1
|
Persel C, da Silva JC, Simon C, Delabeneta MF, Boff Junges DS, Nascimento BL, Flores Chaves MA, Simão RDCG, Paula CR, Gandra RF. Antimicrobial activity of immobilized mycocins in sodium alginate on fecal coliforms. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2025; 91:581-591. [PMID: 40087967 DOI: 10.2166/wst.2025.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 02/04/2025] [Indexed: 03/17/2025]
Abstract
Wickerhamomyces anomalus is a yeast-producing mycocins and has antimicrobial action. Escherichia coli is the predominant bacterium of the coliforms group; its presence in water indicates fecal contamination, being used as an indicator of microbiological analyses. The immobilization of cells and substances demonstrates great potential for biotechnological applications. This work aimed to assess the activity of free and immobilized mycocins, obtained from W. anomalus, against E. coli strains and fecal coliforms. The mycocins were immobilized in different concentrations of sodium alginate and calcium chloride and tested to verify the antimicrobial activity against the E. coli strain and fecal coliforms present in water samples. The mycocins were able to inhibit all strains used in broth microdilution. Considering the problem of multidrug-resistant antibiotic strains and the need for new alternatives to improve the quality of water and sewage effluents, these results demonstrate a possible application as an alternative to an antimicrobial agent.
Collapse
Affiliation(s)
- Cristiane Persel
- Department of Pharmacy, University Hospital from Western Paraná State University, at 3224, Tancredo Neves Avenue, Cascavel City, Paraná 85806-470, Brazil
| | - Jessica Cassia da Silva
- Department of Pharmacy, University Hospital from Western Paraná State University, at 3224, Tancredo Neves Avenue, Cascavel City, Paraná 85806-470, Brazil
| | - Caroline Simon
- Department of Pharmacy, University Hospital from Western Paraná State University, at 3224, Tancredo Neves Avenue, Cascavel City, Paraná 85806-470, Brazil
| | - Mateus Foltz Delabeneta
- Department of Pharmacy, University Hospital from Western Paraná State University, at 3224, Tancredo Neves Avenue, Cascavel City, Paraná 85806-470, Brazil
| | - Daniele Schaab Boff Junges
- Department of Pharmacy, University Hospital from Western Paraná State University, at 3224, Tancredo Neves Avenue, Cascavel City, Paraná 85806-470, Brazil
| | - Bruna Larissa Nascimento
- Department of Pharmacy, University Hospital from Western Paraná State University, at 3224, Tancredo Neves Avenue, Cascavel City, Paraná 85806-470, Brazil
| | - Michele Ana Flores Chaves
- Department of Pharmacy, University Hospital from Western Paraná State University, at 3224, Tancredo Neves Avenue, Cascavel City, Paraná 85806-470, Brazil
| | - Rita de Cássia Garcia Simão
- Department of Pharmacy, University Hospital from Western Paraná State University, at 3224, Tancredo Neves Avenue, Cascavel City, Paraná 85806-470, Brazil
| | - Claudete Rodrigues Paula
- Faculty of Dentistry, Department of Stomatology, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Rinaldo Ferreira Gandra
- Department of Pharmacy, University Hospital from Western Paraná State University, at 3224, Tancredo Neves Avenue, Cascavel City, Paraná 85806-470, Brazil E-mail:
| |
Collapse
|
2
|
Molina-Vera C, Morales-Tlalpan V, Chavez-Vega A, Uribe-López J, Trujillo-Barrientos J, Campos-Guillén J, Chávez-Servín JL, García-Gasca T, Saldaña C. The Killer Saccharomyces cerevisiae Toxin: From Origin to Biomedical Research. Microorganisms 2024; 12:2481. [PMID: 39770684 PMCID: PMC11727844 DOI: 10.3390/microorganisms12122481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/13/2024] [Accepted: 11/24/2024] [Indexed: 01/16/2025] Open
Abstract
The killer systems of S. cerevisiae are defined by the co-infection of two viral agents, an M virus and a helper virus. Each killer toxin is determined by the type of M virus (ScV-M1, ScV-M2, ScV-M28, and ScV-Mlus), which encodes a specific toxin (K1, K2, K28, and Klus). Since their discovery, interest in their potential use as antimicrobial agents has driven research into the mechanisms of action of these toxins on susceptible cells. This review provides an overview of the key aspects of killer toxins, including their origin and the evolutionary implications surrounding the viruses involved in the killer system, as well as their potential applications in the biomedical field and as a biological control strategy. Special attention is given to the mechanisms of action described to date for the various S. cerevisiae killer toxins.
Collapse
Affiliation(s)
- Carlos Molina-Vera
- Membrane Biophysics and Nanotechnology Laboratory, Natural Sciences Faculty, Autonomous University of Quéretaro, Av. De las Ciencias S/N, Juriquilla, Querétaro 76220, Mexico; (C.M.-V.); (V.M.-T.); (A.C.-V.); (J.U.-L.); (J.T.-B.)
| | - Verónica Morales-Tlalpan
- Membrane Biophysics and Nanotechnology Laboratory, Natural Sciences Faculty, Autonomous University of Quéretaro, Av. De las Ciencias S/N, Juriquilla, Querétaro 76220, Mexico; (C.M.-V.); (V.M.-T.); (A.C.-V.); (J.U.-L.); (J.T.-B.)
- National Laboratory for Advanced Scientific Visualization (LAVIS-FCN-UAQ), Querétaro 76230, Mexico
| | - Amairani Chavez-Vega
- Membrane Biophysics and Nanotechnology Laboratory, Natural Sciences Faculty, Autonomous University of Quéretaro, Av. De las Ciencias S/N, Juriquilla, Querétaro 76220, Mexico; (C.M.-V.); (V.M.-T.); (A.C.-V.); (J.U.-L.); (J.T.-B.)
| | - Jennifer Uribe-López
- Membrane Biophysics and Nanotechnology Laboratory, Natural Sciences Faculty, Autonomous University of Quéretaro, Av. De las Ciencias S/N, Juriquilla, Querétaro 76220, Mexico; (C.M.-V.); (V.M.-T.); (A.C.-V.); (J.U.-L.); (J.T.-B.)
| | - Jessica Trujillo-Barrientos
- Membrane Biophysics and Nanotechnology Laboratory, Natural Sciences Faculty, Autonomous University of Quéretaro, Av. De las Ciencias S/N, Juriquilla, Querétaro 76220, Mexico; (C.M.-V.); (V.M.-T.); (A.C.-V.); (J.U.-L.); (J.T.-B.)
| | - Juan Campos-Guillén
- Faculty of Chemistry, Autonomous University of Quéretaro, Av. De las Ciencias S/N, Juriquilla, Querétaro 76320, Mexico; (J.C.-G.); (J.L.C.-S.)
| | - Jorge Luis Chávez-Servín
- Faculty of Chemistry, Autonomous University of Quéretaro, Av. De las Ciencias S/N, Juriquilla, Querétaro 76320, Mexico; (J.C.-G.); (J.L.C.-S.)
| | - Teresa García-Gasca
- Molecular Biology Laboratory, Facultad de Ciencias Naturales, Autonomous University of Quéretaro, Av. De las Ciencias S/N, Juriquilla, Querétaro 76230, Mexico;
| | - Carlos Saldaña
- Membrane Biophysics and Nanotechnology Laboratory, Natural Sciences Faculty, Autonomous University of Quéretaro, Av. De las Ciencias S/N, Juriquilla, Querétaro 76220, Mexico; (C.M.-V.); (V.M.-T.); (A.C.-V.); (J.U.-L.); (J.T.-B.)
- National Laboratory for Advanced Scientific Visualization (LAVIS-FCN-UAQ), Querétaro 76230, Mexico
| |
Collapse
|
3
|
Bizarria R, Creagh JW, Badigian TJ, Corrêa Dos Santos RA, Coss SA, Tekle RT, Fredstrom N, Ytreberg FM, Dunham MJ, Rodrigues A, Rowley PA. The Prevalence of Killer Yeasts in the Gardens of Fungus-Growing Ants and the Discovery of Novel Killer Toxin named Ksino. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618321. [PMID: 39463942 PMCID: PMC11507743 DOI: 10.1101/2024.10.14.618321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Killer toxins are proteinaceous antifungal molecules produced by yeasts, with activity against a wide range of human and plant pathogenic fungi. Fungus gardens of attine ants in Brazil were surveyed to determine the presence of killer toxin-producing yeasts and to define their antifungal activities and ecological importance. Our results indicate that up to 46% of yeasts isolated from specific fungal gardens can be killer yeasts, with an overall prevalence of 17% across all strains tested. Killer yeasts were less likely to inhibit the growth of yeasts isolated from the same environment but more effective at inhibiting yeast isolated from other environments, supporting a role for killer yeasts in shaping community composition. All killer yeasts harbored genome-encoded killer toxins due to the lack of cytoplasmic toxin-encoding elements (i.e., double-stranded RNA satellites and linear double-stranded DNAs). Of all the killer yeasts identified, an isolate of Candida sinolaborantium showed a broad spectrum of antifungal activities against 57% of yeast strains tested for toxin susceptibility. The complete genome sequence of C. sinolaborantium identified a new killer toxin, Ksino, with primary and tertiary structure homology to the Saccharomyces cerevisiae killer toxin named Klus. Genome-encoded homologs of Ksino were found in yeast strains of Saccharomycetes and Pichiomycetes, as well as other species of Ascomycota and Basidiomycota filamentous fungi. This demonstrates that killer yeasts can be widespread in attine ant fungus gardens, possibly influencing fungal community composition and the importance of these complex microbial communities for discovering novel antifungal molecules.
Collapse
Affiliation(s)
- Rodolfo Bizarria
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
- Department of General and Applied Biology, São Paulo State University (UNESP), Institute of Biosciences, Rio Claro, São Paulo, Brazil
| | - Jack W Creagh
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Tanner J Badigian
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Renato A Corrêa Dos Santos
- Laboratory of Computational, Evolutionary, and Systems Biology, Center for Nuclear Energy in Agriculture, University of São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Sarah A Coss
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Rim T Tekle
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Noah Fredstrom
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - F Marty Ytreberg
- Department of Physics, University of Idaho, Moscow, ID, 83844, USA
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID, 83844, USA
| | - Maitreya J Dunham
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Andre Rodrigues
- Department of General and Applied Biology, São Paulo State University (UNESP), Institute of Biosciences, Rio Claro, São Paulo, Brazil
| | - Paul A Rowley
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID, 83844, USA
| |
Collapse
|
4
|
Hill JH, Round JL. Intestinal fungal-host interactions in promoting and maintaining health. Cell Host Microbe 2024; 32:1668-1680. [PMID: 39389031 DOI: 10.1016/j.chom.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/05/2024] [Accepted: 09/14/2024] [Indexed: 10/12/2024]
Abstract
The resident microbiota are a key component of a healthy organism. The vast majority of microbiome studies have focused on bacterial members, which constitute a significant portion of resident microbial biomass. Recent studies have demonstrated how the fungal component of the microbiota, or the mycobiome, influences mammalian biology despite its low abundance compared to other microbes. Fungi are known for their pathogenic potential, yet fungi are also prominent colonizers in healthy states, highlighting their duality. We summarize the characteristics that define the gut mycobiome across life, the factors that can impact its composition, and studies that identify mechanisms of how fungi confer health benefits. The goal of this review is to synthesize our knowledge regarding the composition and function of a healthy mycobiome with a view to inspiring future therapeutic advances.
Collapse
Affiliation(s)
- Jennifer H Hill
- University of Colorado Boulder, BioFrontiers Institute, Department of Molecular, Cellular & Developmental Biology, Boulder, CO 80303, USA.
| | - June L Round
- University of Utah, School of Medicine, Department of Pathology, Huntsman Cancer Institute, Salt Lake City, UT 84112, USA.
| |
Collapse
|
5
|
Ren H, Li J, Lan Y, Lu N, Tian H, Li J, Zhang Z, Li L, Sun Y, Zheng Y. Bioaugmented ensiling of sweet sorghum with Pichia anomala and cellulase and improved enzymatic hydrolysis of silage via ball milling. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120327. [PMID: 38359627 DOI: 10.1016/j.jenvman.2024.120327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/17/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
Sweet sorghum, as a seasonal energy crop, is rich in cellulose and hemicellulose that can be converted into biofuels. This work aims at investigating the effects of synergistic regulation of Pichia anomala and cellulase on ensiling quality and microbial community of sweet sorghum silages as a storage and pretreatment method. Furthermore, the combined pretreatment effects of ensiling and ball milling on sweet sorghum were evaluated by microstructure change and enzymatic hydrolysis. Based on membership function analysis, the combination of P. anomala and cellulase (PA + CE) significantly improved the silage quality by preserving organic components and promoting fermentation characteristics. The bioaugmented ensiling with PA + CE restructured the bacterial community by facilitating Lactobacillus and inhibiting undesired microorganisms by killer activity of P. anomala. The combined bioaugmented ensiling pretreatment with ball milling significantly increased the enzymatic hydrolysis efficiency (EHE) to 71%, accompanied by the increased specific surface area and decreased pore size/crystallinity of sweet sorghum. Moreover, the EHE after combined pretreatment was increased by 1.37 times compared with raw material. Hence, the combined pretreatment was demonstrated as a novel strategy to effectively enhance enzymatic hydrolysis of sweet sorghum.
