1
|
Da Costa RM, Rooke JL, Wells TJ, Cunningham AF, Henderson IR. Type 5 secretion system antigens as vaccines against Gram-negative bacterial infections. NPJ Vaccines 2024; 9:159. [PMID: 39218947 PMCID: PMC11366766 DOI: 10.1038/s41541-024-00953-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Infections caused by Gram-negative bacteria are leading causes of mortality worldwide. Due to the rise in antibiotic resistant strains, there is a desperate need for alternative strategies to control infections caused by these organisms. One such approach is the prevention of infection through vaccination. While live attenuated and heat-killed bacterial vaccines are effective, they can lead to adverse reactions. Newer vaccine technologies focus on utilizing polysaccharide or protein subunits for safer and more targeted vaccination approaches. One promising avenue in this regard is the use of proteins released by the Type 5 secretion system (T5SS). This system is the most prevalent secretion system in Gram-negative bacteria. These proteins are compelling vaccine candidates due to their demonstrated protective role in current licensed vaccines. Notably, Pertactin, FHA, and NadA are integral components of licensed vaccines designed to prevent infections caused by Bordetella pertussis or Neisseria meningitidis. In this review, we delve into the significance of incorporating T5SS proteins into licensed vaccines, their contributions to virulence, conserved structural motifs, and the protective immune responses elicited by these proteins.
Collapse
Affiliation(s)
- Rochelle M Da Costa
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Jessica L Rooke
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Timothy J Wells
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Adam F Cunningham
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Ian R Henderson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
2
|
Lei EK, Azmat A, Henry KA, Hussack G. Outer membrane vesicles as a platform for the discovery of antibodies to bacterial pathogens. Appl Microbiol Biotechnol 2024; 108:232. [PMID: 38396192 PMCID: PMC10891261 DOI: 10.1007/s00253-024-13033-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
Bacterial outer membrane vesicles (OMVs) are nanosized spheroidal particles shed by gram-negative bacteria that contain biomolecules derived from the periplasmic space, the bacterial outer membrane, and possibly other compartments. OMVs can be purified from bacterial culture supernatants, and by genetically manipulating the bacterial cells that produce them, they can be engineered to harbor cargoes and/or display molecules of interest on their surfaces including antigens that are immunogenic in mammals. Since OMV bilayer-embedded components presumably maintain their native structures, OMVs may represent highly useful tools for generating antibodies to bacterial outer membrane targets. OMVs have historically been utilized as vaccines or vaccine constituents. Antibodies that target bacterial surfaces are increasingly being explored as antimicrobial agents either in unmodified form or as targeting moieties for bactericidal compounds. Here, we review the properties of OMVs, their use as immunogens, and their ability to elicit antibody responses against bacterial antigens. We highlight antigens from bacterial pathogens that have been successfully targeted using antibodies derived from OMV-based immunization and describe opportunities and limitations for OMVs as a platform for antimicrobial antibody development. KEY POINTS: • Outer membrane vesicles (OMVs) of gram-negative bacteria bear cell-surface molecules • OMV immunization allows rapid antibody (Ab) isolation to bacterial membrane targets • Review and analysis of OMV-based immunogens for antimicrobial Ab development.
Collapse
Affiliation(s)
- Eric K Lei
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Aruba Azmat
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Kevin A Henry
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Greg Hussack
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada.
