1
|
Garcia Castillo J, DeBarge R, Mende A, Tenvooren I, Marquez DM, Straub A, Busch DH, Spitzer MH, DuPage M. A mass cytometry method pairing T cell receptor and differentiation state analysis. Nat Immunol 2024; 25:1754-1763. [PMID: 39191945 DOI: 10.1038/s41590-024-01937-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/16/2024] [Indexed: 08/29/2024]
Abstract
T cell antigen receptor (TCR) recognition followed by clonal expansion is a fundamental feature of adaptive immune responses. Here, we present a mass cytometric (CyTOF) approach to track T cell responses by combining antibodies for specific TCR Vα and Vβ chains with antibodies against T cell activation and differentiation proteins in mice. This strategy identifies expansions of CD8+ and CD4+ T cells expressing specific Vβ and Vα chains with varying differentiation states in response to Listeria monocytogenes, tumors and respiratory influenza infection. Expanded T cell populations expressing Vβ chains could be directly linked to the recognition of specific antigens from Listeria, tumor cells or influenza. In the setting of influenza infection, we found that common therapeutic approaches of intramuscular vaccination or convalescent serum transfer altered the TCR diversity and differentiation state of responding T cells. Thus, we present a method to monitor broad changes in TCR use paired with T cell phenotyping during adaptive immune responses.
Collapse
MESH Headings
- Animals
- Cell Differentiation/immunology
- Mice
- Listeria monocytogenes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Listeriosis/immunology
- Flow Cytometry/methods
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Mice, Inbred C57BL
- Orthomyxoviridae Infections/immunology
- Lymphocyte Activation/immunology
- CD4-Positive T-Lymphocytes/immunology
- Adaptive Immunity
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
Collapse
Affiliation(s)
- Jesse Garcia Castillo
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Rachel DeBarge
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Abigail Mende
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Iliana Tenvooren
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Diana M Marquez
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Adrian Straub
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany; Partner site Munich, German Center for Infection Research (DZIF), Munich, Germany
| | - Matthew H Spitzer
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA.
| | - Michel DuPage
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
2
|
Rawat A, Arora K, Shandilya J, Vignesh P, Suri D, Kaur G, Rikhi R, Joshi V, Das J, Mathew B, Singh S. Flow Cytometry for Diagnosis of Primary Immune Deficiencies-A Tertiary Center Experience From North India. Front Immunol 2019; 10:2111. [PMID: 31572360 PMCID: PMC6749021 DOI: 10.3389/fimmu.2019.02111] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/21/2019] [Indexed: 11/13/2022] Open
Abstract
Flow cytometry has emerged as a useful technology that has facilitated our understanding of the human immune system. Primary immune deficiency disorders (PIDDs) are a heterogeneous group of inherited disorders affecting the immune system. More than 350 genes causing various PIDDs have been identified. While the initial suspicion and recognition of PIDDs is clinical, laboratory tools such as flow cytometry and genetic sequencing are essential for confirmation and categorization. Genetic sequencing, however, are prohibitively expensive and not readily available in resource constrained settings. Flow cytometry remains a simple, yet powerful, tool for multi-parametric analysis of cells. While it is confirmatory of diagnosis in certain conditions, in others it helps in narrowing the list of putative genes to be analyzed. The utility of flow cytometry in diagnosis of PIDDs can be divided into four major categories: (a) Enumeration of lymphocyte subsets in peripheral blood. (b) Detection of intracellular signaling molecules, transcription factors, and cytokines. (c) Functional assessment of adaptive and innate immune cells (e.g., T cell function in severe combined immune deficiency and natural killer cell function in familial hemophagocytic lymphohistiocytosis). (d) Evaluation of normal biological processes (e.g., class switching in B cells by B cell immunophenotyping). This review focuses on use of flow cytometry in disease-specific diagnosis of PIDDs in the context of a developing country.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Surjit Singh
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Center, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
3
|
Abstract
Selective expansion of T cells bearing specific T cell receptor Vβ segments is a hallmark of superantigens. Analyzing Vβ specificity of superantigens is important for characterizing newly discovered superantigens and understanding differential T cell responses to each toxin. Here, we describe a real-time PCR method using SYBR green I and primers specific to Cβ and Vβ genes for an absolute quantification. The established method was applied to quantify a selective expansion of T cell receptor Vβ expansion by superantigens and generated accurate, reproducible, and comparable results.
Collapse
|
4
|
Kitaura K, Shini T, Matsutani T, Suzuki R. A new high-throughput sequencing method for determining diversity and similarity of T cell receptor (TCR) α and β repertoires and identifying potential new invariant TCR α chains. BMC Immunol 2016; 17:38. [PMID: 27729009 PMCID: PMC5059964 DOI: 10.1186/s12865-016-0177-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/27/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND High-throughput sequencing of T cell receptor (TCR) genes is a powerful tool for analyses of antigen specificity, clonality and diversity of T lymphocytes. Here, we developed a new TCR repertoire analysis method using 454 DNA sequencing technology in combination with an adaptor-ligation mediated polymerase chain reaction (PCR). This method allows the amplification of all TCR genes without PCR bias. To compare gene usage, diversity and similarity of expressed TCR repertoires among individuals, we conducted next-generation sequencing (NGS) of TRA and TRB genes in peripheral blood mononuclear cells from 20 healthy human individuals. RESULTS From a total of 267,037 sequence reads from 20 individuals, 149,216 unique sequence reads were identified. Preferential usage of several V and J genes were observed while some recombinations of TRAV with TRAJ appeared to be restricted. The extent of TCR diversity was not significantly different between TRA and TRB, while TRA repertoires were more similar between individuals than TRB repertoires were. The interindividual similarity of TRA depended largely on the frequent presence of shared TCRs among two or more individuals. A publicly available TRA had a near-germline TCR with a shorter CDR3. Notably, shared TRA sequences, especially those shared among a large number of individuals', often contained TCRα related with invariant TCRα derived from invariant natural killer T cells and mucosal-associated invariant T cells. CONCLUSION These results suggest that retrieval of shared TCRs by NGS would be useful for the identification of potential new invariant TCRα chains. This NGS method will enable the comprehensive quantitative analysis of TCR repertoires at a clonal level.
