1
|
Rauch J, Barton J, Kwiatkowski M, Wunderlich M, Steffen P, Moderzynski K, Papp S, Höhn K, Schwanke H, Witt S, Richardt U, Mehlhoop U, Schlüter H, Pianka V, Fleischer B, Tappe D, Osterloh A. GroEL is an immunodominant surface-exposed antigen of Rickettsia typhi. PLoS One 2021; 16:e0253084. [PMID: 34111210 PMCID: PMC8191997 DOI: 10.1371/journal.pone.0253084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/28/2021] [Indexed: 11/26/2022] Open
Abstract
Rickettsioses are neglected and emerging potentially fatal febrile diseases that are caused by obligate intracellular bacteria, rickettsiae. Rickettsia (R.) typhi and R. prowazekii constitute the typhus group (TG) of rickettsiae and are the causative agents of endemic and epidemic typhus, respectively. We recently generated a monoclonal antibody (BNI52) against R. typhi. Characterization of BNI52 revealed that it specifically recognizes TG rickettsiae but not the members of the spotted fever group (SFG) rickettsiae. We further show that BNI52 binds to protein fragments of ±30 kDa that are exposed on the bacterial surface and also present in the periplasmic space. These protein fragments apparently derive from the cytosolic GroEL protein of R. typhi and are also recognized by antibodies in the sera from patients and infected mice. Furthermore, BNI52 opsonizes the bacteria for the uptake by antigen presenting cells (APC), indicating a contribution of GroEL-specific antibodies to protective immunity. Finally, it is interesting that the GroEL protein belongs to 32 proteins that are differentially downregulated by R. typhi after passage through immunodeficient BALB/c CB17 SCID mice. This could be a hint that the rickettsia GroEL protein may have immunomodulatory properties as shown for the homologous protein from several other bacteria, too. Overall, the results of this study provide evidence that GroEL represents an immunodominant antigen of TG rickettsiae that is recognized by the humoral immune response against these pathogens and that may be interesting as a vaccine candidate. Apart from that, the BNI52 antibody represents a new tool for specific detection of TG rickettsiae in various diagnostic and experimental setups.
Collapse
Affiliation(s)
- Jessica Rauch
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Jessica Barton
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - Malte Wunderlich
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Pascal Steffen
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Stefanie Papp
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Katharina Höhn
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Hella Schwanke
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Susanne Witt
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Ulricke Richardt
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Ute Mehlhoop
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - Verena Pianka
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - Dennis Tappe
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Anke Osterloh
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
2
|
Abstract
Over the last decades, rickettsioses are emerging worldwide. These diseases are caused by intracellular bacteria. Although rickettsioses can be treated with antibiotics, a vaccine against rickettsiae is highly desired for several reasons. Rickettsioses are highly prevalent, especially in poor countries, and there are indications of the development of antibiotic resistance. In addition, some rickettsiae can persist and cause recurrent disease. The development of a vaccine requires the understanding of the immune mechanisms that are involved in protection as well as in immunopathology. Knowledge about these immune responses is accumulating, and efforts have been undertaken to identify antigenic components of rickettsiae that may be useful as a vaccine. This review provides an overview on current knowledge of adaptive immunity against rickettsiae, which is essential for defense, rickettsial antigens that have been identified so far, and on vaccination strategies that have been used in animal models of rickettsial infections.
Collapse
|
3
|
Keikha M, Eslami M, Yousefi B, Ghasemian A, Karbalaei M. Potential antigen candidates for subunit vaccine development against Helicobacter pylori infection. J Cell Physiol 2019; 234:21460-21470. [PMID: 31188484 DOI: 10.1002/jcp.28870] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 02/05/2023]
Abstract
Helicobacter pylori (H. pylori) is a resident bacterium in the stomach that accounts for 75% cases of gastric cancer. In this review, we comprehensively studied published papers on H. pylori vaccines using Google Scholar and NCBI databases to gather information about vaccines against H. pylori. Considering the pivotal roles of the enzyme urease (in production of NH3 and neutralization of the acidic medium of the stomach), cytotoxin-associated gene A, and vacuolating cytotoxin A proteins in H. pylori infection, they could be the best candidates for the construction of recombinant vaccines. The outer membrane porins (Hop), blood group antigen-binding adhesin (BabA), sialic acid-binding adhesin (SabA), and outer inflammatory protein A, play significant roles in binding of bacterium to human gastric tissues, and because binding is the first step in bacterial fixation and colonization, these antigens also can be considered as suitable candidates for designing vaccines. Likely, other significant bacterial antigens, such as NapA (chemotactic factor for recruitment of human neutrophils and monocytes to the site of infection), duodenal ulcer promoting protein A (to promote duodenal ulcer), and Hsp60 (as a molecular chaperon for activation of urease enzyme), can be used in the construction of subunit vaccines. New vaccines in use currently, such as DNA vaccines and subunit vaccines, can efficiently replace the dead and attenuated vaccines. Nonetheless, the results show that urease enzyme is most used compared with bacterial components in the designing and construction of recombinant vaccines. The BabA and SabA antigens belong to the outer membrane porins family in H. pylori and are required for binding and fixation of the bacterium to the human gastric tissues.
