1
|
Paton H, Sarkar P, Gurung P. An overview of host immune responses against Leishmania spp. infections. Hum Mol Genet 2025:ddaf043. [PMID: 40287829 DOI: 10.1093/hmg/ddaf043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/18/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025] Open
Abstract
Leishmania spp. infections pose a significant global health challenge, affecting approximately 1 billion people across more than 88 endemic countries. This unicellular, obligate intracellular parasite causes a spectrum of diseases, ranging from localized cutaneous lesions to systemic visceral infections. Despite advancements in modern medicine and increased understanding of the parasite's etiology and associated diseases, treatment options remain limited to pentavalent antimonials, liposomal amphotericin B, and miltefosine. A deeper understanding of the interactions between immune and non-immune cells involved in the clearance of Leishmania spp. infections could uncover novel therapeutic strategies for this debilitating disease. This review highlights recent progress in elucidating how various cell types contribute to the regulation and resolution of Leishmania spp. infections.
Collapse
Affiliation(s)
- Hanna Paton
- Inflammation Program, University of Iowa, 431 Newton Road, Iowa City, IA 52242, United States
- Department of Internal Medicine, University of Iowa, 431 Newton Road, Iowa City, IA 52442, United States
- Immunology Graduate Program, University of Iowa, 431 Newton Road, Iowa City, IA 52242, United States
| | - Prabuddha Sarkar
- Inflammation Program, University of Iowa, 431 Newton Road, Iowa City, IA 52242, United States
- Department of Internal Medicine, University of Iowa, 431 Newton Road, Iowa City, IA 52442, United States
| | - Prajwal Gurung
- Inflammation Program, University of Iowa, 431 Newton Road, Iowa City, IA 52242, United States
- Department of Internal Medicine, University of Iowa, 431 Newton Road, Iowa City, IA 52442, United States
- Immunology Graduate Program, University of Iowa, 431 Newton Road, Iowa City, IA 52242, United States
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, 431 Newton Road, Iowa City, IA 52242, United States
- Center for Immunology and Immune Based Disease, University of Iowa, 431 Newton Road, Iowa City, IA 52242, United States
- Iowa City Veterans Affairs (VA) Medical Center, 601 US-6, Iowa City, IA 52246, United States
| |
Collapse
|
2
|
Brígido HPC, dos Santos LGA, de Barros RC, Correa-Barbosa J, dos Santos PVB, Paz RFL, Pereira AR, de Albuquerque KCO, Campos MB, Silveira FT, Percário S, Dolabela MF. The Role of Oxidative Stress in the Pathogenesis and Treatment of Leishmaniasis: Impact on Drug Toxicity and Therapeutic Potential of Natural Products. TOXICS 2025; 13:190. [PMID: 40137517 PMCID: PMC11945835 DOI: 10.3390/toxics13030190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/02/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025]
Abstract
The treatment of leishmaniasis has limitations due to drug toxicity and the increasing resistance of the parasite. In this study, we analyze the role of oxidative stress in the pathogenesis and treatment of leishmaniasis, as well as in new therapeutic alternatives of natural origin. The evasion mechanisms against the host immune response involve surface molecules present in the parasite, which modulate oxidative stress to ensure its survival. Drug treatment requires strict monitoring to minimize adverse reactions and ensure patient safety, as mechanisms such as lipid peroxidation, mitochondrial dysfunction, and depletion of antioxidant defenses are associated with drug toxicity. Plant-derived products with antileishmanial activity impact the parasite's redox balance, inducing apoptosis and reducing its parasitic load. Most studies are still in preliminary stages, making in vivo assays and clinical studies essential, along with the development of accessible formulations. Oxidative stress is involved in the pathogenesis of leishmaniasis, as Leishmania manipulates the host's redox balance to survive. It also contributes to drug toxicity, as antimonials and amphotericin B increase reactive oxygen species, causing cellular damage. Several plant-derived compounds have demonstrated antileishmanial activity by modulating oxidative stress and promoting parasite apoptosis. Examples include alkaloids from Aspidosperma nitidum, lignans from Virola surinamensis, flavonoids from Geissospermum vellosii, and triterpenoids such as β-sitosterol. Although these compounds show promising selectivity, most studies remain in preliminary stages, requiring in vivo assays and clinical studies to confirm efficacy and safety, as well as the development of affordable formulations.
Collapse
Affiliation(s)
- Heliton Patrick Cordovil Brígido
- National Council for Scientific and Technological Development (CNPq), Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil
- Biotechnology and Biodiversity Postgraduate Program (BIONORTE), Federal University of Pará, Belém 66075-110, PA, Brazil; (A.R.P.); (K.C.O.d.A.); (S.P.)
| | | | - Renilson Castro de Barros
- Pharmaceutical Sciences Postgraduate Program, Federal University of Pará, Belém 66075-110, PA, Brazil;
| | - Juliana Correa-Barbosa
- Postgraduate Pharmaceutical Innovation Program, Institute of Health Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil;
| | | | - Rayana Franciele Lopes Paz
- Faculty of Pharmacy, Federal University of Pará, Belém 66075-110, PA, Brazil; (L.G.A.d.S.); (P.V.B.d.S.); (R.F.L.P.)
| | - Amanda Ramos Pereira
- Biotechnology and Biodiversity Postgraduate Program (BIONORTE), Federal University of Pará, Belém 66075-110, PA, Brazil; (A.R.P.); (K.C.O.d.A.); (S.P.)
| | | | - Marliane Batista Campos
- Parasitology Department, Evandro Chagas Institute, Ananindeua 67030-000, PA, Brazil; (M.B.C.); (F.T.S.)
| | - Fernando Tobias Silveira
- Parasitology Department, Evandro Chagas Institute, Ananindeua 67030-000, PA, Brazil; (M.B.C.); (F.T.S.)
| | - Sandro Percário
- Biotechnology and Biodiversity Postgraduate Program (BIONORTE), Federal University of Pará, Belém 66075-110, PA, Brazil; (A.R.P.); (K.C.O.d.A.); (S.P.)
| | - Maria Fâni Dolabela
- Biotechnology and Biodiversity Postgraduate Program (BIONORTE), Federal University of Pará, Belém 66075-110, PA, Brazil; (A.R.P.); (K.C.O.d.A.); (S.P.)
- Pharmaceutical Sciences Postgraduate Program, Federal University of Pará, Belém 66075-110, PA, Brazil;
- Postgraduate Pharmaceutical Innovation Program, Institute of Health Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil;
| |
Collapse
|
3
|
Mohanty A, Vekariya V, Yadav S, Agrawal-Rajput R. Natural phytochemicals reverting M2 to M1 macrophages: A novel alternative leishmaniasis therapy. Microb Pathog 2025; 200:107311. [PMID: 39863089 DOI: 10.1016/j.micpath.2025.107311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 12/29/2024] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
INTRODUCTION Leishmaniasis is a tropical parasitic disease caused by the protozoan Leishmania which remains a significant global health concern with diverse clinical manifestations. Transmitted through the bite of an infected sandfly, its progression depends on the interplay between the host immune response and the parasite. The disease outcome is linked to macrophage polarisation into M1 and M2 phenotypes. M1 macrophages are pro-inflammatory and promote parasite clearance, while M2 macrophages support tissue repair and parasite survival by facilitating promastigote entry and intracellular amastigote proliferation. PURPOSE The review focuses on discovering novel phytochemicals that exploit the immunomodulatory properties of macrophages, which can serve as an alternative antileishmanial treatments due to their diverse chemical structures and ability to modulate immune responses. It examines the immunomodulatory effects of phytochemicals that directly or indirectly promote antileishmanial activity by influencing macrophage polarisation and cytokine secretion. They can induce M1 macrophage polarisation to directly combat leishmaniasis or suppress M2 macrophages, thereby exerting indirect antileishmanial activity by influencing the release of M1-and M2-related cytokines. RESULTS & DISCUSSION Phytochemicals demonstrate antileishmanial effects through ROS production, M1 activation, and cytokine modulation. They regulate M1/M2-related cytokines and macrophage activity, influencing immune responses. Although their effects may be non-specific, targeted delivery strategies could overcome current therapeutic limitations, positioning phytochemicals as promising candidates for leishmaniasis treatment to counter the limitations of current medications.
Collapse
Affiliation(s)
- Aditya Mohanty
- Immunology Lab, Biotechnology & Bioengineering, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India
| | - Vasu Vekariya
- Immunology Lab, Biotechnology & Bioengineering, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India
| | - Shivani Yadav
- Immunology Lab, Biotechnology & Bioengineering, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India
| | - Reena Agrawal-Rajput
- Immunology Lab, Biotechnology & Bioengineering, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India.
| |
Collapse
|
4
|
Koh CC, Gollob KJ, Dutra WO. Cytokine Networks and the Clinical Outcome of American Teg-Umentary Leishmaniasis: Unveiling Targets for Alternative Therapeutic Interventions. Pathogens 2025; 14:188. [PMID: 40005563 PMCID: PMC11858318 DOI: 10.3390/pathogens14020188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
American Tegumentary Leishmaniasis (ATL), caused by parasites of the genus Leishmania, presents a significant global health challenge, especially in Brazil, where cutaneous and mucosal forms are highly prevalent. Cutaneous Leishmaniasis (CL) typically results in single lesions, while mucosal Leishmaniasis (ML) leads to destructive mucosal lesions with a worse prognosis. The immune response, regulated by cytokines, plays a crucial role in disease progression and resolution. In CL, a balance between pro-inflammatory and anti-inflammatory cytokines is associated with lesion resolution, whereas in ML, an exaggerated inflammatory response worsens tissue damage. Thus, understanding cytokine regulation is essential for unveiling disease pathology and developing effective immunotherapeutic strategies. Here we discuss gene polymorphisms and epigenetic modifications that affect cytokine expression, influencing disease susceptibility and severity, as well as immunotherapeutic approaches that involve cytokine function in Leishmaniasis. In addition, we examine advancements in drug discovery, utilizing in silico methods and targeted drug delivery systems, providing potential avenues for better therapeutic interventions. Continuous research into immune responses and cytokine production and function is critical for identifying novel therapeutic targets and optimizing patient care for ATL.
Collapse
Affiliation(s)
- Carolina Cattoni Koh
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627-Pampulha, Belo Horizonte 31270-901, MG, Brazil
- National Institute of Science and Technology in Tropical Diseases, INCT-DT, Salvador 40110-160, BA, Brazil;
| | - Kenneth J. Gollob
- National Institute of Science and Technology in Tropical Diseases, INCT-DT, Salvador 40110-160, BA, Brazil;
- Hospital Israelita Albert Einstein, São Paulo 05652-900, SP, Brazil
| | - Walderez O. Dutra
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627-Pampulha, Belo Horizonte 31270-901, MG, Brazil
- National Institute of Science and Technology in Tropical Diseases, INCT-DT, Salvador 40110-160, BA, Brazil;
| |
Collapse
|
5
|
Ornelas-Cruces M, Escalona-Montaño AR, Salaiza-Suazo N, Sifontes-Rodríguez S, Aguirre-García MM. The Potential Role of Sanguinarine as an Inhibitor of Leishmania PP2C in the Induction of Apoptosis. Acta Parasitol 2025; 70:35. [PMID: 39853571 PMCID: PMC11761978 DOI: 10.1007/s11686-024-00977-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/14/2024] [Indexed: 01/26/2025]
Abstract
Leishmania spp. cause a wide range of human diseases, localized skin lesions, mucocutaneous and visceral infections. In the present study, the aim was to investigate the potential role of sanguinarine as a specific inhibitor of Leishmania PP2C that can induce apoptosis in the parasite. The results demonstrated that sanguinarine inhibits, in a dose-dependent mode at 72 h, the growth and phosphatase activity of both Leishmania major and Leishmania mexicana promastigotes. Therefore, all assays were performed from this time period onwards. TUNEL assay was used to identify apoptosis and indicated apoptosis in L. major and L. mexicana promastigotes. Similarly, Western blot assay showed that PARP, a DNA damage indicator molecule, was present in L. major and L. mexicana promastigotes incubated with the inhibitor. In addition, differential expression of the proapoptotic protein Bax and the antiapoptotic protein Bcl-2 was observed in both Leishmania species. Finally, the protein phosphatase PP2C expression was not affected, whereas p38 MAPK phosphorylation was increased in L. major promastigotes than in L. mexicana promastigotes. Therefore, sanguinarine proved to be an inhibitor of the growth and PP2C enzymatic activity of L. major and L. mexicana promastigotes, and with it, this inhibition induced apoptosis.