Collapse
Affiliation(s)
- Kazutaka Kitaura
- Repertoire Genesis Incorporation, 104 Saito-Bioincubator, 7-7-15, Saito-asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Tadasu Shini
- Department of Rheumatology and Clinical Immunology, Clinical Research Center for Rheumatology and Allergy, Sagamihara National Hospital, National Hospital Organization, Sagamihara, Japan.,BITS. Co., Ltd, Tokyo, Japan
| | - Takaji Matsutani
- Repertoire Genesis Incorporation, 104 Saito-Bioincubator, 7-7-15, Saito-asagi, Ibaraki, Osaka, 567-0085, Japan.
| | - Ryuji Suzuki
- Repertoire Genesis Incorporation, 104 Saito-Bioincubator, 7-7-15, Saito-asagi, Ibaraki, Osaka, 567-0085, Japan.,Department of Rheumatology and Clinical Immunology, Clinical Research Center for Rheumatology and Allergy, Sagamihara National Hospital, National Hospital Organization, Sagamihara, Japan
| |
Collapse
|
5
|
Bernal-Estévez D, Sánchez R, Tejada RE, Parra-López C. Chemotherapy and radiation therapy elicits tumor specific T cell responses in a breast cancer patient. BMC Cancer 2016; 16:591. [PMID: 27484900 PMCID: PMC4971722 DOI: 10.1186/s12885-016-2625-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/26/2016] [Indexed: 12/14/2022] Open
Abstract
Background Experimental evidence and clinical studies in breast cancer suggest that some anti-tumor therapy regimens generate stimulation of the immune system that accounts for tumor clinical responses, however, demonstration of the immunostimulatory power of these therapies on cancer patients continues to be a formidable challenge. Here we present experimental evidence from a breast cancer patient with complete clinical response after 7 years, associated with responsiveness of tumor specific T cells. Methods T cells were obtained before and after anti-tumor therapy from peripheral blood of a 63-years old woman diagnosed with ductal breast cancer (HER2/neu+++, ER-, PR-, HLA-A*02:01) treated with surgery, followed by paclitaxel, trastuzumab (suspended due to cardiac toxicity), and radiotherapy. We obtained a leukapheresis before surgery and after 8 months of treatment. Using in vitro cell cultures stimulated with autologous monocyte-derived dendritic cells (DCs) that produce high levels of IL-12, we characterize by flow cytometry the phenotype of tumor associated antigens (TAAs) HER2/neu and NY-ESO 1 specific T cells. The ex vivo analysis of the TCR-Vβ repertoire of TAA specific T cells in blood and Tumor Infiltrating Lymphocytes (TILs) were performed in order to correlate both repertoires prior and after therapy. Results We evidence a functional recovery of T cell responsiveness to polyclonal stimuli and expansion of TAAs specific CD8+ T cells using peptide pulsed DCs, with an increase of CTLA-4 and memory effector phenotype after anti-tumor therapy. The ex vivo analysis of the TCR-Vβ repertoire of TAA specific T cells in blood and TILs showed that whereas the TCR-Vβ04-02 clonotype is highly expressed in TILs the HER2/neu specific T cells are expressed mainly in blood after therapy, suggesting that this particular TCR was selectively enriched in blood after anti-tumor therapy. Conclusions Our results show the benefits of anti-tumor therapy in a breast cancer patient with clinical complete response in two ways, by restoring the responsiveness of T cells by increasing the frequency and activation in peripheral blood of tumor specific T cells present in the tumor before therapy. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2625-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David Bernal-Estévez
- Immunology and Traslational Medicine Research Group, Graduated School in Biomedical Sciences, Department of Microbiology, Medical School, Universidad Nacional de Colombia, Carrera 30 #45-03 Building 471, office 304, Bogotá, Colombia South-America.,Immunology and Clinical Oncology Research Group (GIIOC), Fundación Salud de los Andes, Calle 44 No. 58-05, Bogotá, Colombia South-America
| | - Ramiro Sánchez
- Clínica del Seno, Carrera 11 # 68-36, Bogotá, Colombia South-America
| | - Rafael E Tejada
- Hospital Occidente de Kennedy E.S.E., Servicio de Oncología, Bogotá, Colombia South-America
| | - Carlos Parra-López
- Immunology and Traslational Medicine Research Group, Graduated School in Biomedical Sciences, Department of Microbiology, Medical School, Universidad Nacional de Colombia, Carrera 30 #45-03 Building 471, office 304, Bogotá, Colombia South-America. .,Facultad de Medicina, Departamento de Microbiología, Universidad Nacional de Colombia, Carrera 30 Calle 45, Bogotá, Colombia.
| |
Collapse
|
6
|
Degauque N, Brouard S, Soulillou JP. Cross-Reactivity of TCR Repertoire: Current Concepts, Challenges, and Implication for Allotransplantation. Front Immunol 2016; 7:89. [PMID: 27047489 PMCID: PMC4805583 DOI: 10.3389/fimmu.2016.00089] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/22/2016] [Indexed: 01/18/2023] Open
Abstract
Being able to track donor reactive T cells during the course of organ transplantation is a key to improve the graft survival, to prevent graft dysfunction, and to adapt the immunosuppressive regimen. The attempts of transplant immunologists have been for long hampered by the large size of the alloreactive T cell repertoire. Understanding how self-TCR can interact with allogeneic MHC is a key to critically appraise the different assays available to analyze the TCR Vβ repertoire usage. In this report, we will review conceptually and experimentally the process of cross-reactivity. We will then highlight what can be learned from allotransplantation, a situation of artificial cross-reactivity. Finally, the low- and high-resolution techniques to characterize the TCR Vβ repertoire usage in transplantation will be critically discussed.