Collapse
Affiliation(s)
- Masoud Keikha
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Eslami
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahman Yousefi
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Abdolmajid Ghasemian
- Department of Biology, Tehran Central Branch, Islamic Azad University, Tehran, Iran
| | - Mohsen Karbalaei
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Microbiology and Virology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| |
Collapse
|
4
|
Bajzert J, Gorczykowski M, Stefaniak T. Evaluation of the protective effect of immunization spf DBA/2J mice with selected bacterial, recombinant Hsp60 antigens during Salmonella Enteritidis challenge. Microb Pathog 2019; 128:206-214. [DOI: 10.1016/j.micpath.2018.12.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/21/2018] [Accepted: 12/26/2018] [Indexed: 11/24/2022]
|
5
|
Bajzert J, Gorczykowski M, Galli J, Stefaniak T. The evaluation of immunogenic impact of selected bacterial, recombinant Hsp60 antigens in DBA/2J mice. Microb Pathog 2017; 115:100-111. [PMID: 29246635 DOI: 10.1016/j.micpath.2017.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/31/2017] [Accepted: 12/01/2017] [Indexed: 01/21/2023]
Abstract
Heat Shock Proteins (HSP) are highly conserved proteins that are widely spread throughout all organisms. They function in the cytoplasm as chaperones; however, they could be expressed on the cell surface. It has been shown that Hsp60 obtained from gram-negative bacteria are able to stimulate cells of the acquired and innate immune system. The aim of this study was the evaluation of the immunogenic properties of recombinant Hsp60 proteins derived from four common pathogenic bacteria: Escherichia coli, Histophilus somni, Pasteurella multocida and Salmonella Enteritidis. The analysis of the humoral immune response in DBA/2J mice hyperimmunized with selected rHsp60 revealed high levels of IgG rHsp60-antibody with the predominance of the IgG1 subclass, in the reaction with both homologous and heterologous antigens. The presence of IgG2a and IgG2b was also observed; however, no antibodies of subclass IgG3 were detected. The comparison of plasma IgG antibody reactivity of mice immunized with two different doses of rHsp60 (10/20 μg) showed that the lower dose was sufficient to induce a strong humoral response. The reactivity of the IgG rHsp60-antibody with whole bacterial cells showed a significantly higher reaction with H. somni compared with other pathogens. It was demonstrated that the addition of all rHsp60 with polymyxin B to the culture medium stimulated splenocytes isolated from hyperimmunized mice to release IL-1β and IL-6. As a strong stimulator of the immune system, bacterial-origin Hsp60 seems to be an interesting potential component of subunit vaccines aimed at the development of protection for animals during infections caused by gram-negative bacteria.
Collapse
Affiliation(s)
- Joanna Bajzert
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Wroclaw University of Environmental and Life Sciences, Poland.
| | - Michał Gorczykowski
- Department of Internal Medicine and Clinic of Diseases of Horses, Dogs and Cats, Wroclaw University of Environmental and Life Sciences, Poland
| | - Józef Galli
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Wroclaw University of Environmental and Life Sciences, Poland
| | - Tadeusz Stefaniak
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Wroclaw University of Environmental and Life Sciences, Poland
| |
Collapse
|
6
|
Mirzaei N, Poursina F, Moghim S, Rashidi N, Ghasemian Safaei H. The study of H. pylori putative candidate factors for single- and multi-component vaccine development. Crit Rev Microbiol 2017; 43:631-650. [PMID: 28581361 DOI: 10.1080/1040841x.2017.1291578] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Helicobacter pylori has grown to colonize inside the stomach of nearly half of the world's population, turning into the most prevalent infections in the universe. Medical care failures noticeably confirm the need for a vaccine to hinder or deal with H. pylori. This review is planned to discuss the most known factors as a vaccine candidate, including single (AhpC, BG, CagA, KatA, Fla, Hsp, HWC, Lpp, LPS, NAP, OMP, OMV, SOD, Tpx, Urease, VacA) and multi-component vaccines. Many promising results in the field of single and multivalent vaccine can be seen, but there is no satisfactory outcome and neither a prophylactic nor a therapeutic vaccine to treat or eradicate the infection in human has been acquired. Hence, selecting suitable antigen is an important factor as an appropriate adjuvant. Taken all together, the development of efficient anti-H. pylori vaccines relies on the fully understanding of the interactions between H. pylori and its host immune system. Therefore, more work should be done on epitope mapping, analysis of molecular structure, and determination of the antigen determinant region as well due to design a vaccine, preferably a multi-component vaccine to elicit specific CD4 T-cell responses that are required for H. pylori vaccine efficacy.
