1
|
Uhde M, Indart AC, Green PH, Yolken RH, Cook DB, Shukla SK, Vernon SD, Alaedini A. Suppressed immune and metabolic responses to intestinal damage-associated microbial translocation in myalgic encephalomyelitis/chronic fatigue syndrome. Brain Behav Immun Health 2023; 30:100627. [PMID: 37396339 PMCID: PMC10308215 DOI: 10.1016/j.bbih.2023.100627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 07/04/2023] Open
Abstract
The etiology and mechanism of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) are poorly understood and no biomarkers have been established. Specifically, the relationship between the immunologic, metabolic, and gastrointestinal abnormalities associated with ME/CFS and their relevance to established symptoms of the condition remain unclear. Relying on data from two independent pairs of ME/CFS and control cohorts, one at rest and one undergoing an exercise challenge, we identify a state of suppressed acute-phase innate immune response to microbial translocation in conjunction with a compromised gut epithelium in ME/CFS. This immunosuppression, along with observed enhancement of compensatory antibody responses to counter the microbial translocation, was associated with and may be mediated by alterations in glucose and citrate metabolism and an IL-10 immunoregulatory response. Our findings provide novel insights into mechanistic pathways, biomarkers, and potential therapeutic targets in ME/CFS, including in the context of exertion, with relevance to both intestinal and extra-intestinal symptoms.
Collapse
Affiliation(s)
- Melanie Uhde
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, USA
| | - Alyssa C. Indart
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, USA
| | - Peter H.R. Green
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, USA
- Celiac Disease Center, Columbia University, New York, NY, USA
| | - Robert H. Yolken
- The Stanley Laboratory of Developmental Neurovirology, Johns Hopkins University, Baltimore, MD, USA
| | - Dane B. Cook
- Department of Kinesiology, University of Wisconsin - Madison, Madison, WI, USA
| | - Sanjay K. Shukla
- Center for Human Genetics, Marshfield Clinic Research Institute, Marshfield, WI, USA
| | | | - Armin Alaedini
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, USA
- Institute of Human Nutrition, Columbia University, New York, NY, USA
- Celiac Disease Center, Columbia University, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
2
|
Christoforidou Z, Mora Ortiz M, Poveda C, Abbas M, Walton G, Bailey M, Lewis MC. Sexual Dimorphism in Immune Development and in Response to Nutritional Intervention in Neonatal Piglets. Front Immunol 2019; 10:2705. [PMID: 31921096 PMCID: PMC6911813 DOI: 10.3389/fimmu.2019.02705] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022] Open
Abstract
Although sex disparity in immunological function and susceptibility to various inflammatory and infectious disease is recognized in adults, far less is known about the situation in young infants during immune development. We have used an outbred piglet model to explore potential early sex disparity underlying both mucosal immune development and systemic responses to novel antigen. Despite similarities in intestinal barrier function and therefore, presumably, antigen exposure, females had less CD172+ (Sirp-α) antigen presenting cells and expression of MHCIIDR at 28 days old compared to males, along with greater regulatory T-cell numbers. This suggests that, during infancy, females may have greater potential for local immune regulation than their male counterparts. However, females also presented with significantly greater systemic antibody responses to injected ovalbumin and dietary soya. Females also synthesized significantly more IgA in mesenteric lymph nodes, whereas males synthesized more in caecal mucosa, suggesting that plasma cells were retained within the MLN in females, but increased numbers of plasma cells circulated through to the mucosal tissue in males. Significant effects of inulin and Bifidobacterium lactis NCC2818 on the developing immune system were also sex-dependent. Our results may start to explain inconsistencies in outcomes of trials of functional foods in infants, as distinction between males and females is seldom made. Since later functionality of the immune system is highly dependent on appropriate development during infancy, stratifying nutritional interventions by sex may present a novel means of optimizing treatments and preventative strategies to reduce the risk of the development of immunological disorders in later life.