Collapse
Affiliation(s)
- Haiwei Ren
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China; Key Laboratory of Complementary Energy System of Biomass and Solar Energy, Lanzhou University of Technology, 730050, China
| | - Jinlian Li
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China; Key Laboratory of Complementary Energy System of Biomass and Solar Energy, Lanzhou University of Technology, 730050, China
| | - Yuanyuan Lan
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Nana Lu
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China; Key Laboratory of Complementary Energy System of Biomass and Solar Energy, Lanzhou University of Technology, 730050, China
| | - Hui Tian
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Jinping Li
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China; Key Laboratory of Complementary Energy System of Biomass and Solar Energy, Lanzhou University of Technology, 730050, China
| | - Zhiping Zhang
- Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou, 450002, China
| | - Lianhua Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Yongming Sun
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Yi Zheng
- Department of Grain Science and Industry, Kansas State University, 101C BIVAP, 1980 Kimball Avenue, Manhattan, KS, 66506, USA.
| |
Collapse
|
6
|
Vijayraghavan S, Kozmin SG, Strope PK, Skelly DA, Magwene PM, Dietrich FS, McCusker JH. RNA viruses, M satellites, chromosomal killer genes, and killer/nonkiller phenotypes in the 100-genomes S. cerevisiae strains. G3 (BETHESDA, MD.) 2023; 13:jkad167. [PMID: 37497616 PMCID: PMC10542562 DOI: 10.1093/g3journal/jkad167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023]
Abstract
We characterized previously identified RNA viruses (L-A, L-BC, 20S, and 23S), L-A-dependent M satellites (M1, M2, M28, and Mlus), and M satellite-dependent killer phenotypes in the Saccharomyces cerevisiae 100-genomes genetic resource population. L-BC was present in all strains, albeit in 2 distinct levels, L-BChi and L-BClo; the L-BC level is associated with the L-BC genotype. L-BChi, L-A, 20S, 23S, M1, M2, and Mlus (M28 was absent) were in fewer strains than the similarly inherited 2µ plasmid. Novel L-A-dependent phenotypes were identified. Ten M+ strains exhibited M satellite-dependent killing (K+) of at least 1 of the naturally M0 and cured M0 derivatives of the 100-genomes strains; in these M0 strains, sensitivities to K1+, K2+, and K28+ strains varied. Finally, to complement our M satellite-encoded killer toxin analysis, we assembled the chromosomal KHS1 and KHR1 killer genes and used naturally M0 and cured M0 derivatives of the 100-genomes strains to assess and characterize the chromosomal killer phenotypes.
Collapse
Affiliation(s)
- Sriram Vijayraghavan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Stanislav G Kozmin
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Pooja K Strope
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Daniel A Skelly
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Paul M Magwene
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Fred S Dietrich
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - John H McCusker
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
7
|
Travers-Cook TJ, Jokela J, Buser CC. The evolutionary ecology of fungal killer phenotypes. Proc Biol Sci 2023; 290:20231108. [PMID: 37583325 PMCID: PMC10427833 DOI: 10.1098/rspb.2023.1108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/20/2023] [Indexed: 08/17/2023] Open
Abstract
Ecological interactions influence evolutionary dynamics by selecting upon fitness variation within species. Antagonistic interactions often promote genetic and species diversity, despite the inherently suppressive effect they can have on the species experiencing them. A central aim of evolutionary ecology is to understand how diversity is maintained in systems experiencing antagonism. In this review, we address how certain single-celled and dimorphic fungi have evolved allelopathic killer phenotypes that engage in antagonistic interactions. We discuss the evolutionary pathways to the production of lethal toxins, the functions of killer phenotypes and the consequences of competition for toxin producers, their competitors and toxin-encoding endosymbionts. Killer phenotypes are powerful models because many appear to have evolved independently, enabling across-phylogeny comparisons of the origins, functions and consequences of allelopathic antagonism. Killer phenotypes can eliminate host competitors and influence evolutionary dynamics, yet the evolutionary ecology of killer phenotypes remains largely unknown. We discuss what is known and what remains to be ascertained about killer phenotype ecology and evolution, while bringing their model system properties to the reader's attention.
Collapse
Affiliation(s)
- Thomas J. Travers-Cook
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
- Department of Aquatic Ecology, Eawag, Dübendorf, Switzerland
| | - Jukka Jokela
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
- Department of Aquatic Ecology, Eawag, Dübendorf, Switzerland
| | - Claudia C. Buser
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
- Department of Aquatic Ecology, Eawag, Dübendorf, Switzerland
| |
Collapse
|
8
|
Leoni C, Manzari C, Chiara M, Veronico P, Bruno GL, Pesole G, Ceci LR, Volpicella M. Chitinolytic Enzymes of the Hyperparasite Fungus Aphanocladium album: Genome-Wide Survey and Characterization of A Selected Enzyme. Microorganisms 2023; 11:1357. [PMID: 37317333 DOI: 10.3390/microorganisms11051357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023] Open
Abstract
The filamentous fungus Aphanocladium album is known as a hyperparasite of plant pathogenic fungi; hence, it has been studied as a possible agent for plant protection. Chitinases secreted by A. album have proven to be essential for its fungicidal activity. However, no complete analysis of the A. album chitinase assortment has been carried out, nor have any of its chitinases been characterized yet. In this study, we report the first draft assembly of the genome sequence of A. album (strain MX-95). The in silico functional annotation of the genome allowed the identification of 46 genes encoding chitinolytic enzymes of the GH18 (26 genes), GH20 (8 genes), GH75 (8 genes), and GH3 (4 genes) families. The encoded proteins were investigated by comparative and phylogenetic analysis, allowing clustering in different subgroups. A. album chitinases were also characterized according to the presence of different functional protein domains (carbohydrate-binding modules and catalytic domains) providing the first complete description of the chitinase repertoire of A. album. A single chitinase gene was then selected for complete functional characterization. The encoded protein was expressed in the yeast Pichia pastoris, and its activity was assayed under different conditions of temperature and pH and with different substrates. It was found that the enzyme acts mainly as a chitobiosidase, with higher activity in the 37-50 °C range.
Collapse
Affiliation(s)
- Claudia Leoni
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, CNR, Via Amendola 165/A, 70126 Bari, Italy
| | - Caterina Manzari
- Department of Biosciences, Biotechnology and Enviroment, University of Bari "Aldo Moro", Via Amendola 165/A, 70126 Bari, Italy
| | - Matteo Chiara
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Pasqua Veronico
- Institute for Sustainable Plant Protection, CNR, Via G. Amendola 122/D, 70126 Bari, Italy
| | - Giovanni Luigi Bruno
- Department of Soil, Plant and Food Sciences, University of Bari "Aldo Moro", Via Amendola 165/A, 70126 Bari, Italy
| | - Graziano Pesole
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, CNR, Via Amendola 165/A, 70126 Bari, Italy
- Department of Biosciences, Biotechnology and Enviroment, University of Bari "Aldo Moro", Via Amendola 165/A, 70126 Bari, Italy
- Interuniversity Consortium for Biotechnology, Località Padriciano, 99, Area di Ricerca, 34149 Trieste, Italy
| | - Luigi R Ceci
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, CNR, Via Amendola 165/A, 70126 Bari, Italy
| | - Mariateresa Volpicella
- Department of Biosciences, Biotechnology and Enviroment, University of Bari "Aldo Moro", Via Amendola 165/A, 70126 Bari, Italy
| |
Collapse
|
9
|
Bizarria R, de Castro Pietrobon T, Rodrigues A. Uncovering the Yeast Communities in Fungus-Growing Ant Colonies. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02099-1. [PMID: 35962280 DOI: 10.1007/s00248-022-02099-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Yeast-insect interactions are compelling models to study the evolution, ecology, and diversification of yeasts. Fungus-growing (attine) ants are prominent insects in the Neotropics that evolved an ancient fungiculture of basidiomycete fungi over 55-65 million years, supplying an environment for a hidden yeast diversity. Here we assessed the yeast diversity in the attine ant environment by thoroughly sampling fungus gardens across four out of five ant fungiculture systems: Acromyrmex coronatus and Mycetomoellerius tucumanus standing for leaf-cutting and higher-attine fungicultures, respectively; Apterostigma sp., Mycetophylax sp., and Mycocepurus goeldii as ants from the lower-attine fungiculture. Among the fungus gardens of all fungus-growing ants examined, we found taxonomically unique and diverse microbial yeast communities across the different fungicultures. Ascomycete yeasts were the core taxa in fungus garden samples, with Saccharomycetales as the most frequent order. The genera Aureobasidium, Candida, Papiliotrema, Starmerella, and Sugiyamaella had the highest incidence in fungus gardens. Despite the expected similarity within the same fungiculture system, colonies of the same ant species differed in community structure. Among Saccharomycotina yeasts, few were distinguishable as killer yeasts, with a classical inhibition pattern for the killer phenotype, differing from earlier observations in this environment, which should be further investigated. Yeast mycobiome in fungus gardens is distinct between colonies of the same fungiculture and each ant colony harbors a distinguished and unique yeast community. Fungus gardens of attine ants are emergent environments to study the diversity and ecology of yeasts associated with insects.
Collapse
Affiliation(s)
- Rodolfo Bizarria
- Department of General and Applied Biology, São Paulo State University (UNESP), Bela Vista, Avenida 24-A, n. 1515SP 13.506-900, Rio Claro, Brazil
- Center for the Study of Social Insects, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| | - Tatiane de Castro Pietrobon
- Department of General and Applied Biology, São Paulo State University (UNESP), Bela Vista, Avenida 24-A, n. 1515SP 13.506-900, Rio Claro, Brazil
- Center for the Study of Social Insects, São Paulo State University (UNESP), Rio Claro, SP, Brazil
| | - Andre Rodrigues
- Department of General and Applied Biology, São Paulo State University (UNESP), Bela Vista, Avenida 24-A, n. 1515SP 13.506-900, Rio Claro, Brazil.
- Center for the Study of Social Insects, São Paulo State University (UNESP), Rio Claro, SP, Brazil.
| |
Collapse
|
10
|
Błaszczyk U, Wyrzykowska S, Gąstoł M. Application of Bioactive Coatings with Killer Yeasts to Control Post-Harvest Apple Decay Caused by Botrytis cinerea and Penicillium italicum. Foods 2022; 11:1868. [PMID: 35804682 PMCID: PMC9266268 DOI: 10.3390/foods11131868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
A new method was proposed to produce alginate bio-films containing Pichia membranifaciens and Wickerhamomyces anomalus killer yeast to control the post-harvest fungal decay in organic apples caused by Botrytis cinerea and Penicillium italicum. Coatings with W. anomalus killer yeast effectively controlled the growth of P. italicum during storage at 22 °C. W. anomalus killer yeast incorporated in alginate reduced the P. italicum incidence from 90% (control) to 35% after 14 days of storage at 22 °C. Alginate biofilms with W. anomalus or P. membranifaciens also limited the incidence of the fungal decay of apples inoculated with B. cinerea compared with the control fruits, although the antagonistic capability against B. cinerea was lower than against P. italicum. The survival of W. anomalus cells in alginate coating was higher than P. membranifaciens. The incorporation of killer yeasts into alginate had no significant effect on the mechanical properties (tensile strength, percent elongation at break) of alginate coating, however, they increased the thickness of the biofilm. The bioactive coating reduced the fruit weight loss and had no significant effects on the fruit firmness during storage at 2 °C. As organic apples, produced without any synthetic fungicides, are especially prone to fungal decay during storage, the proposed alginate biofilms containing killer yeast seem to be a very promising solution by offering non-chemical, biological control of post-harvest pathogens.