Collapse
Affiliation(s)
- M Ornelas-Cruces
- Laboratorio de Estudios Sociales de la Ciencia y la Tecnología, Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - A R Escalona-Montaño
- División de Investigación, Facultad de Medicina, Unidad de Investigación UNAM-INC, Universidad Nacional Autónoma de México, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Ciudad de México, C.P. 14080, México
| | - N Salaiza-Suazo
- Facultad de Medicina, Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de México, C.P. 04510, México
| | - S Sifontes-Rodríguez
- División de Investigación, Facultad de Medicina, Unidad de Investigación UNAM-INC, Universidad Nacional Autónoma de México, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Ciudad de México, C.P. 14080, México
| | - M M Aguirre-García
- División de Investigación, Facultad de Medicina, Unidad de Investigación UNAM-INC, Universidad Nacional Autónoma de México, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Ciudad de México, C.P. 14080, México.
| |
Collapse
|
6
|
Hammi I, Giron-Michel J, Akarid K, Arnoult D. FcRγIIA response duality in leishmaniasis. Microb Pathog 2025; 198:107123. [PMID: 39557223 DOI: 10.1016/j.micpath.2024.107123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/25/2024] [Accepted: 11/14/2024] [Indexed: 11/20/2024]
Abstract
Leishmania is responsible for a neglected tropical disease affecting millions of people around the world and could potentially spread more due to climate change. This disease not only leads to significant morbidity but also imposes substantial social and economic burdens on affected populations, often exacerbating poverty and health disparities. Despite the complexity and effectiveness of the immune response, the parasite has developed various strategies to evade detection and manipulates host cells in favor of its replication. These evasion strategies start at early stages of the infection by hijacking immune receptors to silence critical cellular response that would otherwise limit the pathogen's propagation. Among these receptors, Fc receptors have emerged as a significant player in the immune evasion strategies employed by microorganisms, as they could promote inhibitory pathways. This review explores the potential role of one of these immune receptors, the FcγRIIA, in leishmaniasis and how this parasite may use it and the signaling pathways downstream to evade the host immune response. By understanding the potential interactions between Leishmania and immune receptors such as FcγRIIA, we may identify novel targets for therapeutic intervention aimed to enhance the host immune response and reduce the burden of this disease.
Collapse
Affiliation(s)
- Ikram Hammi
- Health & Environment Laboratory, Ain Chock Faculty of Sciences, Hassan II University of Casablanca (UH2C), Morocco; INSERM UMR-S-MD 1197, Ministère des Armées et Université Paris Saclay, Villejuif, France.
| | - Julien Giron-Michel
- INSERM UMR-S-MD 1197, Ministère des Armées et Université Paris Saclay, Villejuif, France
| | - Khadija Akarid
- Health & Environment Laboratory, Ain Chock Faculty of Sciences, Hassan II University of Casablanca (UH2C), Morocco
| | - Damien Arnoult
- INSERM UMR-S-MD 1197, Ministère des Armées et Université Paris Saclay, Villejuif, France.
| |
Collapse
|
7
|
Hammi I, Giron-Michel J, Riyad M, Akarid K, Arnoult D. FcRγIIA attenuates pathology of cutaneous leishmaniasis and modulates ITAMa/i balance. Parasit Vectors 2024; 17:517. [PMID: 39696675 DOI: 10.1186/s13071-024-06593-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/19/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Leishmania is the causal parasite of leishmaniasis, a neglected tropical disease affecting millions of individuals worldwide, and its dissemination is linked to climate change. Despite the complexity and effectiveness of the immune response, the parasite has developed many strategies to evade it and take control of the host cell to replicate. These evasion strategies start at early stages of infection by hijacking immune receptors to mitigate the cellular response. In this study, we examined whether Leishmania uses the Fc receptor FcγRIIA/CD32a and its downstream signaling pathways to evade the host immune response. METHODS Regarding in vivo studies, CD32a transgenic mice and the corresponding wild types were infected with Leishmania major Friedlin strain. For the in vitro experiments, BMDMs isolated from WT or CD32a transgenic mice and control or CD32a knockdown differentiated THP-1s were infected with two species of Leishmania, Leishmania major and L. tropica. RESULTS In vivo, expression of FcγRIIA/CD32a was found to accelerate the signs of inflammation while simultaneously preventing the formation of necrotic lesions after Leishmania infection. In infected macrophages, the presence of FcγRIIA/CD32a did not affect the secretion of proinflammatory cytokines, while the balance between ITAMa and ITAMi proteins was disturbed with improved Fyn and Lyn activation. Unexpectedly, infection with L. tropica but not L. major triggered an intracytoplasmic processing of FcγRIIA/CD32a. CONCLUSIONS Our observations underscore the significance of FcγRIIA/CD32a in cutaneous leishmaniasis and its potential use as a therapeutic target.
Collapse
Affiliation(s)
- Ikram Hammi
- Health & Environment Laboratory, Ain Chock Faculty of Sciences, Hassan II University of Casablanca (UH2C), Casablanca, Morocco
- INSERM UMR-S-MD 1197, Ministère des Armées et Université Paris Saclay, Villejuif, France
| | - Julien Giron-Michel
- INSERM UMR-S-MD 1197, Ministère des Armées et Université Paris Saclay, Villejuif, France
| | - Myriam Riyad
- Laboratory of Cellular and Molecular Pathology, Faculty of Medicine and Pharmacy, UH2C, Casablanca, Morocco
| | - Khadija Akarid
- Health & Environment Laboratory, Ain Chock Faculty of Sciences, Hassan II University of Casablanca (UH2C), Casablanca, Morocco
| | - Damien Arnoult
- INSERM UMR-S-MD 1197, Ministère des Armées et Université Paris Saclay, Villejuif, France.
| |
Collapse
|
8
|
Caixeta F, Martins VD, Figueiredo AB, Afonso LCC, Tieri P, Castiglione F, de Freitas LM, Maioli TU. Expression of Network Medicine-Predicted Genes in Human Macrophages Infected with Leishmania major. Int J Mol Sci 2024; 25:12084. [PMID: 39596151 PMCID: PMC11594204 DOI: 10.3390/ijms252212084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Leishmania spp. commonly infects phagocytic cells of the immune system, particularly macrophages, employing various immune evasion strategies that enable their survival by altering the intracellular environment. In mammals, these parasites establish persistent infections by modulating gene expression in macrophages, thus interfering with immune signaling and response pathways, ultimately creating a favorable environment for the parasite's survival and reproduction. In this study, our objective was to use data mining and subsequent filtering techniques to identify the genes that play a crucial role in the infection process of Leishmania spp. We aimed to pinpoint genes that have the potential to influence the progression of Leishmania infection. To achieve this, we exploited prior, curated knowledge from major databases and constructed 16 datasets of human molecular information consisting of coding genes and corresponding proteins. We obtained over 400 proteins, identifying approximately 200 genes. The proteins coded by these genes were subsequently used to build a network of protein-protein interactions, which enabled the identification of key players; we named this set Predicted Genes. Then, we selected approximately 10% of Predicted Genes for biological validation. THP-1 cells, a line of human macrophages, were infected with Leishmania major in vitro for the validation process. We observed that L. major has the capacity to impact crucial genes involved in the immune response, resulting in macrophage inactivation and creating a conducive environment for the survival of Leishmania parasites.
Collapse
Affiliation(s)
- Felipe Caixeta
- Programa Interunidades de Pós-Graduação em Bioinformática, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil;
| | - Vinicius Dantas Martins
- Cedars Sinai, Biomedical Sciences, Los Angeles, CA 90048, USA;
- Programa de Pós-Graduação em Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Amanda Braga Figueiredo
- Instituto Israelita de Ensino e Pesquisa, Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil;
- Departamento de Biologia, Instituto de Ciências Biológicas e Exatas, Universidade Federal de Ouro Preto, Ouro Preto 35402-136, MG, Brazil
| | - Luis Carlos Crocco Afonso
- Departamento de Biologia, Instituto de Ciências Biológicas e Exatas, Universidade Federal de Ouro Preto, Ouro Preto 35402-136, MG, Brazil
| | - Paolo Tieri
- CNR—Consiglio Nazionale delle Ricerche, IAC Istituto per le Applicazioni del Calcolo, 00185 Rome, Italy; (P.T.); (F.C.)
| | - Filippo Castiglione
- CNR—Consiglio Nazionale delle Ricerche, IAC Istituto per le Applicazioni del Calcolo, 00185 Rome, Italy; (P.T.); (F.C.)
| | - Leandro Martins de Freitas
- Núcleo de Biointegração, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitóriada Conquista 45029-094, BA, Brazil;
| | - Tatiani Uceli Maioli
- Programa de Pós-Graduação em Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
- Departamento de Nutrição, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| |
Collapse
|
9
|
Silva RCMC, Ribeiro JS, Farias TSDMD, Travassos LH. The role of host autophagy in intracellular protozoan parasites diseases. Arch Biochem Biophys 2024; 761:110186. [PMID: 39455040 DOI: 10.1016/j.abb.2024.110186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/15/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
Intracellular protozoan parasites are the etiologic agents of important human diseases, like malaria, Chagas disease, toxoplasmosis, and leishmaniasis. Inside host cells, these parasites manipulate the host metabolism and intracellular trafficking for their own benefits and, inevitably, induce several stress response mechanisms. In this review, we discuss autophagy as a stress response mechanism that can be both (i) explored by these intracellular parasites to acquire nutrients and (ii) to restrict parasite proliferation and survival within host cells. We also discuss the immunomodulatory role of autophagy as a strategy to reduce inflammatory-mediated damage, an essential player in the pathophysiology of these parasitic diseases. At last, we propose and discuss several known autophagy modulators as possible pharmaceuticals for adjunctive therapies.
Collapse
Affiliation(s)
- Rafael Cardoso Maciel Costa Silva
- Laboratory of Immunoreceptors and Signaling, Carlos Chagas Filho Institute of Biophysic, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; State University of Rio de Janeiro, Faculty of Medical Sciences, Campus Cabo Frio, Rio de Janeiro, Brazil
| | - Jhones Sousa Ribeiro
- Laboratory of Immunoreceptors and Signaling, Carlos Chagas Filho Institute of Biophysic, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thalita Santos de Moraes de Farias
- Laboratory of Immunoreceptors and Signaling, Carlos Chagas Filho Institute of Biophysic, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo Holanda Travassos
- Laboratory of Immunoreceptors and Signaling, Carlos Chagas Filho Institute of Biophysic, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
10
|
Tedla MG, Nahar MF, Every AL, Scheerlinck JPY. The Immune Memory Response of In Vitro-Polarised Th1, Th2, and Th17 Cells in the Face of Ovalbumin-Transgenic Leishmania major in a Mouse Model. Int J Mol Sci 2024; 25:8753. [PMID: 39201440 PMCID: PMC11354729 DOI: 10.3390/ijms25168753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Th1 and Th2 cytokines determine the outcome of Leishmania major infection and immune protection depends mainly on memory T cells induced during vaccination. This largely hinges on the nature and type of memory T cells produced. In this study, transgenic Leishmania major strains expressing membrane-associated ovalbumin (mOVA) and soluble ovalbumin (sOVA) were used as a model to study whether fully differentiated Th1/Th2 and Th17 cells can recall immune memory and tolerate pathogen manipulation. Naïve OT-II T cells were polarised in vitro into Th1/Th2 cells, and these cells were transferred adoptively into recipient mice. Following the transferral of the memory cells, the recipient mice were challenged with OVA transgenic Leishmania major and a wild-type parasite was used a control. The in vitro-polarised T helper cells continued to produce the same cytokine signatures after being challenged by both forms of OVA-expressing Leishmania major parasites in vivo. This suggests that antigen-experienced cells remain the same or unaltered in the face of OVA-transgenic Leishmania major. Such ability of these antigen-experienced cells to remain resilient to manipulation by the parasite signifies that vaccines might be able to produce immune memory responses and defend against parasitic immune manipulation in order to protect the host from infection.
Collapse
Affiliation(s)
- Mebrahtu G. Tedla
- Department of Pediatrics, School of Medicine, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Musammat F. Nahar
- Department of Health Science and Community, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Alison L. Every
- Australian Academy of Technological Sciences and Engineering, Forrest, ACT 2603, Australia
| | - Jean-Pierre Y. Scheerlinck
- Centre for Animal Biotechnology, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia;
| |
Collapse
|
11
|
Kumari S, Bodhale N, Sarode A, Jha MK, Bhadange S, Pandey SP, Selvaraj S, Chande AG, Mukhopadhyaya R, Ghosh SK, Singh S, Mukherjee D, Duffin R, Andrews P, Saha B. Leishmania major MAPK4 intercepts and redirects CD40 signaling promoting infection. Int Immunopharmacol 2024; 134:112100. [PMID: 38728877 DOI: 10.1016/j.intimp.2024.112100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/06/2024] [Accepted: 04/13/2024] [Indexed: 05/12/2024]
Abstract
The parasite Leishmania resides as amastigotes within the macrophage parasitophorous vacuoles inflicting the disease Leishmaniasis. Leishmania selectively modulates mitogen-activated protein kinase (MAPK) phosphorylation subverting CD40-triggered anti-leishmanial functions of macrophages. The mechanism of any pathogen-derived molecule induced host MAPK modulation remains poorly understood. Herein, we show that of the fifteen MAPKs, LmjMAPK4 expression is higher in virulent L. major. LmjMAPK4- detected in parasitophorous vacuoles and cytoplasm- binds MEK-1/2, but not MKK-3/6. Lentivirally-overexpressed LmjMAPK4 augments CD40-activated MEK-1/2-ERK-1/2-MKP-1, but inhibits MKK3/6-p38MAPK-MKP-3, phosphorylation. A rationally-identified LmjMAPK4 inhibitor reinstates CD40-activated host-protective anti-leishmanial functions in L. major-infected susceptible BALB/c mice. These results identify LmjMAPK4 as a MAPK modulator at the host-pathogen interface and establish a pathogen-intercepted host receptor signaling as a scientific rationale for identifying drug targets.