Collapse
Affiliation(s)
- Zoe Christoforidou
- Infection and Immunity, School of Veterinary Science, University of Bristol, Bristol, United Kingdom
| | - Marina Mora Ortiz
- Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Reading, United Kingdom
| | - Carlos Poveda
- Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Reading, United Kingdom
| | - Munawar Abbas
- Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Reading, United Kingdom
| | - Gemma Walton
- Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Reading, United Kingdom
| | - Michael Bailey
- Infection and Immunity, School of Veterinary Science, University of Bristol, Bristol, United Kingdom
| | - Marie C Lewis
- Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Reading, United Kingdom
| |
Collapse
|
3
|
Blanco A, Abid I, Al-Otaibi N, Pérez-Rodríguez FJ, Fuentes C, Guix S, Pintó RM, Bosch A. Glass Wool Concentration Optimization for the Detection of Enveloped and Non-enveloped Waterborne Viruses. FOOD AND ENVIRONMENTAL VIROLOGY 2019; 11:184-192. [PMID: 30903596 PMCID: PMC7090506 DOI: 10.1007/s12560-019-09378-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 03/13/2019] [Indexed: 05/15/2023]
Abstract
An extremely affordable virus concentration method based on adsorption-elution to glass wool and subsequent reconcentration through polyethylene glycol 6000 (PEG) precipitation was optimized to recover not only non-enveloped viruses but also enveloped viruses. Hepatitis A virus (HAV) and transmissible gastroenteritis virus (TGEV) were employed as surrogates for naked and enveloped viruses, respectively, to set up the methodology. Initial experimentation in small-volume samples showed that both types of particles readily adsorbed to the positively charged glass wool but were poorly detached from it through standard elution with 0.05 M glycine with 3% of beef extract buffer, pH 9.5, with elution efficiencies of 7.2% and 2.6%, for HAV and TGEV, respectively. To improve the recovery of enveloped viruses, several modifications in the elution were assayed: increasing the elution pH, extending glass wool and eluent contact time, adding a detergent, or performing the elution by recirculation or under agitation. Considering practicability and performance, recircularization of the eluent at pH 11.0 for 20 min was the elution procedure of choice, with efficiencies of 25.7% and 18.8% for HAV and TGEV in 50 L of water. Additionally, employing 20% PEG instead of 10% for virus reconcentration improved recoveries up to 47% and 51%, respectively. The optimized procedure was applied to detect naturally occurring HAV and coronaviruses in surface water of Wadi Hanifa, Riyadh. HAV was detected in 38% of the samples, while one sample was positive for an alphacoronavirus. This cheap virus detection system enables the comprehensive surveillance of viruses present in water samples.
Collapse
Affiliation(s)
- Albert Blanco
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
- Institute of Nutrition and Food Safety (INSA·UB), University of Barcelona, Barcelona, Spain
| | - Islem Abid
- Botany and Microbiology Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Nawal Al-Otaibi
- Botany and Microbiology Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Francisco José Pérez-Rodríguez
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
- Institute of Nutrition and Food Safety (INSA·UB), University of Barcelona, Barcelona, Spain
| | - Cristina Fuentes
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
- Institute of Nutrition and Food Safety (INSA·UB), University of Barcelona, Barcelona, Spain
| | - Susana Guix
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
- Institute of Nutrition and Food Safety (INSA·UB), University of Barcelona, Barcelona, Spain
| | - Rosa M Pintó
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
- Institute of Nutrition and Food Safety (INSA·UB), University of Barcelona, Barcelona, Spain
| | - Albert Bosch
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain.
- Institute of Nutrition and Food Safety (INSA·UB), University of Barcelona, Barcelona, Spain.
