1
|
Ferrara F, Di Niro R, D'Angelo S, Busetti M, Marzari R, Not T, Sblattero D. Development of an enzyme-linked immunosorbent assay for Bartonella henselae infection detection. Lett Appl Microbiol 2014; 59:253-62. [PMID: 24834970 DOI: 10.1111/lam.12286] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 05/08/2014] [Accepted: 05/10/2014] [Indexed: 11/29/2022]
Abstract
UNLABELLED Several serological diagnostics rely on enzyme-linked immunosorbent assay (ELISA) to detect bacterial infections. However, for some pathogens, including Bartonella henselae, diagnosis still depends on manually intensive, time-consuming assays including micro-immunofluorescence, Western blotting or indirect immunofluorescence. For such pathogens, there is obviously still a need to identify antigens to establish a reliable, fast and high-throughput assay (Dupon et al. ). We evaluated two B. henselae proteins to develop a novel serological ELISA: a well-known antigen, the 17-kDa protein, and GroEL, identified during this study by a proteomic approach. When serum IgG were tested, the specificity and sensitivity were 76 and 65·7% for 17-kDa, respectively, and 82 and 42·9% for GroEL, respectively. IgM were found to be more sensitive and specific for both proteins: 17-kDa protein, specificity 86·2% and sensitivity 75%; GroEL, specificity 97·7% and sensitivity 45·3%. IgM antibodies were also measured in lymphoma patients and patients with Mycobacterium tuberculosis infection to assess the usefulness of our ELISA to distinguish them from B. henselae infected patients. The resulting specificities were 89·1 and 93·5% for 17-kDa protein and GroEL, respectively. Combining the results from the two tests, we obtained a sensitivity of 82·8% and a specificity of 83·9%. Our work described and validated a proteomic approach suitable to identify immunogenic proteins useful for developing a serological test of B. henselae infection. SIGNIFICANCE AND IMPACT OF THE STUDY A reliable serological assay for the diagnosis of Cat Scratch Disease (CSD) - a pathological condition caused by Bartonella henselae infection - has not yet been developed. Such an assay would be extremely useful to discriminate between CSD and other pathologies with similar symptoms but different aetiologies, for example lymphoma or tuberculosis. We investigate the use of two B. henselae proteins - GroEL and 17-kDa - to develop a serological-based ELISA, showing promising results with the potential for further development as an effective tool for the differential diagnosing of B. henselae infection.
Collapse
Affiliation(s)
- F Ferrara
- New Mexico Consortium, Los Alamos, NM, USA
| | | | | | | | | | | | | |
Collapse
|
2
|
Biswas S, Rolain JM. Use of MALDI-TOF mass spectrometry for identification of bacteria that are difficult to culture. J Microbiol Methods 2013; 92:14-24. [DOI: 10.1016/j.mimet.2012.10.014] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 10/25/2012] [Accepted: 10/29/2012] [Indexed: 01/22/2023]
|
3
|
Paziewska A, Siński E, Harris PD. Recombination, diversity and allele sharing of infectivity proteins between Bartonella species from rodents. MICROBIAL ECOLOGY 2012; 64:525-536. [PMID: 22419104 PMCID: PMC3391547 DOI: 10.1007/s00248-012-0033-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 02/23/2012] [Indexed: 05/31/2023]
Abstract
The alpha-Proteobacterium Bartonella is a common parasite of voles and mice, giving rise to short-lived (4 weeks to 2 months) infections. Here, we report high sequence diversity in genes of the VirB/VirD type IV secretion system (T4SS), amongst Bartonella from natural rodent populations in NE Poland. The VirB5 protein is predicted to consist of three conserved alpha helices separated by loops of variable length which include numerous indels. The C-terminal domain includes repeat stretches of KEK residues, reflecting underlying homopolymeric stretches of adenine residues. A total of 16 variants of VirB5, associated with host identity, but not bacterial taxon, were identified from 22 Bartonella isolates. One was clearly a recombinant from two others, another included an insertion of two KEK repeats. The virB5 gene appears to evolve via both mutation and recombination, as well as slippage mediated insertion/deletion events. The recombinational units are thought to be relatively short, as there was no evidence of linkage disequilibrium between virB5 and the bepA locus only 5.5 kb distant. The diversity of virB5 is assumed to be related to immunological role of this protein in Bartonella infections; diversity of virB5 may assist persistence of Bartonella in the rodent population, despite the relatively short (3-4 weeks) duration of individual infections. It is clear from the distribution of virB5 and bepA alleles that recombination within and between clades is widespread, and frequently crosses the boundaries of conventionally recognised Bartonella species.
