediates within funneling pathways. Growth rates and biomass yield were similar to glucose when grown in 4-hydroxybenzoic acid (pHBA) and resorcinol, but had an increased lag phase when grown in phenol. Oleaginous behavior was observed using resorcinol as a sole carbon source. Fed-batch feeding resulted in lipid accumulation of 69.5% on a dry weight basis. CONCLUSIONS Though the exact pathway of aromatic metabolism remains to be determined for T. oleaginosus, the results presented in this work motivate use of this organism for lignin valorization and phenolic wastewater bioremediation. Trichosporon oleaginosus is the first yeast shown to be oleaginous while growing on aromatic substrates, and shows great promise as a model industrial microbe for biochemical and biofuel production from depolymerized lignin.
Collapse
Affiliation(s)
- Allison Yaguchi
- Department of Chemical and Biomolecular Engineering, Clemson University, 206 S. Palmetto Blvd., Clemson, SC 29634 USA
| | - Alana Robinson
- Department of Chemical and Biomolecular Engineering, Clemson University, 206 S. Palmetto Blvd., Clemson, SC 29634 USA
| | - Erin Mihealsick
- Department of Chemical and Biomolecular Engineering, Clemson University, 206 S. Palmetto Blvd., Clemson, SC 29634 USA
| | - Mark Blenner
- Department of Chemical and Biomolecular Engineering, Clemson University, 206 S. Palmetto Blvd., Clemson, SC 29634 USA
| |
Collapse
|
34
|
Transcriptional Modulation of Transport- and Metabolism-Associated Gene Clusters Leading to Utilization of Benzoate in Preference to Glucose in Pseudomonas putida CSV86. Appl Environ Microbiol 2017; 83:AEM.01280-17. [PMID: 28733285 DOI: 10.1128/aem.01280-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 07/16/2017] [Indexed: 11/20/2022] Open
Abstract
The effective elimination of xenobiotic pollutants from the environment can be achieved by efficient degradation by microorganisms even in the presence of sugars or organic acids. Soil isolate Pseudomonas putida CSV86 displays a unique ability to utilize aromatic compounds prior to glucose. The draft genome and transcription analyses revealed that glucose uptake and benzoate transport and metabolism genes are clustered at the glc and ben loci, respectively, as two distinct operons. When grown on glucose plus benzoate, CSV86 displayed significantly higher expression of the ben locus in the first log phase and of the glc locus in the second log phase. Kinetics of substrate uptake and metabolism matched the transcription profiles. The inability of succinate to suppress benzoate transport and metabolism resulted in coutilization of succinate and benzoate. When challenged with succinate or benzoate, glucose-grown cells showed rapid reduction in glc locus transcription, glucose transport, and metabolic activity, with succinate being more effective at the functional level. Benzoate and succinate failed to interact with or inhibit the activities of glucose transport components or metabolic enzymes. The data suggest that succinate and benzoate suppress glucose transport and metabolism at the transcription level, enabling P. putida CSV86 to preferentially metabolize benzoate. This strain thus has the potential to be an ideal host to engineer diverse metabolic pathways for efficient bioremediation.IMPORTANCEPseudomonas strains play an important role in carbon cycling in the environment and display a hierarchy in carbon utilization: organic acids first, followed by glucose, and aromatic substrates last. This limits their exploitation for bioremediation. This study demonstrates the substrate-dependent modulation of ben and glc operons in Pseudomonas putida CSV86, wherein benzoate suppresses glucose transport and metabolism at the transcription level, leading to preferential utilization of benzoate over glucose. Interestingly, succinate and benzoate are cometabolized. These properties are unique to this strain compared to other pseudomonads and open up avenues to unravel novel regulatory processes. Strain CSV86 can serve as an ideal host to engineer and facilitate efficient removal of recalcitrant pollutants even in the presence of simpler carbon sources.