Collapse
Affiliation(s)
- Nasrin Mirzaei
- a Department of Microbiology , Tonekabon Branch, Islamic Azad University , Tonekabon , Iran
| | - Farkhondeh Poursina
- b Department of Microbiology , Isfahan University of Medical Sciences , Isfahan , Iran
| | - Sharareh Moghim
- b Department of Microbiology , Isfahan University of Medical Sciences , Isfahan , Iran
| | - Niloufar Rashidi
- c Department of Laboratory Sciences , Ahvaz University of Medical Sciences , Ahvaz , Iran
| | | |
Collapse
|
7
|
Uchiyama J, Takemura-Uchiyama I, Kato SI, Takeuchi H, Sakaguchi Y, Ujihara T, Daibata M, Shimakura H, Okamoto N, Sakaguchi M, Matsuzaki S. Screening of KHP30-like prophages among Japanese Helicobacter pylori strains, and genetic analysis of a defective KHP30-like prophage sequence integrated in the genome of the H. pylori strain NY40. FEMS Microbiol Lett 2016; 363:fnw157. [PMID: 27388014 DOI: 10.1093/femsle/fnw157] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2016] [Indexed: 12/11/2022] Open
Abstract
We have recently reported the active Helicobacter pylori bacteriophages (phages), KHP30 and KHP40, the genomic DNAs of which exist as episomes in host bacterial strains isolated in Japan (i.e. pseudolysogeny). In this study, we examined the possibility of the lysogeny of active KHP30-like phages in Japanese H. pylori strains, because their genomes contain a putative integrase gene. Only the NY40 strain yielded partial detection of a KHP30-like prophage sequence in PCR among 174 Japanese H. pylori isolates, except for strains producing the above active phages. Next, according to the genomic analysis of the NY40 strain, the KHP30-like prophage sequence was found to be located from ca. 524 to 549 kb in the host chromosome. The attachment sites, attL and attR, in the NY40 genome showed almost the same genomic location and sequence as those detected in a French isolate B38, suggesting that an active parental KHP30-like phage had integrated into the ancestral NY40 genome in a site-specific manner. The prophage found in the NY40 genome was assumed to have been genetically modified, after site-specific integration. These, together with the data in the KHP30-like prophages of other H. pylori genomes, suggest that the lysogenic state of the KHP30-like phages is generally unstable.
Collapse
Affiliation(s)
- Jumpei Uchiyama
- Department of Veterinary Microbiology, School of Veterinary Medicine, Azabu University, Kanagawa 252-5201, Japan
| | - Iyo Takemura-Uchiyama
- Department of Veterinary Microbiology, School of Veterinary Medicine, Azabu University, Kanagawa 252-5201, Japan
| | - Shin-Ichiro Kato
- Research Institute of Molecular Genetics, Kochi University, Kochi 783-8502, Japan
| | - Hiroaki Takeuchi
- Department of Clinical Laboratory Medicine, Kochi Medical School, Kochi University, Kochi 783-8505, Japan
| | - Yoshihiko Sakaguchi
- Department of Microbiology, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | - Takako Ujihara
- Science Research Center, Kochi University, Kochi 783-8505, Japan
| | - Masanori Daibata
- Department of Microbiology and Infection, Kochi Medical School, Kochi University, Kochi 783-8505, Japan
| | - Hidekatsu Shimakura
- Department of Veterinary Microbiology, School of Veterinary Medicine, Azabu University, Kanagawa 252-5201, Japan
| | - Noriaki Okamoto
- Department of Veterinary Microbiology, School of Veterinary Medicine, Azabu University, Kanagawa 252-5201, Japan
| | - Masahiro Sakaguchi
- Department of Veterinary Microbiology, School of Veterinary Medicine, Azabu University, Kanagawa 252-5201, Japan
| | - Shigenobu Matsuzaki
- Department of Microbiology and Infection, Kochi Medical School, Kochi University, Kochi 783-8505, Japan
| |
Collapse
|
8
|
Chionh YT, Arulmuruganar A, Venditti E, Ng GZ, Han JX, Entwisle C, Ang CS, Colaco CA, McNulty S, Sutton P. Heat shock protein complex vaccination induces protection against Helicobacter pylori without exogenous adjuvant. Vaccine 2014; 32:2350-8. [PMID: 24625340 DOI: 10.1016/j.vaccine.2014.02.051] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/24/2014] [Accepted: 02/12/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND The development of a vaccine against the human gastric pathogen Helicobacter pylori, the main causative agent of gastric adenocarcinoma, has been hampered by a number of issues, including the lack of a mucosal adjuvant for use in humans. Heat shock proteins (Hsp), highly conserved molecules expressed by both bacteria and mammalian species, possess a range of functions, including acting as chaperones for cellular proteins and the ability to activate innate immune receptors. Hsp complex (HspC) vaccines, containing Hsp derived from pathogenic bacteria, are immunostimulatory without addition of an exogenous adjuvant and can induce immunity against their chaperoned proteins. In this study we explored in mice the potential utility of a H. pylori HspC vaccine. RESULTS Vaccination with H. pylori HspC, by either the subcutaneous or respiratory mucosal route, induced a strong antibody response, elevated gastric cytokine levels and significant protection against subsequent live challenge with this pathogen. The level of protection induced by non-adjuvanted HspC vaccine was equivalent to that which resulted from vaccination with adjuvanted vaccines. While protection induced by immunisation with adjuvanted vaccines was associated with the development of a moderate to severe atrophic gastritis, that induced by H. pylori HspC only resulted in a mild inflammatory response, despite an increase in pro-inflammatory gastric cytokines. This reduced gastritis correlated with an increase in IL-10 and IL-13 levels in the gastric tissues of HspC vaccinated, H. pylori challenged mice. CONCLUSIONS H. pylori HspC vaccines have the potential to overcome some of the issues preventing the development of a human vaccine against this pathogen: HspC induced protective immunity against H. pylori without addition of an adjuvant and without the induction of a severe inflammatory response. However, complete protection was not obtained so further optimisation of this technology is needed if a human vaccine is to become a reality.