Collapse
Affiliation(s)
- Urszula Błaszczyk
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, Aleja Mickiewicza 21, 31-120 Krakow, Poland;
| | - Sylwia Wyrzykowska
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, Aleja Mickiewicza 21, 31-120 Krakow, Poland;
| | - Maciej Gąstoł
- Department of Horticulture, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Aleja Mickiewicza 21, 31-120 Krakow, Poland;
| |
Collapse
|
11
|
Bandala-Sanchez E, Roth-Schulze AJ, Oakey H, Penno MAS, Bediaga NG, Naselli G, Ngui KM, Smith AD, Huang D, Zozaya-Valdes E, Thomson RL, Brown JD, Vuillermin PJ, Barry SC, Craig ME, Rawlinson WD, Davis EA, Harris M, Soldatos G, Colman PG, Wentworth JM, Haynes A, Morahan G, Sinnott RO, Papenfuss AT, Couper JJ, Harrison LC. Women with type 1 diabetes exhibit a progressive increase in gut Saccharomyces cerevisiae in pregnancy associated with evidence of gut inflammation. Diabetes Res Clin Pract 2022; 184:109189. [PMID: 35051423 DOI: 10.1016/j.diabres.2022.109189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/26/2022]
Abstract
AIMS Studies of the gut microbiome have focused on its bacterial composition. We aimed to characterize the gut fungal microbiome (mycobiome) across pregnancy in women with and without type 1 diabetes. METHODS Faecal samples (n = 162) were collected from 70 pregnant women (45 with and 25 without type 1 diabetes) across all trimesters. Fungi were analysed by internal transcribed spacer 1 amplicon sequencing. Markers of intestinal inflammation (faecal calprotectin) and intestinal epithelial integrity (serum intestinal fatty acid binding protein; I-FABP), and serum antibodies to Saccharomyces cerevisiae (ASCA) were measured. RESULTS Women with type 1 diabetes had decreased fungal alpha diversity by the third trimester, associated with an increased abundance of Saccharomyces cerevisiae that was inversely related to the abundance of the anti-inflammatory butyrate-producing bacterium Faecalibacterium prausnitzii. Women with type 1 diabetes had higher concentrations of calprotectin, I-FABP and ASCA. CONCLUSIONS Women with type 1 diabetes exhibit a shift in the gut mycobiome across pregnancy associated with evidence of gut inflammation and impaired intestinal barrier function. The relevance of these findings to the higher rate of pregnancy complications in type 1 diabetes warrants further study.
Collapse
Affiliation(s)
- Esther Bandala-Sanchez
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Alexandra J Roth-Schulze
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Helena Oakey
- The University of Adelaide, Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Megan A S Penno
- The University of Adelaide, Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Naiara G Bediaga
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Gaetano Naselli
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Katrina M Ngui
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Alannah D Smith
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Dexing Huang
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Enrique Zozaya-Valdes
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Rebecca L Thomson
- The University of Adelaide, Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - James D Brown
- The University of Adelaide, Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Peter J Vuillermin
- Faculty of School of Medicine, Deakin University and Child Health Research Unit, Barwon Health, Geelong, VIC, Australia
| | - Simon C Barry
- The University of Adelaide, Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Maria E Craig
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - William D Rawlinson
- Virology Research Laboratory, Serology and Virology Division, South Eastern Area Laboratory Services Microbiology, NSW Health Pathology, Sydney, NSW, Australia; School of Medical Sciences, Biotechnology and Biomolecular Sciences, Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| | - Elizabeth A Davis
- Telethon Institute for Child Health Research, Centre for Child Health Research, University of Western Australia, Perth, WA, Australia
| | - Mark Harris
- The University of Queensland Diamantina Institute, Faculty of Medicine, University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia; Queensland Children's Hospital, South Brisbane, QLD, Australia
| | - Georgia Soldatos
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Melbourne and Diabetes and Vascular Medicine Unit, Monash Health, Melbourne, VIC, Australia
| | - Peter G Colman
- Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - John M Wentworth
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia; Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Aveni Haynes
- Telethon Institute for Child Health Research, Centre for Child Health Research, University of Western Australia, Perth, WA, Australia
| | - Grant Morahan
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Richard O Sinnott
- Melbourne eResearch Group, School of Computing and Information Services, University of Melbourne, Melbourne, VIC, Australia
| | - Anthony T Papenfuss
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; Department of Medical Biology and School of Mathematics and Statistics, University of Melbourne, Melbourne, VIC, Australia; Bioinformatics and Cancer Genomics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Jennifer J Couper
- The University of Adelaide, Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia; Women's and Children's Hospital, Adelaide, SA, Australia
| | - Leonard C Harrison
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
12
|
YEHIA HM, EL-KHADRAGY MF, Al-MASOUD AH, RAMADAN EM, EL-DIN MFS. Killer yeast isolated from some foods and its biological activity. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.119721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Giometto A, Nelson DR, Murray AW. Antagonism between killer yeast strains as an experimental model for biological nucleation dynamics. eLife 2021; 10:e62932. [PMID: 34866571 PMCID: PMC8730724 DOI: 10.7554/elife.62932] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
Antagonistic interactions are widespread in the microbial world and affect microbial evolutionary dynamics. Natural microbial communities often display spatial structure, which affects biological interactions, but much of what we know about microbial antagonism comes from laboratory studies of well-mixed communities. To overcome this limitation, we manipulated two killer strains of the budding yeast Saccharomyces cerevisiae, expressing different toxins, to independently control the rate at which they released their toxins. We developed mathematical models that predict the experimental dynamics of competition between toxin-producing strains in both well-mixed and spatially structured populations. In both situations, we experimentally verified theory's prediction that a stronger antagonist can invade a weaker one only if the initial invading population exceeds a critical frequency or size. Finally, we found that toxin-resistant cells and weaker killers arose in spatially structured competitions between toxin-producing strains, suggesting that adaptive evolution can affect the outcome of microbial antagonism in spatial settings.
Collapse
Affiliation(s)
- Andrea Giometto
- School of Civil and Environmental Engineering, Cornell UniversityIthacaUnited States
- Department of Physics, Harvard UniversityCambridgeUnited States
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - David R Nelson
- Department of Physics, Harvard UniversityCambridgeUnited States
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
- John A Paulson School of Engineering and Applied Sciences, Harvard UniversityCambridgeUnited States
| | - Andrew W Murray
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| |
Collapse
|
14
|
Hicks RH, Moreno-Beltrán M, Gore-Lloyd D, Chuck CJ, Henk DA. The Oleaginous Yeast Metschnikowia pulcherrima Displays Killer Activity against Avian-Derived Pathogenic Bacteria. BIOLOGY 2021; 10:biology10121227. [PMID: 34943142 PMCID: PMC8698481 DOI: 10.3390/biology10121227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/11/2021] [Accepted: 11/19/2021] [Indexed: 02/07/2023]
Abstract
Simple Summary Pathogenic bacteria in poultry and the widespread use of antibiotics to manage them are costly in terms of production, environmental risk and human health. Probiotic and other low-cost, non-antibiotic treatments offer attractive alternatives to antibiotic applications, but relatively few of these options exist. In this research, we investigated the potential of an otherwise-useful industrial yeast, Metschnikowia pulcherrima, for the active suppression of poultry pathogenic bacteria. We tested multiple strains of yeast against several important bacterial pathogens and found that the more inhibitory strains of yeast supressed bacterial growth and actively killed the most recalcitrant bacteria. Less aggressive yeast strains could increase the growth of some bacterial strains in some environments. The yeast produced novel molecules in response to the presence of the bacteria and we identified several potential mechanisms by which the yeast inhibited or killed bacteria. Together, these results point towards a useful application of a novel yeast for enhanced, antibiotic-free pathogen control. Abstract Metschnikowia pulcherrima is a non-conventional yeast with potential to be used in biotechnological processes, especially those involving low-cost feedstock exploitation and biocontrol applications. The combination of traits that supports these industrial applications in M. pulcherrima also makes it an attractive option to study in the context of livestock health. In this study, we examined the specific interactions between M. pulcherrima and multiple avian pathogenic bacteria. We tested individual bacteria–yeast interactions and bacterial combinations in both solid and liquid media and in variable nutrient environments. Across multiple isolates of M. pulcherrima, we observed different levels of antimicrobial activity, varying from supporting the growth of competing bacteria through suppression and bacterial killing, and we found that these responses varied depending on the bacterial strains and media. We identified multiple molecular routes, including proteins produced by M. pulcherrima strains, that acted to control these microbial interactions. Furthermore, protein screening revealed that M. pulcherrima strains were induced to produce proteins specifically when exposed to bacterial strains, suggesting that fine-tuned mechanisms allow M. pulcherrima to function as a potential lynchpin in a microbial community.
Collapse
Affiliation(s)
- Robert H. Hicks
- Milner Centre for Evolution, University of Bath, Bath BA2 7AY, UK; (R.H.H.); (M.M.-B.); (D.G.-L.)
| | - Mauro Moreno-Beltrán
- Milner Centre for Evolution, University of Bath, Bath BA2 7AY, UK; (R.H.H.); (M.M.-B.); (D.G.-L.)
| | - Deborah Gore-Lloyd
- Milner Centre for Evolution, University of Bath, Bath BA2 7AY, UK; (R.H.H.); (M.M.-B.); (D.G.-L.)
| | | | - Daniel A. Henk
- Milner Centre for Evolution, University of Bath, Bath BA2 7AY, UK; (R.H.H.); (M.M.-B.); (D.G.-L.)
- Correspondence:
| |
Collapse
|
15
|
Ferraz P, Brandão RL, Cássio F, Lucas C. Moniliophthora perniciosa, the Causal Agent of Cacao Witches' Broom Disease Is Killed in vitro by Saccharomyces cerevisiae and Wickerhamomyces anomalus Yeasts. Front Microbiol 2021; 12:706675. [PMID: 34630345 PMCID: PMC8493218 DOI: 10.3389/fmicb.2021.706675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/25/2021] [Indexed: 01/12/2023] Open
Abstract
Cacao plantations from South America have been afflicted with the severe fungal disease known as Witches’ Broom Disease (WBD), caused by the basidiomycete Moniliophthora perniciosa. Yeasts are increasingly recognized as good fungal biocides, although their application is still mostly restricted to the postharvest control of plant and fruit decay. Their possible utilization in the field, in a preharvest phase, is nevertheless promising, particularly if the strains are locally adapted and evolved and if they belong to species considered safe for man and the environment. In this work, a group of yeast strains originating from sugarcane-based fermentative processes in Brazil, the cacao-producing country where the disease is most severe, were tested for their ability to antagonize M. perniciosa in vitro. Wickerhamomyces anomalus LBCM1105 and Saccharomyces cerevisiae strains LBCM1112 from spontaneous fermentations used to produce cachaça, and PE2 widely used in Brazil in the industrial production of bioethanol, efficiently antagonized six strains of M. perniciosa, originating from several South American countries. The two fastest growing fungal strains, both originating from Brazil, were further used to assess the mechanisms underlying the yeasts’ antagonism. Yeasts were able to inhibit fungal growth and kill the fungus at three different temperatures, under starvation, at different culture stages, or using an inoculum from old yeast cultures. Moreover, SEM analysis revealed that W. anomalus and S. cerevisiae PE2 cluster and adhere to the hyphae, push their surface, and fuse to them, ultimately draining the cells. This behavior concurs with that classified as necrotrophic parasitism/mycoparasitism. In particular, W. anomalus within the adhered clusters appear to be ligated to each other through roundish groups of fimbriae-like structures filled with bundles of microtubule-sized formations, which appear to close after cells detach, leaving a scar. SEM also revealed the formation of tube-like structures apparently connecting yeast to hypha. This evidence suggests W. anomalus cells form a network of yeast cells connecting with each other and with hyphae, supporting a possible cooperative collective killing and feeding strategy. The present results provide an initial step toward the formulation of a new eco-friendly and effective alternative for controlling cacao WBD using live yeast biocides.
Collapse
Affiliation(s)
- Pedro Ferraz
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho-Campus de Gualtar, Braga, Portugal.,Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho-Campus de Gualtar, Braga, Portugal
| | - Rogelio Lopes Brandão
- Nucleus of Research in Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Fernanda Cássio
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho-Campus de Gualtar, Braga, Portugal.,Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho-Campus de Gualtar, Braga, Portugal
| | - Cândida Lucas
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho-Campus de Gualtar, Braga, Portugal.,Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho-Campus de Gualtar, Braga, Portugal
| |
Collapse
|
16
|
Wickerhamomyces Yeast Killer Toxins' Medical Applications. Toxins (Basel) 2021; 13:toxins13090655. [PMID: 34564659 PMCID: PMC8470119 DOI: 10.3390/toxins13090655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022] Open
Abstract
Possible implications and applications of the yeast killer phenomenon in the fight against infectious diseases are reviewed, with particular reference to some wide-spectrum killer toxins (KTs) produced by Wickerhamomyces anomalus and other related species. A perspective on the applications of these KTs in the medical field is provided considering (1) a direct use of killer strains, in particular in the symbiotic control of arthropod-borne diseases; (2) a direct use of KTs as experimental therapeutic agents; (3) the production, through the idiotypic network, of immunological derivatives of KTs and their use as potential anti-infective therapeutics. Studies on immunological derivatives of KTs in the context of vaccine development are also described.