Collapse
|
35
|
Bao YJ, Xu Z, Li Y, Yao Z, Sun J, Song H. High-throughput metagenomic analysis of petroleum-contaminated soil microbiome reveals the versatility in xenobiotic aromatics metabolism. J Environ Sci (China) 2017; 56:25-35. [PMID: 28571861 DOI: 10.1016/j.jes.2016.08.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 06/29/2016] [Accepted: 08/19/2016] [Indexed: 05/25/2023]
Abstract
The soil with petroleum contamination is one of the most studied soil ecosystems due to its rich microorganisms for hydrocarbon degradation and broad applications in bioremediation. However, our understanding of the genomic properties and functional traits of the soil microbiome is limited. In this study, we used high-throughput metagenomic sequencing to comprehensively study the microbial community from petroleum-contaminated soils near Tianjin Dagang oilfield in eastern China. The analysis reveals that the soil metagenome is characterized by high level of community diversity and metabolic versatility. The metageome community is predominated by γ-Proteobacteria and α-Proteobacteria, which are key players for petroleum hydrocarbon degradation. The functional study demonstrates over-represented enzyme groups and pathways involved in degradation of a broad set of xenobiotic aromatic compounds, including toluene, xylene, chlorobenzoate, aminobenzoate, DDT, methylnaphthalene, and bisphenol. A composite metabolic network is proposed for the identified pathways, thus consolidating our identification of the pathways. The overall data demonstrated the great potential of the studied soil microbiome in the xenobiotic aromatics degradation. The results not only establish a rich reservoir for novel enzyme discovery but also provide putative applications in bioremediation.
Collapse
Affiliation(s)
- Yun-Juan Bao
- National Engineering Laboratory for Industrial Enzymes, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Zixiang Xu
- National Engineering Laboratory for Industrial Enzymes, Chinese Academy of Sciences, Tianjin 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yang Li
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Zhi Yao
- Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Tianjin Medical University, Tianjin 300070, China
| | - Jibin Sun
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Hui Song
- National Engineering Laboratory for Industrial Enzymes, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| |
Collapse
|
36
|
Carbon Source-Dependent Inducible Metabolism of Veratryl Alcohol and Ferulic Acid in Pseudomonas putida CSV86. Appl Environ Microbiol 2017; 83:AEM.03326-16. [PMID: 28188206 DOI: 10.1128/aem.03326-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/02/2017] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas putida CSV86 degrades lignin-derived metabolic intermediates, viz, veratryl alcohol, ferulic acid, vanillin, and vanillic acid, as the sole sources of carbon and energy. Strain CSV86 also degraded lignin sulfonate. Cell respiration, enzyme activity, biotransformation, and high-pressure liquid chromatography (HPLC) analyses suggest that veratryl alcohol and ferulic acid are metabolized to vanillic acid by two distinct carbon source-dependent inducible pathways. Vanillic acid was further metabolized to protocatechuic acid and entered the central carbon pathway via the β-ketoadipate route after ortho ring cleavage. Genes encoding putative enzymes involved in the degradation were found to be present at fer, ver, and van loci. The transcriptional analysis suggests a carbon source-dependent cotranscription of these loci, substantiating the metabolic studies. Biochemical and quantitative real-time (qRT)-PCR studies revealed the presence of two distinct O-demethylases, viz, VerAB and VanAB, involved in the oxidative demethylation of veratric acid and vanillic acid, respectively. This report describes the various steps involved in metabolizing lignin-derived aromatic compounds at the biochemical level and identifies the genes involved in degrading veratric acid and the arrangement of phenylpropanoid metabolic genes as three distinct inducible transcription units/operons. This study provides insight into the bacterial degradation of lignin-derived aromatics and the potential of P. putida CSV86 as a suitable candidate for producing valuable products.IMPORTANCEPseudomonas putida CSV86 metabolizes lignin and its metabolic intermediates as a carbon source. Strain CSV86 displays a unique property of preferential utilization of aromatics, including for phenylpropanoids over glucose. This report unravels veratryl alcohol metabolism and genes encoding veratric acid O-demethylase, hitherto unknown in pseudomonads, thereby providing new insight into the metabolic pathway and gene pool for lignin degradation in bacteria. The biochemical and genetic characterization of phenylpropanoid metabolism makes it a prospective system for its application in producing valuable products, such as vanillin and vanillic acid, from lignocellulose. This study supports the immense potential of P. putida CSV86 as a suitable candidate for bioremediation and biorefinery.