Collapse
Affiliation(s)
- Sangeeta Kumari
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Neelam Bodhale
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Aditya Sarode
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Mukesh Kumar Jha
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Sagar Bhadange
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | | | | | - Ajit G Chande
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | | | | | - Shailza Singh
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | | | - Rebekah Duffin
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Philip Andrews
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Bhaskar Saha
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
| |
Collapse
|
12
|
Rodríguez-González J, Wilkins-Rodríguez AA, Gutiérrez-Kobeh L. Human Dendritic Cell Maturation Is Modulated by Leishmania mexicana through Akt Signaling Pathway. Trop Med Infect Dis 2024; 9:118. [PMID: 38787051 PMCID: PMC11126033 DOI: 10.3390/tropicalmed9050118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
Dendritic cells (DC) along with macrophages are the main host cells of the intracellular parasite Leishmania. DC traverse a process of maturation, passing through an immature state with phagocytic ability to a mature one where they can modulate the immune response through the secretion of cytokines. Several studies have demonstrated that Leishmania inhibits DC maturation. Nevertheless, when cells are subjected to a second stimulus such as LPS/IFN-γ, they manage to mature. In the maturation process of DC, several signaling pathways have been implicated, importantly MAPK. On the other hand, Akt is a signaling pathway deeply involved in cell survival. Some Leishmania species have shown to activate MAPK and Akt in different cells. The aim of this work was to investigate the role of ERK and Akt in the maturation of monocyte-derived DC (moDC) infected with L. mexicana. moDC were infected with L. mexicana metacyclic promastigotes, and the phosphorylation of ERK and Akt, the expression of MHCII and CD86 and IL-12 transcript, and secretion were determined in the presence or absence of an Akt inhibitor. We showed that L. mexicana induces a sustained Akt and ERK phosphorylation, while the Akt inhibitor inhibits it. Moreover, the infection of moDC downregulates CD86 expression but not MHCII, and the Akt inhibitor reestablishes CD86 expression and 12p40 production. Thus, L. mexicana can modulate DC maturation though Akt signaling.
Collapse
Affiliation(s)
- Jorge Rodríguez-González
- Laboratorio de Estudios Epidemiológicos, Clínicos, Diseños Experimentales e Investigación, Facultad de Ciencias Químicas, Universidad Autónoma Benito Juárez, Oaxaca C.P. 68120, Mexico;
| | - Arturo A. Wilkins-Rodríguez
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México-Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City C.P. 14080, Mexico;
| | - Laila Gutiérrez-Kobeh
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México-Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City C.P. 14080, Mexico;
| |
Collapse
|
13
|
Hom Choudhury S, Bhattacharjee S, Mukherjee K, Bhattacharyya SN. Human antigen R transfers miRNA to Syntaxin 5 to synergize miRNA export from activated macrophages. J Biol Chem 2024; 300:107170. [PMID: 38492777 PMCID: PMC11040126 DOI: 10.1016/j.jbc.2024.107170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 03/18/2024] Open
Abstract
Intercellular miRNA exchange acts as a key mechanism to control gene expression post-transcriptionally in mammalian cells. Regulated export of repressive miRNAs allows the expression of inflammatory cytokines in activated macrophages. Intracellular trafficking of miRNAs from the endoplasmic reticulum to endosomes is a rate-determining step in the miRNA export process and plays an important role in controlling cellular miRNA levels and inflammatory processes in macrophages. We have identified the SNARE protein Syntaxin 5 (STX5) to show a synchronized expression pattern with miRNA activity loss in activated mammalian macrophage cells. STX5 is both necessary and sufficient for macrophage activation and clearance of the intracellular pathogen Leishmania donovani from infected macrophages. Exploring the mechanism of how STX5 acts as an immunostimulant, we have identified the de novo RNA-binding property of this SNARE protein that binds specific miRNAs and facilitates their accumulation in endosomes in a cooperative manner with human ELAVL1 protein, Human antigen R. This activity ensures the export of miRNAs and allows the expression of miRNA-repressed cytokines. Conversely, in its dual role in miRNA export, this SNARE protein prevents lysosomal targeting of endosomes by enhancing the fusion of miRNA-loaded endosomes with the plasma membrane to ensure accelerated release of extracellular vesicles and associated miRNAs.
Collapse
Affiliation(s)
- Sourav Hom Choudhury
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Shreya Bhattacharjee
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kamalika Mukherjee
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center (UNMC), Omaha, Nebraska, USA.
| | - Suvendra N Bhattacharyya
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center (UNMC), Omaha, Nebraska, USA.
| |
Collapse
|
14
|
Nateghi-Rostami M, Sohrabi Y. Memory T cells: promising biomarkers for evaluating protection and vaccine efficacy against leishmaniasis. Front Immunol 2024; 15:1304696. [PMID: 38469319 PMCID: PMC10925770 DOI: 10.3389/fimmu.2024.1304696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/08/2024] [Indexed: 03/13/2024] Open
Abstract
Understanding the immune response to Leishmania infection and identifying biomarkers that correlate with protection are crucial for developing effective vaccines. One intriguing aspect of Leishmania infection is the persistence of parasites, even after apparent lesion healing. Various host cells, including dendritic cells, fibroblasts, and Langerhans cells, may serve as safe sites for latent infection. Memory T cells, especially tissue-resident memory T cells (TRM), play a crucial role in concomitant immunity against cutaneous Leishmania infections. These TRM cells are long-lasting and can protect against reinfection in the absence of persistent parasites. CD4+ TRM cells, in particular, have been implicated in protection against Leishmania infections. These cells are characterized by their ability to reside in the skin and rapidly respond to secondary infections by producing cytokines such as IFN-γ, which activates macrophages to kill parasites. The induction of CD4+ TRM cells has shown promise in experimental immunization, leading to protection against Leishmania challenge infections. Identifying biomarkers of protection is a critical step in vaccine development and CD4+ TRM cells hold potential as biomarkers, as their presence and functions may correlate with protection. While recent studies have shown that Leishmania-specific memory CD4+ T-cell subsets are present in individuals with a history of cutaneous leishmaniasis, further studies are needed to characterize CD4+ TRM cell populations. Overall, this review highlights the importance of memory T cells, particularly skin-resident CD4+ TRM cells, as promising targets for developing effective vaccines against leishmaniasis and as biomarkers of immune protection to assess the efficacy of candidate vaccines against human leishmaniasis.
Collapse
Affiliation(s)
| | - Yahya Sohrabi
- Department of Cardiology I-Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Münster, Westfälische Wilhelms-Universität, Münster, Germany
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
15
|
Liu S, Li Z, Lan S, Hao H, Baz AA, Yan X, Gao P, Chen S, Chu Y. The Dual Roles of Activating Transcription Factor 3 (ATF3) in Inflammation, Apoptosis, Ferroptosis, and Pathogen Infection Responses. Int J Mol Sci 2024; 25:824. [PMID: 38255898 PMCID: PMC10815024 DOI: 10.3390/ijms25020824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Transcription factors are pivotal regulators in the cellular life process. Activating transcription factor 3 (ATF3), a member of the ATF/CREB (cAMP response element-binding protein) family, plays a crucial role as cells respond to various stresses and damage. As a transcription factor, ATF3 significantly influences signal transduction regulation, orchestrating a variety of signaling pathways, including apoptosis, ferroptosis, and cellular differentiation. In addition, ATF3 serves as an essential link between inflammation, oxidative stress, and immune responses. This review summarizes the recent advances in research on ATF3 activation and its role in regulating inflammatory responses, cell apoptosis, and ferroptosis while exploring the dual functions of ATF3 in these processes. Additionally, this article discusses the role of ATF3 in diseases related to pathogenic microbial infections. Our review may be helpful to better understand the role of ATF3 in cellular responses and disease progression, thus promoting advancements in clinical treatments for inflammation and oxidative stress-related diseases.
Collapse
Affiliation(s)
- Shuang Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou 730046, China
| | - Zhangcheng Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou 730046, China
| | - Shimei Lan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou 730046, China
| | - Huafang Hao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou 730046, China
| | - Ahmed Adel Baz
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou 730046, China
| | - Xinmin Yan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou 730046, China
| | - Pengcheng Gao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou 730046, China
| | - Shengli Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou 730046, China
| | - Yuefeng Chu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou 730046, China
| |
Collapse
|
16
|
Ahmed G, Jamal F, Tiwari RK, Singh V, Rai SN, Chaturvedi SK, Pandey K, Singh SK, Kumar A, Narayan S, Vamanu E. Arsenic exposure to mouse visceral leishmaniasis model through their drinking water linked to the disease exacerbation via modulation in host protective immunity: a preclinical study. Sci Rep 2023; 13:21461. [PMID: 38052913 PMCID: PMC10698031 DOI: 10.1038/s41598-023-48642-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/28/2023] [Indexed: 12/07/2023] Open
Abstract
A large body of evidence has shown a direct link between arsenic exposure and drug resistance to Leishmania parasites against antimonial preparations in visceral leishmaniasis (VL) hyper-endemic regions, especially in India and its sub-continent. However, the implicated roles of arsenic on the VL host, pathophysiological changes, and immune function have not yet been clarified, particularly at the reported concentration of arsenic in the VL hyper-endemic area of Bihar, India. Herein, we exposed the mouse VL model to arsenic (0.5 mg/L to 2 mg/L) through their drinking water and analyzed its effect on T cells proliferation, Th1/Th2-mediators, MAPK signaling cascade, and parasite load in preclinical models. Coherently, the parasite count in Giemsa stained spleen imprint has been investigated and found significant positive associations with levels of arsenic exposure. The liver and kidney function tests (AST, ALT, ALP, BUN, Creatinine, Urea, etc.) are apparent to hepatonephric toxicity in arsenic exposed VL mice compared to unexposed. This observation appears to be consistent with the up-regulated expression of immune regulatory Th2 mediators (IL-4, IL-10, TGF-β) and down-regulated expression of Th1 mediators (IL-12, IFN-γ, TNF-α) with a suppressed leishmanicidal function of macrophage (ROS, NO, iNOS). We also established that arsenic exposure modulated the host ERK-1/2 and p38 MAPK signaling cascade, limited T lymphocyte proliferation, and a lower IgG2a/IgG1 ratio to favor the Leishmania parasite survival inside the host. This study suggests that the contorted Th1-subtype and exacerbated Th2-subtype immune responses are involved in the increased susceptibility and pathogenesis of Leishmania parasite among subjects/individuals regularly exposed to arsenic.
Collapse
Affiliation(s)
- Ghufran Ahmed
- Department of Microbiology, Rajendra Memorial Research Institute of Medical Sciences, Patna, 800007, India
| | - Fauzia Jamal
- Department of Microbiology, Rajendra Memorial Research Institute of Medical Sciences, Patna, 800007, India
| | - Ritesh K Tiwari
- Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Patna, 800007, India
| | - Veer Singh
- Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Patna, 800007, India
| | - Sachchida Nand Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Sanjay K Chaturvedi
- Department of Microbiology, Rajendra Memorial Research Institute of Medical Sciences, Patna, 800007, India
| | - Krishna Pandey
- Department of Clinical Medicine, Rajendra Memorial Research Institute of Medical Sciences, Patna, 800007, India
| | - Santosh K Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Ashish Kumar
- Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Patna, 800007, India
| | - Shyam Narayan
- Department of Microbiology, Rajendra Memorial Research Institute of Medical Sciences, Patna, 800007, India.
| | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine of Bucharest, 011464, Bucharest, Romania.
| |
Collapse
|
17
|
Edirisinghe NM, Manamperi NH, Wanasinghe VS, Karunaweera ND. Unfolded protein response pathway in leishmaniasis: A review. Parasite Immunol 2023; 45:e13009. [PMID: 37571855 PMCID: PMC10660540 DOI: 10.1111/pim.13009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023]
Abstract
Alteration in the physiological state of the endoplasmic reticulum (ER) leads to the specific response known as unfolded protein response (UPR) or ER stress response. The UPR is driven by three sensor proteins, namely: Inositol-Requiring Enzyme 1, Protein Kinase RNA-like ER kinase and Activating Transcription Factor 6 to restore ER homeostasis. Pathogenic infection can initiate UPR activation; some pathogens can subvert the UPR to promote their survival and replication. Many intracellular pathogens, including Leishmania, can interact and hijack ER for their survival and replication, triggering ER stress and subsequently ER stress response. This review aims to provide a comprehensive overview of the ER stress response in infections with the Leishmania species.
Collapse
|
18
|
Ihedioha OC, Sivakoses A, Beverley SM, McMahon-Pratt D, Bothwell ALM. Leishmania major-derived lipophosphoglycan influences the host's early immune response by inducing platelet activation and DKK1 production via TLR1/2. Front Immunol 2023; 14:1257046. [PMID: 37885890 PMCID: PMC10598878 DOI: 10.3389/fimmu.2023.1257046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Background Platelets are rapidly deployed to infection sites and respond to pathogenic molecules via pattern recognition receptors (TLR, NLRP). Dickkopf1 (DKK1) is a quintessential Wnt antagonist produced by a variety of cell types including platelets, endothelial cells, and is known to modulate pro-inflammatory responses in infectious diseases and cancer. Moreover, DKK1 is critical for forming leukocyte-platelet aggregates and induction of type 2 cell-mediated immune responses. Our previous publication showed activated platelets release DKK1 following Leishmania major recognition. Results Here we probed the role of the key surface virulence glycoconjugate lipophosphoglycan (LPG), on DKK1 production using null mutants deficient in LPG synthesis (Δlpg1- and Δlpg2-). Leishmania-induced DKK1 production was reduced to control levels in the absence of LPG in both mutants and was restored upon re-expression of the cognate LPG1 or LPG2 genes. Furthermore, the formation of leukocyte-platelet aggregates was dependent on LPG. LPG mediated platelet activation and DKK1 production occurs through TLR1/2. Conclusion Thus, LPG is a key virulence factor that induces DKK1 production from activated platelets, and the circulating DKK1 promotes Th2 cell polarization. This suggests that LPG-activated platelets can drive innate and adaptive immune responses to Leishmania infection.