Collapse
Affiliation(s)
- Anna Paziewska
- National Centre for Biosystematics, Natural History Museum, University of Oslo, PO Box 1172, Blindern, Oslo, Norway.
| | | | | |
Collapse
|
4
|
Deng H, Le Rhun D, Buffet JPR, Cotté V, Read A, Birtles RJ, Vayssier-Taussat M. Strategies of exploitation of mammalian reservoirs by Bartonella species. Vet Res 2012; 43:15. [PMID: 22369683 PMCID: PMC3430587 DOI: 10.1186/1297-9716-43-15] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 01/17/2012] [Indexed: 11/16/2022] Open
Abstract
Numerous mammal species, including domestic and wild animals such as ruminants, dogs, cats and rodents, as well as humans, serve as reservoir hosts for various Bartonella species. Some of those species that exploit non-human mammals as reservoir hosts have zoonotic potential. Our understanding of interactions between bartonellae and reservoir hosts has been greatly improved by the development of animal models for infection and the use of molecular tools allowing large scale mutagenesis of Bartonella species. By reviewing and combining the results of these and other approaches we can obtain a comprehensive insight into the molecular interactions that underlie the exploitation of reservoir hosts by Bartonella species, particularly the well-studied interactions with vascular endothelial cells and erythrocytes.
Collapse
Affiliation(s)
- Hongkuan Deng
- USC INRA Bartonella et Tiques, ANSES, 23 Avenue du Général de Gaulle, 94700, Maisons-Alfort, France.
| | | | | | | | | | | | | |
Collapse
|
5
|
Differences in the ecology of Bartonella infections of Apodemus flavicollis and Myodes glareolus in a boreal forest. Parasitology 2012; 139:881-93. [PMID: 22336264 DOI: 10.1017/s0031182012000170] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The epidemiology of Bartonella species infecting Apodemus flavicollis and Myodes glareolus in a forest in Eastern Poland was followed for 2 years using mark-recapture. Infections could be acquired in any month, but prevalence, and probability of infection, peaked in the summer. There were significant differences in the pattern of infections between the two species. Both hosts were primarily infected as juveniles, but the probability of infection was highest for A. flavicollis, which, evidence suggests, experienced longer-lasting infections with a wider range of Bartonella genotypes. There was no evidence of increased host mortality associated with Bartonella, although the infection did affect the probability of recapture. Animals could become re-infected, generally by different Bartonella genotypes. Several longer lasting, poorly resolved infections of A. flavicollis involved more than 1 genotype, and may have resulted from sequential infections. Of 22 Bartonella gltA genotypes collected, only 2 (both B. grahamii) were shared between mice and voles; all others were specific either to A. flavicollis or to M. glareolus, and had their nearest relatives infecting Microtus species in neighbouring fields. This heterogeneity in the patterns of Bartonella infections in wild rodents emphasizes the need to consider variation between both, host species and Bartonella genotypes in ecological and epidemiological studies.
Collapse
|
6
|
Pulliainen AT, Dehio C. Persistence of Bartonella spp. stealth pathogens: from subclinical infections to vasoproliferative tumor formation. FEMS Microbiol Rev 2012; 36:563-99. [PMID: 22229763 DOI: 10.1111/j.1574-6976.2012.00324.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 12/13/2011] [Accepted: 12/13/2011] [Indexed: 01/11/2023] Open
Abstract
Bartonella spp. are facultative intracellular bacteria that typically cause a long-lasting intraerythrocytic bacteremia in their mammalian reservoir hosts, thereby favoring transmission by blood-sucking arthropods. In most cases, natural reservoir host infections are subclinical and the relapsing intraerythrocytic bacteremia may last weeks, months, or even years. In this review, we will follow the infection cycle of Bartonella spp. in a reservoir host, which typically starts with an intradermal inoculation of bacteria that are superficially scratched into the skin from arthropod feces and terminates with the pathogen exit by the blood-sucking arthropod. The current knowledge of bacterial countermeasures against mammalian immune response will be presented for each critical step of the pathogenesis. The prevailing models of the still-enigmatic primary niche and the anatomical location where bacteria reside, persist, and are periodically seeded into the bloodstream to cause the typical relapsing Bartonella spp. bacteremia will also be critically discussed. The review will end up with a discussion of the ability of Bartonella spp., namely Bartonella henselae, Bartonella quintana, and Bartonella bacilliformis, to induce tumor-like vascular deformations in humans having compromised immune response such as in patients with AIDS.
