1
|
Hassan Z, Westerhoff HV. Arsenic Contamination of Groundwater Is Determined by Complex Interactions between Various Chemical and Biological Processes. TOXICS 2024; 12:89. [PMID: 38276724 PMCID: PMC11154318 DOI: 10.3390/toxics12010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/27/2024]
Abstract
At a great many locations worldwide, the safety of drinking water is not assured due to pollution with arsenic. Arsenic toxicity is a matter of both systems chemistry and systems biology: it is determined by complex and intertwined networks of chemical reactions in the inanimate environment, in microbes in that environment, and in the human body. We here review what is known about these networks and their interconnections. We then discuss how consideration of the systems aspects of arsenic levels in groundwater may open up new avenues towards the realization of safer drinking water. Along such avenues, both geochemical and microbiological conditions can optimize groundwater microbial ecology vis-à-vis reduced arsenic toxicity.
Collapse
Affiliation(s)
- Zahid Hassan
- Department of Molecular Cell Biology, A-Life, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
- Department of Genetic Engineering and Biotechnology, Jagannath University, Dhaka 1100, Bangladesh
| | - Hans V. Westerhoff
- Department of Molecular Cell Biology, A-Life, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
- Stellenbosch Institute of Advanced Studies (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
2
|
Konya A, Fiddler BA, Bunch O, Hess KZ, Ferguson C, Krzmarzick MJ. Lead or cadmium co-contamination alters benzene and toluene degrading bacterial communities. Biodegradation 2023; 34:357-369. [PMID: 36840890 PMCID: PMC10191895 DOI: 10.1007/s10532-023-10021-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/06/2023] [Indexed: 02/26/2023]
Abstract
Co-contamination of hydrocarbons with heavy metals in soils often complicates and hinders bioremediation. A comprehensive characterization of site-specific degraders at contaminated sites can help determine if in situ bioremediation processes are sufficient. This study aimed to identify differences in benzene and toluene degradation rates and the microbial communities enriched under aerobic conditions when different concentrations of Cd and Pb are introduced. Microcosms were used to study the degradation of 0.23 mM benzene or 0.19 mM toluene under various concentrations of Pb (up to 240 µM) and Cd (up to 440 µM). Soil collected from a stormwater retention basin receiving runoff from a large parking lot was utilized to seed the microcosms. The hydrocarbon degradation time and rates were measured. After further rounds of amendment and degradation of benzene and toluene, 16S rRNA gene amplicon sequencing and quantitative PCR were used to ascertain the microbial communities enriched under the various concentrations of the heavy metals. The initial degradation time for toluene and benzene was 7 to 9 days and 10 to 13 days, respectively. Degradation rates were similar for each hydrocarbon despite the concentration and presence of metal co-contaminant, however, the enriched microbial communities under each condition differed. Microcosms without metal co-contaminant contained a diversity of putative benzene and toluene degrading bacteria. Cd strongly reduced the richness of the microbial communities. With higher levels of heavy metals, genera such as Ralstonia, Cupriavidus, Azoarcus, and Rhodococcus became more dominant under various conditions. The study finds that highly efficient benzene- and toluene-degrading consortia can develop under variations of heavy metal co-contamination, but the consortia are dependent on the heavy metal type and concentrations.
Collapse
Affiliation(s)
- Aniko Konya
- Environmental Science Graduate Program, Oklahoma State University, Stillwater, OK, USA
| | - Brice A Fiddler
- School of Civil and Environmental Engineering, Oklahoma State University, Stillwater, OK, USA
| | - Olivia Bunch
- School of Civil and Environmental Engineering, Oklahoma State University, Stillwater, OK, USA
| | - Kendra Z Hess
- School of Civil and Environmental Engineering, Oklahoma State University, Stillwater, OK, USA
| | - Cade Ferguson
- School of Civil and Environmental Engineering, Oklahoma State University, Stillwater, OK, USA
| | - Mark J Krzmarzick
- Environmental Science Graduate Program, Oklahoma State University, Stillwater, OK, USA.
- School of Civil and Environmental Engineering, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
3
|
A First Glimpse on Cold-Adapted PCB-Oxidizing Bacteria in Edmonson Point Lakes (Northern Victoria Land, Antarctica). WATER 2022. [DOI: 10.3390/w14010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Antarctic freshwater ecosystems are especially vulnerable to human impacts. Polychlorobiphenyls (PCBs) are persistent organic pollutants that have a long lifetime in the environment. Despite their use having either been phased out or restricted, they are still found in nature, also in remote areas. Once in the environment, the fate of PCBs is strictly linked to bacteria which represent the first step in the transfer of toxic compounds to higher trophic levels. Data on PCB-oxidizing bacteria from polar areas are still scarce and fragmented. In this study, the occurrence of PCB-oxidizing cold-adapted bacteria was evaluated in water and sediment of four coastal lakes at Edmonson Point (Northern Victoria Land, Antarctica). After enrichment with biphenyl, 192 isolates were obtained with 57 of them that were able to grow in the presence of the PCB mixture Aroclor 1242, as the sole carbon source. The catabolic gene bphA, as a proxy for PCB degradation potential, was harbored by 37 isolates (out of 57), mainly affiliated to the genera Salinibacterium, Arthrobacter (among Actinobacteria) and Pusillimonas (among Betaproteobacteria). Obtained results enlarge our current knowledge on cold-adapted PCB-oxidizing bacteria and pose the basis for their potential application as a valuable eco-friendly tool for the recovery of PCB-contaminated cold sites.
Collapse
|
4
|
Engineering Burkholderia xenovorans LB400 BphA through Site-Directed Mutagenesis at Position 283. Appl Environ Microbiol 2020; 86:AEM.01040-20. [PMID: 32709719 DOI: 10.1128/aem.01040-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/15/2020] [Indexed: 11/20/2022] Open
Abstract
Biphenyl dioxygenase (BPDO), which is a Rieske-type oxygenase (RO), catalyzes the initial dioxygenation of biphenyl and some polychlorinated biphenyls (PCBs). In order to enhance the degradation ability of BPDO in terms of a broader substrate range, the BphAES283M, BphAEp4-S283M, and BphAERR41-S283M variants were created from the parent enzymes BphAELB400, BphAEp4, and BphAERR41, respectively, by a substitution at one residue, Ser283Met. The results of steady-state kinetic parameters show that for biphenyl, the k cat/Km values of BphAES283M, BphAEp4-S283M, and BphAERR41-S283M were significantly increased compared to those of their parent enzymes. Meanwhile, we determined the steady-state kinetics of BphAEs toward highly chlorinated biphenyls. The results suggested that the Ser283Met substitution enhanced the catalytic activity of BphAEs toward 2,3',4,4'-tetrachlorobiphenyl (2,3',4,4'-CB), 2,2',6,6'-tetrachlorobiphenyl (2,2',6,6'-CB), and 2,3',4,4',5-pentachlorobiphenyl (2,3',4,4',5-CB). We compared the catalytic reactions of BphAELB400 and its variants toward 2,2'-dichlorobiphenyl (2,2'-CB), 2,5-dichlorobiphenyl (2,5-CB), and 2,6-dichlorobiphenyl (2,6-CB). The biochemical data indicate that the Ser283Met substitution alters the orientation of the substrate inside the catalytic site and, thereby, its site of hydroxylation, and this was confirmed by docking experiments. We also assessed the substrate ranges of BphAELB400 and its variants with degradation activity. BphAES283M and BphAEp4-S283M were clearly improved in oxidizing some of the 3-6-chlorinated biphenyls, which are generally very poorly oxidized by most dioxygenases. Collectively, the present work showed a significant effect of mutation Ser283Met on substrate specificity/regiospecificity in BPDO. These will certainly be meaningful elements for understanding the effect of the residue corresponding to position 283 in other Rieske oxygenase enzymes.IMPORTANCE The segment from positions 280 to 283 in BphAEs is located at the entrance of the catalytic pocket, and it shows variation in conformation. In previous works, results have suggested but never proved that residue Ser283 of BphAELB400 might play a role in substrate specificity. In the present paper, we found that the Ser283Met substitution significantly increased the specificity of the reaction of BphAE toward biphenyl, 2,3',4,4'-CB, 2,2',6,6'-CB, and 2,3',4,4',5-CB. Meanwhile, the Ser283Met substitution altered the regiospecificity of BphAE toward 2,2'-dichlorobiphenyl and 2,6-dichlorobiphenyl. Additionally, this substitution extended the range of PCBs metabolized by the mutated BphAE. BphAES283M and BphAEp4-S283M were clearly improved in oxidizing some of the more highly chlorinated biphenyls (3 to 6 chlorines), which are generally very poorly oxidized by most dioxygenases. We used modeled and docked enzymes to identify some of the structural features that explain the new properties of the mutant enzymes. Altogether, the results of this study provide better insights into the mechanisms by which BPDO evolves to change and/or expand its substrate range and its regiospecificity.
Collapse
|
5
|
Zenteno-Rojas A, Martínez-Romero E, Castañeda-Valbuena D, Rincón-Molina CI, Ruíz-Valdiviezo VM, Meza-Gordillo R, Villalobos-Maldonado JJ, Vences-Guzmán MÁ, Rincón-Rosales R. Structure and diversity of native bacterial communities in soils contaminated with polychlorinated biphenyls. AMB Express 2020; 10:124. [PMID: 32651884 PMCID: PMC7351888 DOI: 10.1186/s13568-020-01058-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/02/2020] [Indexed: 11/20/2022] Open
Abstract
Persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) are a group of high-risk synthetic substances for human and environmental health. Currently, the study of sites contaminated by the spillage of equipment PCBs containing have been considered targeted areas for the study of bacterial communities with potential for PCBs degradation. There in isolation of bacterial strains is vital for use in biodegradable processes, such as bacterial bioaugmentation, which accelerates the development of phenomena such as natural attenuation of contaminated sites. The objective of this study was to assess biodiversity of bacteria contained in anthropogenic contaminated soils (HS and HP) with PCBs compared to a control sample without contaminant and the modified forest (F) and agricultural (A) soil in the laboratory with 100 mg L−1 PCB. For the analysis of 16S rRNA genes amplified from DNA extracted from the soils evaluated, the latest generation of Illumina Miseq and Sanger sequencing for the cultivable strains were detected. The bacteria identified as the most abundant bacterial phyla for HS and HP soil was Proteobacteria (56.7%) and Firmicutes (22.9%), which decreased in F and A soils. The most abundant bacterial genera were Burkholderia, Bacillus, Acinetobacter, Comamonas and Cupriavidus. Several species identified in this study, such as Bacillus cereus, Burkholderia cepacia, Comamonas testosteroni and Acinetobacter pittii have been reported as PCBs degraders. Finally, by means of a principal component analysis (PCA), a correlation between the physical and chemical characteristics of the soils in relation to the relative abundances of the bacteria identified was obtained. The C/N ratio was directly related to the control soil (without contaminant), while SOM maintained a relationship with F and A soils and the bacterial abundances were directly related to Hs and Hp soils due to the presence of aroclor 1260. Bacteria with the ability to tolerate high concentrations of this pollutant are considered for future use in biostimulation and bioaugmentation processes in contaminated soils.