Collapse
|
17
|
Bizarria R, Pagnocca FC, Rodrigues A. Yeasts in the attine ant-fungus mutualism: Diversity, functional roles, and putative biotechnological applications. Yeast 2021; 39:25-39. [PMID: 34473375 DOI: 10.1002/yea.3667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/20/2021] [Accepted: 08/30/2021] [Indexed: 01/01/2023] Open
Abstract
Insects interact with a wide variety of yeasts, often providing a suitable substrate for their growth. Some yeast-insect interactions are tractable models for understanding the relationships between the symbionts. Attine ants are prominent insects in the Neotropics and have performed an ancient fungiculture of mutualistic basidiomycete fungi for more than 55-65 million years. Yeasts gain access to this sophisticated mutualism, prompting diversity, ecological, and biotechnological studies in this environment. We review half a century research in this field, surveying for recurrent yeast taxa and their putative ecological roles in this environment. We found that previous studies mainly covered the yeast diversity from a small fraction of attine ants, being Saccharomycetales, Tremellales, and Trichosporonales as the most frequent yeast or yeast-like orders found. Apiotrichum, Aureobasidium, Candida, Cutaneotrichosporon, Debaryomyces, Meyerozyma, Papiliotrema, Rhodotorula, Trichomonascus, and Trichosporon are the most frequent recovered genera. On the other hand, studies of yeasts' ecological roles on attine ant-fungus mutualism only tapped the tip of the iceberg. Previous established hypotheses in the literature cover the production of lignocellulosic enzymes, chemical detoxification, and fungus garden protection. Some of these roles have parallels in biotechnological processes. In conclusion, the attine ant environment has a hidden potential for studying yeast biodiversity, ecology, and biotechnology, which has been particularly unexplored considering the vast diversity of fungus-growing ants.
Collapse
Affiliation(s)
- Rodolfo Bizarria
- Center for the Study of Social Insects, São Paulo State University (UNESP), Rio Claro, Brazil.,Department of General and Applied Biology, São Paulo State University (UNESP), Rio Claro, Brazil
| | | | - Andre Rodrigues
- Center for the Study of Social Insects, São Paulo State University (UNESP), Rio Claro, Brazil.,Department of General and Applied Biology, São Paulo State University (UNESP), Rio Claro, Brazil
| |
Collapse
|
18
|
Debonne E, Meuninck V, Vroman A, Eeckhout M. Influence of environmental growth conditions on chalk yeasts causing bread spoilage. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Boynton PJ, Wloch‐Salamon D, Landermann D, Stukenbrock EH. Forest Saccharomyces paradoxus are robust to seasonal biotic and abiotic changes. Ecol Evol 2021; 11:6604-6619. [PMID: 34141244 PMCID: PMC8207440 DOI: 10.1002/ece3.7515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/25/2021] [Accepted: 03/16/2021] [Indexed: 01/02/2023] Open
Abstract
Microorganisms are famous for adapting quickly to new environments. However, most evidence for rapid microbial adaptation comes from laboratory experiments or domesticated environments, and it is unclear how rates of adaptation scale from human-influenced environments to the great diversity of wild microorganisms. We examined potential monthly-scale selective pressures in the model forest yeast Saccharomyces paradoxus. Contrary to expectations of seasonal adaptation, the S. paradoxus population was stable over four seasons in the face of abiotic and biotic environmental changes. While the S. paradoxus population was diverse, including 41 unique genotypes among 192 sampled isolates, there was no correlation between S. paradoxus genotypes and seasonal environments. Consistent with observations from other S. paradoxus populations, the forest population was highly clonal and inbred. This lack of recombination, paired with population stability, implies that selection is not acting on the forest S. paradoxus population on a seasonal timescale. Saccharomyces paradoxus may instead have evolved generalism or phenotypic plasticity with regard to seasonal environmental changes long ago. Similarly, while the forest population included diversity among phenotypes related to intraspecific interference competition, there was no evidence for active coevolution among these phenotypes. At least ten percent of the forest S. paradoxus individuals produced "killer toxins," which kill sensitive Saccharomyces cells, but the presence of a toxin-producing isolate did not predict resistance to the toxin among nearby isolates. How forest yeasts acclimate to changing environments remains an open question, and future studies should investigate the physiological responses that allow microbial cells to cope with environmental fluctuations in their native habitats.
Collapse
Affiliation(s)
- Primrose J. Boynton
- Biology DepartmentWheaton CollegeNortonMAUSA
- Environmental Genomics Research GroupMax‐Planck Institute for Evolutionary BiologyPlönGermany
| | - Dominika Wloch‐Salamon
- Faculty of BiologyInstitute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - Doreen Landermann
- Environmental Genomics Research GroupMax‐Planck Institute for Evolutionary BiologyPlönGermany
| | - Eva H. Stukenbrock
- Environmental Genomics Research GroupMax‐Planck Institute for Evolutionary BiologyPlönGermany
- Botanical InstituteChristian‐Albrechts UniversitätKielGermany
| |
Collapse
|
20
|
Fernández de Ullivarri M, Bulacios GA, Navarro SA, Lanza L, Mendoza LM, Chalón MC. The killer yeast Wickerhamomyces anomalus Cf20 exerts a broad anti-Candida activity through the production of killer toxins and volatile compounds. Med Mycol 2021; 58:1102-1113. [PMID: 32196549 DOI: 10.1093/mmy/myaa011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/07/2020] [Accepted: 03/04/2020] [Indexed: 01/02/2023] Open
Abstract
Candidiasis is a group of opportunistic infections caused by yeast of the genus Candida. The appearance of drug resistance and the adverse effects of current antifungal therapies require the search for new, more efficient therapeutic alternatives. Killer yeasts have aroused as suitable candidates for mining new antifungal compounds. Killer strains secrete antimicrobial proteins named killer toxins, with promissory antifungal activity. Here we found that the killer yeast Wickerhamomyces anomalus Cf20 and its cell-free supernatant (CFS) inhibited six pathogenic strains and one collection strain of Candida spp. The inhibition is mainly mediated by secreted killer toxins and, to a lesser extent, by volatile compounds such as acetic acid and ethyl acetate. A new large killer toxin (>180 kDa) was purified, which exerted 70-74% of the total CFS anti-Candida activity, and the previously described glucanase KTCf20 was inhibitory in a lesser extent as well. In addition, we demonstrated that Cf20 possesses the genes encoding for the β-1,3-glucanases WaExg1 and WaExg2, proteins with extensively studied antifungal activity, particularly WaExg2. Finally, the 10-fold concentrated CFS exerted a high candidacidal effect at 37°C, completely inhibiting the fungal growth, although the nonconcentrated CFS (RCF 1) had very limited fungistatic activity at this temperature. In conclusion, W. anomalus Cf20 produces different low and high molecular weight compounds with anti-Candida activity that could be used to design new therapies for candidiasis and as a source for novel antimicrobial compounds as well.
Collapse
Affiliation(s)
- Miguel Fernández de Ullivarri
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) e Instituto de Química Biológica "Dr. Bernabé Bloj," Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, San Miguel de Tucumán. Argentina
| | - Gabriela A Bulacios
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) e Instituto de Química Biológica "Dr. Bernabé Bloj," Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, San Miguel de Tucumán. Argentina
| | - Silvia A Navarro
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) e Instituto de Química Biológica "Dr. Bernabé Bloj," Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, San Miguel de Tucumán. Argentina
| | - Lucía Lanza
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) e Instituto de Química Biológica "Dr. Bernabé Bloj," Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, San Miguel de Tucumán. Argentina
| | - Lucia M Mendoza
- Centro de referencia para lactobacilos (CERELA, CONICET), Chacabuco 145, 4000, Tucumán, Argentina
| | - Miriam C Chalón
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) e Instituto de Química Biológica "Dr. Bernabé Bloj," Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, San Miguel de Tucumán. Argentina
| |
Collapse
|
21
|
Brudzynski K. Honey as an Ecological Reservoir of Antibacterial Compounds Produced by Antagonistic Microbial Interactions in Plant Nectars, Honey and Honey Bee. Antibiotics (Basel) 2021; 10:551. [PMID: 34065141 PMCID: PMC8151657 DOI: 10.3390/antibiotics10050551] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 04/08/2023] Open
Abstract
The fundamental feature of "active honeys" is the presence and concentration of antibacterial compounds. Currently identified compounds and factors have been described in several review papers without broader interpretation or links to the processes for their formation. In this review, we indicate that the dynamic, antagonistic/competitive microbe-microbe and microbe-host interactions are the main source of antibacterial compounds in honey. The microbial colonization of nectar, bees and honey is at the center of these interactions that in consequence produce a range of defence molecules in each of these niches. The products of the microbial interference and exploitive competitions include antimicrobial peptides, antibiotics, surfactants, inhibitors of biofilm formation and quorum sensing. Their accumulation in honey by horizontal transfer might explain honey broad-spectrum, pleiotropic, antibacterial activity. We conclude that honey is an ecological reservoir of antibacterial compounds produced by antagonistic microbial interactions in plant nectars, honey and honey bee. Thus, refocusing research on secondary metabolites resulting from these microbial interactions might lead to discovery of new antibacterial compounds in honey that are target-specific, i.e., acting on specific cellular components or inhibiting the essential cellular function.
Collapse
Affiliation(s)
- Katrina Brudzynski
- Department of Drug Discovery, Bee-Biomedicals Inc., St. Catharines, ON L2T 3T4, Canada;
- Formerly Department of Biological Sciences, Brock University, St. Catharines, ON L2T 3T4, Canada
| |
Collapse
|
22
|
Chiba Y, Tomaru Y, Shimabukuro H, Kimura K, Hirai M, Takaki Y, Hagiwara D, Nunoura T, Urayama SI. Viral RNA Genomes Identified from Marine Macroalgae and a Diatom. Microbes Environ 2021; 35. [PMID: 32554943 PMCID: PMC7511793 DOI: 10.1264/jsme2.me20016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Protists provide insights into the diversity and function of RNA viruses in marine systems. Among them, marine macroalgae are good targets for RNA virome analyses because they have a sufficient biomass in nature. However, RNA viruses in macroalgae have not yet been examined in detail, and only partial genome sequences have been reported for the majority of RNA viruses. Therefore, to obtain further insights into the distribution and diversity of RNA viruses associated with marine protists, we herein examined RNA viruses in macroalgae and a diatom. We report the putative complete genome sequences of six novel RNA viruses from two marine macroalgae and one diatom holobiont. Four viruses were not classified into established viral genera or families. Furthermore, a virus classified into Totiviridae showed a genome structure that has not yet been reported in this family. These results suggest that a number of distinct RNA viruses are widespread in a broad range of protists.
Collapse
Affiliation(s)
- Yuto Chiba
- Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), Department of Life and Environmental Sciences, University of Tsukuba.,Faculty of Science, International College of Arts and Science, Yokohama City University
| | - Yuji Tomaru
- Japan Fisheries Research and Education Agency, National Research Institute of Fisheries and Environment of the Inland Sea
| | - Hiromori Shimabukuro
- Japan Fisheries Research and Education Agency, National Research Institute of Fisheries and Environment of the Inland Sea
| | | | - Miho Hirai
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, JAMSTEC
| | - Yoshihiro Takaki
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, JAMSTEC
| | - Daisuke Hagiwara
- Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), Department of Life and Environmental Sciences, University of Tsukuba.,Microbiology Research Center for Sustainability (MiCS), University of Tsukuba
| | - Takuro Nunoura
- Research Center for Bioscience and Nanoscience (CeBN), Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
| | - Syun-Ichi Urayama
- Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), Department of Life and Environmental Sciences, University of Tsukuba.,Microbiology Research Center for Sustainability (MiCS), University of Tsukuba.,Research Center for Bioscience and Nanoscience (CeBN), Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
| |
Collapse
|
23
|
Büyüksırıt Bedir T, Kuleaşan H. A natural approach, the use of killer toxin produced by Metschnikowia pulcherrima in fresh ground beef patties for shelf life extention. Int J Food Microbiol 2021; 345:109154. [PMID: 33735783 DOI: 10.1016/j.ijfoodmicro.2021.109154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 01/03/2023]
Abstract
A novel killer toxin produced by yeast Metschnikowia pulcherrima was purified and added into ready to cook meatballs to enhance their microbial safety and extension of their shelf life. The agent was added into ready to cook meatballs at two different concentrations (1%-K1 and 2%-K2). The results of those two groups were compared to the control group (K0) lacking the killer toxin. Physical, chemical and microbiological analyses were carried out in meat dough and all analyses were repeated at two day intervals during 10 day-storage at +4 °C. Addition of inhibitor compound in meat dough decreased the numbers of total aerobic mesophillic bacteria, yeast and molds and lactic acid bacteria. Staphylococci/Micrococci, coliform bacteria and total psychrotrophic bacterial counts of the samples were determined as well. Results showed that all indicators of microbial deterioration were found to be higher in K1 group than K2 group, revealing that there was an inverse correlation between the concentration of killer toxin and the number of microorganisms causing spoilage. In addition to 1 log decrease in the number of microorganisms in toxin added groups, the high TBARS values of the control group also showed the effectiveness of the toxin. Toxic effect analysis results showed that the killer toxin had no toxic effect on L929 mouse fibroblast cells after 24h exposure.