| |
Collapse
|
3
|
Tzeng YL, Sannigrahi S, Borrow R, Stephens DS. Neisseria gonorrhoeae lipooligosaccharide glycan epitopes recognized by bactericidal IgG antibodies elicited by the meningococcal group B-directed vaccine, MenB-4C. Front Immunol 2024; 15:1350344. [PMID: 38440731 PMCID: PMC10909805 DOI: 10.3389/fimmu.2024.1350344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/29/2024] [Indexed: 03/06/2024] Open
Abstract
Introduction Outer membrane vesicles (OMVs) of Neisseria meningitidis in the group B-directed vaccine MenB-4C (BexseroR) protect against infections with Neisseria gonorrhoeae. The immunological basis for protection remains unclear. N. meningitidis OMV vaccines generate human antibodies to N. meningitidis and N. gonorrhoeae lipooligosaccharide (LOS/endotoxin), but the structural specificity of these LOS antibodies is not defined. Methods Ten paired human sera obtained pre- and post-MenB-4C immunization were used in Western blots to probe N. meningitidis and N. gonorrhoeae LOS. Post-MenB-4C sera (7v5, 19v5, and 17v5), representing individual human variability in LOS recognition, were then used to interrogate structurally defined LOSs of N. meningitidis and N. gonorrhoeae strains and mutants and studied in bactericidal assays. Results and discussion Post-MenB-4C sera recognized both N. meningitidis and N. gonorrhoeae LOS species, ~10% of total IgG to gonococcal OMV antigens. N. meningitidis and N. gonorrhoeae LOSs were broadly recognized by post-IgG antibodies, but with individual variability for LOS structures. Deep truncation of LOS, specifically a rfaK mutant without α-, β-, or γ-chain glycosylation, eliminated LOS recognition by all post-vaccine sera. Serum 7v5 IgG antibodies recognized the unsialyated L1 α-chain, and a 3-PEA-HepII or 6-PEA-HepII was part of the conformational epitope. Replacing the 3-PEA on HepII with a 3-Glc blocked 7v5 IgG antibody recognition of N. meningitidis and N. gonorrhoeae LOSs. Serum 19v5 recognized lactoneotetrose (LNT) or L1 LOS-expressing N. meningitidis or N. gonorrhoeae with a minimal α-chain structure of Gal-Glc-HepI (L8), a 3-PEA-HepII or 6-PEA-HepII was again part of the conformational epitope and a 3-Glc-HepII blocked 19v5 antibody binding. Serum 17v5 LOS antibodies recognized LNT or L1 α-chains with a minimal HepI structure of three sugars and no requirement for HepII modifications. These LOS antibodies contributed to the serum bactericidal activity against N. gonorrhoeae. The MenB-4C vaccination elicits bactericidal IgG antibodies to N. gonorrhoeae conformational epitopes involving HepI and HepII glycosylated LOS structures shared between N. meningitidis and N. gonorrhoeae. LOS structures should be considered in next-generation gonococcal vaccine design.
Collapse
Affiliation(s)
- Yih-Ling Tzeng
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Soma Sannigrahi
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Ray Borrow
- Meningococcal Reference Unit, UK Health Security Agency, Manchester Royal Infirmary, Manchester, United Kingdom
| | - David S. Stephens
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
4
|
Viviani V, Fantoni A, Tomei S, Marchi S, Luzzi E, Bodini M, Muzzi A, Giuliani MM, Maione D, Derrick JP, Delany I, Pizza M, Biolchi A, Bartolini E. OpcA and PorB are novel bactericidal antigens of the 4CMenB vaccine in mice and humans. NPJ Vaccines 2023; 8:54. [PMID: 37045859 PMCID: PMC10097807 DOI: 10.1038/s41541-023-00651-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/23/2023] [Indexed: 04/14/2023] Open
Abstract
The ability of Neisseria meningitidis Outer Membrane Vesicles (OMV) to induce protective responses in humans is well established and mainly attributed to Porin A (PorA). However, the contribution of additional protein antigens to protection remains to be elucidated. In this study we dissected the immunogenicity of antigens originating from the OMV component of the 4CMenB vaccine in mice and humans. We collected functional data on a panel of strains for which bactericidal responses to 4CMenB in infants was attributable to the OMV component and evaluated the role of 30 OMV-specific protein antigens in cross-coverage. By using tailor-made protein microarrays, the immunosignature of OMV antigens was determined. Three of these proteins, OpcA, NspA, and PorB, triggered mouse antibodies that were bactericidal against several N. meningitidis strains. Finally, by genetic deletion and/or serum depletion studies, we demonstrated the ability of OpcA and PorB to induce functional immune responses in infant sera after vaccination. In conclusion, while confirming the role of PorA in eliciting protective immunity, we identified two OMV antigens playing a key role in protection of infants vaccinated with the 4CMenB vaccine against different N. meningitidis serogroup B strains.