Collapse
Affiliation(s)
- Olivia C. Ihedioha
- 1Department of Immunobiology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Anutr Sivakoses
- 1Department of Immunobiology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Stephen M. Beverley
- Department of Molecular Microbiology, Washington University School of Medicine in St Louis, St. Louis, MI, United States
| | - Diane McMahon-Pratt
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States
| | - Alfred L. M. Bothwell
- 1Department of Immunobiology, College of Medicine, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
19
|
Nguyen AMT, Shalev-Benami M, Rosa-Teijeiro C, Ibarra-Meneses AV, Yonath A, Bashan A, Jaffe CL, Olivier M, Fernandez-Prada C, Lubell WD. Systematic Exploration of Functional Group Relevance for Anti-Leishmanial Activity of Anisomycin. Biomedicines 2023; 11:2541. [PMID: 37760981 PMCID: PMC10526209 DOI: 10.3390/biomedicines11092541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Assessment of structure-activity relationships for anti-protozoan activity revealed a strategy for preparing potent anisomycin derivatives with reduced host toxicity. Thirteen anisomycin analogs were synthesized by modifying the alcohol, amine, and aromatic functional groups. Examination of anti-protozoal activity against various strains of Leishmania and cytotoxicity against leucocytes with comparison against the parent natural product demonstrated typical losses of activity with modifications of the alcohol, amine, and aromatic meta-positions. On the other hand, the para-phenol moiety of anisomycin proved an effective location for introducing substituents without significant loss of anti-protozoan potency. An entry point for differentiating activity against Leishmania versus host has been uncovered by this systematic study.
Collapse
Affiliation(s)
| | - Moran Shalev-Benami
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; (M.S.-B.); (A.Y.); (A.B.)
| | - Chloé Rosa-Teijeiro
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.R.-T.); (A.V.I.-M.); (C.F.-P.)
- The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, Université de Montréal, Montreal, QC J2S 2M2, Canada
| | - Ana Victoria Ibarra-Meneses
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.R.-T.); (A.V.I.-M.); (C.F.-P.)
- The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, Université de Montréal, Montreal, QC J2S 2M2, Canada
| | - Ada Yonath
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; (M.S.-B.); (A.Y.); (A.B.)
| | - Anat Bashan
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; (M.S.-B.); (A.Y.); (A.B.)
| | - Charles L. Jaffe
- Department of Microbiology & Molecular Genetics, Kuvin Center for the Study of Tropical & Infectious Diseases, Institute for Medical Research (IMRIC), Hadassah Hebrew University Medical Center, Jerusalem 9112102, Israel;
| | - Martin Olivier
- Departments of Medicine, and of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, QC H3A 2B4, Canada;
- The Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, QC H4A 3J1, Canada
| | - Christopher Fernandez-Prada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.R.-T.); (A.V.I.-M.); (C.F.-P.)
- The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, Université de Montréal, Montreal, QC J2S 2M2, Canada
| | - William D. Lubell
- Department of Chemistry, Université de Montréal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
20
|
Srivastava A, Nair A, Pandey SP, Kluck GEG, Mesquita I, Ghosh T, Bose A, Baral R, Silvestre R, Bodhale N, Saha B. Toll-like receptor 2 selectively modulates Ras isoforms expression in Leishmania major infection. Cytokine 2023; 169:156301. [PMID: 37515982 DOI: 10.1016/j.cyto.2023.156301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/25/2023] [Accepted: 07/10/2023] [Indexed: 07/31/2023]
Abstract
Leishmania infection of macrophages results in altered Ras isoforms expression and Toll-like receptor-2 (TLR2) expression and functions. Therefore, we examined whether TLR2 would selectively alter Ras isoforms' expression in macrophages. We observed that TLR2 ligands- Pam3CSK4, peptidoglycan (PGN), and FSL- selectively modulated the expression of Ras isoforms in BALB/c-derived elicited macrophages. Lentivirally-expressed TLR1-shRNA significantly reversed this Ras isoforms expression profile. TLR2-deficient L. major-infected macrophages and the lymph node cells from the L. major-infected mice showed similarly reversed Ras isoforms expression. Transfection of the macrophages with the siRNAs for the adaptors- Myeloid Differentiation factor 88 (MyD88) and Toll-Interleukin-1 Receptor (TIR) domain-containing adaptor protein (TIRAP)- or Interleukin-1 Receptor-Associated Kinases (IRAKs)- IRAK1 and IRAK4- significantly inhibited the L. major-induced down-regulation of K-Ras, and up-regulation of N-Ras and H-Ras, expression. The TLR1/TLR2-ligand Pam3CSK4 increased IL-10 and TGF-β expression in macrophages. Pam3CSK4 upregulated N-Ras and H-Ras, but down-regulated K-Ras, expression in C57BL/6 wild-type, but not in IL-10-deficient, macrophages. IL-10 or TGF-β signaling inhibition selectively regulated Ras isoforms expression. These observations indicate the specificity of the TLR2 regulation of Ras isoforms and their selective modulation by MyD88, TIRAP, and IRAKs, but not IL-10 or TGF-β, signaling.
Collapse
Affiliation(s)
| | - Arathi Nair
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Surya P Pandey
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - George Eduardo Gabriel Kluck
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's, PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Inês Mesquita
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's, PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Tithi Ghosh
- Chittaranjan National Cancer Research Institute, Kolkata, India
| | - Anamika Bose
- Chittaranjan National Cancer Research Institute, Kolkata, India
| | | | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's, PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Neelam Bodhale
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Bhaskar Saha
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
| |
Collapse
|
21
|
Das K, Nozaki T. Non-Vesicular Lipid Transport Machinery in Leishmania donovani: Functional Implications in Host-Parasite Interaction. Int J Mol Sci 2023; 24:10637. [PMID: 37445815 DOI: 10.3390/ijms241310637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 07/15/2023] Open
Abstract
Eukaryotic cells have distinct membrane-enclosed organelles, each with a unique biochemical signature and specialized function. The unique identity of each organelle is greatly governed by the asymmetric distribution and regulated intracellular movement of two important biomolecules, lipids, and proteins. Non-vesicular lipid transport mediated by lipid-transfer proteins (LTPs) plays essential roles in intra-cellular lipid trafficking and cellular lipid homeostasis, while vesicular transport regulates protein trafficking. A comparative analysis of non-vesicular lipid transport machinery in protists could enhance our understanding of parasitism and basis of eukaryotic evolution. Leishmania donovani, the trypanosomatid parasite, greatly depends on receptor-ligand mediated signalling pathways for cellular differentiation, nutrient uptake, secretion of virulence factors, and pathogenesis. Lipids, despite being important signalling molecules, have intracellular transport mechanisms that are largely unexplored in L. donovani. We have identified a repertoire of sixteen (16) potential lipid transfer protein (LTP) homologs based on a domain-based search on TriTrypDB coupled with bioinformatics analyses, which signifies the presence of well-organized lipid transport machinery in this parasite. We emphasized here their evolutionary uniqueness and conservation and discussed their potential implications for parasite biology with regards to future therapeutic targets against visceral leishmaniasis.
Collapse
Affiliation(s)
- Koushik Das
- Department of Allied Health Sciences, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
22
|
Devsani N, Vemula D, Bhandari V. The glycoprotein gp63- a potential pan drug target for developing new antileishmanial agents. Biochimie 2023; 207:75-82. [PMID: 36473603 DOI: 10.1016/j.biochi.2022.11.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/02/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Leishmaniasis is a tropical parasitic disease caused by Leishmania spp. They cause several presentations of illness ranging from cutaneous leishmaniasis to visceral leishmaniasis. The current arsenal of drugs to treat leishmaniasis is limited, and drug resistance further impedes the problem. Therefore, it is necessary to revisit the available information to identify an alternative or new target for treatment. The glycoprotein 63 (gp63), is a potential anti-leishmanial target that plays a significant role in host-pathogen interaction and virulence. Many studies are ongoing to develop gp63 inhibitors or use it as a vaccine target. In this review, we will discuss the potential of gp63 as a drug target. This review summarises the studies focusing on gp63 as a drug target and its inhibitors identified using in silico approaches.
Collapse
Affiliation(s)
- Namrata Devsani
- National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Divya Vemula
- National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Vasundhra Bhandari
- National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
23
|
Chowdhuri SP, Dhiman S, Das SK, Meena N, Das S, Kumar A, Das BB. Novel Pyrido[2',1':2,3]imidazo[4,5- c]quinoline Derivative Selectively Poisons Leishmania donovani Bisubunit Topoisomerase 1 to Inhibit the Antimony-Resistant Leishmania Infection in Vivo. J Med Chem 2023; 66:3411-3430. [PMID: 36823782 DOI: 10.1021/acs.jmedchem.2c01932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The unique bisubunit structure of Leishmania donovani topoisomerase 1B (LdTop1) is a potential drug target in the parasites unlike the monomeric Top1 from its human host counterpart. Here, we report the design, synthesis, and validation of a chimeric pyrido[2',1':2,3]imidazo[4,5-c]quinoline derivative (C17) as a novel antileishmanial agent that poisons topoisomerase 1-DNA covalent complexes (LdTop1cc) inside the parasites and inhibits Top1 religation activity both in the drug sensitive and antimony-resistant L. donovani clinical isolates. Importantly, the human Top1 is not sensitive to C17. Further, C17 overcomes the chemical instability of camptothecin (CPT) by generating persistent LdTop1cc-induced DNA breaks inside the parasites even after 12 h of drug removal. Intraperitoneal administration of C17 results in marked reduction of the Leishmania amastigotes from the infected spleen and liver of BALB/c mice. C17 confers a host protective immune-response up-regulating the Th1 cytokines facilitating parasite clearance which can be exploited for treating drug-resistant leishmaniasis.
Collapse
Affiliation(s)
- Srijita Paul Chowdhuri
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & B, Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Shiv Dhiman
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031 Rajasthan, India
| | - Subhendu K Das
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & B, Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Neha Meena
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031 Rajasthan, India
| | - Sonali Das
- Infectious Diseases & Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Anil Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031 Rajasthan, India
| | - Benu Brata Das
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & B, Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| |
Collapse
|
24
|
Gupta D, Singh PK, Yadav PK, Narender T, Patil UK, Jain SK, Chourasia MK. Emerging strategies and challenges of molecular therapeutics in antileishmanial drug development. Int Immunopharmacol 2023; 115:109649. [PMID: 36603357 DOI: 10.1016/j.intimp.2022.109649] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/16/2022] [Accepted: 12/24/2022] [Indexed: 01/05/2023]
Abstract
Molecular therapy refers to targeted therapies based on molecules which have been intelligently directed towards specific biomolecular structures and include small molecule drugs, monoclonal antibodies, proteins and peptides, DNA or RNA-based strategies, targeted chemotherapy and nanomedicines. Molecular therapy is emerging as the most effective strategy to combat the present challenges of life-threatening visceral leishmaniasis, where the successful human vaccine is currently unavailable. Moreover, current chemotherapy-based strategies are associated with the issues of ineffective targeting, unavoidable toxicities, invasive therapies, prolonged treatment, high treatment costs and the development of drug-resistant strains. Thus, the rational approach to antileishmanial drug development primarily demands critical exploration and exploitation of biochemical differences between host and parasite biology, immunocharacteristics of parasite homing, and host-parasite interactions at the molecular/cellular level. Following this, the novel technology-based designing and development of host and/or parasite-targeted therapeutics having leishmanicidal and immunomodulatory activity is utmost essential to improve treatment efficacy. Thus, the present review is focused on immunological and molecular checkpoint targets in host-pathogen interaction, and molecular therapeutic prospects for Leishmania intervention, and the challenges ahead.
Collapse
Affiliation(s)
- Deepak Gupta
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, M.P., India; Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Pankaj K Singh
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India; Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India
| | - Pavan K Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Tadigoppula Narender
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Umesh K Patil
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, M.P., India
| | - Sanjay K Jain
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, M.P., India
| | - Manish K Chourasia
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India.
| |
Collapse
|
25
|
El-Dirany R, Fernández-Rubio C, Peña-Guerrero J, Moreno E, Larrea E, Espuelas S, Abdel-Sater F, Brandenburg K, Martínez-de-Tejada G, Nguewa P. Repurposing the Antibacterial Agents Peptide 19-4LF and Peptide 19-2.5 for Treatment of Cutaneous Leishmaniasis. Pharmaceutics 2022; 14:pharmaceutics14112528. [PMID: 36432719 PMCID: PMC9697117 DOI: 10.3390/pharmaceutics14112528] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
The lack of safe and cost-effective treatments against leishmaniasis highlights the urgent need to develop improved leishmanicidal agents. Antimicrobial peptides (AMPs) are an emerging category of therapeutics exerting a wide range of biological activities such as anti-bacterial, anti-fungal, anti-parasitic and anti-tumoral. In the present study, the approach of repurposing AMPs as antileishmanial drugs was applied. The leishmanicidal activity of two synthetic anti-lipopolysaccharide peptides (SALPs), so-called 19-2.5 and 19-4LF was characterized in Leishmania major. In vitro, both peptides were highly active against intracellular Leishmania major in mouse macrophages without exerting toxicity in host cells. Then, q-PCR-based gene profiling, revealed that this activity was related to the downregulation of several genes involved in drug resistance (yip1), virulence (gp63) and parasite proliferation (Cyclin 1 and Cyclin 6). Importantly, the treatment of BALB/c mice with any of the two AMPs caused a significant reduction in L. major infective burden. This effect was associated with an increase in Th1 cytokine levels (IL-12p35, TNF-α, and iNOS) in the skin lesion and spleen of the L. major infected mice while the Th2-associated genes were downregulated (IL-4 and IL-6). Lastly, we investigated the effect of both peptides in the gene expression profile of the P2X7 purinergic receptor, which has been reported as a therapeutic target in several diseases. The results showed significant repression of P2X7R by both peptides in the skin lesion of L. major infected mice to an extent comparable to that of a common anti-leishmanial drug, Paromomycin. Our in vitro and in vivo studies suggest that the synthetic AMPs 19-2.5 and 19-4LF are promising candidates for leishmaniasis treatment and present P2X7R as a potential therapeutic target in cutaneous leishmaniasis (CL).