Collapse
Affiliation(s)
- Tuba Büyüksırıt Bedir
- Department of Food Engineering, Faculty of Engineering, Hitit University, Çorum, Turkey.
| | - Hakan Kuleaşan
- Department of Food Engineering, Faculty of Engineering, Süleyman Demirel University, Isparta, Turkey
| |
Collapse
|
24
|
Comitini F, Agarbati A, Canonico L, Galli E, Ciani M. Purification and Characterization of WA18, a New Mycocin Produced by Wickerhamomyces anomalus Active in Wine Against Brettanomyces bruxellensis Spoilage Yeasts. Microorganisms 2020; 9:microorganisms9010056. [PMID: 33379214 PMCID: PMC7824415 DOI: 10.3390/microorganisms9010056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 01/02/2023] Open
Abstract
Wickerhamomyces anomalus strain 18, isolated from a natural underground cheese ripening pit, secretes a mycocin named WA18 that inhibits wine spoilage yeasts belonging to Brettanomyces bruxellensis species, with a broad-spectrum of activity. WA18 was purified, and the purified protein was digested with specific restriction enzymes (lysine K and arginine R cut sites). The LC-MS and LC-MS/MS analysis after enzymatic digestions revealed a molecular weight of 31 kDa. Bioinformatics processing and database research of digested pure killer protein showed 99% identity with a UDP-glycosyltransferase protein. Competitive inhibition assay of killer activity by cell-wall polysaccharides suggests that branched glucans represent the first receptor site of the toxin on the envelope of the sensitive target. The WA18 partially purified crude extract (PPCE) showed high stability of antimicrobial activity at the physicochemical conditions suitable for the winemaking process. Indeed, in wine WA18 was able to counteract B. bruxellensis and control the production of ethyl phenols. In addition, the strain WA18 was compatible with Saccharomyces cerevisiae in co-culture conditions with a potential application together with commercial starter cultures. These data suggest that WA18 mycocin is a promising biocontrol agent against spoilage yeasts in winemaking, particularly during wine storage.
Collapse
|
25
|
Díaz MA, Pereyra MM, Picón-Montenegro E, Meinhardt F, Dib JR. Killer Yeasts for the Biological Control of Postharvest Fungal Crop Diseases. Microorganisms 2020; 8:microorganisms8111680. [PMID: 33138117 PMCID: PMC7693540 DOI: 10.3390/microorganisms8111680] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 01/14/2023] Open
Abstract
Every year and all over the world the fungal decay of fresh fruit and vegetables frequently generates substantial economic losses. Synthetic fungicides, traditionally used to efficiently combat the putrefactive agents, emerged, however, as the cause of environmental and human health issues. Given the need to seek for alternatives, several biological approaches were followed, among which those with killer yeasts stand out. Here, after the elaboration of the complex of problems, we explain the hitherto known yeast killer mechanisms and present the implementation of yeasts displaying such phenotype in biocontrol strategies for pre- or postharvest treatments to be aimed at combating postharvest fungal decay in numerous agricultural products.
Collapse
Affiliation(s)
- Mariana Andrea Díaz
- Planta Piloto de Procesos Industriales Microbiológicos–CONICET, Av. Belgrano y Pje. Caseros, Tucumán 4000, Argentina; (M.A.D.); (M.M.P.); (E.P.-M.)
| | - Martina María Pereyra
- Planta Piloto de Procesos Industriales Microbiológicos–CONICET, Av. Belgrano y Pje. Caseros, Tucumán 4000, Argentina; (M.A.D.); (M.M.P.); (E.P.-M.)
| | - Ernesto Picón-Montenegro
- Planta Piloto de Procesos Industriales Microbiológicos–CONICET, Av. Belgrano y Pje. Caseros, Tucumán 4000, Argentina; (M.A.D.); (M.M.P.); (E.P.-M.)
| | - Friedhelm Meinhardt
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms Universität Münster, Corrensstr. 3, 48149 Münster, Germany
- Correspondence: (F.M.); (J.R.D.); Tel.: +49-251-83-39819 (F.M.); +54-381-4344888 (J.R.D.)
| | - Julián Rafael Dib
- Planta Piloto de Procesos Industriales Microbiológicos–CONICET, Av. Belgrano y Pje. Caseros, Tucumán 4000, Argentina; (M.A.D.); (M.M.P.); (E.P.-M.)
- Instituto de Microbiología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, Tucumán 4000, Argentina
- Correspondence: (F.M.); (J.R.D.); Tel.: +49-251-83-39819 (F.M.); +54-381-4344888 (J.R.D.)
| |
Collapse
|
26
|
A Novel Virus Alters Gene Expression and Vacuolar Morphology in Malassezia Cells and Induces a TLR3-Mediated Inflammatory Immune Response. mBio 2020; 11:mBio.01521-20. [PMID: 32873759 PMCID: PMC7468201 DOI: 10.1128/mbio.01521-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Malassezia is the most dominant fungal genus on the human skin surface and is associated with various skin diseases including dandruff and seborrheic dermatitis. Among Malassezia species, Malassezia restricta is the most widely observed species on the human skin. In the current study, we identified a novel dsRNA virus, named MrV40, in M. restricta and characterized the sequence and structure of the viral genome along with an independent satellite dsRNA viral segment. Moreover, expression of genes involved in ribosomal synthesis and programmed cell death was altered, indicating that virus infection affected the physiology of the fungal host cells. Our data also showed that the viral nucleic acid from MrV40 induces a TLR3-mediated inflammatory immune response in bone marrow-derived dendritic cells, indicating that a viral element likely contributes to the pathogenicity of Malassezia. This is the first study to identify and characterize a novel mycovirus in Malassezia. Most fungal viruses have been identified in plant pathogens, whereas the presence of viral particles in human-pathogenic fungi is less well studied. In the present study, we observed extrachromosomal double-stranded RNA (dsRNA) segments in various clinical isolates of Malassezia species. Malassezia is the most dominant fungal genus on the human skin surface, and species in this group are considered etiological factors of various skin diseases including dandruff, seborrheic dermatitis, and atopic dermatitis. We identified novel dsRNA segments, and our sequencing results revealed that the virus, named MrV40, belongs to the Totiviridae family and contains an additional satellite dsRNA segment encoding a novel protein. The transcriptome of virus-infected Malassezia restricta cells was compared to that of virus-cured cells, and the results showed that transcripts involved in ribosomal biosynthesis were downregulated and those involved in energy production and programmed cell death were upregulated. Moreover, transmission electron microscopy revealed significantly larger vacuoles in virus-infected M. restricta cells, indicating that MrV40 infection dramatically altered M. restricta physiology. Our analysis also revealed that viral nucleic acid from MrV40 induced a TLR3 (Toll-like receptor 3)-mediated inflammatory immune response in bone marrow-derived dendritic cells, suggesting that a viral element contributes to the pathogenicity of Malassezia.
Collapse
|
27
|
Junges DSB, Delabeneta MF, Rosseto LRB, Nascimento BL, Paris AP, Persel C, Loth EA, Simão RCG, Menolli RA, Paula CR, Gandra RF. Antibiotic Activity of Wickerhamomyces anomalus Mycocins on Multidrug-Resistant Acinetobacter baumannii. MICROBIAL ECOLOGY 2020; 80:278-285. [PMID: 32072187 DOI: 10.1007/s00248-020-01495-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
To evaluate the susceptibility of multidrug-resistant Acinetobacter baumannii to mycocins produced by Wickerhamomyces anomalus and to verify the cytotoxicity of these compounds. Three culture supernatants of W. anomalus (WA40, WA45, and WA92), containing mycocins (WA40M1, WA45M2, and WA92M3), were tested on A. baumannii using broth microdilution methods, solid medium tests, and cytotoxicity tests in human erythrocytes and in Artemia saline Leach. W. anomalus was able to produce high antimicrobial mycocins, as even at high dilutions, they inhibited A. baumannii. In a solid medium, it was possible to observe the inhibition of A. baumannii, caused by the diffusion of mycocins between agar. Finally, the three supernatants were not cytotoxic when tested on human erythrocytes and Artemia salina. According to the evidence in this study, the mycocins of W. anomalus have been effective and could be used in the development of new antimicrobial substances.
Collapse
Affiliation(s)
- Daniele S B Junges
- Western Paraná University Hospital, Western Paraná State University, Cascavel, Paraná, 85806-470, Brazil
| | - Mateus F Delabeneta
- Western Paraná University Hospital, Western Paraná State University, Cascavel, Paraná, 85806-470, Brazil
| | - Lana Rubia B Rosseto
- Western Paraná University Hospital, Western Paraná State University, Cascavel, Paraná, 85806-470, Brazil
| | - Bruna L Nascimento
- Western Paraná University Hospital, Western Paraná State University, Cascavel, Paraná, 85806-470, Brazil
| | - Ana Paula Paris
- Western Paraná University Hospital, Western Paraná State University, Cascavel, Paraná, 85806-470, Brazil
| | - Cristiane Persel
- Western Paraná University Hospital, Western Paraná State University, Cascavel, Paraná, 85806-470, Brazil
| | - Eduardo A Loth
- Western Paraná University Hospital, Western Paraná State University, Cascavel, Paraná, 85806-470, Brazil
| | - Rita C G Simão
- Center of Medical and Pharmaceutical Sciences, Western Paraná State University, Cascavel, Paraná, 85819-110, Brazil
| | - Rafael A Menolli
- Center of Medical and Pharmaceutical Sciences, Western Paraná State University, Cascavel, Paraná, 85819-110, Brazil
| | - Claudete R Paula
- Faculty of Odontology, University of São Paulo, Butantã, São Paulo, 05508-000, Brazil
| | - Rinaldo F Gandra
- Western Paraná University Hospital, Western Paraná State University, Cascavel, Paraná, 85806-470, Brazil.
| |
Collapse
|
28
|
Sheppard S, Dikicioglu D. Dynamic modelling of the killing mechanism of action by virus-infected yeasts. J R Soc Interface 2020; 16:20190064. [PMID: 30890050 DOI: 10.1098/rsif.2019.0064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Killer yeasts are microorganisms, which can produce and secrete proteinaceous toxins, a characteristic gained via infection by a virus. These toxins are able to kill sensitive cells of the same or a related species. From a biotechnological perspective, killer yeasts are beneficial due to their antifungal/antimicrobial activity, but also regarded as problematic for large-scale fermentation processes, whereby those yeasts would kill starter cultures species and lead to stuck fermentations. Here, we propose a mechanistic model of the toxin-binding kinetics pertaining to the killer population coupled with the toxin-induced death kinetics of the sensitive population to study toxic action. The dynamic model captured the transient toxic activity starting from the introduction of killer cells into the culture at the time of inoculation through to induced cell death. The kinetics of K1/K2 activity via its primary pathway of toxicity was 5.5 times faster than its activity at low concentration inducing the apoptotic pathway in sensitive cells. Conversely, we showed that the primary pathway for K28 was approximately three times slower than its equivalent apoptotic pathway, indicating the particular relevance of K28 in biotechnological applications where the toxin concentration is rarely above those limits to trigger the primary pathway of killer activity.
Collapse
Affiliation(s)
- Sean Sheppard
- 1 St John's College , St John's Street, Cambridge , UK
| | - Duygu Dikicioglu
- 2 Department of Chemical Engineering and Biotechnology, University of Cambridge , Cambridge , UK
| |
Collapse
|
29
|
Merchán AV, Benito MJ, Galván AI, Ruiz-Moyano Seco de Herrera S. Identification and selection of yeast with functional properties for future application in soft paste cheese. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109173] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Differential Impacts of Yeasts on Feeding Behavior and Development in Larval Drosophila suzukii (Diptera:Drosophilidae). Sci Rep 2019; 9:13370. [PMID: 31527678 PMCID: PMC6746873 DOI: 10.1038/s41598-019-48863-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/14/2019] [Indexed: 11/23/2022] Open
Abstract
Larval Drosophila encounter and feed on a diverse microbial community within fruit. In particular, free-living yeast microbes provide a source of dietary protein critical for development. However, successional changes to the fruit microbial community may alter host quality through impacts on relative protein content or yeast community composition. For many species of Drosophila, fitness benefits from yeast feeding vary between individual yeast species, indicating differences in yeast nutritional quality. To better understand these associations, we evaluated how five species of yeast impacted feeding preference and development in larval Drosophila suzukii. Larvae exhibited a strong attraction to the yeast Hanseniaspora uvarum in pairwise yeast feeding assays. However, larvae also performed most poorly on diets containing H. uvarum, a mismatch in preference and performance that suggests differences in yeast nutritional quality are not the primary factor driving larval feeding behavior. Together, these results demonstrate that yeast plays a critical role in D. suzukii’s ecology and that larvae may have developed specific yeast associations. Further inquiry, including systematic comparisons of Drosophila larval yeast associations more broadly, will be necessary to understand patterns of microbial resource use in larvae of D. suzukii and other frugivorous species.