Collapse
Affiliation(s)
- Viola Viviani
- GSK, Siena, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | | - Jeremy P Derrick
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PL, UK
| | | | | | | | | |
Collapse
|
5
|
Marsay L, Dold C, Paterson GK, Yamaguchi Y, Derrick JP, Chan H, Feavers IM, Maiden MCJ, Wyllie D, Hill AV, Pollard AJ, Rollier CS. Viral vectors expressing group B meningococcal outer membrane proteins induce strong antibody responses but fail to induce functional bactericidal activity. J Infect 2022; 84:658-667. [PMID: 35245584 PMCID: PMC7616632 DOI: 10.1016/j.jinf.2022.02.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/15/2022] [Accepted: 02/27/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Adenoviral vectored vaccines, with the appropriate gene insert, induce cellular and antibody responses against viruses, parasites and intracellular pathogens such as Mycobacterium tuberculosis. Here we explored their capacity to induce functional antibody responses to meningococcal transmembrane outer membrane proteins. METHODS Vectors expressing porin A and ferric enterobactin receptor A antigens were generated, and their immunogenicity assessed in mice using binding and bactericidal assays. RESULTS The viral vectors expressed the bacterial proteins in an in vitro cell-infection assay and, after immunisation of mice, induced higher titres (>105 end-point titre) and longer lasting (>32 weeks) transgene-specific antibody responses in vivo than did outer membrane vesicles containing the same antigens. However, bactericidal antibodies, which are the primary surrogate of protection against meningococcus, were undetectable, despite different designs to support the presentation of the protective B-cell epitopes. CONCLUSION These results demonstrate that, while the transmembrane bacterial proteins expressed by the viral vector induced strong and persistent antigen-specific antibodies, this platform failed to induce bactericidal antibodies. The results suggest that conformation or post-translational modifications of bacterial outer membrane antigens produced in eukaryote cells might not result in presentation of the necessary epitopes for induction of functional antibodies.
Collapse
Affiliation(s)
- Leanne Marsay
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, CCVTM, Churchill Lane, Oxford OX3 7LE, United Kingdom
| | - Christina Dold
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, CCVTM, Churchill Lane, Oxford OX3 7LE, United Kingdom
| | - Gavin K Paterson
- Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ, United Kingdom
| | - Yuko Yamaguchi
- Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ, United Kingdom
| | - Jeremy P Derrick
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Hannah Chan
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, United Kingdom
| | - Ian M Feavers
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, United Kingdom
| | - Martin C J Maiden
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, United Kingdom
| | - David Wyllie
- Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ, United Kingdom
| | - Adrian V Hill
- Jenner Institute, University of Oxford, Old Road Campus Research Building, OX3 7DQ, United Kingdom
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, CCVTM, Churchill Lane, Oxford OX3 7LE, United Kingdom
| | - Christine S Rollier
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, CCVTM, Churchill Lane, Oxford OX3 7LE, United Kingdom; Section of Immunology, Department of Biochemical sciences, School of Biosciences & Medicine, Faculty of Health and Medical Sciences, University of Surrey, Dorothy Hodgkin Building (AY), Guildford, Surrey GU2 7XH, United Kingdom.
| |
Collapse
|
6
|
Findlow J, Borrow R, Stephens DS, Liberator P, Anderson AS, Balmer P, Jodar L. Correlates of protection for meningococcal surface protein vaccines; current approaches for the determination of breadth of coverage. Expert Rev Vaccines 2022; 21:753-769. [PMID: 35469524 DOI: 10.1080/14760584.2022.2064850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The two currently licensed surface protein non capsular meningococcal serogroup B (MenB) vaccines both have the purpose of providing broad coverage against diverse MenB strains. However, the different antigen compositions and approaches used to assess breadth of coverage currently make direct comparisons complex. AREAS COVERED In the second of two companion papers, we comprehensively review the serology and factors influencing breadth of coverage assessments for two currently licensed MenB vaccines. EXPERT OPINION Surface protein MenB vaccines were developed using different approaches, resulting in unique formulations and thus their breadth of coverage. The surface proteins used as vaccine antigens can vary among meningococcal strains due to gene presence/absence, sequence diversity and differences in protein expression. Assessment of the breadth of coverage provided by vaccines is influenced by the ability to induce cross-reactive functional immune responses to sequence diverse protein variants; the characteristics of the circulating invasive strains from specific geographic locations; methodological differences in the immunogenicity assays; differences in human immune responses between individuals; and the maintenance of protective antibody levels over time. Understanding the proportion of meningococcal strains which are covered by the two licensed vaccines is important in understanding protection from disease and public health use.