Collapse
|
6
|
Nasrollahi M, Pourbabaei AA, Etesami H, Talebi K. Diazinon degradation by bacterial endophytes in rice plant (Oryzia sativa L.): A possible reason for reducing the efficiency of diazinon in the control of the rice stem-borer. CHEMOSPHERE 2020; 246:125759. [PMID: 31891844 DOI: 10.1016/j.chemosphere.2019.125759] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/09/2019] [Accepted: 12/25/2019] [Indexed: 06/10/2023]
Abstract
It is well known that microorganisms can reduce the effectiveness of organophosphate pesticides after their application. But, little information is available concerning the effect of rice endophytic bacteria on the degradation of diazinon, an organophosphate pesticide used in control of the rice stem-borer, absorbed by the rice plant. Thus, aim of this study was to characterize the endophytic bacterial isolates, isolated from diazinon-treated and non-treated rice plants in paddy fields, in terms of diazinon degradation and to investigate whether potent isolates that degrade diazinon in vitro might have the same effect in the rice plant. The results showed that all endophytic isolates, isolated from both groups of rice plants (diazinon-treated and non-treated rice plants), could grow in mineral salt medium (MSM) supplemented with diazinon (20 mg L-1) as a sole carbon source, and 3.79-58.52% of the initial dose of the insecticide was degraded by the isolates within 14 d of incubation. Phylogenetic analysis based on 16 S rRNA sequencing indicated that the potent isolates (DB26-R and B6-L) clearly belonged to the Bacillus genus. The diazinon concentrations in rice plants co-inoculated with B. altitudinis DB26-R and B. subtilis subsp. Inaquosorum B6-L and single-inoculated with these strains were reduced significantly compared with endophyte-free rice plants. These results provide unequivocal evidence that the rice endophytic bacteria, in addition to in vitro degradation of diazinon, are also involved in the rapid inactivation of diazinon in rice plants treated with diazinon (in vivo degradation of diazinon).
Collapse
Affiliation(s)
- Mina Nasrollahi
- Department of Soil Science, University College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran
| | - Ahmad Ali Pourbabaei
- Department of Soil Science, University College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran.
| | - Hassan Etesami
- Department of Soil Science, University College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran.
| | - Khalil Talebi
- Department of Plant Protection, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
7
|
Ma X, Qi M, Li Z, Zhao Y, Yan P, Liang B, Wang A. Characterization of an efficient chloramphenicol-mineralizing bacterial consortium. CHEMOSPHERE 2019; 222:149-155. [PMID: 30703654 DOI: 10.1016/j.chemosphere.2019.01.131] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 12/25/2018] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
Obtaining efficient antibiotic-mineralizing consortium or pure cultures is a central issue for the deep elimination of antibiotic-contaminated environments. However, the antibiotic chloramphenicol (CAP) mineralizing consortium has not yet been reported. In this study, an efficient CAP-mineralizing consortium was successfully obtained with municipal activated sludge as the initial inoculum. This consortium is capable of aerobically subsisting on CAP as the sole carbon, nitrogen and energy sources and completely degrading 50 mg L-1 CAP within 24 h. After 5 d, 71.50 ± 2.63% of CAP was mineralized and Cl- recovery efficiency was 90.80 ± 7.34%. Interestingly, the CAP degradation efficiency obviously decreased to 18.22 ± 3.52% within 12 h with co-metabolic carbon source glucose. p-nitrobenzoic acid (p-NBA) was identified as an intermediate product during CAP biodegradation. The consortium is also able to utilize p-NBA as the sole carbon and nitrogen sources and almost completely degrade 25 mg L-1p-NBA within 24 h. Microbial community analysis indicated that the dominant genera in the CAP-mineralizing consortium all belong to Proteobacteria (especially Sphingobium with the relative abundance over 63%), and most bacteria could degrade aromatics including p-NBA, suggesting these genera involved in the upstream and downstream pathway of CAP degradation. Although the acclimated consortium has been successively passaged 152 times, the microbial community structure and core genera were not obviously changed, which was consistent with the stable CAP degradation efficiency observed under different generations. This is the first report that the acclimated consortium is able to mineralize CAP through an oxidative pathway with p-NBA as an intermediate product.
Collapse
Affiliation(s)
- Xiaodan Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Mengyuan Qi
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Youkang Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Peisheng Yan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bin Liang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
8
|
Aerobic degradation of crude oil by microorganisms in soils from four geographic regions of China. Sci Rep 2017; 7:14856. [PMID: 29093536 PMCID: PMC5665864 DOI: 10.1038/s41598-017-14032-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 10/05/2017] [Indexed: 11/13/2022] Open
Abstract
A microcosm experiment was conducted for 112 d by spiking petroleum hydrocarbons into soils from four regions of China. Molecular analyses of soils from microcosms revealed changes in taxonomic diversity and oil catabolic genes of microbial communities. Degradation of total petroleum hydrocarbons (TPHs) in Sand from the Bohai Sea (SS) and Northeast China (NE) exhibited greater microbial mineralization than those of the Dagang Oilfield (DG) and Xiamen (XM). High-throughput sequencing and denaturing gradient gel electrophoresis (DGGE) profiles demonstrated an obvious reconstruction of the bacterial community in all soils. The dominant phylum of the XM with clay soil texture was Firmicutes instead of Proteobacteria in others (DG, SS, and NE) with silty or sandy soil texture. Abundances of alkane monooxygenase gene AlkB increased by 10- to 1000-fold, relative to initial values, and were positively correlated with rates of degradation of TPHs and n-alkanes C13-C30. Abundances of naphthalene dioxygenase gene Nah were positively correlated with degradation of naphthalene and total tricyclic PAHs. Redundancy analysis (RDA) showed that abiotic process derived from geographical heterogeneity was the primary effect on bioremediation of soils contaminated with oil. The optimization of abiotic and biotic factors should be the focus of future bioremediation of oil contaminated soil.
Collapse
|
9
|
Martirani-Von Abercron SM, Marín P, Solsona-Ferraz M, Castañeda-Cataña MA, Marqués S. Naphthalene biodegradation under oxygen-limiting conditions: community dynamics and the relevance of biofilm-forming capacity. Microb Biotechnol 2017; 10:1781-1796. [PMID: 28840968 PMCID: PMC5658598 DOI: 10.1111/1751-7915.12842] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 11/27/2022] Open
Abstract
Toxic polycyclic aromatic hydrocarbons (PAHs) are frequently released into the environment from anthropogenic sources. PAH remediation strategies focus on biological processes mediated by bacteria. The availability of oxygen in polluted environments is often limited or absent, and only bacteria able to thrive in these conditions can be considered for bioremediation strategies. To identify bacterial strains able to degrade PAHs under oxygen‐limiting conditions, we set up enrichment cultures from samples of an oil‐polluted aquifer, using either anoxic or microaerophilic condition and with PAHs as the sole carbon source. Despite the presence of a significant community of nitrate‐reducing bacteria, the initial community, which was dominated by Betaproteobacteria, was incapable of PAH degradation under strict anoxic conditions, although a clear shift in the structure of the community towards an increase in the Alphaproteobacteria (Sphingomonadaceae), Actinobacteria and an uncultured group of Acidobacteria was observed in the enrichments. In contrast, growth under microaerophilic conditions with naphthalene as the carbon source evidenced the development of a biofilm structure around the naphthalene crystal. The enrichment process selected two co‐dominant groups which finally reached 97% of the bacterial communities: Variovorax spp. (54%, Betaproteobacteria) and Starkeya spp. (43%, Xanthobacteraceae). The two dominant populations were able to grow with naphthalene, although only Starkeya was able to reproduce the biofilm structure around the naphthalene crystal. The pathway for naphthalene degradation was identified, which included as essential steps dioxygenases with high affinity for oxygen, showing 99% identity with Xanthobacter polyaromaticivorans dbd cluster for PAH degradation. Our results suggest that the biofilm formation capacity of Starkeya provided a structure to allocate its cells at an appropriate distance from the toxic carbon source.
Collapse
Affiliation(s)
| | - Patricia Marín
- Estación Experimental del Zaidín, Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Marta Solsona-Ferraz
- Estación Experimental del Zaidín, Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Mayra-Alejandra Castañeda-Cataña
- Estación Experimental del Zaidín, Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Silvia Marqués
- Estación Experimental del Zaidín, Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
10
|
Morlett Chávez JA, Ascacio Martínez JÁ, Haskins WE, Acuña Askar K. Gene Expression during BTEX Biodegradation by a Microbial Consortium Acclimatized to Unleaded Gasoline and a Pseudomonas putida Strain (HM346961) Isolated from It. Pol J Microbiol 2017; 66:189-199. [DOI: 10.5604/01.3001.0010.7836] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas putida strain (HM346961) was isolated from a consortium of bacteria acclimatized to unleaded gasoline-contaminated water. The consortium can efficiently remove benzene, toluene, ethylbenzene and xylene (BTEX) isomers, and a similar capability was observed with the P. putida strain. Proteome of this strain showed certain similarities with that of other strains exposed to the hydrocarbon compounds. Furthermore, the toluene di-oxygenase (tod) gene was up-regulated in P. putida strain when exposed to toluene, ethylbenzene, xylene, and BTEX. In contrast, the tod gene of P. putida F1 (ATCC 700007) was up-regulated only in the presence of toluene and BTEX. Several differences in the nucleotide and protein sequences of these two tod genes were observed. This suggests that tod up-regulation in P. putida strain may partially explain their great capacity to remove aromatic compounds, relative to P. putida F1. Therefore, new tod and P. putida strain are promising for various environmental applications.
Collapse
Affiliation(s)
- Jesús A. Morlett Chávez
- Laboratory of Genomics and Bioinformatics, Autonomous University of Nuevo Leon, Monterrey Nuevo León, Mexico; Laboratory of Biotechnology, Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Autonomous University of Nuevo Leon, Monterrey Nuevo León, Mexico
| | - Jorge Á. Ascacio Martínez
- Laboratory of Biotechnology, Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Autonomous University of Nuevo Leon, Monterrey Nuevo León, Mexico
| | - William E. Haskins
- Departments of Biology and Chemistry, University of Texas at San Antonio, San Antonio, TX, USA; RCMI Proteomics, University of Texas at San Antonio, San Antonio, TX, USA; Protein Biomarkers Cores, University of Texas at San Antonio, San Antonio, TX, USA
| | - Karim Acuña Askar
- Laboratory of Environmental Bioremediation, Department of Microbiology, Faculty of Medicine, Autonomous University of Nuevo Leon, Monterrey Nuevo León, Mexico
| |
Collapse
|
11
|
Duarte M, Nielsen A, Camarinha-Silva A, Vilchez-Vargas R, Bruls T, Wos-Oxley ML, Jauregui R, Pieper DH. Functional soil metagenomics: elucidation of polycyclic aromatic hydrocarbon degradation potential following 12 years of in situ bioremediation. Environ Microbiol 2017; 19:2992-3011. [PMID: 28401633 DOI: 10.1111/1462-2920.13756] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 03/29/2017] [Accepted: 04/06/2017] [Indexed: 11/27/2022]
Abstract
A culture-independent function-based screening approach was used to assess the microbial aerobic catabolome for polycyclic aromatic hydrocarbons degradation of a soil subjected to 12 years of in situ bioremediation. A total of 422 750 fosmid clones were screened for key aromatic ring-cleavage activities using 2,3-dihydroxybiphenyl as substrate. Most of the genes encoding ring-cleavage enzymes on the 768 retrieved positive fosmids could not be identified using primer-based approaches and, thus, 205 fosmid inserts were sequenced. Nearly two hundred extradiol dioxygenase encoding genes of three different superfamilies could be identified. Additional key genes of aromatic metabolic pathways were identified, including a high abundance of Rieske non-heme iron oxygenases that provided detailed information on enzymes activating aromatic compounds and enzymes involved in activation of the side chain of methylsubstituted aromatics. The gained insights indicated a complex microbial network acting at the site under study, which comprises organisms similar to recently identified Immundisolibacter cernigliae TR3.2 and Rugosibacter aromaticivorans Ca6 and underlined the great potential of an approach that combines an activity-screening, a cost-effective high-throughput sequencing of fosmid clones and a phylogenomic-routed and manually curated database to carefully identify key proteins dedicated to aerobic degradation of aromatic compounds.