Collapse
Affiliation(s)
- Yok Teng Chionh
- Mucosal Immunology, Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Parkville, VIC 3052, Australia; Centre for Animal Biotechnology, School of Veterinary Science, University of Melbourne, Parkville, VIC 3010, Australia
| | - Arthi Arulmuruganar
- Mucosal Immunology, Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Parkville, VIC 3052, Australia
| | - Elena Venditti
- ImmunoBiology Ltd., Babraham Research Campus, Babraham, Cambridge, UK
| | - Garrett Z Ng
- Mucosal Immunology, Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Parkville, VIC 3052, Australia
| | - Jia-Xi Han
- Mucosal Immunology, Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Parkville, VIC 3052, Australia
| | - Claire Entwisle
- ImmunoBiology Ltd., Babraham Research Campus, Babraham, Cambridge, UK
| | - Ching-Seng Ang
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Camilo A Colaco
- ImmunoBiology Ltd., Babraham Research Campus, Babraham, Cambridge, UK
| | - Shaun McNulty
- ImmunoBiology Ltd., Babraham Research Campus, Babraham, Cambridge, UK
| | - Philip Sutton
- Mucosal Immunology, Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Parkville, VIC 3052, Australia; Centre for Animal Biotechnology, School of Veterinary Science, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
9
|
Zaman C, Osaki T, Hanawa T, Yonezawa H, Kurata S, Kamiya S. Analysis of the microbial ecology between Helicobacter pylori and the gastric microbiota of Mongolian gerbils. J Med Microbiol 2013; 63:129-137. [PMID: 24164959 DOI: 10.1099/jmm.0.061135-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Animal models are essential for in vivo analysis of Helicobacter-related diseases. Mongolian gerbils are used frequently to study Helicobacter pylori-induced gastritis and its consequences. The presence of some gastric microbiota with a suppressive effect on H. pylori suggests inhibitory gastric bacteria against H. pylori infection. The aim of the present study was to analyse the microbial ecology between H. pylori and the gastric microbiota of Mongolian gerbils. Gastric mucosa samples of H. pylori-negative and -positive gerbils were orally inoculated to five (Group 1) and six (Group 2) gerbils, respectively, and the gerbils were challenged with H. pylori infection. The colonization rate (40 %) of H. pylori in Group 1 gerbils was lower than the rate (67 %) in Group 2 gerbils. Culture filtrate of the gastric mucosa samples of Group 1 gerbils inhibited the in vitro growth of H. pylori. Three lactobacilli species, Lactobacillus reuteri, Lactobacillus johnsonii and Lactobacillus murinus, were isolated by anaerobic culture from the gerbils in Groups 1 and 2, and identified by genomic sequencing. It was demonstrated that the three different strains of lactobacilli exhibited an inhibitory effect on the in vitro growth of H. pylori. The results suggested that lactobacilli are the dominant gastric microbiota of Mongolian gerbils and the three lactobacilli isolated from the gastric mucosa samples with an inhibitory effect on H. pylori might have an anti-infective effect against H. pylori.