| |
Collapse
|
4
|
Jing Y, Liu H, Xu W, Yang Q. 4,4′‐Diaponeurosporene‐ProducingBacillus subtilisPromotes the Development of the Mucosal Immune System of the Piglet Gut. Anat Rec (Hoboken) 2019; 302:1800-1807. [DOI: 10.1002/ar.24102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 11/06/2018] [Accepted: 11/21/2018] [Indexed: 01/14/2023]
Affiliation(s)
- Yuchao Jing
- College of Veterinary MedicineNanjing Agricultural University Nanjing Jiangsu 210095 People's Republic of China
| | - Haofei Liu
- College of Veterinary MedicineNanjing Agricultural University Nanjing Jiangsu 210095 People's Republic of China
| | - Wenwen Xu
- College of Veterinary MedicineNanjing Agricultural University Nanjing Jiangsu 210095 People's Republic of China
| | - Qian Yang
- College of Veterinary MedicineNanjing Agricultural University Nanjing Jiangsu 210095 People's Republic of China
| |
Collapse
|
5
|
Stokes CR. The development and role of microbial-host interactions in gut mucosal immune development. J Anim Sci Biotechnol 2017; 8:12. [PMID: 28149511 PMCID: PMC5270223 DOI: 10.1186/s40104-016-0138-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 12/23/2016] [Indexed: 02/06/2023] Open
Abstract
At birth the piglet’s immune system is immature and it is dependent upon passive maternal protection until weaning. The piglet’s mucosal immune system develops over the first few weeks but has not reached maturity at weaning ages which are common on commercial farms. At weaning piglets are presented with a vast and diverse range of microbial and dietary/environmental antigens. Their ability to distinguish between antigens and mount a protective response to potential pathogens and to develop tolerance to dietary antigens is critical to their survival and failure to do so is reflected in the high incidence of morbidity and mortality in the post-weaning period. A growing recognition that the widespread use of antibiotics to control infection during this critical period should be controlled has led to detailed studies of those factors which drive the development of the mucosal immune system, the role of gut microbiota in driving this process, the origin of the bacteria that colonise the young piglet’s intestine and the impact of rearing environment. This review briefly describes how the mucosal immune system is equipped to respond “appropriately” to antigenic challenge and the programmed sequence by which it develops. The results of studies on the critical interplay between the host immune system and gut microbiota are discussed along with the effects of rearing environment. By comparing these with results from human studies on the development of allergies in children, an approach to promote an earlier maturation of the piglet immune system to resist the challenges of weaning are outlined.
Collapse
Affiliation(s)
- C R Stokes
- School of Clinical Veterinary Science, University of Bristol, Langford House, Langford, Nr Bristol, BS40 5DU UK
| |
Collapse
|
6
|
Uhde M, Ajamian M, Caio G, De Giorgio R, Indart A, Green PH, Verna EC, Volta U, Alaedini A. Intestinal cell damage and systemic immune activation in individuals reporting sensitivity to wheat in the absence of coeliac disease. Gut 2016; 65:1930-1937. [PMID: 27459152 PMCID: PMC5136710 DOI: 10.1136/gutjnl-2016-311964] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/09/2016] [Accepted: 06/20/2016] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Wheat gluten and related proteins can trigger an autoimmune enteropathy, known as coeliac disease, in people with genetic susceptibility. However, some individuals experience a range of symptoms in response to wheat ingestion, without the characteristic serological or histological evidence of coeliac disease. The aetiology and mechanism of these symptoms are unknown, and no biomarkers have been identified. We aimed to determine if sensitivity to wheat in the absence of coeliac disease is associated with systemic immune activation that may be linked to an enteropathy. DESIGN Study participants included individuals who reported symptoms in response to wheat intake and in whom coeliac disease and wheat allergy were ruled out, patients with coeliac disease and healthy controls. Sera were analysed for markers of intestinal cell damage and systemic immune response to microbial components. RESULTS Individuals with wheat sensitivity had significantly increased serum levels of soluble CD14 and lipopolysaccharide (LPS)-binding protein, as well as antibody reactivity to bacterial LPS and flagellin. Circulating levels of fatty acid-binding protein 2 (FABP2), a marker of intestinal epithelial cell damage, were significantly elevated in the affected individuals and correlated with the immune responses to microbial products. There was a significant change towards normalisation of the levels of FABP2 and immune activation markers in a subgroup of individuals with wheat sensitivity who observed a diet excluding wheat and related cereals. CONCLUSIONS These findings reveal a state of systemic immune activation in conjunction with a compromised intestinal epithelium affecting a subset of individuals who experience sensitivity to wheat in the absence of coeliac disease.