Collapse
Affiliation(s)
- Márcia Duarte
- Microbial Interactions and Processes Research Group, HZI - Helmholtz Centre for Infection Research, Inhoffenstr. 7, Braunschweig, D-38124, Germany
| | - Agnes Nielsen
- Microbial Interactions and Processes Research Group, HZI - Helmholtz Centre for Infection Research, Inhoffenstr. 7, Braunschweig, D-38124, Germany
| | - Amélia Camarinha-Silva
- Microbial Interactions and Processes Research Group, HZI - Helmholtz Centre for Infection Research, Inhoffenstr. 7, Braunschweig, D-38124, Germany
| | - Ramiro Vilchez-Vargas
- Microbial Interactions and Processes Research Group, HZI - Helmholtz Centre for Infection Research, Inhoffenstr. 7, Braunschweig, D-38124, Germany.,Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke-University, Magdeburg, Germany
| | - Thomas Bruls
- Institut de Génomique, Genoscope, UMR8030 (CNRS, CEA, Université d'Evry), Evry, France
| | - Melissa L Wos-Oxley
- Microbial Interactions and Processes Research Group, HZI - Helmholtz Centre for Infection Research, Inhoffenstr. 7, Braunschweig, D-38124, Germany
| | - Ruy Jauregui
- Microbial Interactions and Processes Research Group, HZI - Helmholtz Centre for Infection Research, Inhoffenstr. 7, Braunschweig, D-38124, Germany.,AgResearch Grasslands, Tennent drive, Palmerston North, New Zealand
| | - Dietmar H Pieper
- Microbial Interactions and Processes Research Group, HZI - Helmholtz Centre for Infection Research, Inhoffenstr. 7, Braunschweig, D-38124, Germany
| |
Collapse
|
12
|
Benzene Degradation by a Variovorax Species within a Coal Tar-Contaminated Groundwater Microbial Community. Appl Environ Microbiol 2017; 83:AEM.02658-16. [PMID: 27913419 DOI: 10.1128/aem.02658-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/25/2016] [Indexed: 11/20/2022] Open
Abstract
Investigations of environmental microbial communities are crucial for the discovery of populations capable of degrading hazardous compounds and may lead to improved bioremediation strategies. The goal of this study was to identify microorganisms responsible for aerobic benzene degradation in coal tar-contaminated groundwater. Benzene degradation was monitored in laboratory incubations of well waters using gas chromatography mass spectrometry (GC-MS). Stable isotope probing (SIP) experiments using [13C]benzene enabled us to obtain 13C-labled community DNA. From this, 16S rRNA clone libraries identified Gammaproteobacteria and Betaproteobacteria as the active benzene-metabolizing microbial populations. Subsequent cultivation experiments yielded nine bacterial isolates that grew in the presence of benzene; five were confirmed in laboratory cultures to grow on benzene. The isolated benzene-degrading organisms were genotypically similar (>97% 16S rRNA gene nucleotide identities) to the organisms identified in SIP experiments. One isolate, Variovorax MAK3, was further investigated for the expression of a putative aromatic ring-hydroxylating dioxygenase (RHD) hypothesized to be involved in benzene degradation. Microcosm experiments using Variovorax MAK3 revealed a 10-fold increase in RHD (Vapar_5383) expression, establishing a link between this gene and benzene degradation. Furthermore, the addition of Variovorax MAK3 to microcosms prepared from site waters accelerated community benzene degradation and correspondingly increased RHD gene expression. In microcosms using uninoculated groundwater, quantitative (q)PCR assays (with 16S rRNA and RDH genes) showed that Variovorax was present and responsive to added benzene. These data demonstrate how the convergence of cultivation-dependent and -independent techniques can boost understandings of active populations and functional genes in complex benzene-degrading microbial communities. IMPORTANCE Benzene is a human carcinogen whose presence in contaminated groundwater drives environmental cleanup efforts. Although the aerobic biodegradation of benzene has long been established, knowledge of the identity of the microorganisms in complex naturally occurring microbial communities responsible for benzene biodegradation has evaded scientific inquiry for many decades. Here, we applied a molecular biology technique known as stable isotope probing (SIP) to the microbial communities residing in contaminated groundwater samples to identify the community members active in benzene biodegradation. We complemented this approach by isolating and growing in the laboratory a bacterium representative of the bacteria found using SIP. Further characterization of the isolated bacterium enabled us to track the expression of a key gene that attacks benzene both in pure cultures of the bacterium and in the naturally occurring groundwater microbial community. This work advances information regarding the documentation of microbial processes, especially the populations and genes that contribute to bioremediation.
Collapse
|
13
|
Canchignia H, Altimira F, Montes C, Sánchez E, Tapia E, Miccono M, Espinoza D, Aguirre C, Seeger M, Prieto H. Candidate nematicidal proteins in a new Pseudomonas veronii isolate identified by its antagonistic properties against Xiphinema index. J GEN APPL MICROBIOL 2016; 63:11-21. [PMID: 27989999 DOI: 10.2323/jgam.2016.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The nematode Xiphinema index affects grape vines and transmits important viruses associated with fanleaf degeneration. Pseudomonas spp. are an extensive bacterial group in which important biodegradation and/or biocontrol properties can occur for several strains in the group. The aim of this study was to identify new Pseudomonas isolates with antagonist activity against X. index. Forty bacterial isolates were obtained from soil and root samples from Chilean vineyards. Thirteen new fluorescent pseudomonads were found and assessed for their antagonistic capability. The nematicide Pseudomonas protegens CHA0 was used as a control. Challenges of nematode individuals in King's B semi-solid agar Petri dishes facilitated the identification of the Pseudomonas veronii isolate R4, as determined by a 16S rRNA sequence comparison. This isolate was as effective as CHA0 as an antagonist of X. index, although it had a different lethality kinetic. Milk-induced R4 cultures exhibited protease and lipase activities in cell supernatants using both gelatin/tributyrin Petri dish assays and zymograms. Three proteins with these activities were isolated and subjected to mass spectrometry. Amino acid partial sequences enabled the identification of a 49-kDa protease similar to metalloprotease AprA and two lipases of 50 kDa and 69 kDa similar to LipA and ExoU, respectively. Electron microscopy analyses of challenged nematodes revealed degraded cuticle after R4 supernatant treatment. These results represent a new and unexplored property in this species associated with the presence of secretable lipases and protease, similar to characterized enzymes present in biocontrol pseudomonads.
Collapse
Affiliation(s)
- Hayron Canchignia
- Biotechnology Doctoral Program, Universidad Técnica Federico Santa María-Pontificia Universidad Católica de Valparaíso
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Morales M, Sentchilo V, Bertelli C, Komljenovic A, Kryuchkova-Mostacci N, Bourdilloud A, Linke B, Goesmann A, Harshman K, Segers F, Delapierre F, Fiorucci D, Seppey M, Trofimenco E, Berra P, El Taher A, Loiseau C, Roggero D, Sulfiotti M, Etienne A, Ruiz Buendia G, Pillard L, Escoriza A, Moritz R, Schneider C, Alfonso E, Ben Jeddou F, Selmoni O, Resch G, Greub G, Emery O, Dubey M, Pillonel T, Robinson-Rechavi M, van der Meer JR. The Genome of the Toluene-Degrading Pseudomonas veronii Strain 1YdBTEX2 and Its Differential Gene Expression in Contaminated Sand. PLoS One 2016; 11:e0165850. [PMID: 27812150 PMCID: PMC5094676 DOI: 10.1371/journal.pone.0165850] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/18/2016] [Indexed: 12/31/2022] Open
Abstract
The natural restoration of soils polluted by aromatic hydrocarbons such as benzene, toluene, ethylbenzene and m- and p-xylene (BTEX) may be accelerated by inoculation of specific biodegraders (bioaugmentation). Bioaugmentation mainly involves introducing bacteria that deploy their metabolic properties and adaptation potential to survive and propagate in the contaminated environment by degrading the pollutant. In order to better understand the adaptive response of cells during a transition to contaminated material, we analyzed here the genome and short-term (1 h) changes in genome-wide gene expression of the BTEX-degrading bacterium Pseudomonas veronii 1YdBTEX2 in non-sterile soil and liquid medium, both in presence or absence of toluene. We obtained a gapless genome sequence of P. veronii 1YdBTEX2 covering three individual replicons with a total size of 8 Mb, two of which are largely unrelated to current known bacterial replicons. One-hour exposure to toluene, both in soil and liquid, triggered massive transcription (up to 208-fold induction) of multiple gene clusters, such as toluene degradation pathway(s), chemotaxis and toluene efflux pumps. This clearly underlines their key role in the adaptive response to toluene. In comparison to liquid medium, cells in soil drastically changed expression of genes involved in membrane functioning (e.g., lipid composition, lipid metabolism, cell fatty acid synthesis), osmotic stress response (e.g., polyamine or trehalose synthesis, uptake of potassium) and putrescine metabolism, highlighting the immediate response mechanisms of P. veronii 1YdBTEX2 for successful establishment in polluted soil.