Collapse
Affiliation(s)
- Jamie Findlow
- Vaccine Medical Development, Scientific and Clinical Affairs, Pfizer Ltd, Tadworth, UK
| | - Ray Borrow
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, UK
| | - David S Stephens
- Woodruff Health Sciences Center, Emory University, Atlanta, Georgia, USA
| | - Paul Liberator
- Vaccine Research and Development, Pfizer Inc, Pearl River, New York, USA
| | | | - Paul Balmer
- Vaccine Medical Development, Scientific and Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| | - Luis Jodar
- Vaccine Medical Development, Scientific and Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| |
Collapse
|
7
|
Viviani V, Biolchi A, Pizza M. Synergistic activity of antibodies in the multicomponent 4CMenB vaccine. Expert Rev Vaccines 2022; 21:645-658. [PMID: 35257644 DOI: 10.1080/14760584.2022.2050697] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : Vaccines based on multiple antigens often induce an immune response which is higher than that triggered by each single component, with antibodies acting cooperatively and synergistically in tackling the infection. AREAS COVERED An interesting example is the antibody response induced by the 4CMenB vaccine, currently licensed for the prevention of Neisseria meningitidis serogroup B (MenB). It contains four antigenic components: Factor H binding protein (fHbp), Neisseria adhesin A (NadA), Neisserial Heparin Binding Antigen (NHBA) and Outer Membrane Vesicles (OMV). Monoclonal and polyclonal antibodies raised by vaccination with 4CMenB show synergistic activity in complement-dependent bacterial killing. This review summarizes published and unpublished data and provides evidence of the added value of multicomponent vaccines. EXPERT OPINION : The ability of 4CMenB vaccine to elicit antibodies targeting multiple surface-exposed antigens is corroborated by the recent data on real world evidences. Bactericidal activity is generally mediated by antibodies that bind to antigens highly expressed on the bacterial surface and immunologically related. However, simultaneous binding of antibodies to various surface-exposed antigens can overcome the threshold density of antigen-antibody complexes needed for complement activation. The data discussed in this review highlight the interplay between antibodies targeting major and minor antigens and their effect on functionality. Clinical trial registration: www.clinicaltrials.gov identifiers of studies with original data mentioned in the article: NCT00937521, NCT00433914, NCT02140762 and NCT02285777.
Collapse
Affiliation(s)
| | | | - Mariagrazia Pizza
- Bacterial Vaccines, GSK, Siena, Italy.,GVGH, GSK Vaccine Institute for Global Health, Siena, Italy
| |
Collapse
|
8
|
Human B Cell Responses to Dominant and Subdominant Antigens Induced by a Meningococcal Outer Membrane Vesicle Vaccine in a Phase I Trial. mSphere 2022; 7:e0067421. [PMID: 35080470 PMCID: PMC8791392 DOI: 10.1128/msphere.00674-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Neisseria meningitidis outer membrane vesicle (OMV) vaccines are safe and provide strain-specific protection against invasive meningococcal disease (IMD) primarily by inducing serum bactericidal antibodies against the outer membrane proteins (OMP). To design broader coverage vaccines, knowledge of the immunogenicity of all the antigens contained in OMVs is needed. In a Phase I clinical trial, an investigational meningococcal OMV vaccine, MenPF1, made from a meningococcus genetically modified to constitutively express the iron-regulated FetA induced bactericidal responses to both the PorA and the FetA antigen present in the OMP. Using peripheral blood mononuclear cells collected from this trial, we analyzed the kinetics of and relationships between IgG, IgA, and IgM B cell responses against recombinant PorA and FetA, including (i) antibody-secreting cells, (ii) memory B cells, and (iii) functional antibody responses (opsonophagocytic and bactericidal activities). Following MenPF1vaccination, PorA-specific IgG secreting cell responses were detected in up to 77% of participants and FetA-specific responses in up to 36%. Memory B cell responses to the vaccine were low or absent and mainly detected in participants who had evidence of preexisting immunity (P = 0.0069). Similarly, FetA-specific antibody titers and bactericidal activity increased in participants with preexisting immunity and is consistent with the idea that immune responses are elicited to minor antigens during asymptomatic Neisseria carriage, which can be boosted by OMV vaccines. IMPORTANCENeisseria meningitidis outer membrane vesicles (OMV) are a component of the capsular group B meningococcal vaccine 4CMenB (Bexsero) and have been shown to induce 30% efficacy against gonococcal infection. They are composed of multiple antigens and are considered an interesting delivery platform for vaccines against several bacterial diseases. However, the protective antibody response after two or three doses of OMV-based meningococcal vaccines appears short-lived. We explored the B cell response induced to a dominant and a subdominant antigen in a meningococcal OMV vaccine in a clinical trial and showed that immune responses are elicited to minor antigens. However, memory B cell responses to the OMV were low or absent and mainly detected in participants who had evidence of preexisting immunity against the antigens. Failure to induce a strong B cell response may be linked with the low persistence of protective responses.