Collapse
Affiliation(s)
- Melanie Uhde
- Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Mary Ajamian
- Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Giacomo Caio
- Departments of Medical and Surgical Sciences and Digestive System, Centro di Ricerca Biomedica Applicata (C.R.B.A.), University of Bologna, St. Orsola-Malpighi Hospital, Bologna, Italy
| | - Roberto De Giorgio
- Departments of Medical and Surgical Sciences and Digestive System, Centro di Ricerca Biomedica Applicata (C.R.B.A.), University of Bologna, St. Orsola-Malpighi Hospital, Bologna, Italy
| | - Alyssa Indart
- Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Peter H Green
- Department of Medicine, Columbia University Medical Center, New York, New York, USA,CeliacDisease Center, Columbia University Medical Center, New York, New York, USA
| | - Elizabeth C Verna
- Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Umberto Volta
- Departments of Medical and Surgical Sciences and Digestive System, Centro di Ricerca Biomedica Applicata (C.R.B.A.), University of Bologna, St. Orsola-Malpighi Hospital, Bologna, Italy
| | - Armin Alaedini
- Department of Medicine, Columbia University Medical Center, New York, New York, USA,CeliacDisease Center, Columbia University Medical Center, New York, New York, USA,Institute of Human Nutrition, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
7
|
Pasternak JA, Ng SH, Wilson HL. A single, low dose oral antigen exposure in newborn piglets primes mucosal immunity if administered with CpG oligodeoxynucleotides and polyphosphazene adjuvants. Vet Immunol Immunopathol 2014; 161:211-21. [PMID: 25194591 DOI: 10.1016/j.vetimm.2014.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 08/05/2014] [Accepted: 08/12/2014] [Indexed: 10/24/2022]
Abstract
By definition, soluble antigens ingested orally trigger mucosal tolerance such that any subsequent re-exposure by a systemic route results in suppression of immunity. We propose that antigens introduced in extreme early life can readily traverse the gut wall and therefore circumvent induction of mucosal tolerance and instead induce immunity. Piglets were drenched with low-doses of ovalbumin (OVA; 5mg or 0.05 mg) alone, OVA plus adjuvants (CpG oligodeoxynucleotides and PCEP polyphosphazene) or saline within 6h of birth. At 28 days of age, they were administered 10mg OVA plus 1:1 Montanide adjuvant (or saline) via the intraperitoneal (i.p.) route or via the oral route. Serum was obtained on day 28 and day 49 to measure OVA-specific antibodies titres. All piglets boosted orally with OVA plus Montanide, regardless of prior OVA exposure, failed to induce immunity. As expected, piglets drenched with saline but boosted via the i.p. route with OVA plus Montanide showed significant induction of anti-OVA IgA, IgG, IgG1 and IgG2 relative to saline control piglets. Newborn animals drenched with 5mg or 0.05 mg OVA failed to induce oral immunity. A second intramuscular injection in adulthood triggered immunity in the piglets that were drenched with 0.05 mg OVA and boosted initially by the i.p. route suggesting that some systemic lymphocytes were primed despite initial lack of induction of humoral immunity. In contrast, piglets orally immunized with 5mg or 0.05 mg OVA plus adjuvants resulted in significant induction of anti-OVA IgA (5mg only), IgM, IgG, IgG1 and IgG2 in serum relative to saline control piglets as well as significant induction of anti-OVA IgA, IgM (5mg only) IgG, IgG1 (5mg only) or IgG2 relative to piglets drenched with OVA alone. These data clearly show that the response was sensitive to the oral vaccine components and was not simply a response to the i.p. immunization at day 28. This work demonstrates that newborn piglets respond to oral antigens with immunity if re-exposure to the antigen occurs via a systemic route and if adjuvants are included with the oral vaccine administered at birth. These results should be further explored to establish whether early life oral vaccination can be exploited to protect this susceptible population against infectious diseases.