Collapse
|
31
|
Tan C, Wang L, Xue Y, Lin S, Yu G, Yang S. Purification and molecular characterization of a Metschnikowia saccharicola killer toxin lethal to a crab pathogenic yeast. FEMS Microbiol Lett 2019; 365:4862471. [PMID: 29462299 DOI: 10.1093/femsle/fny038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/14/2018] [Indexed: 01/06/2023] Open
Abstract
The marine yeast strain Metschnikowia saccharicola DD21-2, isolated from sediments in the Yalu River, produces a killer toxin with a lethal effect on Metschnikowia bicuspidate strain WCY, a pathogenic yeast strain that infects crabs. In this study, the killer toxin was purified and characterized. After sequential purification, the purity of the killer toxin was increased 72.2-fold over the purity of the yeast cell culture supernatant. The molecular weight of the purified killer toxin was 47.0 kDa. The optimal pH and temperature for killing activity were 5.5°C and 16°C, respectively. The killing activity was stable over a pH range of 4.0-6.5 and temperature range of 0°C-40°C. The purified killer toxin was only effective against toxin-sensitive integral cells and had no killing effect on the protoplasts of toxin-sensitive cells. When exerting the killing effect, the toxin bind to a cell wall receptor of the treated strain, disrupted cell wall integrity and eventually caused death. The amino acid sequence identified by mass spectroscopy indicated that the purified killer toxin might be a protein kinase, but did not show β-1,3-glucanase activity, consistent with the laminarin hydrolysis results. These findings provide a basis for disease prevention and control in marine aquaculture.
Collapse
Affiliation(s)
- Chunming Tan
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, National Research and Development Center for Aquatic Product Processing, Key Laboratory of Aquatic Product Processing, Ministry of Agriculture, Guangzhou 510300, China.,College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Lin Wang
- Beihang-goertec Microelectronics Institute, Beihang Qingdao Research Institute, Qingdao 266041, China
| | - Yong Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Shuo Lin
- Department of Quality and Regulatory Affairs, Air Liquide Medical Systems, 92182 Antony CEDEX, France
| | - Gang Yu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, National Research and Development Center for Aquatic Product Processing, Key Laboratory of Aquatic Product Processing, Ministry of Agriculture, Guangzhou 510300, China
| | - Shaoling Yang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, National Research and Development Center for Aquatic Product Processing, Key Laboratory of Aquatic Product Processing, Ministry of Agriculture, Guangzhou 510300, China
| |
Collapse
|
32
|
Ulutasdemir T, Cagri‐Mehmetoglu A. Effects of edible coating containing
Williopsis saturnus
var.
saturnus
on fungal growth and aflatoxin production by
Aspergillus flavus
in peanuts. J Food Saf 2019. [DOI: 10.1111/jfs.12698] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tugce Ulutasdemir
- Department of Food Engineering, Faculty of EngineeringSakarya University Adapazarı Turkey
| | - Arzu Cagri‐Mehmetoglu
- Department of Food Engineering, Faculty of EngineeringSakarya University Adapazarı Turkey
| |
Collapse
|
33
|
Ferraz P, Cássio F, Lucas C. Potential of Yeasts as Biocontrol Agents of the Phytopathogen Causing Cacao Witches' Broom Disease: Is Microbial Warfare a Solution? Front Microbiol 2019; 10:1766. [PMID: 31417539 PMCID: PMC6685038 DOI: 10.3389/fmicb.2019.01766] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/17/2019] [Indexed: 11/13/2022] Open
Abstract
Plant diseases caused by fungal pathogens are responsible for major crop losses worldwide, with a significant socio-economic impact on the life of millions of people who depend on agriculture-exclusive economy. This is the case of the Witches’ Broom Disease (WBD) affecting cacao plant and fruit in South and Central America. The severity and extent of this disease is prospected to impact the growing global chocolate market in a few decades. WBD is caused by the basidiomycete fungus Moniliophthora perniciosa. The methods used to contain the fungus mainly rely on chemical fungicides, such as copper-based compounds or azoles. Not only are these highly ineffective, but also their utilization is increasingly restricted by the cacao industry, in part because it promotes fungal resistance, in part related to consumers’ health concerns and environmental awareness. Therefore, the disease is being currently tentatively controlled through phytosanitary pruning, although the full removal of infected plant material is impossible and the fungus maintains persistent inoculum in the soil, or using an endophytic fungal parasite of Moniliophthora perniciosa which production is not sustainable. The growth of Moniliophthora perniciosa was reported as being antagonized in vitro by some yeasts, which suggests that they could be used as biological control agents, suppressing the fungus multiplication and containing its spread. Concurrently, some yeast-based products are used in the protection of fruits from postharvest fungal spoilage, and the extension of diverse food products shelf-life. These successful applications suggest that yeasts can be regarded a serious alternative also in the pre-harvest management of WBD and other fungal plant diseases. Yeasts’ GRAS (Generally Recognized as Safe) nature adds to their appropriateness for field application, not raising major ecological concerns as do the present more aggressive approaches. Importantly, mitigating WBD, in a sustainable manner, would predictably have a high socioeconomic impact, contributing to diminish poverty in the cacao-producing rural communities severely affected by the disease. This review discusses the importance/advantages and the challenges that such a strategy would have for WBD containment, and presents the available information on the molecular and cellular mechanisms underlying fungi antagonism by yeasts.
Collapse
Affiliation(s)
- Pedro Ferraz
- Institute of Science and Innovation for Bio-Sustainability, University of Minho, Braga, Portugal.,Centre of Molecular and Environmental Biology, University of Minho, Braga, Portugal
| | - Fernanda Cássio
- Institute of Science and Innovation for Bio-Sustainability, University of Minho, Braga, Portugal.,Centre of Molecular and Environmental Biology, University of Minho, Braga, Portugal
| | - Cândida Lucas
- Institute of Science and Innovation for Bio-Sustainability, University of Minho, Braga, Portugal.,Centre of Molecular and Environmental Biology, University of Minho, Braga, Portugal
| |
Collapse
|
34
|
Boynton PJ. The ecology of killer yeasts: Interference competition in natural habitats. Yeast 2019; 36:473-485. [PMID: 31050852 DOI: 10.1002/yea.3398] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 12/31/2022] Open
Abstract
Killer yeasts are ubiquitous in the environment: They have been found in diverse habitats ranging from ocean sediment to decaying cacti to insect bodies and on all continents including Antarctica. However, environmental killer yeasts are poorly studied compared with laboratory and domesticated killer yeasts. Killer yeasts secrete so-called killer toxins that inhibit nearby sensitive yeasts, and the toxins are frequently assumed to be tools for interference competition in diverse yeast communities. The diversity and ubiquity of killer yeasts imply that interference competition is crucial for shaping yeast communities. Additionally, these toxins may have ecological functions beyond use in interference competition. This review introduces readers to killer yeasts in environmental systems, with a focus on what is and is not known about their ecology and evolution. It also explores how results from experimental killer systems in laboratories can be extended to understand how competitive strategies shape yeast communities in nature. Overall, killer yeasts are likely to occur everywhere yeasts are found, and the killer phenotype has the potential to radically shape yeast diversity in nature.
Collapse
Affiliation(s)
- Primrose J Boynton
- Max-Planck Institute for Evolutionary Biology, Environmental Genomics Group, Plön, Germany
| |
Collapse
|
35
|
Gier S, Simon M, Nordström K, Khalifa S, Schulz MH, Schmitt MJ, Breinig F. Transcriptome Kinetics of Saccharomyces cerevisiae in Response to Viral Killer Toxin K1. Front Microbiol 2019; 10:1102. [PMID: 31156606 PMCID: PMC6531845 DOI: 10.3389/fmicb.2019.01102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/30/2019] [Indexed: 11/29/2022] Open
Abstract
The K1 A/B toxin secreted by virus-infected Saccharomyces cerevisiae strains kills sensitive cells via disturbance of cytoplasmic membrane functions. Despite decades of research, the mechanisms underlying K1 toxicity and immunity have not been elucidated yet. In a novel approach, this study aimed to characterize transcriptome changes in K1-treated sensitive yeast cells in a time-dependent manner. Global transcriptional profiling revealed substantial cellular adaptations in target cells resulting in 1,189 differentially expressed genes in total. Killer toxin K1 induced oxidative, cell wall and hyperosmotic stress responses as well as rapid down-regulation of transcription and translation. Essential pathways regulating energy metabolism were also significantly affected by the toxin. Remarkably, a futile cycle of the osmolytes trehalose and glycogen was identified probably representing a critical feature of K1 intoxication. In silico analysis suggested several transcription factors involved in toxin-triggered signal transduction. The identified transcriptome changes provide valuable hints to illuminate the still unknown molecular events leading to K1 toxicity and immunity implicating an evolutionarily conserved response at least initially counteracting ionophoric toxin action.
Collapse
Affiliation(s)
- Stefanie Gier
- Department of Molecular and Cell Biology, Saarland University, Saarbrücken, Germany.,Center of Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany
| | - Martin Simon
- Center of Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany.,Molecular Cell Biology and Microbiology, University of Wuppertal, Wuppertal, Germany.,Molecular Cell Dynamics, Saarland University, Saarbrücken, Germany
| | - Karl Nordström
- Center of Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany.,Department of Genetics/Epigenetics, Saarland University, Saarbrücken, Germany
| | - Salem Khalifa
- Cluster of Excellence "Multimodal Computing and Interaction", Max Planck Institute for Informatics, Saarland University, Saarbrücken, Germany
| | - Marcel H Schulz
- Cluster of Excellence "Multimodal Computing and Interaction", Max Planck Institute for Informatics, Saarland University, Saarbrücken, Germany
| | - Manfred J Schmitt
- Department of Molecular and Cell Biology, Saarland University, Saarbrücken, Germany.,Center of Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany
| | - Frank Breinig
- Department of Molecular and Cell Biology, Saarland University, Saarbrücken, Germany.,Center of Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany
| |
Collapse
|
36
|
Mannazzu I, Domizio P, Carboni G, Zara S, Zara G, Comitini F, Budroni M, Ciani M. Yeast killer toxins: from ecological significance to application. Crit Rev Biotechnol 2019; 39:603-617. [PMID: 31023102 DOI: 10.1080/07388551.2019.1601679] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Killer toxins are proteins that are often glycosylated and bind to specific receptors on the surface of their target microorganism, which is then killed through a target-specific mode of action. The killer phenotype is widespread among yeast and about 100 yeast killer species have been described to date. The spectrum of action of the killer toxins they produce targets spoilage and pathogenic microorganisms. Thus, they have potential as natural antimicrobials in food and for biological control of plant pathogens, as well as therapeutic agents against animal and human infections. In spite of this wide range of possible applications, their exploitation on the industrial level is still in its infancy. Here, we initially briefly report on the biodiversity of killer toxins and the ecological significance of their production. Their actual and possible applications in the agro-food industry are discussed, together with recent advances in their heterologous production and the manipulation for development of peptide-based therapeutic agents.