Collapse
|
9
|
Findlow J, Lucidarme J, Taha MK, Burman C, Balmer P. Correlates of protection for meningococcal surface protein vaccines: lessons from the past. Expert Rev Vaccines 2021; 21:739-751. [PMID: 34287103 DOI: 10.1080/14760584.2021.1940144] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Recombinant surface protein meningococcal serogroup B (MenB) vaccines are available but with different antigen compositions, leading to differences between vaccines in their immunogenicity and likely breadth of coverage. The serology and breadth of coverage assessment for MenB vaccines are multifaceted areas, and a comprehensive understanding of these complexities is required to appropriately compare licensed vaccines and those under development. AREAS COVERED In the first of two companion papers that comprehensively review the serology and breadth of coverage assessment for MenB vaccines, the history of early meningococcal vaccines is considered in this narrative review to identify transferable lessons applicable to the currently licensed MenB vaccines and those under development, as well as their serology. EXPERT OPINION Understanding correlates of protection and the breadth of coverage assessment for meningococcal surface protein vaccines is significantly more complex than that for capsular polysaccharide vaccines. Determination and understanding of the breadth of coverage of surface protein vaccines are clinically important and unique to each vaccine formulation. It is essential to estimate the proportion of MenB cases that are preventable by a specific vaccine to assess its overall potential impact and to compare the benefits and limitations of different vaccines in preventing invasive meningococcal disease.
Collapse
Affiliation(s)
- Jamie Findlow
- Vaccine Medical Development, Scientific and Clinical Affairs, Pfizer Ltd, Tadworth, UK
| | - Jay Lucidarme
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, UK
| | | | - Cynthia Burman
- Vaccine Medical Development, Scientific and Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| | - Paul Balmer
- Vaccine Medical Development, Scientific and Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| |
Collapse
|
10
|
Safadi MAP, Martinón-Torres F, Serra L, Burman C, Presa J. Translating meningococcal serogroup B vaccines for healthcare professionals. Expert Rev Vaccines 2021; 20:401-414. [PMID: 34151699 DOI: 10.1080/14760584.2021.1899820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Vaccination is an effective strategy to combat invasive meningococcal disease (IMD). Vaccines against the major disease-causing meningococcal serogroups are available; however, development of vaccines against serogroup B faced particular challenges, including the inability to target traditional meningococcal antigens (i.e. polysaccharide capsule) and limited alternative antigens due to serogroup B strain diversity. Two different recombinant, protein-based, serogroup B (MenB) vaccines that may address these challenges are currently available. These vaccines have been extensively evaluated in pre-licensure safety and immunogenicity trials, and recently in real-world studies on effectiveness, safety, and impact on disease burden. AREAS COVERED This review provides healthcare professionals, particularly pediatricians, an overview of currently available MenB vaccines, including development strategies and evaluation of coverage. EXPERT OPINION Overall, recombinant MenB vaccines are valuable tools for healthcare professionals to protect patients against IMD. Their development required innovative design approaches that overcame challenging hurdles and identified novel protein antigen targets; however, important distinctions in the approaches used in their development, evaluation, and administration exist and many unanswered questions remain. Healthcare providers frequently prescribing MenB vaccines are challenged to keep abreast of these differences to ensure patient protection against this serious disease.
Collapse
Affiliation(s)
- Marco Aurelio P Safadi
- Department of Pediatrics, Santa Casa De São Paulo School of Medical Sciences, São Paulo, Brazil
| | - Federico Martinón-Torres
- Translational Pediatrics and Infectious Diseases, Pediatrics Department, Hospital Clínico Universitario De Santiago De Compostela, Santiago De Compostela, Spain.,Genetics, Vaccines and Pediatrics Research Group, Universitario De Santiago De Compostela, Instituto De Investigación Sanitaria De Santiago De Compostela, Santiago De Compostela, Spain
| | - Lidia Serra
- Pfizer Vaccine Medical Development, Scientific and Clinical Affairs, Collegeville, PA, USA
| | - Cynthia Burman
- Pfizer Vaccine Medical Development, Scientific and Clinical Affairs, Collegeville, PA, USA
| | - Jessica Presa
- Pfizer Vaccines, Medical and Scientific Affairs, Collegeville, PA, USA
| |
Collapse
|
11
|
Tzanakaki G, Xirogianni A, Tsitsika A, Clark SA, Kesanopoulos K, Bratcher HB, Papandreou A, Rodrigues CMC, Maiden MCJ, Borrow R, Tsolia M. Estimated strain coverage of serogroup B meningococcal vaccines: A retrospective study for disease and carrier strains in Greece (2010-2017). Vaccine 2021; 39:1621-1630. [PMID: 33597116 DOI: 10.1016/j.vaccine.2021.01.073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/07/2021] [Accepted: 01/30/2021] [Indexed: 11/17/2022]
Abstract