Collapse
Affiliation(s)
- Nicolas Degauque
- UMR 1064, INSERM, Nantes, France; ITUN, CHU de Nantes, Nantes, France; Faculté de Médecine, Université de Nantes, Nantes, France; LabEx IGO "Immunotherapy Graft Oncology", Nantes, France
| | - Sophie Brouard
- UMR 1064, INSERM, Nantes, France; ITUN, CHU de Nantes, Nantes, France; Faculté de Médecine, Université de Nantes, Nantes, France; LabEx IGO "Immunotherapy Graft Oncology", Nantes, France; CIC Biothérapie, Nantes, France; CRB, CHU Nantes, Nantes, France; LabEx Transplantex, Nantes, France
| | - Jean-Paul Soulillou
- UMR 1064, INSERM, Nantes, France; Faculté de Médecine, Université de Nantes, Nantes, France; LabEx Transplantex, Nantes, France
| |
Collapse
|
7
|
|
8
|
Locke BA, Dasu T, Verbsky JW. Laboratory diagnosis of primary immunodeficiencies. Clin Rev Allergy Immunol 2014; 46:154-68. [PMID: 24569953 DOI: 10.1007/s12016-014-8412-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Primary immune deficiency disorders represent a highly heterogeneous group of disorders with an increased propensity to infections and other immune complications. A careful history to delineate the pattern of infectious organisms and other complications is important to guide the workup of these patients, but a focused laboratory evaluation is essential to the diagnosis of an underlying primary immunodeficiency. Initial workup of suspected immune deficiencies should include complete blood counts and serologic tests of immunoglobulin levels, vaccine titers, and complement levels, but these tests are often insufficient to make a diagnosis. Recent advancements in the understanding of the immune system have led to the development of novel immunologic assays to aid in the diagnosis of these disorders. Classically utilized to enumerate lymphocyte subsets, flow cytometric-based assays are increasingly utilized to test immune cell function (e.g., neutrophil oxidative burst, NK cytotoxicity), intracellular cytokine production (e.g., TH17 production), cellular signaling pathways (e.g., phosphor-STAT analysis), and protein expression (e.g., BTK, Foxp3). Genetic testing has similarly expanded greatly as more primary immune deficiencies are defined, and the use of mass sequencing technologies is leading to the identification of novel disorders. In order to utilize these complex assays in clinical care, one must have a firm understanding of the immunologic assay, how the results are interpreted, pitfalls in the assays, and how the test affects treatment decisions. This article will provide a systematic approach of the evaluation of a suspected primary immunodeficiency, as well as provide a comprehensive list of testing options and their results in the context of various disease processes.
Collapse
Affiliation(s)
- Bradley A Locke
- Department of Pediatrics, Division of Allergy and Clinical Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | | | | |
Collapse
|
9
|
Six A, Mariotti-Ferrandiz ME, Chaara W, Magadan S, Pham HP, Lefranc MP, Mora T, Thomas-Vaslin V, Walczak AM, Boudinot P. The past, present, and future of immune repertoire biology - the rise of next-generation repertoire analysis. Front Immunol 2013; 4:413. [PMID: 24348479 PMCID: PMC3841818 DOI: 10.3389/fimmu.2013.00413] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 11/12/2013] [Indexed: 01/09/2023] Open
Abstract
T and B cell repertoires are collections of lymphocytes, each characterized by its antigen-specific receptor. We review here classical technologies and analysis strategies developed to assess immunoglobulin (IG) and T cell receptor (TR) repertoire diversity, and describe recent advances in the field. First, we describe the broad range of available methodological tools developed in the past decades, each of which answering different questions and showing complementarity for progressive identification of the level of repertoire alterations: global overview of the diversity by flow cytometry, IG repertoire descriptions at the protein level for the identification of IG reactivities, IG/TR CDR3 spectratyping strategies, and related molecular quantification or dynamics of T/B cell differentiation. Additionally, we introduce the recent technological advances in molecular biology tools allowing deeper analysis of IG/TR diversity by next-generation sequencing (NGS), offering systematic and comprehensive sequencing of IG/TR transcripts in a short amount of time. NGS provides several angles of analysis such as clonotype frequency, CDR3 diversity, CDR3 sequence analysis, V allele identification with a quantitative dimension, therefore requiring high-throughput analysis tools development. In this line, we discuss the recent efforts made for nomenclature standardization and ontology development. We then present the variety of available statistical analysis and modeling approaches developed with regards to the various levels of diversity analysis, and reveal the increasing sophistication of those modeling approaches. To conclude, we provide some examples of recent mathematical modeling strategies and perspectives that illustrate the active rise of a "next-generation" of repertoire analysis.
Collapse
Affiliation(s)
- Adrien Six
- UPMC University Paris 06, UMR 7211, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; CNRS, UMR 7211, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; INSERM, UMR_S 959, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; AP-HP, Hôpital Pitié-Salpêtrière, CIC-BTi Biotherapy , Paris , France ; AP-HP, Hôpital Pitié-Salpêtrière, Département Hospitalo-Universitaire (DHU), Inflammation-Immunopathology-Biotherapy (i2B) , Paris , France
| | - Maria Encarnita Mariotti-Ferrandiz
- UPMC University Paris 06, UMR 7211, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; CNRS, UMR 7211, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; INSERM, UMR_S 959, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; AP-HP, Hôpital Pitié-Salpêtrière, Département Hospitalo-Universitaire (DHU), Inflammation-Immunopathology-Biotherapy (i2B) , Paris , France
| | - Wahiba Chaara
- UPMC University Paris 06, UMR 7211, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; CNRS, UMR 7211, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; INSERM, UMR_S 959, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; AP-HP, Hôpital Pitié-Salpêtrière, CIC-BTi Biotherapy , Paris , France ; AP-HP, Hôpital Pitié-Salpêtrière, Département Hospitalo-Universitaire (DHU), Inflammation-Immunopathology-Biotherapy (i2B) , Paris , France
| | - Susana Magadan
- Institut National de la Recherche Agronomique, Unité de Virologie et Immunologie Moléculaires , Jouy-en-Josas , France
| | - Hang-Phuong Pham
- UPMC University Paris 06, UMR 7211, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; CNRS, UMR 7211, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France
| | - Marie-Paule Lefranc
- IMGT®, The International ImMunoGeneTics Information System®, Institut de Génétique Humaine, UPR CNRS 1142, Université Montpellier 2 , Montpellier , France
| | - Thierry Mora
- Laboratoire de Physique Statistique, UMR8550, CNRS and Ecole Normale Supérieure , Paris , France
| | - Véronique Thomas-Vaslin
- UPMC University Paris 06, UMR 7211, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; CNRS, UMR 7211, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; INSERM, UMR_S 959, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France ; AP-HP, Hôpital Pitié-Salpêtrière, Département Hospitalo-Universitaire (DHU), Inflammation-Immunopathology-Biotherapy (i2B) , Paris , France
| | - Aleksandra M Walczak
- Laboratoire de Physique Théorique, UMR8549, CNRS and Ecole Normale Supérieure , Paris , France
| | - Pierre Boudinot
- Institut National de la Recherche Agronomique, Unité de Virologie et Immunologie Moléculaires , Jouy-en-Josas , France
| |
Collapse
|
10
|
Diz R, Garland A, Vincent BG, Johnson MC, Spidale N, Wang B, Tisch R. Autoreactive effector/memory CD4+ and CD8+ T cells infiltrating grafted and endogenous islets in diabetic NOD mice exhibit similar T cell receptor usage. PLoS One 2012; 7:e52054. [PMID: 23251685 PMCID: PMC3522632 DOI: 10.1371/journal.pone.0052054] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 11/12/2012] [Indexed: 12/21/2022] Open
Abstract
Islet transplantation provides a “cure” for type 1 diabetes but is limited in part by recurrent autoimmunity mediated by β cell-specific CD4+ and CD8+ T cells. Insight into the T cell receptor (TCR) repertoire of effector T cells driving recurrent autoimmunity would aid the development of immunotherapies to prevent islet graft rejection. Accordingly, we used a multi-parameter flow cytometry strategy to assess the TCR variable β (Vβ) chain repertoires of T cell subsets involved in autoimmune-mediated rejection of islet grafts in diabetic NOD mouse recipients. Naïve CD4+ and CD8+ T cells exhibited a diverse TCR repertoire, which was similar in all tissues examined in NOD recipients including the pancreas and islet grafts. On the other hand, the effector/memory CD8+ T cell repertoire in the islet graft was dominated by one to four TCR Vβ chains, and specific TCR Vβ chain usage varied from recipient to recipient. Similarly, islet graft- infiltrating effector/memory CD4+ T cells expressed a limited number of prevalent TCR Vβ chains, although generally TCR repertoire diversity was increased compared to effector/memory CD8+ T cells. Strikingly, the majority of NOD recipients showed an increase in TCR Vβ12-bearing effector/memory CD4+ T cells in the islet graft, most of which were proliferating, indicating clonal expansion. Importantly, TCR Vβ usage by effector/memory CD4+ and CD8+ T cells infiltrating the islet graft exhibited greater similarity to the repertoire found in the pancreas as opposed to the draining renal lymph node, pancreatic lymph node, or spleen. Together these results demonstrate that effector/memory CD4+ and CD8+ T cells mediating autoimmune rejection of islet grafts are characterized by restricted TCR Vβ chain usage, and are similar to T cells that drive destruction of the endogenous islets.