Collapse
|
37
|
El Moujahid L, Le Roux X, Michalet S, Bellvert F, Weigelt A, Poly F. Effect of plant diversity on the diversity of soil organic compounds. PLoS One 2017; 12:e0170494. [PMID: 28166250 PMCID: PMC5293253 DOI: 10.1371/journal.pone.0170494] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 01/05/2017] [Indexed: 11/30/2022] Open
Abstract
The effect of plant diversity on aboveground organisms and processes was largely studied but there is still a lack of knowledge regarding the link between plant diversity and soil characteristics. Here, we analyzed the effect of plant identity and diversity on the diversity of extractible soil organic compounds (ESOC) using 87 experimental grassland plots with different levels of plant diversity and based on a pool of over 50 plant species. Two pools of low molecular weight organic compounds, LMW1 and LMW2, were characterized by GC-MS and HPLC-DAD, respectively. These pools include specific organic acids, fatty acids and phenolics, with more organic acids in LMW1 and more phenolics in LMW2. Plant effect on the diversity of LMW1 and LMW2 compounds was strong and weak, respectively. LMW1 richness observed for bare soil was lower than that observed for all planted soils; and the richness of these soil compounds increased twofold when dominant plant species richness increased from 1 to 6. Comparing the richness of LMW1 compounds observed for a range of plant mixtures and for plant monocultures of species present in these mixtures, we showed that plant species richness increases the richness of these ESOC mainly through complementarity effects among plant species associated with contrasted spectra of soil compounds. This could explain previously reported effects of plant diversity on the diversity of soil heterotrophic microorganisms.
Collapse
Affiliation(s)
- Lamiae El Moujahid
- Université de Lyon, Université Lyon 1, CNRS, INRA, Laboratoire d’Ecologie microbienne, UMR 5557 CNRS, UMR 1418 INRA, Villeurbanne, France
| | - Xavier Le Roux
- Université de Lyon, Université Lyon 1, CNRS, INRA, Laboratoire d’Ecologie microbienne, UMR 5557 CNRS, UMR 1418 INRA, Villeurbanne, France
- * E-mail:
| | - Serge Michalet
- Université de Lyon, Université Lyon 1, CNRS, INRA, Laboratoire d’Ecologie microbienne, UMR 5557 CNRS, UMR 1418 INRA, Villeurbanne, France
- Université de Lyon, Université Lyon 1, UMR5557 CNRS, UMR 1418 INRA, Centre d’Etude des Substances Naturelles, Villeurbanne, France
| | - Florian Bellvert
- Université de Lyon, Université Lyon 1, CNRS, INRA, Laboratoire d’Ecologie microbienne, UMR 5557 CNRS, UMR 1418 INRA, Villeurbanne, France
- Université de Lyon, Université Lyon 1, UMR5557 CNRS, UMR 1418 INRA, Centre d’Etude des Substances Naturelles, Villeurbanne, France
| | - Alexandra Weigelt
- Department of Systematic Botany and Functional Biodiversity, Institute of Biology, University of Leipzig, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Franck Poly
- Université de Lyon, Université Lyon 1, CNRS, INRA, Laboratoire d’Ecologie microbienne, UMR 5557 CNRS, UMR 1418 INRA, Villeurbanne, France
| |
Collapse
|
38
|
Kumar B. N. V, Guo S, Bocklitz T, Rösch P, Popp J. Demonstration of Carbon Catabolite Repression in Naphthalene Degrading Soil Bacteria via Raman Spectroscopy Based Stable Isotope Probing. Anal Chem 2016; 88:7574-82. [DOI: 10.1021/acs.analchem.6b01046] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Vinay Kumar B. N.