Invasive meningococcal disease (IMD) is associated with high case fatality rates and long-term sequelae among survivors. Meningococci belonging to six serogroups (A, B, C, W, X, and Y) cause nearly all IMD worldwide, with serogroup B meningococci (MenB) the predominant cause in many European countries, including Greece (~80% of all IMD). In the absence of protein-conjugate polysaccharide MenB vaccines, two protein-based vaccines are available to prevent MenB IMD in Greece: 4CMenB (Bexsero™, GlaxoSmithKline), available since 2014; and MenB-FHbp, (Trumenba™, Pfizer), since 2018. This study investigated the potential coverage of MenB vaccines in Greece using 107 MenB specimens, collected from 2010 to 2017 (66 IMD isolates and 41 clinical samples identified solely by non-culture PCR), alongside 6 MenB isolates from a carriage study conducted during 2017-2018. All isolates were characterized by multilocus sequence typing (MLST), PorA, and FetA antigen typing. Whole Genome Sequencing (WGS) was performed on 66 isolates to define the sequences of vaccine components factor H-binding protein (fHbp), Neisserial Heparin Binding Antigen (NHBA), and Neisseria adhesin A (NadA). The expression of fHbp was investigated with flow cytometric meningococcal antigen surface expression (MEASURE) assay. The fHbp gene was present in-frame in all isolates tested by WGS and in 41 MenB clinical samples. All three variant families of fHbp peptides were present, with subfamily B peptides (variant 1) occurring in 69.2% and subfamily A in 30.8% of the samples respectively. Sixty three of 66 (95.5%) MenB isolates expressed sufficient fHbp to be susceptible to bactericidal killing by MenB-fHbp induced antibodies, highlighting its potential to protect against most IMD in Greece.
Collapse
Affiliation(s)
- G Tzanakaki
- National Meningitis Reference Laboratory (NMRL), Dept of Public Health Policy, School of Public Health, University of West Attica, Athens, Greece.
| | - A Xirogianni
- National Meningitis Reference Laboratory (NMRL), Dept of Public Health Policy, School of Public Health, University of West Attica, Athens, Greece
| | - A Tsitsika
- Second Dept of Paediatrics, Medical School, National Kapodistrian University, Athens, Greece
| | - S A Clark
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, UK
| | - K Kesanopoulos
- National Meningitis Reference Laboratory (NMRL), Dept of Public Health Policy, School of Public Health, University of West Attica, Athens, Greece
| | - H B Bratcher
- Department of Zoology, Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford, UK
| | - A Papandreou
- National Meningitis Reference Laboratory (NMRL), Dept of Public Health Policy, School of Public Health, University of West Attica, Athens, Greece
| | - C M C Rodrigues
- Department of Zoology, Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford, UK
| | - M C J Maiden
- Department of Zoology, Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford, UK
| | - R Borrow
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, UK
| | - M Tsolia
- Second Dept of Paediatrics, Medical School, National Kapodistrian University, Athens, Greece
| |
Collapse
|
12
|
Semchenko EA, Tan A, Borrow R, Seib KL. The Serogroup B Meningococcal Vaccine Bexsero Elicits Antibodies to Neisseria gonorrhoeae. Clin Infect Dis 2020; 69:1101-1111. [PMID: 30551148 PMCID: PMC6743822 DOI: 10.1093/cid/ciy1061] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/08/2018] [Indexed: 12/24/2022] Open
Abstract
Background Neisseria gonorrhoeae and Neisseria meningitidis are closely-related bacteria that cause a significant global burden of disease. Control of gonorrhoea is becoming increasingly difficult, due to widespread antibiotic resistance. While vaccines are routinely used for N. meningitidis, no vaccine is available for N. gonorrhoeae. Recently, the outer membrane vesicle (OMV) meningococcal B vaccine, MeNZB, was reported to be associated with reduced rates of gonorrhoea following a mass vaccination campaign in New Zealand. To probe the basis for this protection, we assessed the cross-reactivity to N. gonorrhoeae of serum raised to the meningococcal vaccine Bexsero, which contains the MeNZB OMV component plus 3 recombinant antigens (Neisseria adhesin A, factor H binding protein [fHbp]-GNA2091, and Neisserial heparin binding antigen [NHBA]-GNA1030). Methods A bioinformatic analysis was performed to assess the similarity of MeNZB OMV and Bexsero antigens to gonococcal proteins. Rabbits were immunized with the OMV component or the 3 recombinant antigens of Bexsero, and Western blots and enzyme-linked immunosorbent assays were used to assess the generation of antibodies recognizing N. gonorrhoeae. Serum from humans immunized with Bexsero was investigated to assess the nature of the anti-gonococcal response. Results There is a high level of sequence identity between MeNZB OMV and Bexsero OMV antigens, and between the antigens and gonococcal proteins. NHBA is the only Bexsero recombinant antigen that is conserved and surfaced exposed in N. gonorrhoeae. Bexsero induces antibodies in humans that recognize gonococcal proteins. Conclusions The anti-gonococcal antibodies induced by MeNZB-like OMV proteins could explain the previously-seen decrease in gonorrhoea following MeNZB vaccination. The high level of human anti-gonococcal NHBA antibodies generated by Bexsero vaccination may provide additional cross-protection against gonorrhoea.