Collapse
Affiliation(s)
- J Alex Pasternak
- Vaccine and Infectious Disease Organization, home of the International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, S7N 5E3, Canada.
| | - Siew Hon Ng
- Vaccine and Infectious Disease Organization, home of the International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, S7N 5E3, Canada.
| | - Heather L Wilson
- Vaccine and Infectious Disease Organization, home of the International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, S7N 5E3, Canada.
| |
Collapse
|
8
|
Dietary supplementation with Bifidobacterium lactis NCC2818 from weaning reduces local immunoglobulin production in lymphoid-associated tissues but increases systemic antibodies in healthy neonates. Br J Nutr 2013; 110:1243-52. [PMID: 23473077 DOI: 10.1017/s0007114513000251] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Weaning is associated with a major shift in the microbial community of the intestine, and this instability may make it more acquiescent than the adult microbiota to long-term changes. Modulation achieved through dietary interventions may have potentially beneficial effects on the developing immune system, which is driven primarily by the microbiota. The specific aim of the present study was to determine whether immune development could be modified by dietary supplementation with the human probiotic Bifidobacterium lactis NCC2818 in a tractable model of weaning in infants. Piglets were reared by their mothers before being weaned onto a solid diet supplemented with B. lactis NCC2818, while sibling controls did not receive supplementation. Probiotic supplementation resulted in a reduction in IgA (P<0·0005) and IgM (P<0·009) production by mucosal tissues but had no effect on IgG production (P>0·05). Probiotic-supplemented pigs had more mast cells than unsupplemented littermates (P<0·0001), although numbers in both groups were low. In addition, the supplemented piglets made stronger serum IgG responses to fed and injected antigens (P<0·05). The present findings are consistent with B. lactis NCC2818 reducing intestinal permeability induced by weaning, and suggest that the piglet is a valuable intermediate between rodent models and human infants. The results also strongly suggest that measures of the effect of probiotic supplementation on the immune system need to be interpreted carefully as proxy measures of health benefit. However, they are useful in developing an understanding of the mechanism of action of probiotic strains, an important factor in predicting favourable health outcomes of nutritional intervention.
Collapse
|
9
|
Laycock G, Sait L, Inman C, Lewis M, Smidt H, van Diemen P, Jorgensen F, Stevens M, Bailey M. A defined intestinal colonization microbiota for gnotobiotic pigs. Vet Immunol Immunopathol 2012; 149:216-24. [PMID: 22868203 DOI: 10.1016/j.vetimm.2012.07.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 07/11/2012] [Accepted: 07/12/2012] [Indexed: 01/15/2023]
Abstract
Maximising the ability of piglets to survive exposure to pathogens is essential to reduce early piglet mortality, an important factor in efficient commercial pig production. Mortality rates can be influenced by many factors, including early colonization by microbial commensals. Here we describe the development of an intestinal microbiota, the Bristol microbiota, for use in gnotobiotic pigs and its influence on synthesis of systemic immunoglobulins. Such a microbiota will be of value in studies of the consequences of early microbial colonization on development of the intestinal immune system and subsequent susceptibility to disease. Gnotobiotic pig studies lack a well-established intestinal microbiota. The use of the Altered Schaedler Flora (ASF), a murine intestinal microbiota, to colonize the intestines of Caesarean-derived, gnotobiotic pigs prior to gut closure, resulted in unreliable colonization with most (but not all) strains of the ASF. Subsequently, a novel, simpler porcine microbiota was developed. The novel microbiota reliably colonized the length of the intestinal tract when administered to gnotobiotic piglets. No health problems were observed, and the novel microbiota induced a systemic increase in serum immunoglobulins, in particular IgA and IgM. The Bristol microbiota will be of value for highly controlled, reproducible experiments of the consequences of early microbial colonization on susceptibility to disease in neonatal piglets, and as a biomedical model for the impact of microbial colonization on development of the intestinal mucosa and immune system in neonates.