Collapse
|
7
|
Abstract
Bartonella spp. are facultative intracellular pathogens that employ a unique stealth infection strategy comprising immune evasion and modulation, intimate interaction with nucleated cells, and intraerythrocytic persistence. Infections with Bartonella are ubiquitous among mammals, and many species can infect humans either as their natural host or incidentally as zoonotic pathogens. Upon inoculation into a naive host, the bartonellae first colonize a primary niche that is widely accepted to involve the manipulation of nucleated host cells, e.g., in the microvasculature. Consistently, in vitro research showed that Bartonella harbors an ample arsenal of virulence factors to modulate the response of such cells, gain entrance, and establish an intracellular niche. Subsequently, the bacteria are seeded into the bloodstream where they invade erythrocytes and give rise to a typically asymptomatic intraerythrocytic bacteremia. While this course of infection is characteristic for natural hosts, zoonotic infections or the infection of immunocompromised patients may alter the path of Bartonella and result in considerable morbidity. In this review we compile current knowledge on the molecular processes underlying both the infection strategy and pathogenesis of Bartonella and discuss their connection to the clinical presentation of human patients, which ranges from minor complaints to life-threatening disease.
Collapse
Affiliation(s)
- Alexander Harms
- Focal Area Infection Biology, Biozentrum, University of Basel, Switzerland
| | | |
Collapse
|
8
|
Fournier PE, Couderc C, Buffet S, Flaudrops C, Raoult D. Rapid and cost-effective identification of Bartonella species using mass spectrometry. J Med Microbiol 2009; 58:1154-1159. [PMID: 19528172 DOI: 10.1099/jmm.0.009647-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteria of the genus Bartonella are emerging zoonotic bacteria recognized in a variety of human diseases. Due to their poor chemical reactivity, these fastidious bacteria are poorly characterized using routine phenotypic laboratory tests. Identification is usually achieved using molecular techniques that are time-consuming, expensive and technically demanding. Recently, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has emerged as a new technique for bacterial species identification. This study evaluated the use of MALDI-TOF MS for rapid genus and species identification of Bartonella species. Reference strains representing 17 recognized Bartonella species were studied. For each species, MS spectra for four colonies were analysed. The consensus spectrum obtained for each species was unique among spectra obtained for 2843 bacteria within the Bruker database, including 109 alphaproteobacteria. Thirty-nine additional blind-coded Bartonella strains were correctly identified at the species level, including 36 with a significant score. Altogether, these data demonstrate that MS is an accurate and reproducible tool for rapid and inexpensive identification of Bartonella species.