Collapse
Affiliation(s)
- Evgeny A Semchenko
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Aimee Tan
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Ray Borrow
- Vaccine Evaluation Unit, Public Health England, Manchester Royal Infirmary, United Kingdom
| | - Kate L Seib
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
13
|
Harris SL, Tan C, Perez J, Radley D, Jansen KU, Anderson AS, Jones TR. Selection of diverse strains to assess broad coverage of the bivalent FHbp meningococcal B vaccine. NPJ Vaccines 2020; 5:8. [PMID: 32025339 PMCID: PMC6989502 DOI: 10.1038/s41541-019-0154-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 11/20/2019] [Indexed: 01/14/2023] Open
Abstract
MenB-FHbp is a recombinant meningococcal serogroup B (MenB) vaccine composed of 2 factor H binding proteins (FHbps). Meningococcal vaccines targeting polysaccharide serogroup A, C, Y, and W capsules were licensed upon confirmation of bactericidal antibody induction after initial efficacy studies with serogroup A and C vaccines. Unlike meningococcal polysaccharide vaccines, wherein single strains demonstrated bactericidal antibodies per serogroup for each vaccine, MenB-FHbp required a more robust approach to demonstrate that bactericidal antibody induction could kill strains with diverse FHbp sequences. Serum bactericidal assays using human complement were developed for 14 MenB strains, representing breadth of meningococcal FHbp diversity of ~80% of circulating MenB strains. This work represents an innovative approach to license a non-toxin protein vaccine with 2 antigens representing a single virulence factor by an immune correlate, and uniquely demonstrates that such a vaccine provides coverage across bacterial strains by inducing broadly protective antibodies. Neisseria meningitidis is an important cause of invasive meningococcal disease, effective vaccines exist for some serogroups but immunogenicity to the MenB group is poor. Thomas R. Jones and colleagues examine serum bactericidal responses from volunteers challenged with MenB-FHbp – a recombinant MenB vaccine containing two Factor H (FH)-binding proteins. Serum bactericidal responses are tested against 14 MenB clinical isolates selected in an unbiased manner to cover the vast breadth of FHbp antigen and epidemiological diversity. This work demonstrates the broad efficacy of the MenB-FHbp vaccine using a serum bactericidal activity as a surrogate of protection.
Collapse
Affiliation(s)
| | - Cuiwen Tan
- Pfizer Vaccine Research and Development, Pearl River, NY USA
| | - John Perez
- 2Pfizer Vaccine Research and Development, Collegeville, PA USA
| | - David Radley
- 2Pfizer Vaccine Research and Development, Collegeville, PA USA
| | | | | | - Thomas R Jones
- Pfizer Vaccine Research and Development, Pearl River, NY USA
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Neisseria gonorrhoeae is one of the most common causes of sexually transmitted infections, with an estimated more than 100 million cases of gonorrhea each year worldwide. N. gonorrhoeae has gained recent increasing attention because of the alarming rise in incidence and the widespread emergence of multidrug-resistant gonococcal strains. Vaccine development is one area of renewed interest. Herein, we review the recent advances in this area. RECENT FINDINGS Vaccine development for N. gonorrhoeae has been problematic, but recent progress in the field has provided new hope that a gonococcal vaccine may be feasible. Several new vaccine antigens have been characterized in various models of infection. Furthermore, the first potential vaccine-induced protection against gonorrhea in humans has been reported, with decreased rates of gonorrhea described among individuals vaccinated with the Neisseria meningitidis serogroup B vaccine, MeNZB. SUMMARY As antibiotic resistance continues to increase, vaccine development for N. gonorrhoeae becomes more urgent. The MeNZB vaccine is shown to have efficacy, albeit relatively low, against N. gonorrhoeae. This finding has the potential to reinvigorate research in the field of gonococcal vaccine development and will guide future studies of the antigens and mechanism(s) required for protection against gonococcal infection.