Collapse
Affiliation(s)
- Ramiro Diz
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Alaina Garland
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Benjamin G. Vincent
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Mark C. Johnson
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Nicholas Spidale
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Bo Wang
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Roland Tisch
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
11
|
Yang J, He J, Lu H, Wei L, Li S, Wang B, Diao H, Li L. Molecular features of the complementarity determining region 3 motif of the T cell population and subsets in the blood of patients with chronic severe hepatitis B. J Transl Med 2011; 9:210. [PMID: 22152113 PMCID: PMC3256121 DOI: 10.1186/1479-5876-9-210] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 12/08/2011] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND T cell receptor (TCR) reflects the status and function of T cells. We previously developed a gene melting spectral pattern (GMSP) assay, which rapidly detects clonal expansion of the T cell receptor β variable gene (TCRBV) in patients with HBV by using quantitative real-time reverse transcription PCR (qRT-PCR) with DNA melting curve analysis. However, the molecular profiles of TCRBV in peripheral blood mononuclear cells (PBMCs) and CD8+, CD8- cell subsets from chronic severe hepatitis B (CSHB) patients have not been well described. METHODS Human PBMCs were separated and sorted into CD8+ and CD8- cell subsets using density gradient centrifugation and magnetic activated cell sorting (MACS). The molecular features of the TCRBV CDR3 motif were determined using GMSP analysis; the TCRBV families were cloned and sequenced when the GMSP profile showed a single-peak, indicative of a monoclonal population. RESULTS The number of skewed TCRBV in the CD8+ cell subset was significantly higher than that of the CD8- cell subset as assessed by GMSP analysis. The TCRBV11 and BV7 were expressed more frequently than other members of TCRBV family in PBMCs and CD8+, CD8- subsets. Also the relatively conserved amino acid motifs were detected in the TCRBV22, BV18 and BV11 CDR3 in PBMCs among patients with CSHB. CONCLUSIONS The molecular features of the TCRBV CDR3 were markedly different among PBMCs and CD8+, CD8- cell subsets derived from CSHB patients. Analysis of the TCRBV expression in the CD8+ subset was more accurate in assessing the status and function of circulating T cells. The expression of TCRBV11, BV7 and the relatively conserved CDR3 amino acid motifs could also help to predict and treat patients with CSHB.
Collapse
Affiliation(s)
- Jiezuan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jianqin He
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Haifeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Li Wei
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Sujun Li
- Department of Geriatric, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Baohong Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
12
|
High-scatter T cells: a reliable biomarker for malignant T cells in cutaneous T-cell lymphoma. Blood 2010; 117:1966-76. [PMID: 21148332 DOI: 10.1182/blood-2010-05-287664] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In early-stage cutaneous T-cell lymphoma (CTCL), malignant T cells are confined to skin and are difficult to isolate and discriminate from benign reactive cells. We found that T cells from CTCL skin lesions contained a population of large, high-scatter, activated skin homing T cells not observed in other inflammatory skin diseases. High-scatter T (T(HS)) cells were CD4(+) in CD4(+) mycosis fungoides (MF), CD8(+) in CD8(+) MF, and contained only clonal T cells in patients with identifiable malignant Vβ clones. T(HS) cells were present in the blood of patients with leukemic CTCL, absent in patients without blood involvement, and contained only clonal malignant T cells. The presence of clonal T(HS) cells correlated with skin disease in patients followed longitudinally. Clonal T(HS) cells underwent apoptosis in patients clearing on extracorporeal photopheresis but persisted in nonresponsive patients. Benign clonal T-cell proliferations mapped to the normal low-scatter T-cell population. Thus, the malignant T cells in both MF and leukemic CTCL can be conclusively identified by a unique scatter profile. This observation will allow selective study of malignant T cells, can be used to discriminate patients with MF from patients with other inflammatory skin diseases, to detect peripheral blood involvement, and to monitor responses to therapy.