Collapse
Affiliation(s)
- Rima El-Dirany
- ISTUN Institute of Tropical Health, Department of Microbiology and Parasitology, IdiSNA (Navarra Institute for Health Research), University of Navarra, c/Irunlarrea 1, 31008 Pamplona, Navarra, Spain
- Laboratory of Molecular Biology and Cancer Immunology, Faculty of Sciences I, Lebanese University, Hadath 1003, Lebanon
| | - Celia Fernández-Rubio
- ISTUN Institute of Tropical Health, Department of Microbiology and Parasitology, IdiSNA (Navarra Institute for Health Research), University of Navarra, c/Irunlarrea 1, 31008 Pamplona, Navarra, Spain
| | - José Peña-Guerrero
- ISTUN Institute of Tropical Health, Department of Microbiology and Parasitology, IdiSNA (Navarra Institute for Health Research), University of Navarra, c/Irunlarrea 1, 31008 Pamplona, Navarra, Spain
| | - Esther Moreno
- ISTUN Institute of Tropical Health, Department of Chemistry and Pharmaceutical Technology, IdiSNA (Navarra Institute for Health Research), University of Navarra, c/Irunlarrea 1, 31008 Pamplona, Navarra, Spain
| | - Esther Larrea
- ISTUN Institute of Tropical Health, IdiSNA (Navarra Institute for Health Research), University of Navarra, 31008 Pamplona, Navarra, Spain
| | - Socorro Espuelas
- ISTUN Institute of Tropical Health, Department of Chemistry and Pharmaceutical Technology, IdiSNA (Navarra Institute for Health Research), University of Navarra, c/Irunlarrea 1, 31008 Pamplona, Navarra, Spain
| | - Fadi Abdel-Sater
- Laboratory of Molecular Biology and Cancer Immunology, Faculty of Sciences I, Lebanese University, Hadath 1003, Lebanon
| | - Klaus Brandenburg
- Brandenburg Antiinfektiva GmbH, c/o Forschungszentrum Borstel, Leibniz Lungenzentrum, 23845 Borstel, Germany
| | - Guillermo Martínez-de-Tejada
- Department of Microbiology and Parasitology, IdiSNA (Navarra Institute for Health Research), University of Navarra, 31008 Pamplona, Navarra, Spain
| | - Paul Nguewa
- ISTUN Institute of Tropical Health, Department of Microbiology and Parasitology, IdiSNA (Navarra Institute for Health Research), University of Navarra, c/Irunlarrea 1, 31008 Pamplona, Navarra, Spain
- Correspondence:
| |
Collapse
|
26
|
A Novel Role of Secretory Cytosolic Tryparedoxin Peroxidase in Delaying Apoptosis of Leishmania-Infected Macrophages. Mol Cell Biol 2022; 42:e0008122. [PMID: 36073913 PMCID: PMC9583715 DOI: 10.1128/mcb.00081-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The cytosolic tryparedoxin peroxidase (cTXNPx) of Leishmania donovani is a defensive enzyme. Apart from the nonsecretory form, the cTXNPx is released in the spent media of Leishmania cultures and also in the host cell cytosol. The secretory form of the enzyme from the parasite interacts with multiple proteins in the host cell cytosol, the apoptosis-inducing factor (AIF) being one of them. Immunoprecipitation with anti-cTXNPx and anti-AIF antibodies suggests a strong interaction between AIF and cTXNPx. Consequent to parasite invasion, the migration of AIF to the nucleus to precipitate apoptosis is inhibited in the presence of recombinant cTXNPx expressed in the host cell. This inhibition of AIF movement results in lesser host cell death, giving an advantage to the parasite for continued survival. Staurosporine-induced AIF migration to the nucleus was also inhibited in the presence of recombinant cTXNPx in the host cell. Therefore, this study demonstrates the ability of a Leishmania parasite enzyme, cTXNPx, to interfere with the migration of the host AIF protein, providing a survival advantage to the Leishmania parasite.
Collapse
|
27
|
Guay-Vincent MM, Matte C, Berthiaume AM, Olivier M, Jaramillo M, Descoteaux A. Revisiting Leishmania GP63 host cell targets reveals a limited spectrum of substrates. PLoS Pathog 2022; 18:e1010640. [PMID: 36191034 PMCID: PMC9560592 DOI: 10.1371/journal.ppat.1010640] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/13/2022] [Accepted: 09/25/2022] [Indexed: 11/18/2022] Open
Abstract
Colonization of host phagocytic cells by Leishmania metacyclic promastigotes involves several parasite effectors, including the zinc-dependent metalloprotease GP63. The major mode of action of this virulence factor entails the cleavage/degradation of host cell proteins. Given the potent proteolytic activity of GP63, identification of its substrates requires the adequate preparation of cell lysates to prevent artefactual degradation during cell processing. In the present study, we re-examined the cleavage/degradation of reported GP63 substrates when GP63 activity was efficiently neutralized during the preparation of cell lysates. To this end, we infected bone marrow-derived macrophages with either wild type, Δgp63, and Δgp63+GP63 L. major metacyclic promastigotes for various time points. We prepared cell lysates in the absence or presence of the zinc-metalloprotease inhibitor 1,10-phenanthroline and examined the levels and integrity of ten previously reported host cell GP63 substrates. Inhibition of GP63 activity with 1,10-phenanthroline during the processing of macrophages prevented the cleavage/degradation of several previously described GP63 targets, including PTP-PEST, mTOR, p65RelA, c-Jun, VAMP3, and NLRP3. Conversely, we confirmed that SHP-1, Synaptotagmin XI, VAMP8, and Syntaxin-5 are bona fide GP63 substrates. These results point to the importance of efficiently inhibiting GP63 activity during the preparation of Leishmania-infected host cell lysates. In addition, our results indicate that the role of GP63 in Leishmania pathogenesis must be re-evaluated.
Collapse
Affiliation(s)
- Marie-Michèle Guay-Vincent
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| | - Christine Matte
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| | - Anne-Marie Berthiaume
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| | - Martin Olivier
- Department of Microbiology and Immunology, McGill University, Montréal, Quebec, Canada
- Infectious Diseases and Immunity in Global Health Program, The Research Institute of the McGill University Health Centre, Montréal, Quebec, Canada
| | - Maritza Jaramillo
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| | - Albert Descoteaux
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
- * E-mail:
| |
Collapse
|
28
|
Mandell MA, Beatty WL, Beverley SM. Quantitative single-cell analysis of Leishmania major amastigote differentiation demonstrates variably extended expression of the lipophosphoglycan (LPG) virulence factor in different host cell types. PLoS Negl Trop Dis 2022; 16:e0010893. [PMID: 36302046 PMCID: PMC9642900 DOI: 10.1371/journal.pntd.0010893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/08/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022] Open
Abstract
Immediately following their deposition into the mammalian host by an infected sand fly vector, Leishmania parasites encounter and are engulfed by a variety of cell types. From there, parasites may transit to other cell types, primarily macrophages or dendritic cells, where they replicate and induce pathology. During this time, Leishmania cells undergo a dramatic transformation from the motile non-replicating metacyclic stage to the non-motile replicative amastigote stage, a differentiative process that can be termed amastigogenesis. To follow this at the single cell level, we identified a suite of experimental 'landmarks' delineating different stages of amastigogenesis qualitatively or quantitatively, including new uses of amastigote-specific markers that showed interesting cellular localizations at the anterior or posterior ends. We compared amastigogenesis in synchronous infections of peritoneal and bone-marrow derived macrophages (PEM, BMM) or dendritic cells (BMDC). Overall, the marker suite expression showed an orderly transition post-infection with similar kinetics between host cell types, with the emergence of several amastigote traits within 12 hours, followed by parasite replication after 24 hours, with parasites in BMM or BMDC initiating DNA replication more slowly. Lipophosphoglycan (LPG) is a Leishmania virulence factor that facilitates metacyclic establishment in host cells but declines in amastigotes. Whereas LPG expression was lost by parasites within PEM by 48 hours, >40% of the parasites infecting BMM or BMDC retained metacyclic-level LPG expression at 72 hr. Thus L. major may prolong LPG expression in different intracellular environments, thereby extending its efficacy in promoting infectivity in situ and during cell-to-cell transfer of parasites expressing this key virulence factor.
Collapse
Affiliation(s)
- Michael A. Mandell
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Current address: Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Wandy L. Beatty
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Stephen M. Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
29
|
Okuda K, Silva Costa Franco MM, Yasunaga A, Gazzinelli R, Rabinovitch M, Cherry S, Silverman N. Leishmania amazonensis sabotages host cell SUMOylation for intracellular survival. iScience 2022; 25:104909. [PMID: 36060064 PMCID: PMC9436752 DOI: 10.1016/j.isci.2022.104909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/29/2022] [Accepted: 08/05/2022] [Indexed: 11/23/2022] Open
Abstract
Leishmania parasites use elaborate virulence mechanisms to invade and thrive in macrophages. These virulence mechanisms inhibit host cell defense responses and generate a specialized replicative niche, the parasitophorous vacuole. In this work, we performed a genome-wide RNAi screen in Drosophila macrophage-like cells to identify the host factors necessary for Leishmania amazonensis infection. This screen identified 52 conserved genes required specifically for parasite entry, including several components of the SUMOylation machinery. Further studies in mammalian macrophages found that L. amazonensis infection inhibited SUMOylation within infected macrophages and this inhibition enhanced parasitophorous vacuole growth and parasite proliferation through modulation of multiple genes especially ATP6V0D2, which in turn affects CD36 expression and cholesterol levels. Together, these data suggest that parasites actively sabotage host SUMOylation and alter host transcription to improve their intracellular niche and enhance their replication.
Collapse
Affiliation(s)
- Kendi Okuda
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, USA
| | - Miriam Maria Silva Costa Franco
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, USA
| | - Ari Yasunaga
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ricardo Gazzinelli
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, USA
- Centro de Tecnologia de Vacinas, Universidade Federal of Minas Gerais, Belo Horizonte, MG 31270, Brazil
- Fundação Oswaldo Cruz - Minas, Belo Horizonte, MG 30190, Brazil
| | - Michel Rabinovitch
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Sara Cherry
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Neal Silverman
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, USA
| |
Collapse
|
30
|
Calvo Alvarez E, D’Alessandro S, Proverbio D, Spada E, Perego R, Taramelli D, Basilico N, Parapini S. In Vitro Antiparasitic Activities of Monovalent Ionophore Compounds for Human and Canine Leishmaniases. Animals (Basel) 2022; 12:2337. [PMID: 36139198 PMCID: PMC9495262 DOI: 10.3390/ani12182337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 12/03/2022] Open
Abstract
The leishmaniases are vector-borne parasitic diseases affecting humans and animals, with high mortality rates in endemic countries. Infected dogs represent the main reservoir of infection. Disease control is mainly based on chemotherapy, which, at present, shows serious drawbacks both in humans and dogs. Therefore, the discovery or repurposing of new treatments is mandatory. Here, three monovalent ionophores (salinomycin, monensin, nigericin) were tested against promastigotes of Leishmania (L.) infantum, Leishmania tropica, and Leishmania braziliensis, and against amastigotes of L. infantum within human and, for the first time, canine macrophages. All three drugs were leishmanicidal against all Leishmania spp. promastigotes with IC50 values between 7.98 and 0.23 µM. Monensin and nigericin showed IC50 values < 1 µM, whereas salinomycin was the least active compound (IC50 > 4 µM). Notably, the ionophores killed L. infantum amastigotes within human THP-1 cells with IC50 values ranging from 1.67 to 1.93 µM, but they only reduced by 27−37% the parasite burden in L. infantum-infected canine macrophages, showing a host-specific efficacy. Moreover, a selective higher toxicity against canine macrophages was observed. Overall, repurposed ionophores have the potential to be further investigated as anti-Leishmania agents, but different drug options may be required to tackle human or canine leishmaniases.