Collapse
Affiliation(s)
- Cynthia Zaman
- Department of Infectious Diseases, Kyorin University School of Medicine, Shinkawa 6-20-2, Mitaka, Tokyo 181-8611, Japan
| | - Takako Osaki
- Department of Infectious Diseases, Kyorin University School of Medicine, Shinkawa 6-20-2, Mitaka, Tokyo 181-8611, Japan
| | - Tomoko Hanawa
- Department of Infectious Diseases, Kyorin University School of Medicine, Shinkawa 6-20-2, Mitaka, Tokyo 181-8611, Japan
| | - Hideo Yonezawa
- Department of Infectious Diseases, Kyorin University School of Medicine, Shinkawa 6-20-2, Mitaka, Tokyo 181-8611, Japan
| | - Satoshi Kurata
- Department of Infectious Diseases, Kyorin University School of Medicine, Shinkawa 6-20-2, Mitaka, Tokyo 181-8611, Japan
| | - Shigeru Kamiya
- Department of Infectious Diseases, Kyorin University School of Medicine, Shinkawa 6-20-2, Mitaka, Tokyo 181-8611, Japan
| |
Collapse
|
10
|
Uchiyama J, Takeuchi H, Kato SI, Gamoh K, Takemura-Uchiyama I, Ujihara T, Daibata M, Matsuzaki S. Characterization of Helicobacter pylori bacteriophage KHP30. Appl Environ Microbiol 2013; 79:3176-84. [PMID: 23475617 PMCID: PMC3685256 DOI: 10.1128/aem.03530-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 02/28/2013] [Indexed: 01/01/2023] Open
Abstract
Helicobacter pylori inhabits the stomach mucosa and is a causative agent of stomach ulcer and cancer. In general, bacteriophages (phages) are strongly associated with bacterial evolution, including the development of pathogenicity. Several tailed phages have so far been reported in H. pylori. We have isolated an H. pylori phage, KHP30, and reported its genomic sequence. In this study, we examined the biological characteristics of phage KHP30. Phage KHP30 was found to be a spherical lipid-containing phage with a diameter of ca. 69 nm. Interestingly, it was stable from pH 2.5 to pH 10, suggesting that it is adapted to the highly acidic environment of the human stomach. Phage KHP30 multiplied on 63.6% of clinical H. pylori isolates. The latent period was ca. 140 min, shorter than the doubling time of H. pylori (ca. 180 min). The burst size was ca. 13, which was smaller than the burst sizes of other known tailed or spherical phages. Phage KHP30 seemed to be maintained as an episome in H. pylori strain NY43 cells, despite a predicted integrase gene in the KHP30 genomic sequence. Seven possible virion proteins of phage KHP30 were analyzed using N-terminal protein sequencing and mass spectrometry, and their genes were found to be located on its genomic DNA. The genomic organization of phage KHP30 differed from the genomic organizations in the known spherical phage families Corticoviridae and Tectiviridae. This evidence suggests that phage KHP30 is a new type of spherical phage that cannot be classified in any existing virus category.
Collapse
Affiliation(s)
- Jumpei Uchiyama
- Department of Microbiology and Infection
- Center for Innovative and Translational Medicine
| | | | | | | | - Iyo Takemura-Uchiyama
- Department of Microbiology and Infection
- Department of Clinical Laboratory Medicine, Faculty of Medicine
| | | | - Masanori Daibata
- Department of Microbiology and Infection
- Center for Innovative and Translational Medicine
| | - Shigenobu Matsuzaki
- Department of Microbiology and Infection
- Center for Innovative and Translational Medicine
| |
Collapse
|
11
|
Vermoote M, Van Steendam K, Flahou B, Smet A, Pasmans F, Glibert P, Ducatelle R, Deforce D, Haesebrouck F. Immunization with the immunodominant Helicobacter suis urease subunit B induces partial protection against H. suis infection in a mouse model. Vet Res 2012; 43:72. [PMID: 23101660 PMCID: PMC3542004 DOI: 10.1186/1297-9716-43-72] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 10/15/2012] [Indexed: 12/14/2022] Open
Abstract
Helicobacter (H.) suis is a porcine and human gastric pathogen. Previous studies in mice showed that an H. suis infection does not result in protective immunity, whereas immunization with H. suis whole-cell lysate (lysate) protects against a subsequent experimental infection. Therefore, two-dimensional gel electrophoresis of H. suis proteins was performed followed by immunoblotting with pooled sera from H. suis- infected mice or mice immunized with lysate. Weak reactivity against H. suis proteins was observed in post-infection sera. Sera from lysate-immunized mice, however, showed immunoreactivity against a total of 19 protein spots which were identified using LC-MS/MS. The H. suis urease subunit B (UreB) showed most pronounced reactivity against sera from lysate-immunized mice and was not detected with sera from infected mice. None of the pooled sera detected H. suis neutrophil-activating protein A (NapA). The protective efficacy of intranasal vaccination of BALB/c mice with H. suis UreB and NapA, both recombinantly expressed in Escherichia coli (rUreB and rNapA, respectively), was compared with that of H. suis lysate. All vaccines contained choleratoxin as adjuvant. Immunization of mice with rUreB and lysate induced a significant reduction of H. suis colonization compared to non-vaccinated H. suis-infected controls, whereas rNapA had no significant protective effect. Probably, a combination of local Th1 and Th17 responses, complemented by antibody responses play a role in the protective immunity against H. suis infections.