Collapse
|
13
|
Ochsenreither S, Fusi A, Wojtke S, Busse A, Nüssler NC, Thiel E, Keilholz U, Nagorsen D. Comparison of T-cell receptor repertoire restriction in blood and tumor tissue of colorectal cancer patients. J Transl Med 2010; 8:35. [PMID: 20385014 PMCID: PMC2873372 DOI: 10.1186/1479-5876-8-35] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 04/12/2010] [Indexed: 01/19/2023] Open
Abstract
Several immunotherapeutic approaches rely on antigen-specific T-cells. Restrictions in the T-cell receptor (TCR) repertoire were reported as indicator of anti-tumor cytotoxic T-lymphocyte (CTL) response in various tumor entities. It is unclear yet whether a TCR restriction in peripheral blood mirrors the tumor compartment. We compared the expression of TCR Vβ-families for the quantification of TCR repertoire alterations in blood and tissue samples from patients with colorectal carcinoma. Blood samples from patients with colorectal carcinoma and healthy volunteers and tissue samples of normal colonic mucosa and colorectal carcinoma were analyzed. Relative Vβ-family quantification was performed based on quantitative reverse transcribed PCR. Standard deviation and average mean of the single families were determined. Two variables describing the degree of Vβ-repertoire restriction were defined. Forty-eight blood samples and 37 tissue samples were analyzed. TCR repertoire restriction was higher in blood of tumor patients than in blood of healthy controls (p < 0.05). No difference in the degree of TCR repertoire restriction was found between carcinoma and unaffected colon tissue. We found no corresponding elevated TCR families among the different compartments blood, normal colon, and carcinoma tissue of the same patient. In conclusion, we observed a repertoire restriction in peripheral blood as well as in tumor tissue of cancer patients. However, in tumor tissue, repertoire alterations were comparable to normal mucosa, suggesting compartment-specific TCR distribution rather than alterations due to tumor-T-cell interaction questioning the presence of highly restricted clonal T-cell expansions in colorectal cancer as they have been described in other, assumingly more immunogenic tumor entities.
Collapse
Affiliation(s)
- Sebastian Ochsenreither
- Charité, Campus Benjamin Franklin, Department of Hematology and Oncology, Hindenburgdamm 30, 12200 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Seo KS, Park JY, Terman DS, Bohach GA. A quantitative real time PCR method to analyze T cell receptor Vbeta subgroup expansion by staphylococcal superantigens. J Transl Med 2010; 8:2. [PMID: 20070903 PMCID: PMC2841588 DOI: 10.1186/1479-5876-8-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 01/13/2010] [Indexed: 12/19/2022] Open
Abstract
Background Staphylococcal enterotoxins (SEs), SE-like (SEl) toxins, and toxic shock syndrome toxin-1 (TSST-1), produced by Staphylococcus aureus, belong to the subgroup of microbial superantigens (SAgs). SAgs induce clonal proliferation of T cells bearing specific variable regions of the T cell receptor β chain (Vβ). Quantitative real time PCR (qRT-PCR) has become widely accepted for rapid and reproducible mRNA quantification. Although the quantification of Vβ subgroups using qRT-PCR has been reported, qRT-PCR using both primers annealing to selected Vβ nucleotide sequences and SYBR Green I reporter has not been applied to assess Vβ-dependent expansion of T cells by SAgs. Methods Human peripheral blood mononuclear cells were stimulated with various SAgs or a monoclonal antibody specific to human CD3. Highly specific expansion of Vβ subgroups was assessed by qRT-PCR using SYBR Green I reporter and primers corresponding to selected Vβ nucleotide sequences. Results qRT-PCR specificities were confirmed by sequencing amplified PCR products and melting curve analysis. To assess qRT-PCR efficiencies, standard curves were generated for each primer set. The average slope and R2 of standard curves were -3.3764 ± 0.0245 and 0.99856 ± 0.000478, respectively, demonstrating that the qRT-PCR established in this study is highly efficient. With some exceptions, SAg Vβ specificities observed in this study were similar to those reported in previous studies. Conclusions The qRT-PCR method established in this study produced an accurate and reproducible assessment of Vβ-dependent expansion of human T cells by staphylococcal SAgs. This method could be a useful tool in the characterization T cell proliferation by newly discovered SAg and in the investigation of biological effects of SAgs linked to pathogenesis.
Collapse
Affiliation(s)
- Keun Seok Seo
- Department of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Moscow, ID 83844, USA.
| | | | | | | |
Collapse
|
15
|
Oliveira JB, Fleisher TA. Laboratory evaluation of primary immunodeficiencies. J Allergy Clin Immunol 2009; 125:S297-305. [PMID: 20042230 DOI: 10.1016/j.jaci.2009.08.043] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 08/17/2009] [Accepted: 08/18/2009] [Indexed: 11/29/2022]
Abstract
Primary immunodeficiencies are congenital disorders caused by defects in different elements of the immune system. Affected patients usually present clinically with recurrent infections, severe infections, or both, as well as autoimmune phenomena that are associated with many of these disorders. Early diagnosis is essential for referral to specialized care centers and the prompt initiation of appropriate therapy. In this article the authors describe a general approach for the investigation of the most common primary immunodeficiencies, outlining the typical clinical symptoms and most appropriate laboratory investigations.
Collapse
Affiliation(s)
- João B Oliveira
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, USA
| | | |
Collapse
|
16
|
Ochsenreither S, Fusi A, Busse A, Nagorsen D, Schrama D, Becker J, Thiel E, Keilholz U. Relative quantification of TCR Vbeta-chain families by real time PCR for identification of clonal T-cell populations. J Transl Med 2008; 6:34. [PMID: 18593466 PMCID: PMC2467404 DOI: 10.1186/1479-5876-6-34] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 07/01/2008] [Indexed: 12/22/2022] Open
Abstract
Background Quantification of T-cell receptor (TCR) chain families can be utilized for detection of clonal T-cell populations. Besides southern blotting and antibody-based approaches, quantitative real time PCR (qRT PCR) has been more widely applied in this context during the last years. Here, the heterogeneity of sequences within single families is the most challenging problem for exact quantification. Method Vβ-families were quantified using a universal reverse primer and family-specific forward primers with TaqMan technology on a light cycler instrument. Relative concentrations were calculated considering slopes and crossing points of each PCR reaction. Total expression of α/β TCR was assessed by quantification of the constant α-chain as a further control. Results The method was tested by serial dilutions of clonal T-cells in mononuclear cells from healthy volunteers. Calculated percentages were in good correspondence with qRT PCR results demonstrating high reliability. Duplicates showed excellent technical reproducibility. We analyzed blood samples of 20 healthy volunteers for determination of mean and standard deviation for each family. The method was applied both to tissue and blood samples from patients with carcinomas and hematological disorders. Conclusion We introduce a versatile method for the relative quantification of Vβ-families by real time PCR. The experimental strategy described allows the identification of alterations in the Vβ-family repertoire.