Collapse
Affiliation(s)
- Georgina Laycock
- Division of Veterinary Pathology, Infection and Immunity, School of Veterinary Science, University of Bristol, Langford House, Langford, Bristol BS40 5DU, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
A rat model of mild intestinal inflammation induced by Staphylococcus aureus enterotoxin B. Proc Nutr Soc 2010; 69:447-53. [PMID: 20576204 DOI: 10.1017/s0029665110001849] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The epithelial barrier of the intestine and the gut-associated lymphoid tissue (GALT) protects the host against luminal pathogenic micro-organisms. This is important at weaning, when animals are exposed to infectious agents and stresses. We have developed a rat model of intestinal inflammation post weaning, based on the systemic administration of Staphylococcus aureus enterotoxin B (SEB). Since the inflammatory response obtained is mild, the food intake pattern is not affected, which makes this model useful for studies of nutritional therapies for intestinal inflammatory disease. SEB increased T-lymphocytes in Peyer's patches and the number of activated T-lymphocytes in mesenteric lymph nodes (organized GALT). In the lamina propria, SEB increased activated T-lymphocytes as well as cytotoxic and natural killer-cell populations of the diffuse GALT. It also increased pro-inflammatory cytokines and inflammatory mediators in both Peyer's patches and mucosa. Rats given SEB had higher paracellular permeability to macromolecules, which was associated with a reduction in epithelial tightness. This model was used to examine whether dietary supplementation with spray-dried animal plasma proteins affects intestinal inflammation. Results showed that dietary plasma proteins can attenuate the mucosal immune response in both organized and diffuse GALT and that these effects are mediated by a reduction in the production of pro-inflammatory cytokines.
Collapse
|
11
|
Ultra-early weaning in piglets results in low serum IgA concentration and IL17 mRNA expression. Vet Immunol Immunopathol 2010; 137:261-8. [PMID: 20591504 DOI: 10.1016/j.vetimm.2010.06.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 05/26/2010] [Accepted: 06/02/2010] [Indexed: 01/19/2023]
Abstract
In pigs raised for meat production, weaning is a critical period because of related physiological perturbations and negative consequences on performance. Previous studies have shown that early weaning could either impair development of mucosal barrier function or boost intestinal immunologic parameters. In order to obtain further knowledge about the impact of ultra-early weaning on the porcine immune system development, three groups of piglets were weaned at different ages and compared to the unweaned control group. Lower IgA concentrations in ultra-early and early weaned piglets than in other piglets were identified in serum. In the mesenteric lymph node (MLN), significant differences in the mRNA expression of IL17a, TGF beta and FOXP3 were found between specific groups. Indeed, IL17a mRNA was mainly detected in ultra-early weaned piglets while FOXP3 and TGF beta mRNA were associated to both ultra-early weaned and suckling piglets. Reduced serum IgA concentration and MLN induction of a Th17 cytokine in ultra-early weaned piglets could be related to alterations of the mucosal barrier functions consecutive to the milk deprivation. All together, our findings suggest a crucial role for endogenous milk factors onto the onset of IgA synthesis.
Collapse
|
12
|
Abstract
Early weaning of piglets is often accompanied by a severe growth check and diarrhoea. It is well established that this process is multi-factorial and that post-weaning anorexia and undernutrition are major aetiological factors. Gastrointestinal disturbances include alterations in small intestine architecture and enzyme activities. Recent data indicate transiently-increased mucosal permeability, disturbed absorptive-secretory electrolyte balance and altered local inflammatory cytokine patterns after weaning. These responses appear to operate according to two distinct temporal patterns, an acute response followed by a long-lasting adaptation response. Pigs coexist with a diverse and dense commensal microbiota in their gastrointestinal tract. Most of these microbes are beneficial, providing necessary nutrients or protection against harmful pathogens for the host. The microbial colonisation of the porcine intestine begins at birth and follows a rapid succession during the neonatal and weaning period. Following the withdrawal of sow's milk the young piglets are highly susceptible to enteric diseases partly as a result of the altered balance between developing beneficial microbiota and the establishment of intestinal bacterial pathogens. The intestinal immune system of the newborn piglet is poorly developed at birth and undergoes a rapid period of expansion and specialisation that is not achieved before early (commercial) weaning. Here, new insights on the interactions between feed components, the commensal microbiota and the physiology and immunology of the host gastrointestinal tract are highlighted, and some novel dietary strategies are outlined that are focused on improving gut health. Prebiotics and probiotics are clear nutritional options, while convincing evidence is still lacking for other bioactive substances of vegetable origin.