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University of Jena, Helmholtzweg 4, D-07743 Jena, Germany
- InfectoGnostics, Forschungscampus Jena, Philosophenweg
7, D-07743 Jena, Germany
| | - Shuxia Guo
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University of Jena, Helmholtzweg 4, D-07743 Jena, Germany
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, D-07745 Jena, Germany
| | - Thomas Bocklitz
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University of Jena, Helmholtzweg 4, D-07743 Jena, Germany
- InfectoGnostics, Forschungscampus Jena, Philosophenweg
7, D-07743 Jena, Germany
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, D-07745 Jena, Germany
| | - Petra Rösch
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University of Jena, Helmholtzweg 4, D-07743 Jena, Germany
- InfectoGnostics, Forschungscampus Jena, Philosophenweg
7, D-07743 Jena, Germany
| | - Jürgen Popp
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University of Jena, Helmholtzweg 4, D-07743 Jena, Germany
- InfectoGnostics, Forschungscampus Jena, Philosophenweg
7, D-07743 Jena, Germany
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, D-07745 Jena, Germany
| |
Collapse
|
39
|
Han SI. Phylogenetic characteristics of bacterial populations and isolation of aromatic compounds utilizing bacteria from humus layer of oak forest. ACTA ACUST UNITED AC 2016. [DOI: 10.7845/kjm.2016.6028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
40
|
Pandey S, Modak A, Phale PS, Bhaumik P. High Resolution Structures of Periplasmic Glucose-binding Protein of Pseudomonas putida CSV86 Reveal Structural Basis of Its Substrate Specificity. J Biol Chem 2016; 291:7844-57. [PMID: 26861882 DOI: 10.1074/jbc.m115.697268] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Indexed: 01/31/2023] Open
Abstract
Periplasmic substrate-binding proteins (SBPs) bind to the specific ligand with high affinity and mediate their transport into the cytoplasm via the cognate inner membrane ATP-binding cassette proteins. Because of low sequence identities, understanding the structural basis of substrate recognition by SBPs has remained very challenging. There are several structures available for the ligand-bound sugar SBPs, but very few unliganded structures are reported. No structural data are available for sugar SBPs fromPseudomonassp. to date. This study reports the first high resolution crystal structures of periplasmic glucose-binding protein fromPseudomonas putidaCSV86 (ppGBP) in unliganded form (2.5 Å) and complexed with glucose (1.25 Å) and galactose (1.8 Å). Asymmetric domain closure of ppGBP was observed upon substrate binding. The ppGBP was found to have an affinity of ∼ 0.3 μmfor glucose. The structural analysis showed that the sugars are bound to the protein mainly by hydrogen bonds, and the loss of two strong hydrogen bonds between ppGBP and galactose compared with glucose may be responsible for lowering its affinity toward galactose. The higher stability of ppGBP-glucose complex was also indicated by an 8 °C increase in the melting temperature compared with unliganded form and ppGBP-galactose complex. ppGBP binds to monosaccharide, but the structural features revealed it to have an oligosaccharide-binding protein fold, indicating that during evolution the sugar binding pocket may have undergone structural modulation to accommodate monosaccharide only.
Collapse
Affiliation(s)
- Suman Pandey
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Arnab Modak
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Prashant S Phale
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Prasenjit Bhaumik
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
41
|
Karishma M, Trivedi VD, Choudhary A, Mhatre A, Kambli P, Desai J, Phale PS. Analysis of preference for carbon source utilization among three strains of aromatic compounds degradingPseudomonas. FEMS Microbiol Lett 2015; 362:fnv139. [DOI: 10.1093/femsle/fnv139] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2015] [Indexed: 01/07/2023] Open
|
42
|
Metabolic engineering of Klebsiella pneumoniae for the production of cis,cis-muconic acid. Appl Microbiol Biotechnol 2015; 99:5217-25. [DOI: 10.1007/s00253-015-6442-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/26/2015] [Accepted: 01/28/2015] [Indexed: 10/24/2022]
|
43
|
Paliwal V, Raju SC, Modak A, Phale PS, Purohit HJ. Pseudomonas putida CSV86: a candidate genome for genetic bioaugmentation. PLoS One 2014; 9:e84000. [PMID: 24475028 PMCID: PMC3901652 DOI: 10.1371/journal.pone.0084000] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 11/11/2013] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas putida CSV86, a plasmid-free strain possessing capability to transfer the naphthalene degradation property, has been explored for its metabolic diversity through genome sequencing. The analysis of draft genome sequence of CSV86 (6.4 Mb) revealed the presence of genes involved in the degradation of naphthalene, salicylate, benzoate, benzylalcohol, p-hydroxybenzoate, phenylacetate and p-hydroxyphenylacetate on the chromosome thus ensuring the stability of the catabolic potential. Moreover, genes involved in the metabolism of phenylpropanoid and homogentisate, as well as heavy metal resistance, were additionally identified. Ability to grow on vanillin, veratraldehyde and ferulic acid, detection of inducible homogentisate dioxygenase and growth on aromatic compounds in the presence of heavy metals like copper, cadmium, cobalt and arsenic confirm in silico observations reflecting the metabolic versatility. In silico analysis revealed the arrangement of genes in the order: tRNAGly, integrase followed by nah operon, supporting earlier hypothesis of existence of a genomic island (GI) for naphthalene degradation. Deciphering the genomic architecture of CSV86 for aromatic degradation pathways and identification of elements responsible for horizontal gene transfer (HGT) suggests that genetic bioaugmentation strategies could be planned using CSV86 for effective bioremediation.