Collapse
Affiliation(s)
- Sebastian Ochsenreither
- University Hospital Benjamin Franklin, Medizinische Klinik III, Hematology, Oncology, and Transfusion Medicine, Charité Universitätsmedizin Berlin, 12200, Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Albers AE, Visus C, Tsukishiro T, Ferris RL, Gooding W, Whiteside TL, De Leo AB. Alterations in the T-Cell Receptor Variable β Gene–Restricted Profile of CD8+ T Lymphocytes in the Peripheral Circulation of Patients with Squamous Cell Carcinoma of the Head and Neck. Clin Cancer Res 2006; 12:2394-403. [PMID: 16638844 DOI: 10.1158/1078-0432.ccr-05-1818] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Apoptosis of activated CD8(+) T cells is often seen in tumor-infiltrating lymphocytes and circulating peripheral blood mononuclear cells (PBMC) in patients with squamous cell carcinoma of the head and neck (SCCHN). We investigated whether T-cell receptor (TCR) variable beta chain (Vbeta)-restricted T cells were more sensitive to apoptosis than non-TCR Vbeta-restricted T cells. EXPERIMENTAL DESIGN Flow cytometry analysis with anti-TCR Vbeta antibodies was used to define expansions and contractions of Vbeta-restricted T cells in patients with SCCHN relative to normal donors. This staining was combined with Annexin V binding to indicate early T-cell apoptosis. RESULTS The TCR Vbeta profiles of CD3(+) T cells in tumor-infiltrating lymphocytes and PBMCs of patients with SCCHN were altered relative to controls, with one to five expansions and numerous contractions of TCR Vbeta-restricted T cells detected. These types of alterations were significantly greater in CD8(+) than CD4(+) T cells. Enhanced Annexin V binding to CD8(+) T cells was evident in PBMCs obtained from all patients, with 3 of 13 showing preferential targeting for apoptosis of TCR Vbeta-restricted T cells. CONCLUSIONS TCR Vbeta profiles of CD8(+) T cells were altered in patients with SCCHN relative to normal controls. This may reflect increased apoptosis of expanded or contracted CD8(+) T cells, which define the TCR Vbeta profile of antigen-responsive T-cell populations in patients with cancer.
Collapse
MESH Headings
- CD3 Complex/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/pathology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/pathology
- Carcinoma, Squamous Cell/blood
- Cluster Analysis
- Flow Cytometry
- Head and Neck Neoplasms/blood
- Humans
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/pathology
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphocytes, Tumor-Infiltrating/pathology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
Collapse
Affiliation(s)
- Andreas E Albers
- Division of Basic Research and Biostatistics, University of Pittsburgh Cancer Institute and Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Clark RA, Yamanaka KI, Bai M, Dowgiert R, Kupper TS. Human skin cells support thymus-independent T cell development. J Clin Invest 2005; 115:3239-49. [PMID: 16224538 PMCID: PMC1253623 DOI: 10.1172/jci24731] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Accepted: 08/09/2005] [Indexed: 12/22/2022] Open
Abstract
Thymic tissue has previously been considered a requirement for the generation of a functional and diverse population of human T cells. We report that fibroblasts and keratinocytes from human skin arrayed on a synthetic 3-dimensional matrix support the development of functional human T cells from hematopoietic precursor cells in the absence of thymic tissue. Newly generated T cells contained T cell receptor excision circles, possessed a diverse T cell repertoire, and were functionally mature and tolerant to self MHC, indicating successful completion of positive and negative selection. Skin cell cultures expressed the AIRE, Foxn1, and Hoxa3 transcription factors and a panel of autoantigens. Skin and bone marrow biopsies can thus be used to generate de novo functional and diverse T cell populations for potential therapeutic use in immunosuppressed patients.
Collapse
Affiliation(s)
- Rachael A Clark
- Harvard Skin Disease Research Center and Department of Dermatology, Brigham and Women's Hospital, Harvard Institutes of Medicine, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
19
|
Alvarez CM, Opelz G, Giraldo MC, Pelzl S, Renner F, Weimer R, Schmidt J, Arbeláez M, García LF, Süsal C. Evaluation of T-cell receptor repertoires in patients with long-term renal allograft survival. Am J Transplant 2005; 5:746-56. [PMID: 15760398 DOI: 10.1111/j.1600-6143.2005.00756.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The mechanisms underlying long-term acceptance of kidney allografts in humans under minimal or no maintenance immunosuppression are poorly understood. We analyzed the T-cell receptor (TCR) repertoires in circulating T cells of patients with long-term (> or = 9 years) renal allograft survival with (LTS-IS) and without immunosuppression (LTS-NoIS). T cells of LTS patients exhibited strongly altered TCR Vss usage, including an increased frequency of oligoclonality and a decreased frequency of polyclonality. All 3 LTS-NoIS and 12 of 16 LTS-IS patients demonstrated oligoclonality in at least three or more TCR V beta families, and the frequency of oligoclonality in these patients was significantly higher as compared to patients with well-functioning grafts at 3 years (p < 0.005 both), an uncomplicated course during the first year (p < 0.0001, both), acute rejection (p < 0.0001, both), chronic allograft nephropathy at 7 (p < 0.0001, both) or 13 years (p < 0.0001, both), dialysis patients (p < 0.0001, both) or healthy controls (p < 0.0001, both). In contrast to LTS patients, all other studied patient groups exhibited a polyclonal TCR repertoire. Our data indicate that TCR alteration is a common feature of long-term allograft outcome, which might be explained by clonal deletion, exhaustion of alloreactive T cells or predominant expression of particular T-cell subpopulations, such as regulatory T cells.
Collapse
Affiliation(s)
- Cristiam M Alvarez
- Grupo de Inmunología Celular e Inmunogenética, Universidad de Antioquia, Medellín, Colombia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Tully G, Kortsik C, Höhn H, Zehbe I, Hitzler WE, Neukirch C, Freitag K, Kayser K, Maeurer MJ. Highly Focused T Cell Responses in Latent Human PulmonaryMycobacterium tuberculosisInfection. THE JOURNAL OF IMMUNOLOGY 2005; 174:2174-84. [PMID: 15699149 DOI: 10.4049/jimmunol.174.4.2174] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The elucidation of the molecular and immunological mechanisms mediating maintenance of latency in human tuberculosis aids to develop more effective vaccines and to define biologically meaningful markers for immune protection. We analyzed granuloma-associated lymphocytes (GALs) from human lung biopsies of five patients with latent Mycobacterium tuberculosis (MTB) infection. MTB CD4+ and CD8+ T cell response was highly focused in the lung, distinct from PBL, as assessed by TCR-CDR3 spectratyping coupled with a quantitative analysis of TCR VB frequencies. GALs produced IFN-gamma in response to autologous macrophages infected with MTB and to defined MTB-derived HLA-A2-presented peptides Ag85a242-250, Ag85b199-207, early secreted antigenic target 6 (ESAT-6)28-36, 19-kDa Ag88-97, or the HLA-DR-presented ESAT-6(1-20) epitope. Immune recognition of naturally processed and presented MTB epitopes or the peptide ESAT-6(1-20) could be linked to specific TCR VB families, and in two patients to unique T cell clones that constituted 19 and 27%, respectively, of the CD4+ and 17% of the CD8+ GAL population. In situ examination of MTB-reactive GALs by tetramer in situ staining and confocal laser-scanning microscopy consolidates the presence of MHC class I-restricted CD8+ T cells in MTB granuloma lesions and supports the notion that clonally expanded T cells are crucial in immune surveillance against MTB.