Collapse
Affiliation(s)
- Marian Morales
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Vladimir Sentchilo
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Claire Bertelli
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
- SIB Swiss Institute for Bioinformatics, Lausanne, Switzerland
| | - Andrea Komljenovic
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- SIB Swiss Institute for Bioinformatics, Lausanne, Switzerland
| | - Nadezda Kryuchkova-Mostacci
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- SIB Swiss Institute for Bioinformatics, Lausanne, Switzerland
| | - Audrey Bourdilloud
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Burkhard Linke
- Bioinformatics and Systems Biology, Justus-Liebig-University, Gießen, Germany
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus-Liebig-University, Gießen, Germany
| | - Keith Harshman
- Lausanne Genomic Technologies Facility, Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Francisca Segers
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Fabien Delapierre
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Damien Fiorucci
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Mathieu Seppey
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Evgeniya Trofimenco
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Pauline Berra
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Athimed El Taher
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Chloé Loiseau
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Dejan Roggero
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Madeleine Sulfiotti
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Angela Etienne
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Gustavo Ruiz Buendia
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Loïc Pillard
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Angelique Escoriza
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Roxane Moritz
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Cedric Schneider
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Esteban Alfonso
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Fatma Ben Jeddou
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Oliver Selmoni
- Master in Molecular Life Sciences, University of Lausanne, Lausanne, Switzerland
| | - Gregory Resch
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Olivier Emery
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Manupriyam Dubey
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Trestan Pillonel
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- SIB Swiss Institute for Bioinformatics, Lausanne, Switzerland
| | - Jan Roelof van der Meer
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
15
|
Degenerate primers as biomarker for gene-targeted metagenomics of the catechol 1, 2-dioxygenase-encoding gene in microbial populations of petroleum-contaminated environments. ANN MICROBIOL 2016. [DOI: 10.1007/s13213-016-1197-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
16
|
Linking Microbial Community and Catabolic Gene Structures during the Adaptation of Three Contaminated Soils under Continuous Long-Term Pollutant Stress. Appl Environ Microbiol 2016; 82:2227-2237. [PMID: 26850298 DOI: 10.1128/aem.03482-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 01/29/2016] [Indexed: 11/20/2022] Open
Abstract
Three types of contaminated soil from three geographically different areas were subjected to a constant supply of benzene or benzene/toluene/ethylbenzene/xylenes (BTEX) for a period of 3 months. Different from the soil from Brazil (BRA) and Switzerland (SUI), the Czech Republic (CZE) soil which was previously subjected to intensive in situ bioremediation displayed only negligible changes in community structure. BRA and SUI soil samples showed a clear succession of phylotypes. A rapid response to benzene stress was observed, whereas the response to BTEX pollution was significantly slower. After extended incubation, actinobacterial phylotypes increased in relative abundance, indicating their superior fitness to pollution stress. Commonalities but also differences in the phylotypes were observed. Catabolic gene surveys confirmed the enrichment of actinobacteria by identifying the increase of actinobacterial genes involved in the degradation of pollutants. Proteobacterial phylotypes increased in relative abundance in SUI microcosms after short-term stress with benzene, and catabolic gene surveys indicated enriched metabolic routes. Interestingly, CZE soil, despite staying constant in community structure, showed a change in the catabolic gene structure. This indicates that a highly adapted community, which had to adjust its gene pool to meet novel challenges, has been enriched.
Collapse
|
17
|
Shahzad A, Siddiqui S, Bano A. Rhizoremediation of petroleum hydrocarbon, prospects and future. RSC Adv 2016. [DOI: 10.1039/c6ra12458e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Oil refineries generate several tones of oily waste which is dumped in an open pit within the vicinity of oil field.
Collapse
Affiliation(s)
- Asim Shahzad
- Mohi-Ud-Din Islamic University
- Pakistan
- Department of Bio Sciences
- University of Wah
- Wah Cannt
| | - Samina Siddiqui
- National Center for Excellence in Geology
- University of Peshawar
- Pakistan
| | - Asghari Bano
- Department of Bio Sciences
- University of Wah
- Wah Cannt
- Pakistan
| |
Collapse
|
18
|
Degradation of Benzene by Pseudomonas veronii 1YdBTEX2 and 1YB2 Is Catalyzed by Enzymes Encoded in Distinct Catabolism Gene Clusters. Appl Environ Microbiol 2015; 82:167-73. [PMID: 26475106 DOI: 10.1128/aem.03026-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/13/2015] [Indexed: 01/21/2023] Open
Abstract
Pseudomonas veronii 1YdBTEX2, a benzene and toluene degrader, and Pseudomonas veronii 1YB2, a benzene degrader, have previously been shown to be key players in a benzene-contaminated site. These strains harbor unique catabolic pathways for the degradation of benzene comprising a gene cluster encoding an isopropylbenzene dioxygenase where genes encoding downstream enzymes were interrupted by stop codons. Extradiol dioxygenases were recruited from gene clusters comprising genes encoding a 2-hydroxymuconic semialdehyde dehydrogenase necessary for benzene degradation but typically absent from isopropylbenzene dioxygenase-encoding gene clusters. The benzene dihydrodiol dehydrogenase-encoding gene was not clustered with any other aromatic degradation genes, and the encoded protein was only distantly related to dehydrogenases of aromatic degradation pathways. The involvement of the different gene clusters in the degradation pathways was suggested by real-time quantitative reverse transcription PCR.
Collapse
|
19
|
Shumkova ES, Egorova DO, Boronnikova SV, Plotnikova EG. Polymorphism of the bphA genes in bacteria destructing biphenyl/chlorinated biphenils. Mol Biol 2015. [DOI: 10.1134/s0026893315040159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Liu Q, Tang J, Bai Z, Hecker M, Giesy JP. Distribution of petroleum degrading genes and factor analysis of petroleum contaminated soil from the Dagang Oilfield, China. Sci Rep 2015; 5:11068. [PMID: 26086670 PMCID: PMC4478889 DOI: 10.1038/srep11068] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 05/14/2015] [Indexed: 11/09/2022] Open
Abstract
Genes that encode for enzymes that can degrade petroleum hydrocarbons (PHs) are critical for the ability of microorganisms to bioremediate soils contaminated with PHs. Distributions of two petroleum-degrading genes AlkB and Nah in soils collected from three zones of the Dagang Oilfield, Tianjin, China were investigated. Numbers of copies of AlkB ranged between 9.1 × 10(5) and 1.9 × 10(7) copies/g dry mass (dm) soil, and were positively correlated with total concentrations of PHs (TPH) (R(2) = 0.573, p = 0.032) and alkanes (C33 ~ C40) (R(2) = 0.914, p < 0.01). The Nah gene was distributed relatively evenly among sampling zones, ranging between 1.9 × 10(7) and 1.1 × 10(8) copies/g dm soil, and was negatively correlated with concentrations of total aromatic hydrocarbons (TAH) (R(2) = -0.567, p = 0.035) and ∑16 PAHs (R(2) = -0.599, p = 0.023). Results of a factor analysis showed that individual samples of soils were not ordinated as a function of the zones.
Collapse
Affiliation(s)
- Qinglong Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Pollution Diagnosis and Environmental Restoration, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Center of Pollution Diagnosis and Environmental Restoration, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Zhihui Bai
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Markus Hecker
- 1] School of Environment and sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada [2] Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - John P Giesy
- 1] Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada [2] Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada [3] School of Biological Sciences, University of Hong Kong, Hong Kong, SAR, China [4] State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China [5] Department of Biology, Hong Kong Baptist University, Hong Kong, SAR, China
| |
Collapse
|
21
|
Duarte M, Jauregui R, Vilchez-Vargas R, Junca H, Pieper DH. AromaDeg, a novel database for phylogenomics of aerobic bacterial degradation of aromatics. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2014; 2014:bau118. [PMID: 25468931 PMCID: PMC4250580 DOI: 10.1093/database/bau118] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Understanding prokaryotic transformation of recalcitrant pollutants and the in-situ metabolic nets require the integration of massive amounts of biological data. Decades of biochemical studies together with novel next-generation sequencing data have exponentially increased information on aerobic aromatic degradation pathways. However, the majority of protein sequences in public databases have not been experimentally characterized and homology-based methods are still the most routinely used approach to assign protein function, allowing the propagation of misannotations. AromaDeg is a web-based resource targeting aerobic degradation of aromatics that comprises recently updated (September 2013) and manually curated databases constructed based on a phylogenomic approach. Grounded in phylogenetic analyses of protein sequences of key catabolic protein families and of proteins of documented function, AromaDeg allows query and data mining of novel genomic, metagenomic or metatranscriptomic data sets. Essentially, each query sequence that match a given protein family of AromaDeg is associated to a specific cluster of a given phylogenetic tree and further function annotation and/or substrate specificity may be inferred from the neighboring cluster members with experimentally validated function. This allows a detailed characterization of individual protein superfamilies as well as high-throughput functional classifications. Thus, AromaDeg addresses the deficiencies of homology-based protein function prediction, combining phylogenetic tree construction and integration of experimental data to obtain more accurate annotations of new biological data related to aerobic aromatic biodegradation pathways. We pursue in future the expansion of AromaDeg to other enzyme families involved in aromatic degradation and its regular update. Database URL:http://aromadeg.siona.helmholtz-hzi.de
Collapse
Affiliation(s)
- Márcia Duarte
- Microbial Interactions and Processes Research Group, HZI-Helmholtz Centre for Infection Research, Inhoffenstr. 7, D-38124 Braunschweig, Germany, Research Group Microbial Ecology, Metabolism, Genomics and Evolution of Communities of Environmental Microorganisms, CorpoGen. Carrera 5 No. 66A-35, Bogotá, Colombia and Faculty of Basic and Applied Sciences, Universidad Militar Nueva Granada-UMNG, Campus Cajicá, Bogotá DC, Colombia
| | - Ruy Jauregui
- Microbial Interactions and Processes Research Group, HZI-Helmholtz Centre for Infection Research, Inhoffenstr. 7, D-38124 Braunschweig, Germany, Research Group Microbial Ecology, Metabolism, Genomics and Evolution of Communities of Environmental Microorganisms, CorpoGen. Carrera 5 No. 66A-35, Bogotá, Colombia and Faculty of Basic and Applied Sciences, Universidad Militar Nueva Granada-UMNG, Campus Cajicá, Bogotá DC, Colombia Microbial Interactions and Processes Research Group, HZI-Helmholtz Centre for Infection Research, Inhoffenstr. 7, D-38124 Braunschweig, Germany, Research Group Microbial Ecology, Metabolism, Genomics and Evolution of Communities of Environmental Microorganisms, CorpoGen. Carrera 5 No. 66A-35, Bogotá, Colombia and Faculty of Basic and Applied Sciences, Universidad Militar Nueva Granada-UMNG, Campus Cajicá, Bogotá DC, Colombia
| | - Ramiro Vilchez-Vargas
- Microbial Interactions and Processes Research Group, HZI-Helmholtz Centre for Infection Research, Inhoffenstr. 7, D-38124 Braunschweig, Germany, Research Group Microbial Ecology, Metabolism, Genomics and Evolution of Communities of Environmental Microorganisms, CorpoGen. Carrera 5 No. 66A-35, Bogotá, Colombia and Faculty of Basic and Applied Sciences, Universidad Militar Nueva Granada-UMNG, Campus Cajicá, Bogotá DC, Colombia
| | - Howard Junca
- Microbial Interactions and Processes Research Group, HZI-Helmholtz Centre for Infection Research, Inhoffenstr. 7, D-38124 Braunschweig, Germany, Research Group Microbial Ecology, Metabolism, Genomics and Evolution of Communities of Environmental Microorganisms, CorpoGen. Carrera 5 No. 66A-35, Bogotá, Colombia and Faculty of Basic and Applied Sciences, Universidad Militar Nueva Granada-UMNG, Campus Cajicá, Bogotá DC, Colombia Microbial Interactions and Processes Research Group, HZI-Helmholtz Centre for Infection Research, Inhoffenstr. 7, D-38124 Braunschweig, Germany, Research Group Microbial Ecology, Metabolism, Genomics and Evolution of Communities of Environmental Microorganisms, CorpoGen. Carrera 5 No. 66A-35, Bogotá, Colombia and Faculty of Basic and Applied Sciences, Universidad Militar Nueva Granada-UMNG, Campus Cajicá, Bogotá DC, Colombia
| | - Dietmar H Pieper
- Microbial Interactions and Processes Research Group, HZI-Helmholtz Centre for Infection Research, Inhoffenstr. 7, D-38124 Braunschweig, Germany, Research Group Microbial Ecology, Metabolism, Genomics and Evolution of Communities of Environmental Microorganisms, CorpoGen. Carrera 5 No. 66A-35, Bogotá, Colombia and Faculty of Basic and Applied Sciences, Universidad Militar Nueva Granada-UMNG, Campus Cajicá, Bogotá DC, Colombia
| |
Collapse
|
22
|
Shumkova ES, Egorova DO, Korsakova ES, Dorofeeva LV, Plotnikova EG. Molecular biological characterization of biphenyl-degrading bacteria and identification of the biphenyl 2,3-Dioxygenase α-subunit genes. Microbiology (Reading) 2014. [DOI: 10.1134/s0026261714010135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
23
|
Lehtinen T, Mikkonen A, Sigfusson B, Ólafsdóttir K, Ragnarsdóttir KV, Guicharnaud R. Bioremediation trial on aged PCB-polluted soils--a bench study in Iceland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:1759-1768. [PMID: 23979849 DOI: 10.1007/s11356-013-2069-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 08/12/2013] [Indexed: 06/02/2023]
Abstract
Polychlorinated biphenyls (PCBs) pose a threat to the environment due to their high adsorption capacity to soil organic matter, stability and low reactivity, low water solubility, toxicity and ability to bioaccumulate. With Icelandic soils, research on contamination issues has been very limited and no data has been reported either on PCB degradation potential or rate. The goals of this research were to assess the bioavailability of aged PCBs in the soils of the old North Atlantic Treaty Organization facility in Keflavík, Iceland and to find the best biostimulation method to decrease the pollution. The effectiveness of different biostimulation additives (N fertiliser, white clover and pine needles) at different temperatures (10 and 30 °C) and oxygen levels (aerobic and anaerobic) were tested. PCB bioavailability to soil fauna was assessed with earthworms (Eisenia foetida). PCBs were bioavailable to earthworms (bioaccumulation factor 0.89 and 0.82 for earthworms in 12.5 ppm PCB soil and in 25 ppm PCB soil, respectively), with less chlorinated congeners showing higher bioaccumulation factors than highly chlorinated congeners. Biostimulation with pine needles at 10 °C under aerobic conditions resulted in nearly 38 % degradation of total PCBs after 2 months of incubation. Detection of the aerobic PCB degrading bphA gene supports the indigenous capability of the soils to aerobically degrade PCBs. Further research on field scale biostimulation trials with pine needles in cold environments is recommended in order to optimise the method for onsite remediation.