Collapse
Affiliation(s)
- Vasundhara Paliwal
- Environmental Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
| | - Sajan C Raju
- MEM-Group, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Arnab Modak
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Powai, Mumbai, India
| | - Prashant S Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Powai, Mumbai, India
| | - Hemant J Purohit
- Environmental Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
| |
Collapse
|
44
|
Modak A, Bhaumik P, Phale PS. Periplasmic glucose-binding protein from Pseudomonas putida CSV86--identification of the glucose-binding pocket by homology-model-guided site-specific mutagenesis. FEBS J 2013; 281:365-75. [PMID: 24206004 DOI: 10.1111/febs.12607] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 10/30/2013] [Accepted: 11/04/2013] [Indexed: 11/29/2022]
Abstract
Glucose transport in Pseudomonas putida CSV86 is mediated via a periplasmic glucose-binding protein (GBP)-dependent putative glucose ABC transporter. Here we describe a homology model and functional characterization of GBP from CSV86 (ppGBP). A whole-cell [(14)C]-glucose uptake study revealed that glucose is transported by the high-affinity intracellular phosphorylative pathway. ppGBP was cloned, over-expressed in Escherichia coli and purified to apparent homogeneity. The purified ppGBPs from both E. coli and CSV86 were found to be specific for glucose. A homology model of ppGBP was constructed that resembles the class II family of periplasmic binding proteins. The model showed highest structural similarity to GBP of Thermus thermophilus (ttGBP, rmsd 0.64 Å). Structural analysis and molecular docking studies predicted W35, W36, E41, K92, K339 and H379 of ppGBP as putative glucose-binding residues. Alanine substitution of these residues resulted in significantly reduced [(14)C]-glucose binding activity. Analysis of the operonic arrangement and structural comparative studies suggested that ppGBP and ttGBP probably originated from a common ancestor. Structural adaptations that inhibit binding of di- or trisaccharides at the glucose-binding pocket of ppGBP were also identified.
Collapse
Affiliation(s)
- Arnab Modak
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | | | | |
Collapse
|
45
|
Biodegradation of tributyl phosphate using Klebsiella pneumoniae sp. S3. Appl Microbiol Biotechnol 2013; 98:919-29. [DOI: 10.1007/s00253-013-4938-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 04/13/2013] [Accepted: 04/16/2013] [Indexed: 10/26/2022]
|
46
|
Comparative Analysis of Rhamnolipids from Novel Environmental Isolates of Pseudomonas aeruginosa. J SURFACTANTS DETERG 2013. [DOI: 10.1007/s11743-013-1462-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
47
|
Genome Sequence of Naphthalene-Degrading Soil Bacterium Pseudomonas putida CSV86. GENOME ANNOUNCEMENTS 2013; 1:genomeA00234-12. [PMID: 23469351 PMCID: PMC3587945 DOI: 10.1128/genomea.00234-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 12/31/2012] [Indexed: 11/20/2022]
Abstract
Pseudomonas putida CSV86, a soil isolate, preferentially utilizes naphthalene over glucose as a source of carbon and energy. We present the draft genome sequence, which is 6.4 Mb in size; analysis suggests the chromosomal localization of genes coding for naphthalene utilization. The operons coding for glucose and other aromatic compounds might also be annotated in another study.