Collapse
MESH Headings
- Amino Acid Sequence
- Antigen Presentation/immunology
- Antigens, Bacterial/metabolism
- Bacterial Proteins
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/pathology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/pathology
- Clone Cells
- Cytokines/metabolism
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Granuloma/immunology
- Granuloma/microbiology
- Granuloma/pathology
- HLA-A2 Antigen/metabolism
- Humans
- Interferon-gamma/biosynthesis
- Macrophages/immunology
- Macrophages/metabolism
- Molecular Sequence Data
- Mycobacterium tuberculosis/immunology
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Protein Binding/immunology
- Receptor-CD3 Complex, Antigen, T-Cell/biosynthesis
- Receptor-CD3 Complex, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Th1 Cells/immunology
- Th1 Cells/metabolism
- Tuberculosis, Pulmonary/immunology
- Tuberculosis, Pulmonary/microbiology
- Tuberculosis, Pulmonary/pathology
Collapse
Affiliation(s)
- Glenn Tully
- Department of Medical Microbiology, University of Mainz, Mainz, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Korn S, Wiewrodt R, Walz YC, Becker K, Mayer E, Krummenauer F, Buhl R. Characterization of the Interstitial Lung and Peripheral Blood T Cell Receptor Repertoire in Cigarette Smokers. Am J Respir Cell Mol Biol 2005; 32:142-8. [PMID: 15539458 DOI: 10.1165/rcmb.2004-0239oc] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
T lymphocytes modulate the pulmonary inflammatory response. The aim of this study was to evaluate the clonality within the interstitial lung and peripheral blood T cell receptor (TCR) repertoire in smokers. Interstitial T lymphocytes were isolated from surplus tissue of 16 patients (63 +/- 9 [+/- SD] yr old, 11 male) undergoing surgery due to lung cancer (n = 15) or emphysema. TCR clonality was assessed by PCR amplification followed by spectratyping. Nearly all TCR of interstitial lung lymphocytes showed oligoclonal bands (CD4(+) subset 13/16 patients, 81%; CD8(+) 100%) indicating a specific differentiation. Peripheral blood T lymphocytes (PBL) TCR (especially CD4(+)) had less oligoclonal bands (CD4(+) 31%, CD8(+) 88%). Likewise, more oligoclonal bands were seen in lung TCR (total of 168 bands; 37 CD4(+); 131 CD8(+)), compared with 59 bands in PBL TCR (13 CD4(+); 46 CD8(+)). Intraindividual comparison revealed a more prominent difference in TCR oligoclonality between lung and blood in CD8(+) T cells (median of difference lung minus blood 5; interquartile range 1-10; P = 0.002) compared with CD4(+) T cells (median 2, 0-3, P = 0.039). Thus, TCR oligoclonality is preferentially found in the CD8(+) T cell subset, most distinctive in the lung. These findings indicate a specific interstitial T cell differentiation in response to local stimuli.
Collapse
Affiliation(s)
- Stephanie Korn
- Pulmonary Department, Mainz University Hospital, Langenbeckstrasse 1, D-55131 Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
22
|
TCR Analyses. ANALYZING T CELL RESPONSES 2005. [PMCID: PMC7120667 DOI: 10.1007/1-4020-3623-x_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
T-cells play a crucial role in immune surveillance against transformed cells and intracellular infections; they are involved in auto-immune reactions. They recognize their targets, i.e. MHC / peptide complexes, trough the T-cell receptor. TCR usage determines the molecular interaction of the immune system with biologically relevant MHC/peptide molecules. The TCR coding genes (variable, diversity and junctional) determine the molecular composition of the TCR alpha and beta heterodimer. The random association of the VDJ genes constitutes the complementarity determining region 3 (CDR3) responsible for antigen recognition and TCR specificity. The molecular composition of a T-cell population can be objectively defined by measuring the CDR3 region. Qualitative and quantitative comparisons of the TCR composition in different anatomic compartments, or longitudinally over time, allow to asses the entire TCR repertoire. This methodology can be supplemented with functional T-cell based assays and aids to objectively describe any alteration in the T-cell pool. TCR CDR3 analysis is useful in immunomonitoring, e.g. examining patients after BMT or solid organ transplantation, patients with HAART therapy, or patients receiving molecularly defined vaccines.
Collapse
|
23
|
thor Straten P, Schrama D, Andersen MH, Becker JC. T-cell clonotypes in cancer. J Transl Med 2004; 2:11. [PMID: 15072580 PMCID: PMC419379 DOI: 10.1186/1479-5876-2-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2004] [Accepted: 04/08/2004] [Indexed: 01/23/2023] Open
Abstract
Cells of the immune system spontaneously recognize autologous tumor cells and T cells are believed to be the main effector cells for the immune surveillance of cancer. Recent advances in our understanding of basic and tumor immunology together with methodological developments implies that tumor specific T cells can now be studied functionally, phenotypically as well as molecularly. T cells recognize peptide antigens in the context of MHC molecules through the clonally distributed T-cell receptor (TCR), thus, the clonal distribution of the TCR offers the means to detect and track specific T cells based upon detection of the unique TCR. In this review, we present and discuss available data on TCR utilization of tumor specific T cells in murine models as well as spontaneous and treatment induced anti-tumor T-cell responses in humans.