Collapse
Affiliation(s)
- Miet Vermoote
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Yonezawa H, Osaki T, Hanawa T, Kurata S, Zaman C, Woo TDH, Takahashi M, Matsubara S, Kawakami H, Ochiai K, Kamiya S. Destructive effects of butyrate on the cell envelope of Helicobacter pylori. J Med Microbiol 2011; 61:582-589. [PMID: 22194341 DOI: 10.1099/jmm.0.039040-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Helicobacter pylori can be found in the oral cavity and is mostly detected by the use of PCR techniques. Growth of H. pylori is influenced by various factors in the mouth, such as the oral microflora, saliva and other antimicrobial substances, all of which make colonization of the oral cavity by H. pylori difficult. In the present study, we analysed the effect of the cell supernatant of a representative periodontal bacterium Porphyromonas gingivalis on H. pylori and found that the cell supernatant destroyed the H. pylori cell envelope. As P. gingivalis produces butyric acid, we focused our research on the effects of butyrate and found that it significantly inhibited the growth of H. pylori. H. pylori cytoplasmic proteins and DNA were detected in the extracellular environment after treatment with butyrate, suggesting that the integrity of the cell envelope was compromised and indicating that butyrate has a bactericidal effect on H. pylori. In addition, levels of extracellular H. pylori DNA increased following treatment with the cell supernatant of butyric acid-producing bacteria, indicating that the cell supernatant also has a bactericidal effect and that this may be due to its butyric acid content. In conclusion, butyric acid-producing bacteria may play a role in affecting H. pylori colonization of the oral cavity.
Collapse
Affiliation(s)
- Hideo Yonezawa
- Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo 181-8611, Japan
| | - Takako Osaki
- Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo 181-8611, Japan
| | - Tomoko Hanawa
- Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo 181-8611, Japan
| | - Satoshi Kurata
- Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo 181-8611, Japan
| | - Cynthia Zaman
- Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo 181-8611, Japan
| | - Timothy Derk Hoong Woo
- Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo 181-8611, Japan
| | - Motomichi Takahashi
- Miyarisan Pharmaceutical Co. Ltd, Tokyo, Japan
- Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo 181-8611, Japan
| | - Sachie Matsubara
- Laboratory for Electron Microscopy, Kyorin University School of Medicine, Tokyo 181-8611, Japan
| | - Hayato Kawakami
- Department of Anatomy, Kyorin University School of Medicine, Tokyo 181-8611, Japan
| | - Kuniyasu Ochiai
- Department of Bacteriology, Nihon University School of Dentistry, Tokyo 101-8310, Japan
| | - Shigeru Kamiya
- Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo 181-8611, Japan
| |
Collapse
|
13
|
Schmitz JM, Durham CG, Schoeb TR, Soltau TD, Wolf KJ, Tanner SM, McCracken VJ, Lorenz RG. Helicobacter felis--associated gastric disease in microbiota-restricted mice. J Histochem Cytochem 2011; 59:826-41. [PMID: 21852692 PMCID: PMC3201166 DOI: 10.1369/0022155411416242] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 06/13/2011] [Indexed: 12/23/2022] Open
Abstract
Human Helicobacter pylori infection leads to multiple pathological consequences, including gastritis and adenocarcinoma. Although this association has led to the classification of H. pylori as a type 1 carcinogen, it is not clear if additional nonhelicobacter gastric microbiota play a role in these diseases. In this study, we utilized either specific pathogen-free C57BL/6 mice (B6.SPF) or mice colonized with altered Schaedler flora (B6.ASF) to evaluate the role of nonhelicobacter gastric microbiota in disease development after Helicobacter felis infection. Despite similar histological changes, H. felis persisted in B6.ASF stomachs, while H. felis could no longer be detected in the majority of B6.SPF mice. The B6.SPF mice also acquired multiple Lactobacillus spp. in their stomachs after H. felis infection. Our data indicate that potential mechanisms responsible for the ineffective H. felis clearance in the B6.ASF model include the absence of new gastric microbiota to compete for the gastric niche, the lack of expression of new gastric mucins, and a reduced ratio of H. felis-specific IgG2c:IgG1 serum antibodies. These data suggest that although H. felis is sufficient to initiate gastric inflammation and atrophy, bacterial eradication and the systemic immune response to infection are significantly influenced by pre-existing and acquired gastric microbiota.