Collapse
Affiliation(s)
- Ilaria Mannazzu
- a Department of Agriculture , University of Sassari , Sassari , Italy
| | - Paola Domizio
- b Department of Agricultural , Food and Forestry Systems (GESAAF) , Firenze , Italy
| | - Gavino Carboni
- a Department of Agriculture , University of Sassari , Sassari , Italy
| | - Severino Zara
- a Department of Agriculture , University of Sassari , Sassari , Italy
| | - Giacomo Zara
- a Department of Agriculture , University of Sassari , Sassari , Italy
| | - Francesca Comitini
- c Department of Life and Environmental Sciences , Università Politecnica delle Marche , Ancona , Italy
| | - Marilena Budroni
- a Department of Agriculture , University of Sassari , Sassari , Italy
| | - Maurizio Ciani
- c Department of Life and Environmental Sciences , Università Politecnica delle Marche , Ancona , Italy
| |
Collapse
|
37
|
Killer toxin-like chitinases in filamentous fungi: Structure, regulation and potential roles in fungal biology. FUNGAL BIOL REV 2019. [DOI: 10.1016/j.fbr.2018.11.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
38
|
Lisanti MT, Blaiotta G, Nioi C, Moio L. Alternative Methods to SO 2 for Microbiological Stabilization of Wine. Compr Rev Food Sci Food Saf 2019; 18:455-479. [PMID: 33336947 DOI: 10.1111/1541-4337.12422] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 01/15/2023]
Abstract
The use of sulfur dioxide (SO2 ) as wine additive is able to ensure both antioxidant protection and microbiological stability. In spite of these undeniable advantages, in the last two decades the presence of SO2 in wine has raised concerns about potential adverse clinical effects in sensitive individuals. The winemaking industry has followed the general trend towards the reduction of SO2 concentrations in food, by expressing at the same time the need for alternative control methods allowing reduction or even elimination of SO2. In the light of this, research has been strongly oriented toward the study of alternatives to the use of SO2 in wine. Most of the studies have focused on methods able to replace the antimicrobial activity of SO2 . This review article gives a comprehensive overview of the current state-of-the-art about the chemical additives and the innovative physical techniques that have been proposed for this purpose. After a focus on the chemistry and properties of SO2 in wine, as well as on wine spoilage and on the conventional methods used for the microbiological stabilization of wine, recent advances on alternative methods proposed to replace the antimicrobial activity of SO2 in winemaking are presented and discussed. Even though many of the alternatives to SO2 showed good efficacy, nowadays no other physical technique or additive can deliver the efficacy and broad spectrum of action as SO2 (both antioxidant and antimicrobial), therefore the alternative methods should be considered a complement to SO2 in low-sulfite winemaking, rather than being seen as its substitutes.
Collapse
Affiliation(s)
- Maria Tiziana Lisanti
- Dipt. di Agraria -Sezione di Scienze della Vigna e del Vino, Univ. degli Studi di Napoli Federico II, viale Italia 83100 Avellino, Italy
| | - Giuseppe Blaiotta
- Dipt. di Agraria -Sezione di Scienze della Vigna e del Vino, Univ. degli Studi di Napoli Federico II, viale Italia 83100 Avellino, Italy
| | - Claudia Nioi
- Unité de recherche Œnologie EA 4577, USC 1366 INRA, Bordeaux INP, Inst. des Sciences de la Vigne et du Vin CS 50008 - 210, chemin de Leysotte - 33882 - Villenave d'Ornon cedex -France
| | - Luigi Moio
- Dipt. di Agraria -Sezione di Scienze della Vigna e del Vino, Univ. degli Studi di Napoli Federico II, viale Italia 83100 Avellino, Italy
| |
Collapse
|
39
|
Unusual relatives of the multisubunit RNA polymerase. Biochem Soc Trans 2018; 47:219-228. [PMID: 30578347 DOI: 10.1042/bst20180505] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/21/2018] [Accepted: 11/26/2018] [Indexed: 12/18/2022]
Abstract
Transcription, the first step of gene expression, is accomplished in all domains of life by the multisubunit RNA polymerase (msRNAP). Accordingly, the msRNAP is an ancient enzyme that is ubiquitous across all cellular organisms. Conserved in absolutely all msRNAPs is the catalytic magnesium-binding aspartate triad and the structural fold it is present on, the double ψ β barrel (DPBB). In-depth bioinformatics has begun to reveal a wealth of unusual proteins distantly related to msRNAP, identified due to their possession of the aspartate triad and DPBB folds. Three examples of these novel RNAPs are YonO of the Bacillus subtilis SPβ prophage, non-virion RNAP (nvRNAP) of the B. subtilis AR9 bacteriophage and ORF6 RNAP of the Kluyveromyces lactis cytoplasmic killer system. While YonO and AR9 nvRNAP are both bacteriophage enzymes, they drastically contrast. YonO is an incredibly minimal single-subunit RNAP, while AR9 nvRNAP is multisubunit bearing much more resemblance to the canonical msRNAP. ORF6 RNAP is an intermediate, given it is a single-subunit enzyme with substantial conservation with the msRNAP. Recent findings have begun to shed light on these polymerases, which have the potential to update our understanding of the mechanisms used for transcription and give new insights into the canonical msRNAP and its evolution. This mini-review serves to introduce and outline our current understanding of these three examples of novel, unusual RNAPs.
Collapse
|
40
|
Ejmal MA, Holland DJ, MacDiarmid RM, Pearson MN. The Effect of Aspergillus Thermomutatus Chrysovirus 1 on the Biology of Three Aspergillus Species. Viruses 2018; 10:E539. [PMID: 30279352 PMCID: PMC6213286 DOI: 10.3390/v10100539] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/25/2018] [Accepted: 09/29/2018] [Indexed: 12/16/2022] Open
Abstract
This study determined the effects of Aspergillus thermomutatus chrysovirus 1 (AthCV1), isolated from Aspergillus thermomutatus, on A. fumigatus, A. nidulans and A. niger. Protoplasts of virus-free isolates of A. fumigatus, A. nidulans and A. niger were transfected with purified AthCV1 particles and the phenotype, growth and sporulation of the isogenic AthCV1-free and AthCV1-infected lines assessed at 20 °C and 37 °C and gene expression data collected at 37 °C. AthCV1-free and AthCV1-infected A. fumigatus produced only conidia at both temperatures but more than ten-fold reduced compared to the AthCV1-infected line. Conidiation was also significantly reduced in infected lines of A. nidulans and A. niger at 37 °C. AthCV1-infected lines of A. thermomutatus and A. nidulans produced large numbers of ascospores at both temperatures, whereas the AthCV1-free line of the former did not produce ascospores. AthCV1-infected lines of all species developed sectoring phenotypes with sclerotia produced in aconidial sectors of A. niger at 37 °C. AthCV1 was detected in 18% of sclerotia produced by AthCV1-infected A. niger and 31% of ascospores from AthCV1-infected A. nidulans. Transcriptome analysis of the naturally AthCV1-infected A. thermomutatus and the three AthCV1-transfected Aspergillus species showed altered gene expression as a result of AthCV1-infection. The results demonstrate that AthCV1 can infect a range of Aspergillus species resulting in reduced sporulation, a potentially useful attribute for a biological control agent.
Collapse
Affiliation(s)
- Mahjoub A Ejmal
- School of Biological Sciences, the University of Auckland, Auckland 1142 New Zealand.
| | - David J Holland
- Infectious Diseases Unit, Division of Medicine, Middlemore Hospital, Auckland 1640, New Zealand.
| | - Robin M MacDiarmid
- School of Biological Sciences, the University of Auckland, Auckland 1142 New Zealand.
- Plant and Food Research, Auckland 1142, New Zealand.
| | - Michael N Pearson
- School of Biological Sciences, the University of Auckland, Auckland 1142 New Zealand.
| |
Collapse
|
41
|
Urayama SI, Takaki Y, Nishi S, Yoshida-Takashima Y, Deguchi S, Takai K, Nunoura T. Unveiling the RNA virosphere associated with marine microorganisms. Mol Ecol Resour 2018; 18:1444-1455. [PMID: 30256532 DOI: 10.1111/1755-0998.12936] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 07/28/2018] [Indexed: 01/01/2023]
Abstract
The study of extracellular DNA viral particles in the ocean is currently one of the most advanced fields of research in viral metagenomic analysis. However, even though the intracellular viruses of marine microorganisms might be the major source of extracellular virus particles in the ocean, the diversity of these intracellular viruses is not well understood. Here, our newly developed method, referred to herein as fragmented and primer ligated dsRNA sequencing (flds) version 2, identified considerable genetic diversity of marine RNA viruses in cell fractions obtained from surface seawater. The RNA virus community appears to cover genome sequences related to more than half of the established positive-sense ssRNA and dsRNA virus families, in addition to a number of unidentified viral lineages, and such diversity had not been previously observed in floating viral particles. In this study, more dsRNA viral contigs were detected in host cells than in extracellular viral particles. This illustrates the magnitude of the previously unknown marine RNA virus population in cell fractions, which has only been partially assessed by cellular metatranscriptomics and not by contemporary viral metagenomic studies. These results reveal the importance of studying cell fractions to illuminate the full spectrum of viral diversity on Earth.
Collapse
Affiliation(s)
- Syun-Ichi Urayama
- Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan.,Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), Department of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshihiro Takaki
- Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan.,Department of Subsurface Geobiological Analysis and Research, JAMSTEC, Yokosuka, Kanagawa, Japan.,Ecosystem Observation and Evaluation Methodology Research Unit, Project Team for Development of New-generation Research Protocol for Submarine Resources, JAMSTEC, Japan
| | - Shinro Nishi
- Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan.,Ecosystem Observation and Evaluation Methodology Research Unit, Project Team for Development of New-generation Research Protocol for Submarine Resources, JAMSTEC, Japan
| | - Yukari Yoshida-Takashima
- Department of Subsurface Geobiological Analysis and Research, JAMSTEC, Yokosuka, Kanagawa, Japan
| | - Shigeru Deguchi
- Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Ken Takai
- Department of Subsurface Geobiological Analysis and Research, JAMSTEC, Yokosuka, Kanagawa, Japan
| | - Takuro Nunoura
- Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan.,Ecosystem Observation and Evaluation Methodology Research Unit, Project Team for Development of New-generation Research Protocol for Submarine Resources, JAMSTEC, Japan
| |
Collapse
|
42
|
Niu Y, Yuan Y, Mao J, Yang Z, Cao Q, Zhang T, Wang S, Liu D. Characterization of two novel mycoviruses from Penicillium digitatum and the related fungicide resistance analysis. Sci Rep 2018; 8:5513. [PMID: 29615698 PMCID: PMC5882929 DOI: 10.1038/s41598-018-23807-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 01/03/2018] [Indexed: 01/09/2023] Open
Abstract
Pathogenic fungi including Penicillium digitatum and Penicillium italicum are the main destructive pathogens in the citrus industry, causing great losses during postharvest process. To our knowledge, only one mycovirus from P. digitatum has been reported, and the prevalence of such mycoviruses against citrus postharvest pathogenic fungi and their genotyping were still under investigation. In the present study, we showed that 39 of 152 Penicillium isolates from main citrus-growing areas in China were infected with various mycoviruses belonging to polymycoviruses, Narna-like viruses, and families Totiviridae, Partitivirdae and Chrysoviridae. The next generation sequencing (NGS) towards virus genome library and the following molecular analysis revealed two novel mycoviruses Penicillium digitatum polymycovirus 1 (PdPmV1) and Penicillium digitatum Narna-like virus 1 (PdNLV1), coexisting in P. digitatum strain HS-RH2. The fungicide-resistant P. digitatum strains HS-F6 and HS-E9 coinfected by PdPmV1 and PdNLV1 exhibited obvious reduction in triazole drug prochloraz resistance by mycelial growth analysis on both PDA plates and citrus fruit epidermis with given prochloraz concentration. This report at the first time characterized two novel mycoviruses from P. digitatum and revealed the mycovirus-induced reduction of fungicide resistance.
Collapse
Affiliation(s)
- Yuhui Niu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, P. R. China
| | - Yongze Yuan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, P. R. China
| | - Jiali Mao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, P. R. China
| | - Zhu Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, P. R. China
| | - Qianwen Cao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, P. R. China
| | - Tingfu Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, P. R. China
| | - Shengqiang Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, P. R. China
| | - Deli Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, P. R. China.
| |
Collapse
|
43
|
Guimarães A, Abrunhosa L, Pastrana LM, Cerqueira MA. Edible Films and Coatings as Carriers of Living Microorganisms: A New Strategy Towards Biopreservation and Healthier Foods. Compr Rev Food Sci Food Saf 2018; 17:594-614. [PMID: 33350124 DOI: 10.1111/1541-4337.12345] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/07/2018] [Accepted: 02/16/2018] [Indexed: 01/23/2023]
Abstract
Edible films and coatings have been extensively studied in recent years due to their unique properties and advantages over more traditional conservation techniques. Edible films and coatings improve shelf life and food quality, by providing a protective barrier against physical and mechanical damage, and by creating a controlled atmosphere and acting as a semipermeable barrier for gases, vapor, and water. Edible films and coatings are produced using naturally derived materials, such as polysaccharides, proteins, and lipids, or a mixture of these materials. These films and coatings also offer the possibility of incorporating different functional ingredients such as nutraceuticals, antioxidants, antimicrobials, flavoring, and coloring agents. Films and coatings are also able to incorporate living microorganisms. In the last decade, several works reported the incorporation of bacteria to confer probiotic or antimicrobial properties to these films and coatings. The incorporation of probiotic bacteria in films and coatings allows them to reach the consumers' gut in adequate amounts to confer health benefits to the host, thus creating an added value to the food product. Also, other microorganisms, either bacteria or yeast, can be incorporated into edible films in a biocontrol approach to extend the shelf life of food products. The incorporation of yeasts in films and coatings has been suggested primarily for the control of the postharvest disease. This work provides a comprehensive review of the use of edible films and coatings for the incorporation of living microorganisms, aiming at the biopreservation and probiotic ability of food products.