Collapse
|
48
|
de Sousa T, Bhosle S. Isolation and characterization of a lipopeptide bioemulsifier produced by Pseudomonas nitroreducens TSB.MJ10 isolated from a mangrove ecosystem. BIORESOURCE TECHNOLOGY 2012; 123:256-262. [PMID: 22940327 DOI: 10.1016/j.biortech.2012.07.056] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 06/05/2012] [Accepted: 07/16/2012] [Indexed: 06/01/2023]
Abstract
Pseudomonas nitroreducens TSB.MJ10 exhibiting growth and bioemulsifier production with 0.5% sodium benzoate as the sole carbon source was isolated from a mangrove ecosystem in the vicinity of a petroleum pump. The bioemulsifier is a lipopeptide that is stable over a pH range of 5-11 and a temperature range of 20-90°C and showed emulsifying activity in the presence of relatively high NaCl concentrations (up to 25%). The bioemulsifier formed stable emulsions with aliphatic (hexadecane, n-heptane, cyclohexane), aromatic (xylene, benzene, toluene) and petroleum (gasoline, diesel, kerosene, crude oil) compounds. It exhibited a maximum emulsification activity with weathered crude oil (97%) and was capable of transforming the rheological behavior of the pseudoplastic to a Newtonian fluid. The results reveal the potential of the bioemulsifier for use in bioremediation of hydrocarbons in marine environments and in enhanced oil recovery.
Collapse
Affiliation(s)
- Trelita de Sousa
- Department of Microbiology, Goa University, Taleigao Plateau, Goa 403 206, India
| | | |
Collapse
|
49
|
Nigam A, Phale PS, Wangikar PP. Assessment of the metabolic capacity and adaptability of aromatic hydrocarbon degrading strain Pseudomonas putida CSV86 in aerobic chemostat culture. BIORESOURCE TECHNOLOGY 2012; 114:484-491. [PMID: 22494573 DOI: 10.1016/j.biortech.2012.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 03/02/2012] [Accepted: 03/02/2012] [Indexed: 05/31/2023]
Abstract
Pseudomonas putida CSV86 utilizes aromatic compounds preferentially over sugars and co-metabolizes aromatics along with organic acids. In the present study, the metabolic capacity and adaptability of strain CSV86 were assessed in a chemostat at benzyl alcohol concentrations ranging from 1 g l(-1) to 3 g l(-1) and in the presence of glucose and succinate by systematically varying the dilution rate. Complete removal of benzyl alcohol was achieved for loadings up to 640 mg l(-1) h(-1) in presence of benzyl alcohol alone. The strain responded within 1 min towards step changes in substrate loading as indicated by an increase in the oxygen uptake rate, presumably as a result of excess metabolic capacity. These results suggest that CSV86 exhibits considerable metabolic elasticity upon increase in substrate load. Metabolic elasticity of the microorganism is an important parameter in wastewater treatment plants due to the changing substrate loads.
Collapse
Affiliation(s)
- Anshul Nigam
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | | | | |
Collapse
|
50
|
Khanna P, Goyal D, Khanna S. Characterization of pyrene utilizing Bacillus spp. from crude oil contaminated soil. Braz J Microbiol 2012; 43:606-17. [PMID: 24031871 PMCID: PMC3768841 DOI: 10.1590/s1517-83822012000200024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Revised: 07/04/2011] [Accepted: 01/16/2012] [Indexed: 11/22/2022] Open
Abstract
Pyrene, a high molecular weight polycyclic aromatic hydrocarbon (PAH), is a priority pollutant present in soil contaminated with crude oil, coal-tar and complex PAHs. Bacterial consortium CON-3 developed from crude oil contaminated soil of Patiala, Punjab (India) cometabolized 50 μg ml-1 pyrene in the presence of glucose (0.5 %; w/v) at 30 °C, as determined by reverse-phase high performance liquid chromatography (HPLC). Bacillus sp. PK-12, Bacillus sp. PK-13 and Bacillus sp. PK-14 from CON-3, identified by 16S rRNA gene sequence analysis, were able to cometabolize 64 %, 55 % and 53 % of pyrene in 35 days, respectively. With the increase in glucose concentration to 1.0 % (w/v) in growth medium isolates PK-12, PK-13 and PK-14 showed 19 - 46 % uptake of 50 μg ml-1 pyrene in 4 days, respectively. Uptake of pyrene was correlated with growth and biosurfactant activity, which is suggestive of the potential role of members of Bacillus genera in pyrene mobilization and its uptake.
Collapse
Affiliation(s)
- Purnima Khanna
- Department of Biotechnology & Environmental Sciences, Thapar University , Bhadson Road, Patiala - 147 004, Punjab , India
| | | | | |
Collapse
|