Collapse
Affiliation(s)
- Taru Lehtinen
- Faculty of Earth Sciences, University of Iceland, Askja, Sturlugata 7, 101, Reykjavik, Iceland.
- Department of Environmental Sciences, Agricultural University of Iceland, Hvanneyri, 311, Borgarnes, Iceland.
| | - Anu Mikkonen
- Department of Food and Environmental Sciences, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | | | - Kristín Ólafsdóttir
- Department of Pharmacology and Toxicology, University of Iceland, Hofsvallagata 53, 107, Reykjavík, Iceland
| | | | - Rannveig Guicharnaud
- Department of Land Resources, Agricultural University of Iceland, Hvanneyri, 311, Borgarnes, Iceland
- Land Resource Management Unit, Soil Action, Institute for Environment & Sustainability (IES), European Commission-DG JRC, Via E. Fermi, 2749, 21027, Ispra, VA, Italy
| |
Collapse
|
24
|
Shah V, Zakrzewski M, Wibberg D, Eikmeyer F, Schlüter A, Madamwar D. Taxonomic profiling and metagenome analysis of a microbial community from a habitat contaminated with industrial discharges. MICROBIAL ECOLOGY 2013; 66:533-550. [PMID: 23728164 DOI: 10.1007/s00248-013-0244-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Industrial units, manufacturing dyes, chemicals,solvents, and xenobiotic compounds, produce liquid and solid wastes, which upon conventional treatment are released in the nearby environment and thus are the major cause of pollution. Soil collected from contaminated Kharicut Canalbank (N 22°57.878′; E 072°38.478′), Ahmeda bad, Gujarat,India was used for metagenomic DNA preparation to study the capabilities of intrinsic microbial community in dealing with xenobiotics. Sequencing of metagenomic DNA on the Genome Sequencer FLX System using titanium chemistry resulted in 409,782 reads accounting for 133,529,997 bases of sequence information. Taxonomic analyses and gene annotations were carried out using the bioinformatics platform Sequence Analysis and Management System for Metagenomic Datasets. Taxonomic profiling was carried out by three different complementary approaches: (a) 16S rDNA, (b) environmental gene tags, and (c) lowest common ancestor. The most abundant phylum and genus were found to be “Proteobacteria”and “Pseudomonas,” respectively. Metagenome reads were mapped on sequenced microbial genomes and the highest numbers of reads were allocated to Pseudomonas stutzeri A1501. Assignment of obtained metagenome reads to Gene Ontology terms, Clusters of Orthologous Groups of protein categories, protein family numbers, and Kyoto Encyclopedia of Genes and Genomes hits revealed genomic potential of indigenous microbial community. In total, 157,024 reads corresponded to 37,028 different KEGG hits, and amongst them, 11,574 reads corresponded to 131 different enzymes potentially involved in xenobiotic biodegradation. These enzymes were mapped on biodegradation pathways of xenobiotics to elucidate their roles in possible catalytic reactions. Consequently, information obtained from the present study will act as a baseline which, subsequently along with other“-omic” studies, will help in designing future bioremediation strategies in effluent treatment plants and environmental cleanup projects.
Collapse
Affiliation(s)
- Varun Shah
- Museo Nacional de Ciencias Naturales-CSIC, C/Serrano 115 bis., 28006, Madrid, Spain,
| | | | | | | | | | | |
Collapse
|
25
|
Shah V, Zakrzewski M, Wibberg D, Eikmeyer F, Schlüter A, Madamwar D. Taxonomic Profiling and Metagenome Analysis of a Microbial Community from a Habitat Contaminated with Industrial Discharges. MICROBIAL ECOLOGY 2013; 66:533-550. [PMID: 23797291 DOI: 10.1007/s00248-013-0253-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 06/03/2013] [Indexed: 06/02/2023]
Abstract
Industrial units, manufacturing dyes, chemicals, solvents, and xenobiotic compounds, produce liquid and solid wastes, which upon conventional treatment are released in the nearby environment and thus are the major cause of pollution. Soil collected from contaminated Kharicut Canal bank (N 22°57.878'; E 072°38.478'), Ahmedabad, Gujarat, India was used for metagenomic DNA preparation to study the capabilities of intrinsic microbial community in dealing with xenobiotics. Sequencing of metagenomic DNA on the Genome Sequencer FLX System using titanium chemistry resulted in 409,782 reads accounting for 133,529,997 bases of sequence information. Taxonomic analyses and gene annotations were carried out using the bioinformatics platform Sequence Analysis and Management System for Metagenomic Datasets. Taxonomic profiling was carried out by three different complementary approaches: (a) 16S rDNA, (b) environmental gene tags, and (c) lowest common ancestor. The most abundant phylum and genus were found to be "Proteobacteria" and "Pseudomonas," respectively. Metagenome reads were mapped on sequenced microbial genomes and the highest numbers of reads were allocated to Pseudomonas stutzeri A1501. Assignment of obtained metagenome reads to Gene Ontology terms, Clusters of Orthologous Groups of protein categories, protein family numbers, and Kyoto Encyclopedia of Genes and Genomes hits revealed genomic potential of indigenous microbial community. In total, 157,024 reads corresponded to 37,028 different KEGG hits, and amongst them, 11,574 reads corresponded to 131 different enzymes potentially involved in xenobiotic biodegradation. These enzymes were mapped on biodegradation pathways of xenobiotics to elucidate their roles in possible catalytic reactions. Consequently, information obtained from the present study will act as a baseline which, subsequently along with other "-omic" studies, will help in designing future bioremediation strategies in effluent treatment plants and environmental clean-up projects.
Collapse
Affiliation(s)
- Varun Shah
- BRD School of Biosciences, Sardar Patel University, Sardar Patel Maidan, Vadtal Road, Satellite Campus, Vallabh Vidyanagar 388 120, Post Box No. 39, Anand, Gujarat, India,
| | | | | | | | | | | |
Collapse
|
26
|
Has the bacterial biphenyl catabolic pathway evolved primarily to degrade biphenyl? The diphenylmethane case. J Bacteriol 2013; 195:3563-74. [PMID: 23749969 DOI: 10.1128/jb.00161-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this work, we have compared the ability of Pandoraea pnomenusa B356 and of Burkholderia xenovorans LB400 to metabolize diphenylmethane and benzophenone, two biphenyl analogs in which the phenyl rings are bonded to a single carbon. Both chemicals are of environmental concern. P. pnomenusa B356 grew well on diphenylmethane. On the basis of growth kinetics analyses, diphenylmethane and biphenyl were shown to induce the same catabolic pathway. The profile of metabolites produced during growth of strain B356 on diphenylmethane was the same as the one produced by isolated enzymes of the biphenyl catabolic pathway acting individually or in coupled reactions. The biphenyl dioxygenase oxidizes diphenylmethane to 3-benzylcyclohexa-3,5-diene-1,2-diol very efficiently, and ultimately this metabolite is transformed to phenylacetic acid, which is further metabolized by a lower pathway. Strain B356 was also able to cometabolize benzophenone through its biphenyl pathway, although in this case, this substrate was unable to induce the biphenyl catabolic pathway and the degradation was incomplete, with accumulation of 2-hydroxy-6,7-dioxo-7-phenylheptanoic acid. Unlike strain B356, B. xenovorans LB400 did not grow on diphenylmethane. Its biphenyl pathway enzymes metabolized diphenylmethane, but they poorly metabolize benzophenone. The fact that the biphenyl catabolic pathway of strain B356 metabolized diphenylmethane and benzophenone more efficiently than that of strain LB400 brings us to postulate that in strain B356, this pathway evolved divergently to serve other functions not related to biphenyl degradation.
Collapse
|
27
|
Abstract
Pseudomonas veronii strain 1YdBTEX2 was isolated from a benzene-contaminated site. Here we report the draft genome sequence of 1YdBTEX2 and its genes associated with aromatic metabolism. The broad catabolic potential of this strain is consistent with the environment from which it was isolated.