Collapse
Affiliation(s)
- Jean-Paul Lallès
- INRA, UMR1079, Rearing Systems, Animal and Human Nutrition, F-35590 Saint-Gilles, France.
| | | | | | | |
Collapse
|
13
|
|
14
|
Bailey M, Haverson K. The postnatal development of the mucosal immune system and mucosal tolerance in domestic animals. Vet Res 2006; 37:443-53. [PMID: 16611557 DOI: 10.1051/vetres:2006013] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Accepted: 12/16/2005] [Indexed: 11/14/2022] Open
Abstract
The mucosal immune system is exposed to a range of antigens associated with pathogens, to which it must mount active immune responses. However, it is also exposed to a large number of harmless antigens associated with food and with commensal microbial flora, to which expression of active, inflammatory immune responses to these antigens is undesirable. The mucosal immune system must contain machinery capable of evaluating the antigens to which it is exposed and mounting appropriate effector or regulatory responses. Since the immune system is likely to have evolved initially in mucosal tissues, the requirement to prevent damaging allergic responses must be at least as old as the adaptive immune system, and studies of the mechanisms should include a range of non-mammalian species. Despite the importance for rational design of vaccines and for control of allergic reactions, the mechanisms involved are still largely unclear. It is not clear that the classical experimental protocol of "oral tolerance" is, in fact, measuring a biologically important phenomenon, nor is it clear whether tolerance is regulated in the evolutionarily recent organised lymphoid tissue (the lymph nodes) or the more ancient, diffuse architecture in the intestine. The capacity of the immune system to discriminate between "dangerous" and "harmless" antigens appears to develop with age and exposure to microbial flora. Thus, the ability of an individual or a group of animals to correctly regulate mucosal immune responses will depend on age, genetics and on their microbial environment and history. Attempts to manipulate the mucosal immune system towards active immune responses by oral vaccines, or towards oral tolerance, are likely to be confounded by environmentally-induced variability between individuals and between groups of animals.
Collapse
Affiliation(s)
- Mick Bailey
- School of Clinical Veterinary Science, University of Bristol, Langford House, Langford, Bristol BS40 5DU, United Kingdom.
| | | |
Collapse
|
15
|
Bailey M, Haverson K, Inman C, Harris C, Jones P, Corfield G, Miller B, Stokes C. The development of the mucosal immune system pre- and post-weaning: balancing regulatory and effector function. Proc Nutr Soc 2006; 64:451-7. [PMID: 16313686 DOI: 10.1079/pns2005452] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The mucosal immune system fulfils the primary function of defence against potential pathogens that may enter across vulnerable surface epithelia. However, a secondary function of the intestinal immune system is to discriminate between pathogen-associated and 'harmless' antigens, expressing active responses against the former and tolerance to the latter. Control of immune responses appears to be an active process, involving local generation of IgA and of regulatory and/or regulated T lymphocytes. Two important periods of maximum exposure to novel antigens occur in the young animal, immediately after birth and at weaning. In both cases the antigenic composition of the intestinal contents can shift suddenly, as a result of a novel diet and of colonisation by novel strains and species of bacteria. Changes in lifestyles of man, and husbandry of animals, have resulted in weaning becoming much more abrupt than previously in evolution, increasing the number of antigens that must be simultaneously evaluated by neonates. Thus, birth and weaning are likely to represent hazard and critical control points in the development of appropriate responses to pathogens and harmless dietary and commensal antigens. Neonates are born with relatively undeveloped mucosal immune systems. At birth this factor may prevent both expression of active immune responses and development of tolerance. However, colonisation by intestinal flora expands the mucosal immune system in antigen-specific and non-specific ways. At weaning antibody to fed proteins can be detected, indicating active immune responses to fed proteins. It is proposed that under normal conditions the ability of the mucosal immune system to mount active responses to foreign antigens develops simultaneously with the ability to control and regulate such responses. Problems arise when one or other arm of the immune system develops inappropriately, resulting in inappropriate effector responses to harmless food proteins (allergy) or inadequate responses to pathogens (disease susceptibility).