Collapse
Affiliation(s)
- Estefanía Calvo Alvarez
- Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, Via Pascal, 36, 20133 Milan, Italy
| | - Sarah D’Alessandro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Pascal, 36, 20133 Milan, Italy
| | - Daniela Proverbio
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, Via dell’Università, 1, 26900 Lodi, Italy
| | - Eva Spada
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, Via dell’Università, 1, 26900 Lodi, Italy
| | - Roberta Perego
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, Via dell’Università, 1, 26900 Lodi, Italy
| | - Donatella Taramelli
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Pascal, 36, 20133 Milan, Italy
| | - Nicoletta Basilico
- Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, Via Pascal, 36, 20133 Milan, Italy
| | - Silvia Parapini
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Pascal, 36, 20133 Milan, Italy
| |
Collapse
|
31
|
Mukherjee N, Banerjee S, Amin SA, Jha T, Datta S, Das Saha K. Host P2X 7R-p 38MAPK axis mediated intra-macrophage leishmanicidal activity of Spergulin-A. Exp Parasitol 2022; 241:108365. [PMID: 36007587 DOI: 10.1016/j.exppara.2022.108365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/14/2022] [Accepted: 08/18/2022] [Indexed: 11/04/2022]
Abstract
Current drugs are inefficient for the treatment of visceral leishmaniasis an immunosuppressive ailment caused by Leishmania donovani. Regrettably, there is no plant-origin antileishmanial drug present. P2X7R is constitutively present on macrophage surfaces and can be a putative therapeutic target in intra-macrophage pathogens with function attributes towards inflammation, host cell apoptosis, altered redox, and phagolysosomal maturation by activating p38MAPK. Here we demonstrated that the initial interaction of Spergulin-A (Sp A), a triterpenoid saponin with RAW 264.7 macrophages was mediated through P2X7R involving the signaling cascade intermediates Ca++, p38MAPK, and NF-κβ. Phospho (P)-p38MAPK involvement is shown to have specific and firm importance in leishmanial killing with increased NF-κβp65. Phago-lysosomal maturation by Sp A also campaigns for another contribution of P2X7R. In vivo evaluation of the anti-leishmanial activity of Sp A was monitored through expression analyses of P2X7R, P-p38MAPK, and NF-κβp65 in murine spleen and bone-marrow macrophages and supported Sp A being a natural compound of leishmanicidal functions which acted through the P2X7R-p38MAPK axis.
Collapse
Affiliation(s)
- Niladri Mukherjee
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, India; Techno India University, EM-4, Sector V, Salt Lake, Kolkata, 700091, West Bengal, India.
| | - Saswati Banerjee
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Sk Abdul Amin
- Natural Science Laboratory, Department of Pharmaceutical Technology, Division of Medicinal & Pharmaceutical Chemistry, P. O. Box 17020, Jadavpur University, Kolkata, 700032, India
| | - Tarun Jha
- Natural Science Laboratory, Department of Pharmaceutical Technology, Division of Medicinal & Pharmaceutical Chemistry, P. O. Box 17020, Jadavpur University, Kolkata, 700032, India
| | - Sriparna Datta
- Department of Chemical Technology, University of Calcutta, Kolkata, 700009, India
| | - Krishna Das Saha
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, India.
| |
Collapse
|
32
|
Osorio EY, Gugala Z, Patterson GT, Palacios G, Cordova E, Uscanga-Palomeque A, Travi BL, Melby PC. Inflammatory stimuli alter bone marrow composition and compromise bone health in the malnourished host. Front Immunol 2022; 13:846246. [PMID: 35983045 PMCID: PMC9380851 DOI: 10.3389/fimmu.2022.846246] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammation has a role in the pathogenesis of childhood malnutrition. We investigated the effect of malnutrition and inflammatory challenge on bone marrow composition and bone health. We studied an established murine model of moderate acute malnutrition at baseline and after acute inflammatory challenge with bacterial lipopolysaccharide (LPS), a surrogate of Gram-negative bacterial sepsis, or Leishmania donovani, the cause of visceral leishmaniasis. Both of these infections cause significant morbidity and mortality in malnourished children. Of the 2 stimuli, LPS caused more pronounced bone marrow changes that were amplified in malnourished mice. LPS challenge led to increased inflammatory cytokine expression (Il1b, Il6, and Tnf), inflammasome activation, and inflammatory monocyte accumulation in the bone marrow of malnourished mice. Depletion of inflammatory monocytes in Csfr1-LysMcre-DT malnourished mice significantly reduced the inflammasome activation and IL1-ß production after LPS challenge. The inflammatory challenge also led to increased expansion of mesenchymal stem cells (MSCs), bone marrow adiposity, and expression of genes (Pparg, Adipoq, and Srbp1) associated with adipogenesis in malnourished mice. This suggests that inflammatory challenge promotes differentiation of BM MSCs toward the adipocyte lineage rather than toward bone-forming osteoblasts in the malnourished host. Concurrent with this reduced osteoblastic potential there was an increase in bone-resorbing osteoclasts, enhanced osteoclast activity, upregulation of inflammatory genes, and IL-1B involved in osteoclast differentiation and activation. The resulting weakened bone formation and increased bone resorption would contribute to the bone fragility associated with malnutrition. Lastly, we evaluated the effect of replacing lipid rich in omega-6 fatty acids (corn oil) with lipid-rich in omega-3 fatty acids (fish oil) in the nutrient-deficient diet. LPS-challenged malnourished mice that received dietary fish oil showed decreased expression of inflammatory cytokines and Rankl and reduced osteoclast differentiation and activation in the bone marrow. This work demonstrates that the negative effect of inflammatory challenge on bone marrow is amplified in the malnourished host. Increasing dietary intake of omega-3 fatty acids may be a means to reduce inflammation and improve bone health in malnourished children.
Collapse
Affiliation(s)
- E. Yaneth Osorio
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States
- *Correspondence: Peter C. Melby, ; E. Yaneth Osorio,
| | - Zbigniew Gugala
- Department of Orthopedic Surgery and Rehabilitation, The University of Texas Medical Branch, Galveston, TX, United States
| | - Grace T. Patterson
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States
| | - Genesis Palacios
- Department of Parasitology, Universidad de la Laguna, San Cristóbal de La Laguna, Spain
| | - Erika Cordova
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States
| | - Ashanti Uscanga-Palomeque
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States
| | - Bruno L. Travi
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Center for Tropical Diseases and Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| | - Peter C. Melby
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Center for Tropical Diseases and Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, United States
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
- *Correspondence: Peter C. Melby, ; E. Yaneth Osorio,
| |
Collapse
|
33
|
Bahrami F, Masoudzadeh N, Van Veen S, Persson J, Lari A, Sarvnaz H, Taslimi Y, Östensson M, Andersson B, Sharifi I, Goyonlo VM, Ottenhoff TH, Haks MC, Harandi AM, Rafati S. Blood transcriptional profiles distinguish different clinical stages of cutaneous leishmaniasis in humans. Mol Immunol 2022; 149:165-173. [PMID: 35905592 DOI: 10.1016/j.molimm.2022.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 07/03/2022] [Accepted: 07/19/2022] [Indexed: 10/16/2022]
Abstract
Cutaneous leishmaniasis (CL) is a neglected tropical disease with severe morbidity and socioeconomic sequelae. A better understanding of underlying immune mechanisms that lead to different clinical outcomes of CL could inform the rational design of intervention measures. While transcriptomic analyses of CL lesions were recently reported by us and others, there is a dearth of information on the expression of immune-related genes in the blood of CL patients. Herein, we investigated immune-related gene expression in whole blood samples collected from individuals with different clinical stages of CL along with healthy volunteers in an endemic CL region where Leishmania (L.) tropica is prevalent. Study participants were categorized into asymptomatic (LST+) and healthy uninfected (LST-) groups based on their leishmanin skin test (LST). Whole blood PAXgene samples were collected from volunteers, who had healed CL lesions, and patients with active L. tropica cutaneous lesions. Quality RNA extracted from 57 blood samples were subjected to Dual-color reverse-transcription multiplex ligation-dependent probe amplification (dcRT-MLPA) assay for profiling 144 immune-related genes. Results show significant changes in the expression of genes involved in interferon signaling pathway in the blood of active CL patients, asymptomatics and healed individuals. Nonetheless, distinct profiles for several immune-related genes were identified in the healed, the asymptomatic, and the CL patients compared to the healthy controls. Among others, IFI16 and CCL11 were found as immune transcript signatures for the healed and the asymptomatic individuals, respectively. These results warrant further exploration to pinpoint novel blood biomarkers for different clinical stages of CL.
Collapse
Affiliation(s)
- Fariborz Bahrami
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Nasrin Masoudzadeh
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Suzanne Van Veen
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Josefine Persson
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Arezou Lari
- Systems Biomedicine Unit, Pasteur Institute of Iran, Tehran, Iran
| | - Hamzeh Sarvnaz
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Yasaman Taslimi
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Malin Östensson
- Bioinformatics Core Facility, University of Gothenburg, Gothenburg, Sweden
| | - Björn Andersson
- Bioinformatics Core Facility, University of Gothenburg, Gothenburg, Sweden
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Tom Hm Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Mariëlle C Haks
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Ali M Harandi
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Vaccine Evaluation Center, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada.
| | - Sima Rafati
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
34
|
Venugopal G, Bird JT, Washam CL, Roys H, Bowlin A, Byrum SD, Weinkopff T. In vivo transcriptional analysis of mice infected with Leishmania major unveils cellular heterogeneity and altered transcriptomic profiling at single-cell resolution. PLoS Negl Trop Dis 2022; 16:e0010518. [PMID: 35789215 PMCID: PMC9286232 DOI: 10.1371/journal.pntd.0010518] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 07/15/2022] [Accepted: 05/18/2022] [Indexed: 01/02/2023] Open
Abstract
Leishmania parasites cause cutaneous leishmaniasis (CL), a disease characterized by disfiguring, ulcerative skin lesions. Both parasite and host gene expression following infection with various Leishmania species has been investigated in vitro, but global transcriptional analysis following L. major infection in vivo is lacking. Thus, we conducted a comprehensive transcriptomic profiling study combining bulk RNA sequencing (RNA-Seq) and single-cell RNA sequencing (scRNA-Seq) to identify global changes in gene expression in vivo following L. major infection. Bulk RNA-Seq analysis revealed that host immune response pathways like the antigen processing and presentation pathway were significantly enriched amongst differentially expressed genes (DEGs) upon infection, while ribosomal pathways were significantly downregulated in infected mice compared to naive controls. scRNA-Seq analyses revealed cellular heterogeneity including distinct resident and recruited cell types in the skin following murine L. major infection. Within the individual immune cell types, several DEGs indicative of many interferon induced GTPases and antigen presentation molecules were significantly enhanced in the infected ears including macrophages, resident macrophages, and inflammatory monocytes. Ingenuity Pathway Analysis of scRNA-Seq data indicated the antigen presentation pathway was increased with infection, while EIF2 signaling is the top downregulated pathway followed by eIF4/p70S6k and mTOR signaling in multiple cell types including macrophages, blood and lymphatic endothelial cells. Altogether, this transcriptomic profile highlights known recruitment of myeloid cells to lesions and recognizes a potential role for EIF2 signaling in murine L. major infection in vivo.
Collapse
Affiliation(s)
- Gopinath Venugopal
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Jordan T. Bird
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Arkansas Children’s Research Institute, Little Rock, Arkansas, United States of America
| | - Charity L. Washam
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Arkansas Children’s Research Institute, Little Rock, Arkansas, United States of America
| | - Hayden Roys
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Anne Bowlin
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Stephanie D. Byrum
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Arkansas Children’s Research Institute, Little Rock, Arkansas, United States of America
- * E-mail: (SDB); (TW)
| | - Tiffany Weinkopff
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- * E-mail: (SDB); (TW)
| |
Collapse
|
35
|
Downregulation of gamma subunit of TCP1 chaperonin of Leishmania donovani modulates extracellular vesicles-mediated macrophage microbicidal function. Microb Pathog 2022; 169:105616. [DOI: 10.1016/j.micpath.2022.105616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/29/2022] [Accepted: 06/04/2022] [Indexed: 11/18/2022]
|
36
|
Sun S, Wang Y, Li M, Wu J. Identification of TRP-Related Subtypes, Development of a Prognostic Model, and Characterization of Tumor Microenvironment Infiltration in Lung Adenocarcinoma. Front Mol Biosci 2022; 9:861380. [PMID: 35620481 PMCID: PMC9127446 DOI: 10.3389/fmolb.2022.861380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/30/2022] [Indexed: 01/08/2023] Open
Abstract
The TRP (transient receptor potential) superfamily, as cation channels, is a critical chemosensor for potentially harmful irritants. Their activation is closely related not only to tumor progression and prognosis but also to tumor therapy response. Nevertheless, the TRP-related immune gene (TRIG) expression of the tumor microenvironment (TME) and the associations with prognosis remain unclear. First, we represented the transcriptional and genetic variations in TRIGs in 535 lung adenocarcinoma (LUAD) samples as well as their expression patterns. LUAD samples were divided into two distinct subtypes based on the TRIG variations. Significant differences had been found in prognosis, clinical features, and TME cell-infiltration features between the two subtypes of patients. Second, we framed a TRIG score for predicting overall survival (OS) and validated the predictive capability of the TRIG score in LUAD patients. Accordingly, to enhance the clinical applicability of TRIG score, we developed a considerable nomogram. A low TRIG score, characterized by increased immunity activation, indicated favorable advantages of OS compared with a high TRIG score. Furthermore, the TRIG score was found to have a significant connection with the TME cell-infiltration and immune checkpoint expressions. Our analysis of TRIGs in LUAD showed their potential roles in prognosis, clinical features, and tumor-immune microenvironments. These results may advance our knowledge of TRP genes in LUAD and show a new light on prognosis estimation and the improvement of immunotherapy strategies.