Collapse
|
28
|
Chun CL, Payne RB, Sowers KR, May HD. Electrical stimulation of microbial PCB degradation in sediment. WATER RESEARCH 2013; 47:141-52. [PMID: 23123087 PMCID: PMC3508379 DOI: 10.1016/j.watres.2012.09.038] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 09/14/2012] [Accepted: 09/22/2012] [Indexed: 05/29/2023]
Abstract
Bioremediation of polychlorinated biphenyls (PCBs) has been precluded in part by the lack of a cost-effective method to stimulate microbial degradation in situ. A common limitation is the lack of an effective method of providing electron donors and acceptors to promote in situ PCB biodegradation. Application of an electric potential to soil/sediment could be an effective means of providing electron-donors/-acceptors to PCB dechlorinating and degrading microorganisms. In this study, electrical stimulation of microbial PCB dechlorination/degradation was examined in sediment maintained under simulated in situ conditions. Voltage was applied to open microcosms filled with PCB-impacted (Aroclor 1242) freshwater sediment from a Superfund site (Fox River, WI). The effect of applied low voltages (1.5-3.0 V) on the microbial transformation of PCBs was determined with: 1) spiked PCBs, and 2) indigenous weathered PCBs. The results indicate that both oxidative and reductive microbial transformation of the spiked PCBs was stimulated but oxidation was dominant and most effective with higher voltage. Chlorobenzoates were produced as oxidation metabolites of the spiked PCBs, but increasing voltage enhanced chlorobenzoate consumption, indicating that overall degradation was enhanced. In the case of weathered PCBs, the total concentration decreased 40-60% in microcosms exposed to electric current while no significant decrease of PCB concentration was observed in control reactors (0 V or sterilized). Single congener analysis of the weathered PCBs showed significant loss of di- to penta-chlorinated congeners, indicating that microbial activity was not limited to anaerobic dechlorination of only higher chlorinated congeners. Degradation was most apparent with the application of only 1.5 V where anodic O(2) was not generated, indicating a mechanism of degradation independent of electrolytic O(2). Low voltage stimulation of the microbial degradation of weathered PCBs observed in this study suggests that this approach could be a cost-effective, environmentally sustainable strategy to remediate PCBs in situ.
Collapse
Affiliation(s)
- Chan Lan Chun
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Ave. Charleston, SC 29425
| | - Rayford B. Payne
- Department of Marine Biotechnology, University of Maryland Baltimore County, 701 East Pratt Street, Baltimore, MD 21202
| | - Kevin R. Sowers
- Department of Marine Biotechnology, University of Maryland Baltimore County, 701 East Pratt Street, Baltimore, MD 21202
| | - Harold D. May
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Ave. Charleston, SC 29425
| |
Collapse
|
29
|
Sylvestre M. Prospects for using combined engineered bacterial enzymes and plant systems to rhizoremediate polychlorinated biphenyls. Environ Microbiol 2012; 15:907-15. [PMID: 23106850 DOI: 10.1111/1462-2920.12007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/06/2012] [Accepted: 09/26/2012] [Indexed: 01/17/2023]
Abstract
The fate of polychlorinated biphenyls (PCBs) in soil is driven by a combination of interacting biological processes. Several investigations have brought evidence that the rhizosphere provides a remarkable ecological niche to enhance the PCB degradation process by rhizobacteria. The bacterial oxidative enzymes involved in PCB degradation have been investigated extensively and novel engineered enzymes exhibiting enhanced catalytic activities toward more persistent PCBs have been described. Furthermore, recent studies suggest that approaches involving processes based on plant-microbe associations are very promising to remediate PCB-contaminated sites. In this review emphasis will be placed on the current state of knowledge regarding the strategies that are proposed to engineer the enzymes of the PCB-degrading bacterial oxidative pathway and to design PCB-degrading plant-microbe systems to remediate PCB-contaminated soil.
Collapse
Affiliation(s)
- Michel Sylvestre
- Institut National de la Recherche Scientifique, INRS-Instittut Armand-Frappier, Laval, Quebec, Canada, H7V1B7.
| |
Collapse
|
30
|
Metaproteogenomic insights beyond bacterial response to naphthalene exposure and bio-stimulation. ISME JOURNAL 2012; 7:122-36. [PMID: 22832345 PMCID: PMC3526184 DOI: 10.1038/ismej.2012.82] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Microbial metabolism in aromatic-contaminated environments has important ecological implications, and obtaining a complete understanding of this process remains a relevant goal. To understand the roles of biodiversity and aromatic-mediated genetic and metabolic rearrangements, we conducted ‘OMIC' investigations in an anthropogenically influenced and polyaromatic hydrocarbon (PAH)-contaminated soil with (Nbs) or without (N) bio-stimulation with calcium ammonia nitrate, NH4NO3 and KH2PO4 and the commercial surfactant Iveysol, plus two naphthalene-enriched communities derived from both soils (CN2 and CN1, respectively). Using a metagenomic approach, a total of 52, 53, 14 and 12 distinct species (according to operational phylogenetic units (OPU) in our work equivalent to taxonomic species) were identified in the N, Nbs, CN1 and CN2 communities, respectively. Approximately 10 out of 95 distinct species and 238 out of 3293 clusters of orthologous groups (COGs) protein families identified were clearly stimulated under the assayed conditions, whereas only two species and 1465 COGs conformed to the common set in all of the mesocosms. Results indicated distinct biodegradation capabilities for the utilisation of potential growth-supporting aromatics, which results in bio-stimulated communities being extremely fit to naphthalene utilisation and non-stimulated communities exhibiting a greater metabolic window than previously predicted. On the basis of comparing protein expression profiles and metagenome data sets, inter-alia interactions among members were hypothesised. The utilisation of curated databases is discussed and used for first time to reconstruct ‘presumptive' degradation networks for complex microbial communities.
Collapse
|
31
|
Plotnikova EG, Solyanikova IP, Egorova DO, Shumkova ES, Golovleva LA. Degradation of 4-chlorobiphenyl and 4-chlorobenzoic acid by the strain Rhodococcus ruber P25. Microbiology (Reading) 2012. [DOI: 10.1134/s0026261712020117] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
32
|
Procópio A, Procópio R, Pizzirani-Kleiner A, Melo I. Diversity of propanil-degrading bacteria isolated from rice rhizosphere and their potential for plant growth promotion. GENETICS AND MOLECULAR RESEARCH 2012; 11:2021-34. [DOI: 10.4238/2012.august.6.6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
33
|
Kumar P, Mohammadi M, Viger JF, Barriault D, Gomez-Gil L, Eltis LD, Bolin JT, Sylvestre M. Structural insight into the expanded PCB-degrading abilities of a biphenyl dioxygenase obtained by directed evolution. J Mol Biol 2011; 405:531-47. [PMID: 21073881 PMCID: PMC3102011 DOI: 10.1016/j.jmb.2010.11.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 11/01/2010] [Accepted: 11/02/2010] [Indexed: 11/23/2022]
Abstract
The biphenyl dioxygenase of Burkholderia xenovorans LB400 is a multicomponent Rieske-type oxygenase that catalyzes the dihydroxylation of biphenyl and many polychlorinated biphenyls (PCBs). The structural bases for the substrate specificity of the enzyme's oxygenase component (BphAE(LB400)) are largely unknown. BphAE(p4), a variant previously obtained through directed evolution, transforms several chlorobiphenyls, including 2,6-dichlorobiphenyl, more efficiently than BphAE(LB400), yet differs from the parent oxygenase at only two positions: T335A/F336M. Here, we compare the structures of BphAE(LB400) and BphAE(p4) and examine the biochemical properties of two BphAE(LB400) variants with single substitutions, T335A or F336M. Our data show that residue 336 contacts the biphenyl and influences the regiospecificity of the reaction, but does not enhance the enzyme's reactivity toward 2,6-dichlorobiphenyl. By contrast, residue 335 does not contact biphenyl but contributes significantly to expansion of the enzyme's substrate range. Crystal structures indicate that Thr335 imposes constraints through hydrogen bonds and nonbonded contacts to the segment from Val320 to Gln322. These contacts are lost when Thr is replaced by Ala, relieving intramolecular constraints and allowing for significant movement of this segment during binding of 2,6-dichlorobiphenyl, which increases the space available to accommodate the doubly ortho-chlorinated congener 2,6-dichlorobiphenyl. This study provides important insight about how Rieske-type oxygenases can expand substrate range through mutations that increase the plasticity and/or mobility of protein segments lining the catalytic cavity.
Collapse
Affiliation(s)
- Pravindra Kumar
- Department of Biological Sciences and Center for Cancer Research, Purdue University, West Lafayette, IN., 47907, USA
- Department of Biotechnology, Indian Institute of Technology, Roorkee-247667, India
| | - Mahmood Mohammadi
- Institut National de la Recherche Scientifique (INRS-Institut Armand-Frappier), Laval, QC, H7V 1B7, Canada
| | - Jean-François Viger
- Institut National de la Recherche Scientifique (INRS-Institut Armand-Frappier), Laval, QC, H7V 1B7, Canada
| | - Diane Barriault
- Institut National de la Recherche Scientifique (INRS-Institut Armand-Frappier), Laval, QC, H7V 1B7, Canada
| | - Leticia Gomez-Gil
- Departments of Microbiology and Biochemistry, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Lindsay D. Eltis
- Departments of Microbiology and Biochemistry, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Jeffrey T. Bolin
- Department of Biological Sciences and Center for Cancer Research, Purdue University, West Lafayette, IN., 47907, USA
| | - Michel Sylvestre
- Institut National de la Recherche Scientifique (INRS-Institut Armand-Frappier), Laval, QC, H7V 1B7, Canada
| |
Collapse
|
34
|
Vilchez-Vargas R, Junca H, Pieper DH. Metabolic networks, microbial ecology and ‘omics’ technologies: towards understanding in situ biodegradation processes. Environ Microbiol 2010; 12:3089-104. [DOI: 10.1111/j.1462-2920.2010.02340.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
35
|
Wos-Oxley ML, Plumeier I, von Eiff C, Taudien S, Platzer M, Vilchez-Vargas R, Becker K, Pieper DH. A poke into the diversity and associations within human anterior nare microbial communities. ISME JOURNAL 2010; 4:839-51. [DOI: 10.1038/ismej.2010.15] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
36
|
Capodicasa S, Fedi S, Carnevali M, Caporali L, Viti C, Fava F, Zannoni D. Terminal-restriction fragment length polymorphism analysis of biphenyl dioxygenase genes from a polychlorinated biphenyl-polluted soil. Res Microbiol 2009; 160:742-50. [DOI: 10.1016/j.resmic.2009.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 10/02/2009] [Accepted: 10/06/2009] [Indexed: 11/16/2022]
|
37
|
Iwai S, Kurisu F, Urakawa H, Yagi O, Furumai H. Characterization of monooxygenase gene diversity in benzene-amended soils. Lett Appl Microbiol 2009; 50:138-45. [PMID: 19912525 DOI: 10.1111/j.1472-765x.2009.02764.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM To understand soil benzene monooxygenase gene diversity by clone library construction and microarray profiling. METHODS AND RESULTS A primer set was designed, and benzene monooxygenase gene diversity was characterized in two benzene-amended soils. The dominant sequence types in the clone libraries were distinct between the two soils, and both sequences were assigned to novel clusters. Monooxygenase gene richness and diversity increased after benzene degradation. Oligonucleotide probes for microarray analysis were designed to detect a number of sequenced clones and reported monooxygenase genes. The microarray detected several genes that were not detected in the clone libraries of the same samples. Six probes were detected in more than one soil. CONCLUSIONS The primer set designed in this study successfully detected diverse benzene monooxygenase genes. The level of diversity may have increased because the degradation of benzene differed from soil to soil. Microarrays have great potential in the comprehensive detection of gene richness as well as the elucidation of key genes for degradation. SIGNIFICANCE AND IMPACT OF THE STUDY This study introduces a new primer set that may be used to identify diverse benzene monooxygenase genes in the environment; moreover, it demonstrates the potential of microarray technology in the profiling of environmental samples.