Collapse
Affiliation(s)
- M Bailey
- School of Clinical Veterinary Science, University of Bristol, Langford, UK.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Bailey M, Haverson K, Inman C, Harris C, Jones P, Corfield G, Miller B, Stokes C. The influence of environment on development of the mucosal immune system. Vet Immunol Immunopathol 2005; 108:189-98. [PMID: 16102842 DOI: 10.1016/j.vetimm.2005.07.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mucosal immune system expresses active responses against pathogens and also tolerance against harmless food and commensal bacterial antigens. The mechanisms that determine which of these outcomes occur after recognition of antigens by T-cells are not clear. One possibility is that it is determined by the initial interaction between a dendritic and a naïve T-cell in organised lymphoid tissue. However, such organised structures are, evolutionarily, quite recent and the original immune system must have made appropriate responses in more diffuse immunological architecture; a second possibility is that the critical interaction is between primed T-cells and their environment, in the lamina propria of the intestine. The mucosal immune system of neonates is poorly developed and inefficient at expressing appropriate immune responses. Development is influenced by a range of environmental factors including maternally derived antigen or antibody and commensal flora and pathogens. The intestine is a complex immunological structure in which the immune system and the macro- and microenvironment interact.
Collapse
Affiliation(s)
- M Bailey
- School of Clinical Veterinary Science, University of Bristol, Langford House, Langford, Bristol BS40 5DU, UK.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Scharek L, Guth J, Reiter K, Weyrauch KD, Taras D, Schwerk P, Schierack P, Schmidt MFG, Wieler LH, Tedin K. Influence of a probiotic Enterococcus faecium strain on development of the immune system of sows and piglets. Vet Immunol Immunopathol 2005; 105:151-61. [PMID: 15797484 DOI: 10.1016/j.vetimm.2004.12.022] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Revised: 12/30/2004] [Accepted: 12/31/2004] [Indexed: 11/19/2022]
Abstract
The influence of the probiotic bacterium Enterococcus faecium SF68 on the immune system and the intestinal colonization of pigs were determined in a feeding experiment with sows and piglets. Mucosal immunity of the developing piglets was monitored by isolation and detection of intestinal lymphocyte cell populations from the proximal jejunal epithelium and the continuous Peyers patches by the use of flow cytometry. The levels of intestinal IgA in both groups of piglets were compared, as well as total IgG in the serum of sows and piglets. Feces of the sows and intestinal contents of the piglets were taken for determination of total anaerobe and coliform bacterial counts in both probiotic and control groups. Villus length and depth of the crypts were measured in the jejunum of sacrificed piglets to monitor the development of the intestinal mucosal surface amplification. Total serum IgG of the sows appeared to be unaffected. Piglets of both groups showed similar IgG levels up to 5 weeks after birth with a slight tendency toward lower values in the probiotic group. At an age of 8 weeks the total IgG levels of the probiotic animals were significantly lower (p<0.01). No differences were observed in the populations of CD4+ and CD8+ T cells in the Peyers patches. However, the levels of cytotoxic T cells (CD8+) in the jejunal epithelium of piglets of the probiotic group were significantly reduced. The depth of the jejunal crypts and length of the villi were similar in both groups, suggesting the relative T-cell population differences were not due to alterations in the epithelial cell numbers. The total anaerobe and coliform bacterial populations were not significantly affected by the probiotic treatment, either in sows or in the piglets. However, a remarkable decline in the frequency of beta-haemolytic and O141 serovars of Escherichia coli was observed in the intestinal contents of probiotic piglets, suggesting an explanation for the reduction in cytotoxic T-cell populations.
Collapse
Affiliation(s)
- L Scharek
- Institute of Immunology and Molecular Biology, Philippstrasse 13, D-10115 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|