Collapse
Affiliation(s)
- Pierre-Edouard Fournier
- Fédération de Microbiologie Clinique, Hôpital de la Timone, 264 rue Saint-Pierre, 13385 Marseille cedex 05, France
| | - Carine Couderc
- Fédération de Microbiologie Clinique, Hôpital de la Timone, 264 rue Saint-Pierre, 13385 Marseille cedex 05, France
| | - Sylvain Buffet
- Unité des Rickettsies, CNRS-IRD UMR 6236, Faculté de Médecine, Université de la Méditerranée, 27 Boulevard Jean Moulin, 13385 Marseille cedex 05, France
| | - Christophe Flaudrops
- Fédération de Microbiologie Clinique, Hôpital de la Timone, 264 rue Saint-Pierre, 13385 Marseille cedex 05, France
| | - Didier Raoult
- Unité des Rickettsies, CNRS-IRD UMR 6236, Faculté de Médecine, Université de la Méditerranée, 27 Boulevard Jean Moulin, 13385 Marseille cedex 05, France.,Fédération de Microbiologie Clinique, Hôpital de la Timone, 264 rue Saint-Pierre, 13385 Marseille cedex 05, France
| |
Collapse
|
9
|
Saenz HL, Engel P, Stoeckli MC, Lanz C, Raddatz G, Vayssier-Taussat M, Birtles R, Schuster SC, Dehio C. Genomic analysis of Bartonella identifies type IV secretion systems as host adaptability factors. Nat Genet 2007; 39:1469-76. [DOI: 10.1038/ng.2007.38] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 09/15/2007] [Indexed: 01/12/2023]
|
10
|
Loa CC, Mordechai E, Tilton RC, Adelson ME. Production of recombinant Bartonella henselae 17-kDa protein for antibody-capture enzyme-linked immunosorbent assay. Diagn Microbiol Infect Dis 2006; 55:1-7. [PMID: 16490335 DOI: 10.1016/j.diagmicrobio.2005.10.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 10/19/2005] [Accepted: 10/26/2005] [Indexed: 10/25/2022]
Abstract
The Bartonella henselae 17-kDa protein was expressed in a prokaryotic expression system as a histidine-tagged fusion protein and was purified. The target gene was cloned into a recombinant expression construct, pTri-17kd. The expressed protein was purified to near homogeneity by a nickel-agarose column chromatography. Protein recovery was estimated to be 2.9 mg from 100 mL of bacterial culture. The purified 17-kDa protein was recognized by serum from patients infected with B. henselae and Bartonella quintana, suggesting antigenic integrity. The sensitivity and specificity of the IgG enzyme-linked immunosorbent assay (ELISA) relative to immunofluorescent antibody assay testing were 71.1% and 93.0%, respectively. According to the receiver operating characteristic curve analysis, the area under the curve was 0.823. These results indicate that the expressed 17-kDa protein is a suitable source of antigen for development of an antibody-capture ELISA for the detection of antibodies to B. henselae.
Collapse
Affiliation(s)
- Chien Chang Loa
- Department of Research and Development, Medical Diagnostic Laboratories, L.L.C., Hamilton, NJ 08690, USA
| | | | | | | |
Collapse
|
11
|
Abstract
Bartonellae are arthropod-borne bacterial pathogens that typically cause persistent infection of erythrocytes and endothelial cells in their mammalian hosts. In human infection, these host-cell interactions result in a broad range of clinical manifestations. Most remarkably, bartonellae can trigger massive proliferation of endothelial cells, leading to vascular tumour formation. The recent availability of infection models and bacterial molecular genetic techniques has fostered research on the pathogenesis of the bartonellae and has advanced our understanding of the virulence mechanisms that underlie the host-cell tropism, the subversion of host-cell functions during bacterial persistence, as well as the formation of vascular tumours by these intriguing pathogens.
Collapse
Affiliation(s)
- Christoph Dehio
- Division of Molecular Microbiology, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland.
| |
Collapse
|
12
|
Abstract
Type IV secretion systems (T4SSs) are transport machineries of Gram-negative bacteria that mediate interbacterial DNA-transfer, and secretion of virulence factors into eukaryotic target cells. A growing number of human pathogenic bacteria use T4SSs for intercellular delivery of effector molecules that modify host cellular functions in favour of the pathogen. Recent advances in studying the molecular mechanisms of Bartonella pathogenesis have provided evidence for the central roles of two distinct T4SSs, VirB/VirD4 and Trw, in the ability of the bacteria to colonize, invade and persist within either vascular endothelial cells or erythrocytes, respectively. The identification of VirB/VirD4-transported substrates and the delineation of their secretion signal have paved the way towards understanding the molecular mechanisms underlying Bartonella-host cell interaction and modulation, as well as the exploitation of this system for engineered substrate delivery into mammalian target cells.