Collapse
Affiliation(s)
- S Iwai
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | | | | | | | | |
Collapse
|
38
|
Kunze M, Zerlin KF, Retzlaff A, Pohl JO, Schmidt E, Janssen DB, Vilchez-Vargas R, Pieper DH, Reineke W. Degradation of chloroaromatics by Pseudomonas putida GJ31: assembled route for chlorobenzene degradation encoded by clusters on plasmid pKW1 and the chromosome. MICROBIOLOGY-SGM 2009; 155:4069-4083. [PMID: 19744988 DOI: 10.1099/mic.0.032110-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pseudomonas putida GJ31 has been reported to grow on chlorobenzene using a meta-cleavage pathway with chlorocatechol 2,3-dioxygenase (CbzE) as a key enzyme. The CbzE-encoding gene was found to be localized on the 180 kb plasmid pKW1 in a cbzTEXGS cluster, which is flanked by transposases and encodes only a partial (chloro)catechol meta-cleavage pathway comprising ferredoxin reductase, chlorocatechol 2,3-dioxygenase, an unknown protein, 2-hydroxymuconic semialdehyde dehydrogenase and glutathione S-transferase. Downstream of cbzTEXGS are located cbzJ, encoding a novel type of 2-hydroxypent-2,4-dienoate hydratase, and a transposon region highly similar to Tn5501. Upstream of cbzTEXGS, traNEOFG transfer genes were found. The search for gene clusters possibly completing the (chloro)catechol metabolic pathway of GJ31 revealed the presence of two additional catabolic gene clusters on pKW1. The mhpRBCDFETP cluster encodes enzymes for the dissimilation of 2,3-dihydroxyphenylpropionate in a novel arrangement characterized by the absence of a gene encoding 3-(3-hydroxyphenyl)propionate monooxygenase and the presence of a GntR-type regulator, whereas the nahINLOMKJ cluster encodes part of the naphthalene metabolic pathway. Transcription studies supported their possible involvement in chlorobenzene degradation. The upper pathway cluster, comprising genes encoding a chlorobenzene dioxygenase and a chlorobenzene dihydrodiol dehydrogenase, was localized on the chromosome. A high level of transcription in response to chlorobenzene revealed it to be crucial for chlorobenzene degradation. The chlorobenzene degradation pathway in strain GJ31 is thus a mosaic encoded by four gene clusters.
Collapse
Affiliation(s)
- Markus Kunze
- Bergische Universität Wuppertal, Chemical Microbiology, D-42097 Wuppertal, Germany
| | - Kay F Zerlin
- Bergische Universität Wuppertal, Chemical Microbiology, D-42097 Wuppertal, Germany
| | - Alexander Retzlaff
- Bergische Universität Wuppertal, Chemical Microbiology, D-42097 Wuppertal, Germany
| | - Jens O Pohl
- Bergische Universität Wuppertal, Chemical Microbiology, D-42097 Wuppertal, Germany
| | - Eberhard Schmidt
- Bergische Universität Wuppertal, Chemical Microbiology, D-42097 Wuppertal, Germany
| | - Dick B Janssen
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Ramiro Vilchez-Vargas
- Department of Microbial Pathogenesis, Helmholtz Centre for Infection Research, D-38124 Braunschweig, Germany
| | - Dietmar H Pieper
- Department of Microbial Pathogenesis, Helmholtz Centre for Infection Research, D-38124 Braunschweig, Germany
| | - Walter Reineke
- Bergische Universität Wuppertal, Chemical Microbiology, D-42097 Wuppertal, Germany
| |
Collapse
|
39
|
Thorenoor N, Kim YH, Lee C, Yu MH, Engesser KH. A previously uncultured, paper mill Propionibacterium is able to degrade O-aryl alkyl ethers and various aromatic hydrocarbons. CHEMOSPHERE 2009; 75:1287-1293. [PMID: 19375147 DOI: 10.1016/j.chemosphere.2009.03.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2009] [Revised: 03/16/2009] [Accepted: 03/16/2009] [Indexed: 05/27/2023]
Abstract
A previously uncultured Propionibacterium was isolated from a highly diluted sample (10(-6)mL) of activated sludge of paper mill effluent. The isolate MOB600 was able to grow on anisole, phenetole, benzene, toluene, phenol, styrene and biphenyl, although it used only limited carbon sources in the minimal media. The partial DNA sequence of 16S ribosomal RNA gene was 93% identical to Luteococcus peritoni CCUG38120 as the closest neighborhood in the family Propionibacteriaceae. Strain MOB600 produced 2-methoxyphenol and 2-ethoxyphenol seemingly in an unproductive pathway from the degradation of anisole and phenetole, respectively. It had a substrate preference to favor 3-alkoxyphenols over 2-alkoxyphenols. Formation of 3-hydroxylated O-aryl alkyl ether was substantially proved by the nearly 1:1 biotransformation of substrate-analogous 1,2-methylenedioxybenzene to 3,4-methylenedioxyphenol (sesamol) showing end-product inhibition. The strain converted 2-/3-methoxyphenols to 3-methoxycatechol. The extradiol ring fission of 3-methoxycatechol appeared to take place in the production of a yellow-colored 2-hydroxymuconate derivative, thereby being able to release methanol spontaneously. High specificity polymerase chain reaction screening for bacterial dioxygenases revealed that the genomic DNA encoded at least three ring-hydroxylating dioxygenase large subunits. Being consistent with substrate availability for this strain, the obtained sequences were closely related to large subunits of an isopropylbenzene 2,3-dioxygenase, a benzene 1,2-dioxygenase, a biphenyl 2,3-dioxygenase, a benzoate 1,2-dioxygenase and a putative dioxygenase in Rhodococcus strains. Our results demonstrate that strain MOB600 may play a major role in the degradation of lignin-like O-aryl alkyl ethers and various aromatic hydrocarbon pollutants in activated sludge of paper mill effluent.
Collapse
Affiliation(s)
- Nithyananda Thorenoor
- Life Sciences Division, Korea Institute of Science and Technology, Seongbuk, Seoul 136-791, Republic of Korea
| | | | | | | | | |
Collapse
|
40
|
Characterization of the complex bacterial communities colonizing biliary stents reveals a host-dependent diversity. ISME JOURNAL 2009; 3:797-807. [PMID: 19360025 DOI: 10.1038/ismej.2009.36] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This study provides a comprehensive survey of the spatial and temporal bacterial composition of biliary stent biofilms. The bacterial diversity, distribution and dynamics of 59 biliary and 4 pancreatic stent communities from 40 patients being treated at two different hospitals, which implant stents either simultaneously or consecutively, were characterized by single-strand conformation polymorphism (SSCP) analysis. Fifty-one phylotypes belonging to 5 bacterial phyla and 24 bacterial families were detected across 63 stents. This is a much broader diversity than previously detected through culture-dependent methods, particularly in regard to the diversity of obligate anaerobes. Stent bacterial diversity was patient-dependent and more similar when stents were implanted simultaneously rather than consecutively. Stent bacterial community composition differed between hospitals specifically because of the difference in abundance of Bifidobacteria. Co-colonization of Veillonella sp., Streptococcus anginosus and organisms closely related to Fusobacterium nucleatum revealed a potentially important attachment and survival strategy that has yet to be reported in biliary stents. This work reveals a more complete survey of the identities of bacterial species that form biofilms in biliary stents, their co-colonization patterns and the natural variation in species composition between different patients, hospitals and locations along the stent. Consideration of the community composition from individual patients will allow tailoring of prophylactic antibiotic treatments and thus will make the management of stent biofilms more effective.
Collapse
|
41
|
Nebe J, Baldwin BR, Kassab RL, Nies L, Nakatsu CH. Quantification of aromatic oxygenase genes to evaluate enhanced bioremediation by oxygen releasing materials at a gasoline-contaminated site. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:2029-2034. [PMID: 19368209 DOI: 10.1021/es900146f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Subsurface injection of oxygen-releasing materials (ORMs) is frequently performed at petroleum-contaminated sites to stimulate aerobic bioremediation of benzene, toluene, ethylbenzene, and xylenes (BTEX). In this study, qPCR enumeration of aromatic oxygenase genes and PCR-DGGE profiles of bacterial 16S rRNA genes were combined with groundwater monitoring to determine the impact of ORM injection on BTEX bioremediation at a gasoline-contaminated site. Prior to injection, BTEX concentrations were greater than 3 mg/L and DO levels were typically lessthan 2 mg/L, butphenol hydroxylase (PHE) and ring-hydroxylating toluene monooxygenase (RMO) genes were detected in impacted wells indicating the potential for aerobic BTEX biodegradation. Following injection, DO increased, BTEX concentrations decreased substantially, and PHE and RMO genes copies increased by 1-3 orders of magnitude. In addition, naphthalene dioxygenase (NAH) and xylene monooxygenase (TOL) genes were intermittently detected during periods of increased DO. Following depletion of the ORM, DO decreased, BTEX concentrations rebounded, and oxygenase genes were no longer detected. Temporal changes in PCR-DGGE microbial community profiles reflected the dynamic changes in subsurface conditions. Overall, the combination of chemical and geochemical analyses with quantification of aromatic oxygenase genes demonstrated that injection stimulated BTEX biodegradation until the ORM was depleted.
Collapse
Affiliation(s)
- Jennifer Nebe
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907-2054, USA
| | | | | | | | | |
Collapse
|
42
|
Brennerova MV, Josefiova J, Brenner V, Pieper DH, Junca H. Metagenomics reveals diversity and abundance of meta-cleavage pathways in microbial communities from soil highly contaminated with jet fuel under air-sparging bioremediation. Environ Microbiol 2009; 11:2216-27. [PMID: 19575758 PMCID: PMC2784041 DOI: 10.1111/j.1462-2920.2009.01943.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The extradiol dioxygenase diversity of a site highly contaminated with aliphatic and aromatic hydrocarbons under air-sparging treatment was assessed by functional screening of a fosmid library in Escherichia coli with catechol as substrate. The 235 positive clones from inserts of DNA extracted from contaminated soil were equivalent to one extradiol dioxygenase-encoding gene per 3.6 Mb of DNA screened, indicating a strong selection for genes encoding this function. Three subfamilies were identified as being predominant, with 72, 55 and 43 fosmid inserts carrying genes, related to those encoding TbuE of Ralstonia pickettii PK01 (EXDO-D), IpbC of Pseudomonas sp. JR1 (EXDO-K2) or DbtC of Burkholderia sp. DBT1 (EXDO-Dbt), respectively, whereas genes encoding enzymes related to XylE of Pseudomonas putida mt-2 were not observed. Genes encoding oxygenases related to isopropylbenzene dioxygenases were usually colocalized with genes encoding EXDO-K2 dioxygenases. Functional analysis of representative proteins indicated a subcluster of EXDO-D proteins to show exceptional high affinity towards different catecholic substrates. Based on Vmax/Km specificity constants, a task-sharing between different extradiol dioxygenases in the community of the contaminated site can be supposed, attaining a complementary and community-balanced catalytic power against diverse catecholic derivatives, as necessary for effective degradation of mixtures of aromatics.