Collapse
Affiliation(s)
- Ana Guimarães
- Centre of Biological Engineering, Univ. of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Luís Abrunhosa
- Centre of Biological Engineering, Univ. of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Lorenzo M Pastrana
- Intl. Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Miguel A Cerqueira
- Intl. Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| |
Collapse
|
44
|
Giovati L, Santinoli C, Ferrari E, Ciociola T, Martin E, Bandi C, Ricci I, Epis S, Conti S. Candidacidal Activity of a Novel Killer Toxin from Wickerhamomyces anomalus against Fluconazole-Susceptible and -Resistant Strains. Toxins (Basel) 2018; 10:E68. [PMID: 29401638 PMCID: PMC5848169 DOI: 10.3390/toxins10020068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 11/16/2022] Open
Abstract
The isolation and characterization from the sand fly Phlebotomus perniciosus of a Wickerhamomyces anomalus yeast strain (Wa1F1) displaying the killer phenotype was recently reported. In the present work, the killer toxin (KT) produced by Wa1F1 was purified and characterized, and its antimicrobial activity in vitro was investigated against fluconazole- susceptible and -resistant clinical isolates and laboratory strains of Candida albicans and C. glabrata displaying known mutations. Wa1F1-KT showed a differential killing ability against different mutant strains of the same species. The results may be useful for the design of therapeutic molecules based on Wa1F1-KT and the study of yeast resistance mechanisms.
Collapse
Affiliation(s)
- Laura Giovati
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy.
| | - Claudia Santinoli
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy.
| | - Elena Ferrari
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy.
| | - Tecla Ciociola
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy.
| | - Elena Martin
- Department of Biosciences, University of Milan, 20133 Milan, Italy.
| | - Claudio Bandi
- Department of Biosciences, University of Milan, 20133 Milan, Italy.
- Pediatric Clinical Research Center Romeo and Enrica Invernizzi, Ospedale "Luigi Sacco", 20157 Milan, Italy.
| | - Irene Ricci
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy.
| | - Sara Epis
- Department of Biosciences, University of Milan, 20133 Milan, Italy.
- Pediatric Clinical Research Center Romeo and Enrica Invernizzi, Ospedale "Luigi Sacco", 20157 Milan, Italy.
| | - Stefania Conti
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy.
| |
Collapse
|
45
|
|
46
|
Gier S, Schmitt MJ, Breinig F. Expression of K1 Toxin Derivatives in Saccharomyces cerevisiae Mimics Treatment with Exogenous Toxin and Provides a Useful Tool for Elucidating K1 Mechanisms of Action and Immunity. Toxins (Basel) 2017; 9:toxins9110345. [PMID: 29076990 PMCID: PMC5705960 DOI: 10.3390/toxins9110345] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/10/2017] [Accepted: 10/25/2017] [Indexed: 11/25/2022] Open
Abstract
Killer toxin K1 is a heterodimeric protein toxin secreted by Saccharomyces cerevisiae strains infected with the M1 double-stranded RNA ‘killer’ virus. After binding to a primary receptor at the level of the cell wall, K1 interacts with its secondary plasma membrane receptor Kre1p, eventually leading to an ionophoric disruption of membrane function. Although it has been under investigation for decades, neither the particular mechanisms leading to toxicity nor those leading to immunity have been elucidated. In this study, we constructed derivatives of the K1α subunit and expressed them in sensitive yeast cells. We show that these derivatives are able to mimic the action of externally applied K1 toxin in terms of growth inhibition and pore formation within the membrane, leading to a suicidal phenotype that could be abolished by co-expression of the toxin precursor, confirming a mechanistic similarity of external and internal toxin action. The derivatives were successfully used to investigate a null mutant completely resistant to externally applied toxin. They provide a valuable tool for the identification of so far unknown gene products involved in K1 toxin action and/or immunity.
Collapse
Affiliation(s)
- Stefanie Gier
- Center for Human and Molecular Biology (ZHMB), Saarland University, D-66123 Saarbrücken, Germany.
- Molecular and Cell Biology, Campus A1.5, Saarland University, D-66123 Saarbrücken, Germany.
| | - Manfred J Schmitt
- Center for Human and Molecular Biology (ZHMB), Saarland University, D-66123 Saarbrücken, Germany.
- Molecular and Cell Biology, Campus A1.5, Saarland University, D-66123 Saarbrücken, Germany.
| | - Frank Breinig
- Center for Human and Molecular Biology (ZHMB), Saarland University, D-66123 Saarbrücken, Germany.
- Molecular and Cell Biology, Campus A1.5, Saarland University, D-66123 Saarbrücken, Germany.
| |
Collapse
|
47
|
Becker B, Schmitt MJ. Yeast Killer Toxin K28: Biology and Unique Strategy of Host Cell Intoxication and Killing. Toxins (Basel) 2017; 9:toxins9100333. [PMID: 29053588 PMCID: PMC5666379 DOI: 10.3390/toxins9100333] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/12/2017] [Accepted: 10/17/2017] [Indexed: 01/18/2023] Open
Abstract
The initial discovery of killer toxin-secreting brewery strains of Saccharomyces cerevisiae (S. cerevisiae) in the mid-sixties of the last century marked the beginning of intensive research in the yeast virology field. So far, four different S. cerevisiae killer toxins (K28, K1, K2, and Klus), encoded by cytoplasmic inherited double-stranded RNA viruses (dsRNA) of the Totiviridae family, have been identified. Among these, K28 represents the unique example of a yeast viral killer toxin that enters a sensitive cell by receptor-mediated endocytosis to reach its intracellular target(s). This review summarizes and discusses the most recent advances and current knowledge on yeast killer toxin K28, with special emphasis on its endocytosis and intracellular trafficking, pointing towards future directions and open questions in this still timely and fascinating field of killer yeast research.
Collapse
Affiliation(s)
- Björn Becker
- Molecular and Cell Biology, Department of Biosciences and Center of Human and Molecular Biology (ZHMB), Saarland University, D-66123 Saarbrücken, Germany.
| | - Manfred J Schmitt
- Molecular and Cell Biology, Department of Biosciences and Center of Human and Molecular Biology (ZHMB), Saarland University, D-66123 Saarbrücken, Germany.
| |
Collapse
|
48
|
Ramírez M, Velázquez R, López-Piñeiro A, Naranjo B, Roig F, Llorens C. New Insights into the Genome Organization of Yeast Killer Viruses Based on "Atypical" Killer Strains Characterized by High-Throughput Sequencing. Toxins (Basel) 2017; 9:E292. [PMID: 28925975 PMCID: PMC5618225 DOI: 10.3390/toxins9090292] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/15/2017] [Accepted: 09/16/2017] [Indexed: 01/04/2023] Open
Abstract
Viral M-dsRNAs encoding yeast killer toxins share similar genomic organization, but no overall sequence identity. The dsRNA full-length sequences of several known M-viruses either have yet to be completed, or they were shorter than estimated by agarose gel electrophoresis. High-throughput sequencing was used to analyze some M-dsRNAs previously sequenced by traditional techniques, and new dsRNAs from atypical killer strains of Saccharomyces cerevisiae and Torulaspora delbrueckii. All dsRNAs expected to be present in a given yeast strain were reliably detected and sequenced, and the previously-known sequences were confirmed. The few discrepancies between viral variants were mostly located around the central poly(A) region. A continuous sequence of the ScV-M2 genome was obtained for the first time. M1 virus was found for the first time in wine yeasts, coexisting with Mbarr-1 virus in T. delbrueckii. Extra 5'- and 3'-sequences were found in all M-genomes. The presence of repeated short sequences in the non-coding 3'-region of most M-genomes indicates that they have a common phylogenetic origin. High identity between amino acid sequences of killer toxins and some unclassified proteins of yeast, bacteria, and wine grapes suggests that killer viruses recruited some sequences from the genome of these organisms, or vice versa, during evolution.
Collapse
Affiliation(s)
- Manuel Ramírez
- Departamento de Ciencias Biomédicas (Área de Microbiología, Antiguo Rectorado), Facultad de Ciencias, Universidad de Extremadura, Badajoz 06071, Spain.
| | - Rocío Velázquez
- Departamento de Ciencias Biomédicas (Área de Microbiología, Antiguo Rectorado), Facultad de Ciencias, Universidad de Extremadura, Badajoz 06071, Spain.
| | - Antonio López-Piñeiro
- Departamento de Biología Vegetal, Ecología y Ciencias de la Tierra, Facultad de Ciencias, Universidad de Extremadura, Badajoz 06071, Spain.
| | - Belén Naranjo
- Departamento de Ciencias Biomédicas (Área de Microbiología, Antiguo Rectorado), Facultad de Ciencias, Universidad de Extremadura, Badajoz 06071, Spain.
| | - Francisco Roig
- Biotechvana, Parc Científic, Universitat de València, Calle Catedrático José Beltrán 2, Paterna 46980 (València), Spain.
| | - Carlos Llorens
- Biotechvana, Parc Científic, Universitat de València, Calle Catedrático José Beltrán 2, Paterna 46980 (València), Spain.
| |
Collapse
|
49
|
Different Metabolic Pathways Are Involved in Response of Saccharomyces cerevisiae to L-A and M Viruses. Toxins (Basel) 2017; 9:toxins9080233. [PMID: 28757599 PMCID: PMC5577567 DOI: 10.3390/toxins9080233] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/17/2017] [Accepted: 07/21/2017] [Indexed: 12/11/2022] Open
Abstract
Competitive and naturally occurring yeast killer phenotype is governed by coinfection with dsRNA viruses. Long-term relationship between the host cell and viruses appear to be beneficial and co-adaptive; however, the impact of viral dsRNA on the host gene expression has barely been investigated. Here, we determined the transcriptomic profiles of the host Saccharomyces cerevisiae upon the loss of the M-2 dsRNA alone and the M-2 along with the L-A-lus dsRNAs. We provide a comprehensive study based on the high-throughput RNA-Seq data, Gene Ontology and the analysis of the interaction networks. We identified 486 genes differentially expressed after curing yeast cells of the M-2 dsRNA and 715 genes affected by the elimination of both M-2 and L-A-lus dsRNAs. We report that most of the transcriptional responses induced by viral dsRNAs are moderate. Differently expressed genes are related to ribosome biogenesis, mitochondrial functions, stress response, biosynthesis of lipids and amino acids. Our study also provided insight into the virus–host and virus–virus interplays.
Collapse
|
50
|
Mehlomakulu NN, Prior KJ, Setati ME, Divol B. Candida pyralidae killer toxin disrupts the cell wall of Brettanomyces bruxellensis in red grape juice. J Appl Microbiol 2017; 122:747-758. [PMID: 27992098 DOI: 10.1111/jam.13383] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 12/14/2016] [Accepted: 12/14/2016] [Indexed: 11/27/2022]
Abstract
AIMS The control of the wine spoilage yeast Brettanomyces bruxellensis using biological methods such as killer toxins (instead of the traditional chemical methods, e.g. SO2 ) has been the focus of several studies within the last decade. Our previous research demonstrated that the killer toxins CpKT1 and CpKT2 isolated from the wine yeast Candida pyralidae were active and stable under winemaking conditions. In this study, we report the possible mode of action of CpKT1 on B. bruxellensis cells in red grape juice. METHODS AND RESULTS Brettanomyces bruxellensis cells were exposed to CpKT1 either directly or through co-inoculation with C. pyralidae. This exposure yielded a temporary or permanent decline of the spoilage yeast population depending on the initial cell concentration. Scanning electron microscopy revealed cell surface abrasion while propidium iodide viability staining showed that CpKT1 caused plasma membrane damage on B. bruxellensis cells. Our data show that the exposure to CpKT1 resulted in increased levels of β-glucan, suggesting a compensatory response of the sensitive cells. CONCLUSIONS The toxin CpKT1 causes cell membrane and cell wall damage in B. bruxellensis. SIGNIFICANCE AND IMPACT OF THE STUDY Candida pyralidae shows potential to be used as a biocontrol agent against B. bruxellensis in grape juice/wine.
Collapse
Affiliation(s)
- N N Mehlomakulu
- Institute for Wine Biotechnology, Department of Oenology and Viticulture, Stellenbosch University, Matieland, South Africa
| | - K J Prior
- Institute for Wine Biotechnology, Department of Oenology and Viticulture, Stellenbosch University, Matieland, South Africa
| | - M E Setati
- Institute for Wine Biotechnology, Department of Oenology and Viticulture, Stellenbosch University, Matieland, South Africa
| | - B Divol
- Institute for Wine Biotechnology, Department of Oenology and Viticulture, Stellenbosch University, Matieland, South Africa
| |
Collapse
|