Collapse
Affiliation(s)
- Gunnar Schröder
- Division of Molecular Microbiology, Biozentrum of the University of Basel, CH-4056 Basel, Switzerland
| | | |
Collapse
|
13
|
Maggi RG, Breitschwerdt EB. Potential limitations of the 16S-23S rRNA intergenic region for molecular detection of Bartonella species. J Clin Microbiol 2005; 43:1171-6. [PMID: 15750079 PMCID: PMC1081238 DOI: 10.1128/jcm.43.3.1171-1176.2005] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PCR targeting the 16S-23S rRNA gene intergenic transcribed spacer (ITS) region has been proposed as a rapid and reliable method for the detection of Bartonella species DNA in clinical samples. Because of variation in ITS sequences among Bartonella species, a single PCR amplification can be used to detect different species within this genus. Therefore, by targeting the ITS region, multiple PCRs or additional sample-processing steps beyond the primary amplification can be avoided when attempting to achieve molecular diagnostic detection of Bartonella species. Although PCR amplification targeting this region is considered highly sensitive, amplification specificity obviously depends on primer design. We report evidence of nonspecific PCR amplification of Mesorhizobium species with previously published primers that were designed to amplify the Bartonella consensus ITS region. Use of these or other, less species-specific, primers could lead to a false-positive diagnostic test result when evaluating clinical samples. We also report the presence of Mesorhizobium species DNA as a contaminant in molecular-grade water, a series of homologous sequences in the ITS region that are common to Bartonella and Mesorhizobium species, the amplification of Mesorhizobium DNA with unpublished primers designed in our laboratory targeting the ITS region, and the subsequent design of unambiguous ITS primers that avoid nonspecific amplification of Mesorhizobium species. Our results define some potential limitations associated with the molecular detection of Bartonella species in patient samples and indicate that primer specificity is of critical importance if the ITS region is used as a diagnostic target for detection of Bartonella species.
Collapse
Affiliation(s)
- Ricardo G Maggi
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA.
| | | |
Collapse
|
14
|
Abstract
The genus Bartonella comprises several important human pathogens that cause a wide range of clinical manifestations: cat-scratch disease, trench fever, Carrion's disease, bacteremia with fever, bacillary angiomatosis and peliosis, endocarditis, and neuroretinitis. Common features of bartonellae include transmission by blood-sucking arthropods and the specific interaction with endothelial cells and erythrocytes of their mammalian hosts. For each Bartonella species, the invasion and persistent intracellular colonization of erythrocytes are limited to a specific human or animal reservoir host. In contrast, endothelial cells are target host cells in probably all mammals, including humans. Bartonellae subvert multiple cellular functions of human endothelial cells, resulting in cell invasion, proinflammatory activation, suppression of apoptosis, and stimulation of proliferation, which may cumulate in vasoproliferative tumor growth. This review summarizes our understanding of Bartonella-host cell interactions and the molecular mechanisms of bacterial virulence and persistence. In addition, current controversies and unanswered questions in this area are highlighted.
Collapse
Affiliation(s)
- Christoph Dehio
- Division of Molecular Microbiology, Biozentrum, University of Basel, 4056 Basel, Switzerland.
| |
Collapse
|
15
|
Seubert A, Schulein R, Dehio C. Bacterial persistence within erythrocytes: a unique pathogenic strategy of Bartonella spp. Int J Med Microbiol 2002; 291:555-60. [PMID: 11890558 DOI: 10.1078/1438-4221-00167] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genus Bartonella comprises human-specific and zoonotic pathogens responsible for a wide range of clinical manifestations, including Carrion's disease, trench fever, cat scratch disease, bacillary angiomatosis and peliosis, endocarditis and bacteremia. These arthropod-borne pathogens typically parasitise erythrocytes in their mammalian reservoir host(s), resulting in a long-lasting haemotropic infection. We have studied the process of Bartonella erythrocyte parasitism by tracking green fluorescent protein-expressing bacteria in the blood of experimentally infected animals. Following intravenous infection, bacteria colonise a yet enigmatic primary niche, from where they are seeded into the blood stream in regular intervals of approximately five days. Bacteria invade mature erythrocytes, replicate temporarily and persist in this unique intracellular niche for the remaining life span of the infected erythrocytes. A triggered antibody response typically results in an abrogation of bacteremia within 3 months of infection, likely by blocking new waves of bacterial invasion into erythrocytes. The recent establishment of genetic tools for Bartonella spp. permitted us to identify several putative pathogenicity determinants. Application of differential fluorescence induction technology resulted in the isolation of bacterial genes differentially expressed during infection in vitro and in vivo, including an unknown family of autotransporter proteins as well as a novel type IV secretion system homologous to the conjugation system of E. coli plasmid R388. Mutational analysis of a previously described type IV secretion system displaying homology to the virB locus of Agrobacterium tumefaciens provided the first example of an essential pathogenicity locus in Bartonella. Though required for establishing haemotropic infection, it remains to be demonstrated if this type IV secretion system is necessary for colonisation of the primary niche or for the subsequent colonisation of erythrocytes.