Collapse
|
37
|
Brar HK, Roy G, Kanojia A, Madan E, Madhubala R, Muthuswami R. Chromatin-Remodeling Factor BRG1 Is a Negative Modulator of L. donovani in IFNγ Stimulated and Infected THP-1 Cells. Front Cell Infect Microbiol 2022; 12:860058. [PMID: 35433496 PMCID: PMC9011159 DOI: 10.3389/fcimb.2022.860058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Intracellular pathogens manipulate the host cell for their own survival by contributing to modifications of host epigenome, and thus, altering expression of genes involved in the pathogenesis. Both ATP-dependent chromatin remodeling complex and histone modifications has been shown to be involved in the activation of IFNγ responsive genes. Leishmania donovani is an intracellular pathogen that causes visceral leishmaniasis. The strategies employed by Leishmania donovani to modulate the host epigenome in order to overcome the host defense for their persistence has been worked out in this study. We show that L. donovani negatively affects BRG1, a catalytic subunit of mammalian SWI/SNF chromatin remodeling complex, to alter IFNγ induced host responses. We observed that L. donovani infection downregulates BRG1 expression both at transcript and protein levels in cells stimulated with IFNγ. We also observed a significant decrease in IFNγ responsive gene, Class II transactivator (CIITA), as well as its downstream genes, MHC-II (HLA-DR and HLA-DM). Also, the occupancy of BRG1 at CIITA promoters I and IV was disrupted. A reversal in CIITA expression and decreased parasite load was observed with BRG1 overexpression, thus, suggesting BRG1 is a potential negative regulator for the survival of intracellular parasites in an early phase of infection. We also observed a decrease in H3 acetylation at the promoters of CIITA, post parasite infection. Silencing of HDAC1, resulted in increased CIITA expression, and further decreased parasite load. Taken together, we suggest that intracellular parasites in an early phase of infection negatively regulates BRG1 by using host HDAC1 for its survival inside the host.
Collapse
Affiliation(s)
- Harsimran Kaur Brar
- Molecular Parasitology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Gargi Roy
- Molecular Parasitology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Akanksha Kanojia
- Chromatin Remodeling Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Evanka Madan
- Molecular Parasitology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rentala Madhubala
- Molecular Parasitology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- *Correspondence: Rentala Madhubala, ; Rohini Muthuswami,
| | - Rohini Muthuswami
- Chromatin Remodeling Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- *Correspondence: Rentala Madhubala, ; Rohini Muthuswami,
| |
Collapse
|
38
|
Taslimi Y, Masoudzadeh N, Bahrami F, Rafati S. Cutaneous leishmaniasis: multiomics approaches to unravel the role of immune cells checkpoints. Expert Rev Proteomics 2022; 19:213-225. [PMID: 36191333 DOI: 10.1080/14789450.2022.2131545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Cutaneous leishmaniasis (CL) is the most frequent form of leishmaniases, associated with skin inflammation and ulceration. Understanding the interaction of different phagocytic cells in the recognition and uptake of different Leishmania species is critical for controlling the infection. Phagocytic cells have a pivotal role as professional antigen-presenting cells that bridge the innate and adaptive immunity and shape the outcome of the disease. AREAS COVERED Here we reviewed new technologies with high-throughput data collection capabilities along with systems biology approaches which are recently being used to decode the paradox of CL immunology. EXPERT OPINION We emphasized on the crosstalk between DC and T-cells while focusing on the immune checkpoints interactions between the human immune system and the Leishmania species. Further, we discussed omics technologies including bulk RNA sequencing, reverse transcriptase-multiplex ligation dependent probe amplification (RT-MLPA), and proximity extension assay (PEA) in studies on human blood or tissue-driven samples from CL patients in which we have so far been involved.
Collapse
Affiliation(s)
- Yasaman Taslimi
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran Iran
| | - Nasrin Masoudzadeh
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran Iran
| | - Fariborz Bahrami
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Sima Rafati
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran Iran
| |
Collapse
|
39
|
The Ecto-5
′
nucleotidase/CD73 Mediates Leishmania amazonensis Survival in Macrophages. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9928362. [PMID: 35187176 PMCID: PMC8856795 DOI: 10.1155/2022/9928362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 11/30/2021] [Accepted: 12/28/2021] [Indexed: 11/23/2022]
Abstract
Endogenous nucleotides produced by various group of cells under inflammatory conditions act as potential danger signals in vivo. Extracellularly released nucleotides such as ATP are rapidly hydrolyzed to adenosine by the coordinated ectonucleotidase activities of CD39 and CD73. Leishmania is an obligate intracellular parasite of macrophages and capable of modulating host immune response in order to survive and multiply within host cells. In this study, the activity of CD73 induced by Leishmania amazonensis in infected macrophages has been investigated and correlated with parasite survival and infection in vitro. For this, the expression of CD39 and CD73, by flow cytometry, in murine peritoneal macrophages infected with metacyclic promastigotes of L. amazonensis has been analyzed. Our results showed that L. amazonensis-infected macrophages, unlike LPS-treated macrophages, increased CD73 expression. It was also noted that when CD73 enzymatic activity was blocked by α, β-methyleneadenosine 5′-diphosphate sodium salt (APCP), macrophage parasitism was significantly decreased. Interestingly, these effects were not associated with the production of TNF-α, IL-10, or nitric oxide (NO). Together, these data demonstrate that L. amazonensis induces a regulatory phenotype in macrophages, which by activating the CD39/CD73 pathway allows parasite survival through the action of immunomodulatory adenosine receptors.
Collapse
|
40
|
Maity S, Chakraborty A, Mahata SK, Roy S, Das AK, Sen M. Wnt5A Signaling Blocks Progression of Experimental Visceral Leishmaniasis. Front Immunol 2022; 13:818266. [PMID: 35197983 PMCID: PMC8859155 DOI: 10.3389/fimmu.2022.818266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
Visceral leishmaniasis, caused by L. donovani infection is fatal if left untreated. The intrinsic complexity of visceral leishmaniasis complicated further by the increasing emergence of drug resistant L. donovani strains warrants fresh investigations into host defense schemes that counter infections. Accordingly, in a mouse model of experimental visceral leishmaniasis we explored the utility of host Wnt5A in restraining L. donovani infection, using both antimony sensitive and antimony resistant L. donovani strains. We found that Wnt5A heterozygous (Wnt5A +/-) mice are more susceptible to L. donovani infection than their wild type (Wnt5A +/+) counterparts as depicted by the respective Leishman Donovan Units (LDU) enumerated from the liver and spleen harvested from infected mice. Higher LDU in Wnt5A +/- mice correlated with increased plasma gammaglobulin level, incidence of liver granuloma, and disorganization of splenic white pulp. Progression of infection in mice by both antimony sensitive and antimony resistant strains of L. donovani could be prevented by activation of Wnt5A signaling through intravenous administration of rWnt5A prior to L. donovani infection. Wnt5A mediated blockade of L. donovani infection correlated with the preservation of splenic macrophages and activated T cells, and a proinflammatory cytokine bias. Taken together our results indicate that while depletion of Wnt5A promotes susceptibility to visceral leishmaniasis, revamping Wnt5A signaling in the host is able to curb L. donovani infection irrespective of antimony sensitivity or resistance and mitigate the progression of disease.
Collapse
Affiliation(s)
- Shreyasi Maity
- Cancer Biology & Inflammatory Disorder, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Arijit Chakraborty
- Department of General Surgery, Massachusetts General Hospital, Boston, MA, United States
| | - Sushil Kumar Mahata
- Medicine, VA San Diego Healthcare System, University of California, San Diego, La Jolla, CA, United States
| | - Syamal Roy
- Cancer Biology & Inflammatory Disorder, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Anjan Kumar Das
- Department of Pathology Calcutta National Medical College & Hospital, Kolkata, India
| | - Malini Sen
- Cancer Biology & Inflammatory Disorder, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
41
|
Zoonotic Visceral Leishmaniasis: New Insights on Innate Immune Response by Blood Macrophages and Liver Kupffer Cells to Leishmania infantum Parasites. BIOLOGY 2022; 11:biology11010100. [PMID: 35053098 PMCID: PMC8773027 DOI: 10.3390/biology11010100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 11/17/2022]
Abstract
L. infantum is the aetiological agent of zoonotic visceral leishmaniasis (ZVL), a disease that affects humans and dogs. Leishmania parasites are well adapted to aggressive conditions inside the phagolysosome and can control the immune activation of macrophages (MØs). Although MØs are highly active phagocytic cells with the capacity to destroy pathogens, they additionally comprise the host cells for Leishmania infection, replication, and stable establishment in the mammal host. The present study compares, for the first time, the innate immune response to L. infantum infection of two different macrophage lineages: the blood macrophages and the liver macrophages (Kupffer cells, KC). Our findings showed that L. infantum takes advantage of the natural predisposition of blood-MØs to phagocyte pathogens. However, parasites rapidly subvert the mechanisms of MØs immune activation. On the other hand, KCs, which are primed for immune tolerance, are not extensively activated and can overcome the dormancy induced by the parasite, exhibiting a selection of immune mechanisms, such as extracellular trap formation. Altogether, KCs reveal a different pattern of response in contrast with blood-MØs when confronting L. infantum parasites. In addition, KCs response appears to be more efficient in managing parasite infection, thus contributing to the ability of the liver to naturally restrain Leishmania dissemination.
Collapse
|
42
|
Paes-Vieira L, Gomes-Vieira AL, Meyer-Fernandes JR. E-NTPDases: Possible Roles on Host-Parasite Interactions and Therapeutic Opportunities. Front Cell Infect Microbiol 2021; 11:769922. [PMID: 34858878 PMCID: PMC8630654 DOI: 10.3389/fcimb.2021.769922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/25/2021] [Indexed: 11/24/2022] Open
Abstract
Belonging to the GDA1/CD39 protein superfamily, nucleoside triphosphate diphosphohydrolases (NTPDases) catalyze the hydrolysis of ATP and ADP to the monophosphate form (AMP) and inorganic phosphate (Pi). Several NTPDase isoforms have been described in different cells, from pathogenic organisms to animals and plants. Biochemical characterization of nucleotidases/NTPDases has revealed the existence of isoforms with different specificities regarding divalent cations (such as calcium and magnesium) and substrates. In mammals, NTPDases have been implicated in the regulation of thrombosis and inflammation. In parasites, such as Trichomonas vaginalis, Trypanosoma spp., Leishmania spp., Schistosoma spp. and Toxoplasma gondii, NTPDases were found on the surface of the cell, and important processes like growth, infectivity, and virulence seem to depend on their activity. For instance, experimental evidence has indicated that parasite NTPDases can regulate the levels of ATP and Adenosine (Ado) of the host cell, leading to the modulation of the host immune response. In this work, we provide a comprehensive review showing the involvement of the nucleotidases/NTPDases in parasites infectivity and virulence, and how inhibition of NTPDases contributes to parasite clearance and the development of new antiparasitic drugs.
Collapse
Affiliation(s)
- Lisvane Paes-Vieira
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André Luiz Gomes-Vieira
- Departamento de Bioquímica, Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | - José Roberto Meyer-Fernandes
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
| |
Collapse
|
43
|
Borges AR, Link F, Engstler M, Jones NG. The Glycosylphosphatidylinositol Anchor: A Linchpin for Cell Surface Versatility of Trypanosomatids. Front Cell Dev Biol 2021; 9:720536. [PMID: 34790656 PMCID: PMC8591177 DOI: 10.3389/fcell.2021.720536] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/06/2021] [Indexed: 11/20/2022] Open
Abstract
The use of glycosylphosphatidylinositol (GPI) to anchor proteins to the cell surface is widespread among eukaryotes. The GPI-anchor is covalently attached to the C-terminus of a protein and mediates the protein’s attachment to the outer leaflet of the lipid bilayer. GPI-anchored proteins have a wide range of functions, including acting as receptors, transporters, and adhesion molecules. In unicellular eukaryotic parasites, abundantly expressed GPI-anchored proteins are major virulence factors, which support infection and survival within distinct host environments. While, for example, the variant surface glycoprotein (VSG) is the major component of the cell surface of the bloodstream form of African trypanosomes, procyclin is the most abundant protein of the procyclic form which is found in the invertebrate host, the tsetse fly vector. Trypanosoma cruzi, on the other hand, expresses a variety of GPI-anchored molecules on their cell surface, such as mucins, that interact with their hosts. The latter is also true for Leishmania, which use GPI anchors to display, amongst others, lipophosphoglycans on their surface. Clearly, GPI-anchoring is a common feature in trypanosomatids and the fact that it has been maintained throughout eukaryote evolution indicates its adaptive value. Here, we explore and discuss GPI anchors as universal evolutionary building blocks that support the great variety of surface molecules of trypanosomatids.
Collapse
Affiliation(s)
- Alyssa R Borges
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Fabian Link
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Markus Engstler
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Nicola G Jones
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
44
|
Panditrao G, Ganguli P, Sarkar RR. Delineating infection strategies of Leishmania donovani secretory proteins in Human through host-pathogen protein Interactome prediction. Pathog Dis 2021; 79:6408463. [PMID: 34677584 DOI: 10.1093/femspd/ftab051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022] Open
Abstract
Interactions of Leishmania donovani secretory virulence factors with the host proteins and their interplay during the infection process in humans is poorly studied in Visceral Leishmaniasis. Lack of a holistic study of pathway level de-regulations caused due to these virulence factors leads to a poor understanding of the parasite strategies to subvert the host immune responses, secure its survival inside the host and further the spread of infection to the visceral organs. In this study, we propose a computational workflow to predict host-pathogen protein interactome of L.donovani secretory virulence factors with human proteins combining sequence-based Interolog mapping and structure-based Domain Interaction mapping techniques. We further employ graph theoretical approaches and shortest path methods to analyze the interactome. Our study deciphers the infection paths involving some unique and understudied disease-associated signaling pathways influencing the cellular phenotypic responses in the host. Our statistical analysis based in silico knockout study unveils for the first time UBC, 1433Z and HS90A mediator proteins as potential immunomodulatory candidates through which the virulence factors employ the infection paths. These identified pathways and novel mediator proteins can be effectively used as possible targets to control and modulate the infection process further aiding in the treatment of Visceral Leishmaniasis.