Collapse
Affiliation(s)
- Per thor Straten
- Tumor Immunology Group, Institute of Cancer Biology, Danish Cancer Society, DK-2100 Copenhagen, Denmark
| | - David Schrama
- Department of Dermatology, Julius Maximilians-University, D-97080 Würzburg, Germany
| | - Mads Hald Andersen
- Tumor Immunology Group, Institute of Cancer Biology, Danish Cancer Society, DK-2100 Copenhagen, Denmark
| | - Jürgen C Becker
- Department of Dermatology, Julius Maximilians-University, D-97080 Würzburg, Germany
| |
Collapse
|
24
|
Yawalkar N, Ferenczi K, Jones DA, Yamanaka K, Suh KY, Sadat S, Kupper TS. Profound loss of T-cell receptor repertoire complexity in cutaneous T-cell lymphoma. Blood 2003; 102:4059-66. [PMID: 12829591 DOI: 10.1182/blood-2003-04-1044] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) is a malignancy of skin-homing T cells. A major feature of CTCL is profound immunosuppression, such that patients with advanced mycosis fungoides or Sézary syndrome have been compared with patients with advanced HIV disease and are susceptible to opportunistic infection. The etiology of this immunosuppression is unclear. We analyzed peripheral blood T cells of patients with CTCL with stage I to IV disease, using a sensitive beta-variable complementarity-determining region 3 spectratyping approach. Our data revealed a profound disruption of the complexity of the T-cell repertoire, which was universally observed in patients with advanced disease (stages III and IV), and present in up to 50% of patients with early-stage disease (stages I and II). In most patients, multiple monoclonal and oligoclonal complementarity-determining region 3 (CDR3) spectratype patterns in many different beta-variable families were seen. Equally striking was a reduction of normal T cells (as judged by absolute CD4 counts) across multiple beta-variable families. In general, CTCL spectratypes were reminiscent of advanced HIV spectratypes published elsewhere. Taken together, these data are most consistent with a global assault on the T-cell repertoire in patients with CTCL, a process that can be observed even in early-stage disease.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- CD4 Lymphocyte Count
- Case-Control Studies
- Clone Cells
- Complementarity Determining Regions/genetics
- Female
- Genes, T-Cell Receptor beta
- HIV Infections/immunology
- Humans
- Immunologic Deficiency Syndromes
- Lymphoma, T-Cell, Cutaneous/etiology
- Lymphoma, T-Cell, Cutaneous/immunology
- Lymphoma, T-Cell, Cutaneous/pathology
- Male
- Middle Aged
- RNA/analysis
- Receptors, Antigen, T-Cell/immunology
Collapse
Affiliation(s)
- Nikhil Yawalkar
- Harvard Skin Disease Research Center, Harvard Institutes of Medicine, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Nilges K, Höhn H, Pilch H, Neukirch C, Freitag K, Talbot PJ, Maeurer MJ. Human papillomavirus type 16 E7 peptide-directed CD8+ T cells from patients with cervical cancer are cross-reactive with the coronavirus NS2 protein. J Virol 2003; 77:5464-74. [PMID: 12692247 PMCID: PMC153943 DOI: 10.1128/jvi.77.9.5464-5474.2003] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human papillomavirus type 16 (HPV16) E6 and E7 oncoproteins are required for cellular transformation and represent candidate targets for HPV-specific and major histocompatibility complex class I-restricted CD8(+)-T-cell responses in patients with cervical cancer. Recent evidence suggests that cross-reactivity represents the inherent nature of the T-cell repertoire. We identified HLA-A2 binding HPV16 E7 variant peptides from human, bacterial, or viral origin which are able to drive CD8(+)-T-cell responses directed against wild-type HPV16 E7 amino acid 11 to 19/20 (E7(11-19/20)) epitope YMLDLQPET(T) in vitro. CD8(+) T cells reacting to the HLA-A2-presented peptide from HPV16 E7(11-19(20)) recognized also the HLA-A2 binding peptide TMLDIQPED (amino acids 52 to 60) from the human coronavirus OC43 NS2 gene product. Establishment of coronavirus NS2-specific, HLA-A2-restricted CD8(+)-T-cell clones and ex vivo analysis of HPV16 E7 specific T cells obtained by HLA-A2 tetramer-guided sorting from PBL or tumor-infiltrating lymphocytes obtained from patients with cervical cancer showed that cross-reactivity with HPV16 E7(11-19(20)) and coronavirus NS2(52-60) represents a common feature of this antiviral immune response defined by cytokine production. Zero of 10 patients with carcinoma in situ neoplasia and 3 of 18 patients with cervical cancer showed > or =0.1% HPV16 E7-reactive T cells in CD8(+) peripheral blood lymphocytes. In vivo priming with HPV16 was confirmed in patients with cervical cancer or preinvasive HPV16-positive lesions using HLA-A2 tetramer complexes loaded with the E6-derived epitope KLPQLCTEL. In contrast, we could not detect E6-reactive T cells in healthy individuals. These data imply that the measurement of the HPV16 E7(11-19(20)) CD8(+)-T-cell response may reflect cross-reactivity with a common pathogen and that variant peptides may be employed to drive an effective cellular immune response against HPV.
Collapse
Affiliation(s)
- Katja Nilges
- Department of Medical Microbiology, University of Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
Pilch H, Höhn H, Neukirch C, Freitag K, Knapstein PG, Tanner B, Maeurer MJ. Antigen-driven T-cell selection in patients with cervical cancer as evidenced by T-cell receptor analysis and recognition of autologous tumor. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2002; 9:267-78. [PMID: 11874862 PMCID: PMC119930 DOI: 10.1128/cdli.9.2.267-278.2002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We characterized the T-cell receptor (TCR) repertoire in freshly harvested tumor lesions, in short-term-expanded CD4(+) tumor infiltrating lymphocytes (TIL) as well as in CD4(+) and CD8(+) peripheral blood lymphocytes (PBL) from three patients with cervical cancer. Skewing of the T-cell repertoire as defined by measuring the length of the complementarity-determining region 3 (CDR3) of the TCR VA and VB chains was observed in CD8(+) PBL, in freshly harvested tumor tissue, as well as in CD4(+) TIL. Comparative analysis of the TCR repertoire revealed unique monoclonal TCR transcripts within the tumor lesion which were not present in PBL, suggesting selection of TCR clonotypes due to antigenic stimulation. TCR repertoire analysis of the short-term (7-day) CD4(+) TIL lines revealed that the TCR composition is markedly different from that in CD4(+) PBL or in the freshly harvested tumor tissue. Only one-third of CD4(+) TIL lines showed HLA-DR-restricted recognition of autologous tumor cells as defined by cytolysis. These data provide support for the antigen-driven selection of T cells within cervical cancer lesions and suggest that analysis of the TCR repertoire may aid in obtaining an objective description of the immune response in patients with cervical cancer who are undergoing epitope-based immunotherapy.
Collapse
Affiliation(s)
- H Pilch
- Department of Gynecology and Obstetrics, Johannes Gutenberg University, Mainz, Germany.
| | | | | | | | | | | | | |
Collapse
|