Collapse
Affiliation(s)
- Anja Seubert
- Department of Molecular Microbiology, Biozentrum of the University of Basel, Switzerland
| | | | | |
Collapse
|
16
|
Schmiederer M, Arcenas R, Widen R, Valkov N, Anderson B. Intracellular induction of the Bartonella henselae virB operon by human endothelial cells. Infect Immun 2001; 69:6495-502. [PMID: 11553594 PMCID: PMC98785 DOI: 10.1128/iai.69.10.6495-6502.2001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One of the more recently identified bacterial exportation systems is the type IV secretion mechanism, which is characterized by a multiprotein complex that spans the inner and outer bacterial membranes and contains a pilin component. The most thoroughly studied type IV secretion system is encoded by the virB operon of Agrobacterium tumefaciens. In Bartonella henselae, 8 of the 10 virB operon genes share extensive homology and arrangement with the virB operon of A. tumefaciens. Sequencing of the region upstream of the B. henselae virB2 gene revealed a region with sequence homology to the vir box of A. tumefaciens. This possible promoter region was cloned upstream of the green fluorescent protein reporter gene in the promoterless vector pANT3 and used to transform B. henselae. Minimal reporter gene expression was seen in the transformed bacteria cultivated in the absence of host cells, but expression was strongly induced in intracellular bacteria cultivated with human microvascular endothelial cells. Deletion of an 87-bp fragment, which contained the putative vir box from the 5' end of the promoter region, diminished intracellular induction of the reporter gene. Host cell induction of the 17-kDa antigen gene, which replaces virB5 in B. henselae, was also demonstrated at the protein level using specific antiserum. Thus, expression of the virB genes of B. henselae is induced in bacteria, which have invaded host cells, through a mechanism that may be similar to the environment-sensing mechanism found in the virB operon of A. tumefaciens.
Collapse
Affiliation(s)
- M Schmiederer
- Department of Medical Microbiology and Immunology, College of Medicine, University of South Florida, USA
| | | | | | | | | |
Collapse
|
17
|
Houpikian P, Raoult D. 16S/23S rRNA intergenic spacer regions for phylogenetic analysis, identification, and subtyping of Bartonella species. J Clin Microbiol 2001; 39:2768-78. [PMID: 11473990 PMCID: PMC88237 DOI: 10.1128/jcm.39.8.2768-2778.2001] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2000] [Accepted: 05/09/2001] [Indexed: 11/20/2022] Open
Abstract
Species of the genus Bartonella are currently recognized in growing numbers and are involved in an increasing variety of human diseases, mainly trench fever, Carrion's disease, bacillary angiomatosis, endocarditis, cat scratch disease, neuroretinitis, and asymptomatic bacteremia. Such a wide spectrum of infections makes it necessary to develop species and strain identification tools in order to perform phylogenetic and epidemiological studies. The 16S/23S rRNA intergenic spacer region (ITS) was sequenced for four previously untested species, B. vinsonii subsp. arupensis, B. tribocorum, B. alsatica, and B. koehlerae, as well as for 28 human isolates of B. quintana (most of them from French homeless people), six human or cat isolates of B. henselae, five cat isolates of B. clarridgeiae, and four human isolates of B. bacilliformis. Phylogenetic trees inferred from full ITS sequences of the 14 recognized Bartonella species using parsimony and distance methods revealed high statistical support, as bootstrap values were higher than those observed with other tested genes. Five well-supported lineages were identified within the genus and the proposed phylogenetic organization was consistent with that resulting from protein-encoding gene sequence comparisons. The ITS-derived phylogeny appears, therefore, to be a useful tool for investigating the evolutionary relationships of Bartonella species and to identify Bartonella species. Further, partial ITS amplification and sequencing offers a sensitive means of intraspecies differentiation of B. henselae, B. clarridgeiae, and B. bacilliformis isolates, as each strain had a specific sequence. The usefulness of this approach in epidemiological investigations should be highlighted. Among B. quintana strains, however, the genetic heterogeneity was low, as only three ITS genotypes were identified. It was nevertheless sufficient to show that the B. quintana population infecting homeless people in France was not clonal.