Collapse
Affiliation(s)
- Gauri Panditrao
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India
| | - Piyali Ganguli
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Ram Rup Sarkar
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
45
|
Lecoeur H, Prina E, Gutiérrez-Sanchez M, Späth GF. Going ballistic: Leishmania nuclear subversion of host cell plasticity. Trends Parasitol 2021; 38:205-216. [PMID: 34666937 DOI: 10.1016/j.pt.2021.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 12/16/2022]
Abstract
Intracellular parasites have evolved intricate strategies to subvert host cell functions for their own survival. These strategies are particularly damaging to the host if the infection involves immune cells, as illustrated by protozoan parasites of the genus Leishmania that thrive inside mononuclear phagocytic cells, causing devastating immunopathologies. While the impact of Leishmania infection on host cell phenotype and functions has been well documented, the regulatory mechanisms underlying host cell subversion were only recently investigated. Here we summarize the current knowledge on how Leishmania infection affects host nuclear activities and propose thought-provoking new concepts on the reciprocal relationship between epigenetic and transcriptional regulation in host cell phenotypic plasticity, its potential subversion by the intracellular parasite, and its relevance for host-directed therapy.
Collapse
Affiliation(s)
- Hervé Lecoeur
- Institut Pasteur, Université de Paris, INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
| | - Eric Prina
- Institut Pasteur, Université de Paris, INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
| | - Maria Gutiérrez-Sanchez
- Institut Pasteur, Université de Paris, INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France; UMR 8076 CNRS BioCIS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Gerald F Späth
- Institut Pasteur, Université de Paris, INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France.
| |
Collapse
|
46
|
Gabriel ÁM, Galué-Parra A, Pereira WLA, Pedersen KW, da Silva EO. Leishmania 360°: Guidelines for Exosomal Research. Microorganisms 2021; 9:2081. [PMID: 34683402 PMCID: PMC8537887 DOI: 10.3390/microorganisms9102081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022] Open
Abstract
Leishmania parasites are a group of kinetoplastid pathogens that cause a variety of clinical disorders while maintaining cell communication by secreting extracellular vesicles. Emerging technologies have been adapted for the study of Leishmania-host cell interactions, to enable the broad-scale analysis of the extracellular vesicles of this parasite. Leishmania extracellular vesicles (LEVs) are spheroidal nanoparticles of polydispersed suspensions surrounded by a layer of lipid membrane. Although LEVs have attracted increasing attention from researchers, many aspects of their biology remain unclear, including their bioavailability and function in the complex molecular mechanisms of pathogenesis. Given the importance of LEVs in the parasite-host interaction, and in the parasite-parasite relationships that have emerged during the evolutionary history of these organisms, the present review provides an overview of the available data on Leishmania, and formulates guidelines for LEV research. We conclude by reporting direct methods for the isolation of specific LEVs from the culture supernatant of the promastigotes and amastigotes that are suitable for a range of different downstream applications, which increases the compatibility and reproducibility of the approach for the establishment of optimal and comparable isolation conditions and the complete characterization of the LEV, as well as the critical immunomodulatory events triggered by this important group of parasites.
Collapse
Affiliation(s)
- Áurea Martins Gabriel
- Global Health and Tropical Medicine, GHTM, Institute of Hygiene and Tropical Medicine of NOVA University of Lisbon, IHMT-UNL, 1349-008 Lisbon, Portugal
- Laboratory of Structural Biology of Institute of Biological Sciences of Federal University of Pará, Av. Augusto Correa 01, Belém 66075-110, PA, Brazil; (A.G.-P.); (E.O.d.S.)
| | - Adan Galué-Parra
- Laboratory of Structural Biology of Institute of Biological Sciences of Federal University of Pará, Av. Augusto Correa 01, Belém 66075-110, PA, Brazil; (A.G.-P.); (E.O.d.S.)
| | | | | | - Edilene Oliveira da Silva
- Laboratory of Structural Biology of Institute of Biological Sciences of Federal University of Pará, Av. Augusto Correa 01, Belém 66075-110, PA, Brazil; (A.G.-P.); (E.O.d.S.)
- National Institute of Science and Technology in Structural Biology and Bioimaging, UFRJ, Rio de Janeiro 21941-902, RJ, Brazil
| |
Collapse
|
47
|
Rashidi S, Mansouri R, Ali-Hassanzadeh M, Ghani E, Barazesh A, Karimazar M, Nguewa P, Carrera Silva EA. Highlighting the interplay of microRNAs from Leishmania parasites and infected-host cells. Parasitology 2021; 148:1434-1446. [PMID: 34218829 PMCID: PMC11010138 DOI: 10.1017/s0031182021001177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/10/2021] [Accepted: 06/27/2021] [Indexed: 02/05/2023]
Abstract
Leishmania parasites, the causative agents of leishmaniasis, are protozoan parasites with the ability to modify the signalling pathway and cell responses of their infected host cells. These parasite strategies alter the host cell environment and conditions favouring their replication, survival and pathogenesis. Since microRNAs (miRNAs) are able to post-transcriptionally regulate gene expression processes, these biomolecules can exert critical roles in controlling Leishmania-host cell interplay. Therefore, the identification of relevant miRNAs differentially expressed in Leishmania parasites as well as in infected cells, which affect the host fitness, could be critical to understand the infection biology, pathogenicity and immune response against these parasites. Accordingly, the current review aims to address the differentially expressed miRNAs in both, the parasite and infected host cells and how these biomolecules change cell signalling and host immune responses during infection. A deep understanding of these processes could provide novel guidelines and therapeutic strategies for managing and treating leishmaniasis.
Collapse
Affiliation(s)
- Sajad Rashidi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Mansouri
- Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Mohammad Ali-Hassanzadeh
- Department of Immunology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Esmaeel Ghani
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Afshin Barazesh
- Department of Microbiology and Parasitology, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohammadreza Karimazar
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Paul Nguewa
- University of Navarra, ISTUN Instituto de Salud Tropical, Department of Microbiology and Parasitology, IdiSNA (Navarra Institute for Health Research), c/Irunlarrea 1, 31008Pamplona, Spain
| | | |
Collapse
|
48
|
Arya R, Dhembla C, Makde RD, Sundd M, Kundu S. An overview of the fatty acid biosynthesis in the protozoan parasite Leishmania and its relevance as a drug target against leishmaniasis. Mol Biochem Parasitol 2021; 246:111416. [PMID: 34555376 DOI: 10.1016/j.molbiopara.2021.111416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023]
Abstract
Leishmaniasis is one of the fast-growing parasitic diseases worldwide. The treatment of this fatal disease presents a daunting challenge because of its adverse effects, necessity for long-term treatment regime, unavailability of functional drugs, emergence of drug resistance and the related expenditure. This calls for an urgent need for novel drugs and the evaluation of new targets. Proteins of the fatty acid biosynthetic pathway are validated as drug targets in pathogenic bacteria and certain viruses. Likewise, this pathway has been speculated as a suitable target against parasite infections. Fatty acid synthesis in parasites seems to be very complex and distinct from the counterpart mammalian host due to the presence of unique mechanisms for fatty acid biosynthesis and acquisition. In recent times, there have been few evidences of the existence of this pathway in the bloodstream form of some pathogens. The fatty acid biosynthesis thus presents a viable and attractive target for emerging therapeutics. Understanding the mechanisms underlying fatty acid metabolism is key to identifying a potential drug target. However, investigations in this direction are still limited and this article attempts to outline the existing knowledge, while highlighting the scope and relevance of the fatty acid biosynthetic pathway as a drug target. This review highlights the advances in the treatment of leishmaniasis, the importance of lipids in the pathogen, known facts about the fatty acid biosynthesis in Leishmania and how this pathway can be manipulated to combat leishmaniasis, suggesting novel drug targets.
Collapse
Affiliation(s)
- Richa Arya
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| | - Chetna Dhembla
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| | - Ravindra D Makde
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
| | - Monica Sundd
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Suman Kundu
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
49
|
Apuzzo CF, Sullivan EC, Platt DC, Seger-Held I, Jones MA. Leishmania tarentolae novel responses to Bi 3+-doped strontium aluminum oxyfluorides. Heliyon 2021; 7:e07896. [PMID: 34504976 PMCID: PMC8414179 DOI: 10.1016/j.heliyon.2021.e07896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/19/2021] [Accepted: 08/27/2021] [Indexed: 11/20/2022] Open
Abstract
Novel therapeutics for the treatment of leishmaniasis are of interest as the disease not only is becoming more prevalent, but drug resistance is increasing in certain regions of the world. Reported here is the use of Bi3+-doped strontium aluminum oxyfluoride phosphors and protease inhibitors to test in vitro inhibitory activity against cultured promastigote Leishmania tarentolae and effects on L. tarentolae secreted acid phosphatase (SAP) activity. Cell viability did not significantly decrease in the presence of 50 μM anti-perovskite compounds, implying limited cytotoxicity. Yet SAP activity did increase in the cell free preparations with time in the presence of strontium compounds. Of interest was the observation that cell free SAP activity did not increase in the presence of protease inhibitors with or without added strontium compounds. Since secreted proteases may play a role in the maturation of Leishmania SAP and thus be involved with parasite-host infection establishment, this is in further need of evaluation. Nitric oxide production on day 4 post-addition of the strontium compounds was evaluated and showed an approximately 50% decrease in NO production in the presence of two test compounds relative to DMSO control cells. This is the first report of anti-perovskite compound inhibition of NO production by Leishmania.
Collapse
Affiliation(s)
- C. Fiore Apuzzo
- Department of Chemistry, Campus Box 4160, Illinois State University, Normal, IL, 61790, USA
| | - Eirin C. Sullivan
- Department of Chemistry, University of North Florida, Jacksonville, FL, 32224, USA
| | - David C. Platt
- Department of Chemistry, Campus Box 4160, Illinois State University, Normal, IL, 61790, USA
| | - Ian Seger-Held
- Department of Chemistry, Campus Box 4160, Illinois State University, Normal, IL, 61790, USA
| | - Marjorie A. Jones
- Department of Chemistry, Campus Box 4160, Illinois State University, Normal, IL, 61790, USA
| |
Collapse
|
50
|
Das S, Saha T, Shaha C. Tissue/Biofluid Specific Molecular Cartography of Leishmania donovani Infected BALB/c Mice: Deciphering Systemic Reprogramming. Front Cell Infect Microbiol 2021; 11:694470. [PMID: 34395309 PMCID: PMC8358651 DOI: 10.3389/fcimb.2021.694470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Pathophysiology of visceral leishmaniasis (VL) is not fully understood and it has been widely accepted that the parasitic components and host immune response both contribute to the perpetuation of the disease. Host alterations during leishmaniasis is a feebly touched area that needs to be explored more to better understand the VL prognosis and diagnosis, which are vital to reduce mortality and post-infection sequelae. To address this, we performed untargeted metabolomics of Leishmania donovani (Ld) infected, uninfected and treated BALB/c mice’s tissues and biofluids to elucidate the host metabolome changes using gas chromatography–mass spectrometry. Univariate and multivariate data treatments provided numerous significant differential hits in several tissues like the brain, liver, spleen and bone marrow. Differential modulations were also observed in serum, urine and fecal samples of Ld-infected mice, which could be further targeted for biomarker and diagnostic validations. Several metabolic pathways were found to be upregulated/downregulated in infected (TCA, glycolysis, fatty acids, purine and pyrimidine, etcetera) and treated (arginine, fumaric acid, orotic acid, choline succinate, etcetera) samples. Results also illustrated several metabolites with different pattern of modulations in control, infected and treated samples as well as in different tissues/biofluids; for e.g. glutamic acid identified in the serum samples of infected mice. Identified metabolites include a range of amino acids, saccharides, energy-related molecules, etcetera. Furthermore, potential biomarkers have been identified in various tissues—arginine and fumaric acid in brain, choline in liver, 9-(10) EpOME in spleen and bone marrow, N-acetyl putrescine in bone marrow, etcetera. Among biofluids, glutamic acid in serum, hydrazine and deoxyribose in urine and 3-Methyl-2-oxo pentanoic acid in feces are some of the potential biomarkers identified. These metabolites could be further looked into for their role in disease complexity or as a prognostic marker. The presented profiling approach allowed us to attain a metabolic portrait of the individual tissue/biofluid modulations during VL in the host and represent a valuable system readout for further studies. Our outcomes provide an improved understanding of perturbations of the host metabolome interface during VL, including identification of many possible potential diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Sanchita Das
- Cell Death and Differentiation Laboratory, National Institute of Immunology, New Delhi, India
| | - Tanaya Saha
- Cell Death and Differentiation Laboratory, National Institute of Immunology, New Delhi, India
| | - Chandrima Shaha
- Cell Death and Differentiation Laboratory, National Institute of Immunology, New Delhi, India
| |
Collapse
|