Collapse
Affiliation(s)
- Julia M. Schmitz
- Department of Medicine/CGIBD, University of North Carolina at Chapel Hill
| | | | | | | | | | | | - Vance J. McCracken
- Department of Biological Sciences, Southern Illinois University Edwardsville, IL
| | - Robin G. Lorenz
- Robin G. Lorenz, Department of Pathology, University of Alabama at Birmingham, 1825 University Boulevard, SHEL 602, Birmingham, AL 35294-2182. E-mail:
| |
Collapse
|
14
|
Vitoriano I, Rocha-Gonçalves A, Carvalho T, Oleastro M, Calado CRC, Roxo-Rosa M. Antigenic diversity among Portuguese clinical isolates of Helicobacter pylori. Helicobacter 2011; 16:153-68. [PMID: 21435094 DOI: 10.1111/j.1523-5378.2011.00825.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND The human gastroduodenal pathogen, Helicobacter pylori, is characterized by an unusual extent of genetic heterogeneity. This dictates differences in the antigenic pattern of strains resulting in heterogeneous human humoral immune responses. Here, we examined the antigenic variability among a group of 10 strains isolated from Portuguese patients differing in age, gender, and H. pylori-associated gastric diseases. MATERIAL AND METHODS Immunoassays were performed on two-dimensional electrophoresis gels obtained for the proteome of each strain, using a commercial pool of antibodies produced in rabbit, against the whole cell lysate of an Australian H. pylori strain. Relevant proteins were identified by mass spectrometry. RESULTS Immunoproteomes of the Portuguese strains showed no correlation between the number of antigenic proteins or the antigenic profile, and the disease to which each strain was associated. The Heat shock protein B was the unique immunoreactive protein common to all of them. Additionally, seven proteins were found to be antigenic in at least 80% of strains: enoyl-(acyl-carrier-protein) reductase (NADH); Catalase; Flagellin A; 2 isoforms of alkyl hydroperoxide reductase; succinyl-CoA transferase subunit B; and an unidentified protein. These proteins were present in the proteome of all tested strains, suggesting that differences in their antigenicity are related to antigenic variance. CONCLUSIONS This study showed evidence of the variability of antigenic pattern among H. pylori strains. We believe that this fact contributes to the failure of anti-H. pylori vaccines and the low accuracy of serological tests based on a low number of proteins or antigens of only one strain.
Collapse
Affiliation(s)
- Inês Vitoriano
- Faculdade de Engenharia, Universidade Católica Portuguesa, Rio de Mouro, Portugal Chymiotechnon, Departamento de Química, Universidade de Coimbra, Coimbra, Portugal
| | | | | | | | | | | |
Collapse
|
15
|
Yonezawa H, Osaki T, Kurata S, Fukuda M, Kawakami H, Ochiai K, Hanawa T, Kamiya S. Outer membrane vesicles of Helicobacter pylori TK1402 are involved in biofilm formation. BMC Microbiol 2009; 9:197. [PMID: 19751530 PMCID: PMC2749055 DOI: 10.1186/1471-2180-9-197] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 09/15/2009] [Indexed: 12/12/2022] Open
Abstract
Background Helicobacter pylori forms biofilms on glass surfaces at the air-liquid interface in in vitro batch cultures; however, biofilms of H. pylori have not been well characterized. In the present study, we analyzed the ability of H. pylori strains to form biofilms and characterized the underlying mechanisms of H. pylori biofilm formation. Results Strain TK1402 showed strong biofilm forming ability relative to the other strains in Brucella broth supplemented with 7% FCS. The strong biofilm forming ability of TK1402 is reflected the relative thickness of the biofilms. In addition, outer membrane vesicles (OMV) were detected within the matrix of only the TK1402 biofilms. Biofilm formation was strongly correlated with the production of OMV in this strain. We further observed that strain TK1402 did not form thick biofilms in Brucella broth supplemented with 0.2% β-cyclodextrin. However, the addition of the OMV-fraction collected from TK1402 could enhance biofilm formation. Conclusion The results suggested that OMV produced from TK1402 play an important role in biofilm formation in strain TK1402.
Collapse
Affiliation(s)
- Hideo Yonezawa
- Department of Infectious Disease, Kyorin University School of Medicine, Shinkawa, Mitaka, Tokyo, 181-8611, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
For more than 10 years a vaccine against Helicobacter pylori has been the elusive goal of many investigators. The need for a vaccine was highlighted when eradication attempts in developing countries were foiled by reinfection rates of 15-30% per annum. In addition, physicians in developed countries were concerned that attempts at total eradication of H. pylori would result in widespread macrolide resistance in both H. pylori and other important pathogens. Although attempts to produce vaccines against H. pylori have failed in their ultimate goal, considerable knowledge has been developed on the pathogenesis and immunology of Helicobacter infections. In this article we describe an alternative use for this new knowledge, i.e. a plan to use live Helicobacter species to deliver vaccines against other organisms. Because of its intimate attachment to the gastric mucosa and long-term residence there, H. pylori might succeed as an antigen delivery system, a goal which has eluded most other strategies of nonparenteral vaccination.
Collapse
Affiliation(s)
- Barry Marshall
- Helicobacter pylori Research Laboratory, Microbiology and Immunology, University of Western Australia, Perth, Western Australia, Australia.