Collapse
MESH Headings
- Animals
- Bartonella/classification
- Bartonella/genetics
- Bartonella Infections/microbiology
- Base Sequence
- DNA, Bacterial/analysis
- DNA, Bacterial/genetics
- DNA, Ribosomal/analysis
- DNA, Ribosomal/genetics
- DNA, Ribosomal Spacer/genetics
- Genes, rRNA
- Humans
- Molecular Sequence Data
- Phylogeny
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 23S/genetics
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- P Houpikian
- Unité des Rickettsies, CNRS-UPRES-A 6020, Faculté de Médecine de Marseille, 13385 Marseille Cedex, France
| | | |
Collapse
|
18
|
Houpikian P, Raoult D. Molecular phylogeny of the genus Bartonella: what is the current knowledge? FEMS Microbiol Lett 2001; 200:1-7. [PMID: 11410341 DOI: 10.1111/j.1574-6968.2001.tb10684.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Species of the genus Bartonella are involved in an increasing variety of human diseases. In addition to the 14 currently recognized species, several Bartonella strains have been recovered from a wide range of wild and domestic mammals in Europe and America. Such a high diversity of geographic distributions, animal reservoirs, arthropod vectors and pathogenic properties makes clarification of our knowledge about the phylogeny of Bartonella species necessary. Phylogenetic data have been inferred mainly from 16S rDNA, 16S--23S rRNA intergenic spacer, citrate synthase and 60 kDa heat-shock protein gene sequences, which are available in GenBank. Comparison of phylogenetic organizations obtained from various genes allowed six statistically significant evolutionary clusters to be identified. Bartonella bacilliformis and Bartonella clarridgeiae appear to be divergent species. Bartonella henselae, Bartonella koehlerae and Bartonella quintana cluster together, as well as Bartonella vinsonii subsp. vinsonii and B. vinsonii subsp. berkhoffii. The fifth group includes bacteria isolated from various rodents that belong to native species from the New World and in the sixth, Bartonella tribocorum, Bartonella elizabethae and Bartonella grahamii are grouped with several strains associated with Old World indigenous rodents. The position of the other species could not be consistently determined. As some cat- or rodent-associated Bartonella appeared to cluster together, it has been suggested that these bacteria and their reservoir hosts may co-evolve. Lack of host specificity, however, seems to be frequent and may reflect the influence of vector specificity. Host or vector specificity may also explain the current geographic distribution of Bartonella species.
Collapse
Affiliation(s)
- P Houpikian
- Unité des Rickettsies, CNRS-UPRES-A 6020, Faculté de Médecine de Marseille, 27, boulevard Jean Moulin, 13385 Marseille cedex, France
| | | |
Collapse
|
19
|
Abstract
Bartonella species are emerging human pathogens responsible for a wide range of clinical manifestations, including Carrion's disease, trench fever, cat-scratch disease, bacillary angiomatosis-peliosis, endocarditis and bacteraemia. During infection of their human or animal reservoir host(s), these arthropod-borne pathogens typically invade and persistently colonize mature erythrocytes. However, in both reservoir and incidentally infected hosts, endothelial cells are target cells for bartonellae. Endothelial interactions involve a unique mode of cellular invasion, the activation of a proinflammatory phenotype and the formation of vasoproliferative tumours. Based on the establishment of bacterial genetics and appropriate infection models, recent work has begun to elucidate the cell and molecular biology of these unusual pathogen-host cell interactions.
Collapse
Affiliation(s)
- C Dehio
- Dept of Molecular Microbiology, Biozentrum of the University of Basel, Klingelbergstrasse 70, CH-4056, Basel, Switzerland.
| |
Collapse
|