Collapse
Affiliation(s)
- Maria V Brennerova
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
43
|
de Lorenzo V. Systems biology approaches to bioremediation. Curr Opin Biotechnol 2008; 19:579-89. [PMID: 19000761 DOI: 10.1016/j.copbio.2008.10.004] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 10/08/2008] [Accepted: 10/16/2008] [Indexed: 11/30/2022]
Affiliation(s)
- Víctor de Lorenzo
- Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, Madrid 28049, Spain.
| |
Collapse
|
44
|
Isolation and characterization of Alicycliphilus denitrificans strain BC, which grows on benzene with chlorate as the electron acceptor. Appl Environ Microbiol 2008; 74:6672-81. [PMID: 18791031 DOI: 10.1128/aem.00835-08] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A bacterium, strain BC, was isolated from a benzene-degrading chlorate-reducing enrichment culture. Strain BC degrades benzene in conjunction with chlorate reduction. Cells of strain BC are short rods that are 0.6 microm wide and 1 to 2 microm long, are motile, and stain gram negative. Strain BC grows on benzene and some other aromatic compounds with oxygen or in the absence of oxygen with chlorate as the electron acceptor. Strain BC is a denitrifying bacterium, but it is not able to grow on benzene with nitrate. The closest cultured relative is Alicycliphilus denitrificans type strain K601, a cyclohexanol-degrading nitrate-reducing betaproteobacterium. Chlorate reductase (0.4 U/mg protein) and chlorite dismutase (5.7 U/mg protein) activities in cell extracts of strain BC were determined. Gene sequences encoding a known chlorite dismutase (cld) were not detected in strain BC by using the PCR primers described in previous studies. As physiological and biochemical data indicated that there was oxygenation of benzene during growth with chlorate, a strategy was developed to detect genes encoding monooxygenase and dioxygenase enzymes potentially involved in benzene degradation in strain BC. Using primer sets designed to amplify members of distinct evolutionary branches in the catabolic families involved in benzene biodegradation, two oxygenase genes putatively encoding the enzymes performing the initial successive monooxygenations (BC-BMOa) and the cleavage of catechol (BC-C23O) were detected. Our findings suggest that oxygen formed by dismutation of chlorite can be used to attack organic molecules by means of oxygenases, as exemplified with benzene. Thus, aerobic pathways can be employed under conditions in which no external oxygen is supplied.
Collapse
|
45
|
Cápiro NL, Da Silva MLB, Stafford BP, Rixey WG, Alvarez PJJ. Microbial community response to a release of neat ethanol onto residual hydrocarbons in a pilot-scale aquifer tank. Environ Microbiol 2008; 10:2236-44. [PMID: 18484998 DOI: 10.1111/j.1462-2920.2008.01645.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Natalie L Cápiro
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street - MS 317, Houston, TX 77005, USA.
| | | | | | | | | |
Collapse
|
46
|
Liou JSC, DeRito CM, Madsen EL. Field-based and laboratory stable isotope probing surveys of the identities of both aerobic and anaerobic benzene-metabolizing microorganisms in freshwater sediment. Environ Microbiol 2008; 10:1964-77. [DOI: 10.1111/j.1462-2920.2008.01612.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
47
|
Iwai S, Kurisu F, Urakawa H, Yagi O, Kasuga I, Furumai H. Development of an oligonucleotide microarray to detect di- and monooxygenase genes for benzene degradation in soil. FEMS Microbiol Lett 2008; 285:111-21. [PMID: 18547327 DOI: 10.1111/j.1574-6968.2008.01223.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Diverse environmental genes have been identified recently. To characterize their functions, it is necessary to understand which genes and what combinations of those genes are responsible for the biodegradation of soil contaminants. In this article, a 60-mer oligonucleotide microarray was constructed to simultaneously detect di- and monooxygenase genes for benzene and related compounds. In total, 148 probes were designed and validated by pure-culture hybridizations using the following criteria to discriminate between highly homologous genes: < or =53-bp identities and < or =25-bp continuous stretch to nontarget sequences. Microarray hybridizations were performed using PCR products amplified from five benzene-amended soils and two oil-contaminated soils. Six of the probes gave a positive signal for more than six soils; thus, they may represent key sequences for benzene degradation in the environment. The microarray developed in this study will be a powerful tool for the screening of key genes involved in benzene degradation and for the rapid profiling of benzene oxygenase gene diversity in contaminated soils.
Collapse
Affiliation(s)
- Shoko Iwai
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
48
|
de Cárcer DA, Martín M, Karlson U, Rivilla R. Changes in bacterial populations and in biphenyl dioxygenase gene diversity in a polychlorinated biphenyl-polluted soil after introduction of willow trees for rhizoremediation. Appl Environ Microbiol 2007; 73:6224-32. [PMID: 17693557 PMCID: PMC2075012 DOI: 10.1128/aem.01254-07] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to analyze the structural and functional changes occurring in a polychlorinated-biphenyl (PCB)-contaminated soil ecosystem after the introduction of a suitable host plant for rhizoremediation (Salix viminalis). We have studied the populations and phylogenetic distribution of key bacterial groups (Alpha- and Betaproteobacteria, Acidobacteria, and Actinobacteria) and the genes encoding iron-sulfur protein alpha (ISPalpha) subunits of the toluene/biphenyl dioxygenases in soil and rhizosphere by screening gene libraries using temperature gradient gel electrophoresis. The results, based on the analysis of 415 clones grouped into 133 operational taxonomic units that were sequence analyzed (>128 kbp), show that the rhizospheric bacterial community which evolved from the native soil community during the development of the root system was distinct from the soil community for all groups studied except for the Actinobacteria. Proteobacteria were enriched in the rhizosphere and dominated both in rhizosphere and soil. There was a higher than expected abundance of Betaproteobacteria in the native and in the planted PCB-polluted soil. The ISPalpha sequences retrieved indicate a high degree of catabolic and phylogenetic diversity. Many sequences clustered with biphenyl dioxygenase sequences from gram-negative bacteria. A distinct cluster that was composed of sequences from this study, some previously described environmental sequences, and a putative ISPalpha from Sphingomonas wittichii RW1 seems to contain greater diversity than the presently recognized toluene/biphenyl dioxygenase subfamily. Moreover, the rhizosphere selected for two ISPalpha sequences that accounted for almost 60% of the gene library and were very similar to sequences harbored by Pseudomonas species.
Collapse
|
49
|
Caballero-Mellado J, Onofre-Lemus J, Estrada-de Los Santos P, Martínez-Aguilar L. The tomato rhizosphere, an environment rich in nitrogen-fixing Burkholderia species with capabilities of interest for agriculture and bioremediation. Appl Environ Microbiol 2007; 73:5308-19. [PMID: 17601817 PMCID: PMC1950987 DOI: 10.1128/aem.00324-07] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia strains are promising candidates for biotechnological applications. Unfortunately, most of these strains belong to species of the Burkholderia cepacia complex (Bcc) involved in human infections, hampering potential applications. Novel diazotrophic Burkholderia species, phylogenetically distant from the Bcc species, have been discovered recently, but their environmental distribution and relevant features for agro-biotechnological applications are little known. In this work, the occurrence of N2-fixing Burkholderia species in the rhizospheres and rhizoplanes of tomato plants field grown in Mexico was assessed. The results revealed a high level of diversity of diazotrophic Burkholderia species, including B. unamae, B. xenovorans, B. tropica, and two other unknown species, one of them phylogenetically closely related to B. kururiensis. These N2-fixing Burkholderia species exhibited activities involved in bioremediation, plant growth promotion, or biological control in vitro. Remarkably, B. unamae and B. kururiensis grew with aromatic compounds (phenol and benzene) as carbon sources, and the presence of aromatic oxygenase genes was confirmed in both species. The rhizospheric and endophyte nature of B. unamae and its ability to degrade aromatic compounds suggest that it could be used in rhizoremediation and for improvement of phytoremediation. B. kururiensis and other Burkholderia sp. strains grew with toluene. B. unamae and B. xenovorans exhibited ACC (1-aminocyclopropane-1-carboxylic acid) deaminase activity, and the occurrence of acdS genes encoding ACC deaminase was confirmed. Mineral phosphate solubilization through organic acid production appears to be the mechanism used by most diazotrophic Burkholderia species, but in B. tropica, there presumably exists an additional unknown mechanism. Most of the diazotrophic Burkholderia species produced hydroxamate-type siderophores. Certainly, the N2-fixing Burkholderia species associated with plants have great potential for agro-biotechnological applications.
Collapse
Affiliation(s)
- Jesús Caballero-Mellado
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Ap. Postal 565-A, Cuernavaca, Morelos, México.
| | | | | | | |
Collapse
|
50
|
Witzig R, Aly HAH, Strömpl C, Wray V, Junca H, Pieper DH. Molecular detection and diversity of novel diterpenoid dioxygenase DitA1 genes from proteobacterial strains and soil samples. Environ Microbiol 2007; 9:1202-18. [PMID: 17472635 DOI: 10.1111/j.1462-2920.2007.01242.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Resin acids are tricyclic diterpenoids naturally synthesized by trees that are released from wood during pulping processes. Using a newly designed primer set, genes similar to that encoding the DitA1 catalytic alpha-subunit of the diterpenoid dioxygenase, a key enzyme in abietane resin acid degradation by Pseudomonas abietaniphila BKME-9, could be amplified from different Pseudomonas strains, whereas ditA1 gene sequence types representing distinct branches in the evolutionary tree were amplified from Burkholderia and Cupriavidus isolates. All isolates harbouring a ditA1-homologue were capable of growth on dehydroabietic acid as the sole source of carbon and energy and reverse transcription polymerase chain reaction analysis in three strains confirmed that ditA1 was expressed constitutively or in response to DhA, demonstrating its involvement in DhA-degradation. Evolutionary analyses indicate that gyrB (as a phylogenetic marker) and ditA1 genes have coevolved under purifying selection from their ancestral variants present in the most recent common ancestor of the genera Pseudomonas, Cupriavidus and Burkholderia. A polymerase chain reaction-single-strand conformation poylmorphism fingerprinting method was established to monitor the diversity of ditA1 genes in environmental samples. The molecular fingerprints indicated the presence ofa broad, previously unrecognized diversity of diterpenoid dioxygenase genes in soils, and suggest that other bacterial phyla may also harbour the genetic potential for DhA-degradation.
Collapse
Affiliation(s)
- Robert Witzig
- Department of Environmental Microbiology, HZI--Helmholtz Centre for Infection Research, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
| | | | | | | | | | | |
Collapse
|