| | | |
Collapse
|
17
|
Sutton P, Doidge C, Pinczower G, Wilson J, Harbour S, Swierczak A, Lee A. Effectiveness of vaccinationwith recombinant HpaA fromHelicobacter pyloriis influenced by host genetic background. ACTA ACUST UNITED AC 2007; 50:213-9. [PMID: 17567282 DOI: 10.1111/j.1574-695x.2006.00206.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Several studies have explored the production and immunogenicity of HpaA as a potential protective antigen against Helicobacter pylori but little is known regarding its protective capabilities. We therefore evaluated the protective efficacy of recombinant HpaA (rHpaA) as a candidate vaccine antigen against H. pylori. To explore the impact of genetic diversity, inbred and outbred mice were prophylactically and therapeutically immunized with rHpaA adjuvanted with cholera toxin (CT). Prophylactic immunization induced a reduction in bacterial colonization in BALB/c and QS mice, but was ineffective in C57BL/6 mice, despite induction of antigen-specific antibodies. By contrast, therapeutic immunization was effective in all three strains of mice. Prophylactic immunization with CT-adjuvanted rHpaA was more effective when delivered via the nasal route than following intragastric delivery in BALB/c mice. However, HpaA-mediated protection was inferior to that induced by bacterial lysate. Hence, protective efficacy is inducible with vaccines containing HpaA, most relevantly shown in an outbred population of mice. The effectiveness of protection induced by HpaA antigen was influenced by host genetics and was less effective than lysate. HpaA therefore has potential for the development of effective immunization against H. pylori but this would probably entail the antigen to be one component of a multiantigenic vaccine.
Collapse
MESH Headings
- Adhesins, Bacterial/immunology
- Adjuvants, Immunologic
- Administration, Intranasal
- Animals
- Antibodies, Bacterial/blood
- Bacterial Vaccines/immunology
- Cholera Toxin/immunology
- Colony Count, Microbial
- Disease Models, Animal
- Enzyme-Linked Immunosorbent Assay
- Female
- Helicobacter Infections/genetics
- Helicobacter Infections/prevention & control
- Helicobacter Infections/therapy
- Helicobacter pylori/growth & development
- Helicobacter pylori/immunology
- Immunoglobulin G/blood
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Stomach/microbiology
- Vaccines, Subunit/immunology
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Philip Sutton
- Centre for Animal Biotechnology, University of Melbourne, Melbourne, Victoria, Australia.
| | | | | | | | | | | | | |
Collapse
|
18
|
Renesto P, Azza S, Dolla A, Fourquet P, Vestris G, Gorvel JP, Raoult D. Proteome analysis of Rickettsia conorii by two-dimensional gel electrophoresis coupled with mass spectrometry. FEMS Microbiol Lett 2005; 245:231-8. [PMID: 15837377 DOI: 10.1016/j.femsle.2005.03.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Revised: 03/04/2005] [Accepted: 03/04/2005] [Indexed: 10/25/2022] Open
Abstract
The availability of genome sequence offers the opportunity to further expand our knowledge about proteins expressed by Rickettsia conorii, strictly intracellular bacterium responsible for Mediterranean spotted fever. Using two-dimensional polyacrylamide gel electrophoresis combined with MALDI-TOF mass spectrometry, we established the first reference map of R. conorii proteome. This approach also allowed identification of GroEL as the major antigen recognized by rabbit serum and sera of infected patients. Altogether, this work opens the way to characterize the proteome of R. conorii, to compare protein profiles of different isolates or of bacteria maintained under different experimental conditions and to identify immunogenic proteins as potential vaccine targets.
Collapse
Affiliation(s)
- Patricia Renesto
- Unité des Rickettsies, CNRS UMR 6020, IFR-48, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille, France.
| | | | | | | | | | | | | |
Collapse
|
19
|
Nakagawa S, Osaki T, Fujioka Y, Yamaguchi H, Kamiya S. Long-term infection of Mongolian gerbils with Helicobacter pylori: microbiological, histopathological, and serological analyses. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2005; 12:347-53. [PMID: 15699432 PMCID: PMC549302 DOI: 10.1128/cdli.12.2.347-353.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Revised: 08/19/2004] [Accepted: 10/21/2004] [Indexed: 12/18/2022]
Abstract
The effects of long-term infection with Helicobacter pylori on the gastric mucosa of Mongolian gerbils were examined. Colonization by H. pylori was evaluated by both microaerobic cultivation and real-time reverse transcriptase PCR (RT-PCR). Persistent infection with H. pylori in gastric mucosa was detected by real-time RT-PCR during 6 months after infection, but no H. pylori was isolated 4 months after infection by cultivation. Infiltration with neutrophils and mononuclear cells was observed from 2 months after infection. Both intestinal metaplasia and gastric atrophy were also detected from 2 months after infection. The results by enzyme-linked immunosorbent assay indicated that antibody titers against whole H. pylori antigens, H. pylori heat shock protein 60 (HSP60), and Escherichia coli GroEL were significantly higher in the infected gerbils than in noninfected gerbils. After long-term infection with H. pylori for 18 months, marked atrophy of gastric mucosa and multiple cysts in the submucosa were observed in the glandular stomach of the infected gerbils. In addition, squamous cell papilloma with hyperkeratosis was observed in cardia of all the infected gerbils. These results indicate that evaluation of bacterial colonization during long-term infection can be done by real-time RT-PCR and that mucosal damage might be induced by host immune response against whole H. pylori antigen.
Collapse
Affiliation(s)
- Shigehito Nakagawa
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan
| | | | | | | | | |
Collapse
|