Collapse
|
15
|
A homopolymeric adenosine tract in the promoter region of nspA influences factor H-mediated serum resistance in Neisseria meningitidis. Sci Rep 2019; 9:2736. [PMID: 30804422 PMCID: PMC6389960 DOI: 10.1038/s41598-019-39231-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/18/2019] [Indexed: 01/18/2023] Open
Abstract
Although usually asymptomatically colonizing the human nasopharynx, the Gram-negative bacterium Neisseria meningitidis (meningococcus) can spread to the blood stream and cause invasive disease. For survival in blood, N. meningitidis evades the complement system by expression of a polysaccharide capsule and surface proteins sequestering the complement regulator factor H (fH). Meningococcal strains belonging to the sequence type (ST-) 41/44 clonal complex (cc41/44) cause a major proportion of serogroup B meningococcal disease worldwide, but they are also common in asymptomatic carriers. Proteome analysis comparing cc41/44 isolates from invasive disease versus carriage revealed differential expression levels of the outer membrane protein NspA, which binds fH. Deletion of nspA reduced serum resistance and NspA expression correlated with fH sequestration. Expression levels of NspA depended on the length of a homopolymeric tract in the nspA promoter: A 5-adenosine tract dictated low NspA expression, whereas a 6-adenosine motif guided high NspA expression. Screening German cc41/44 strain collections revealed the 6-adenosine motif in 39% of disease isolates, but only in 3.4% of carriage isolates. Thus, high NspA expression is associated with disease, but not strictly required. The 6-adenosine nspA promoter is most common to the cc41/44, but is also found in other hypervirulent clonal complexes.
Collapse
|
16
|
Sadarangani M. Protection Against Invasive Infections in Children Caused by Encapsulated Bacteria. Front Immunol 2018; 9:2674. [PMID: 30515161 PMCID: PMC6255856 DOI: 10.3389/fimmu.2018.02674] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/30/2018] [Indexed: 11/13/2022] Open
Abstract
The encapsulated bacteria Streptococcus pneumoniae, Neisseria meningitis, Haemophilus influenzae, and Streptococcus agalactiae (Group B Streptococcus) have been responsible for the majority of severe infections in children for decades, specifically bacteremia and meningitis. Isolates which cause invasive disease are usually surrounded by a polysaccharide capsule, which is a major virulence factor and the key antigen in protective protein-polysaccharide conjugate vaccines. Protection against these bacteria is largely mediated via polysaccharide-specific antibody and complement, although the contribution of these and other components, and the precise mechanisms, vary between species and include opsonophagocytosis and complement-dependent bacteriolysis. Further studies are required to more precisely elucidate mechanisms of protection against non-type b H. influenzae and Group B Streptococcus.
Collapse
Affiliation(s)
- Manish Sadarangani
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Division of Infectious Diseases, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
17
|
Augustyniak D, Seredyński R, McClean S, Roszkowiak J, Roszniowski B, Smith DL, Drulis-Kawa Z, Mackiewicz P. Virulence factors of Moraxella catarrhalis outer membrane vesicles are major targets for cross-reactive antibodies and have adapted during evolution. Sci Rep 2018; 8:4955. [PMID: 29563531 PMCID: PMC5862889 DOI: 10.1038/s41598-018-23029-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/05/2018] [Indexed: 12/31/2022] Open
Abstract
Moraxella catarrhalis is a common human respiratory tract pathogen. Its virulence factors associated with whole bacteria or outer membrane vesicles (OMVs) aid infection, colonization and may induce specific antibodies. To investigate pathogen-host interactions, we applied integrated bioinformatic and immunoproteomic (2D-electrophoresis, immunoblotting, LC-MS/MS) approaches. We showed that OMV proteins engaged exclusively in complement evasion and colonization strategies, but not those involved in iron transport and metabolism, are major targets for cross-reacting antibodies produced against phylogenetically divergent M. catarrhalis strains. The analysis of 31 complete genomes of M. catarrhalis and other Moraxella revealed that OMV protein-coding genes belong to 64 orthologous groups, five of which are restricted to M. catarrhalis. This species showed a two-fold increase in the number of OMV protein-coding genes relative to its ancestors and animal-pathogenic Moraxella. The appearance of specific OMV factors and the increase in OMV-associated virulence proteins during M. catarrhalis evolution is an interesting example of pathogen adaptation to optimize colonization. This precisely targeted cross-reactive immunity against M. catarrhalis may be an important strategy of host defences to counteract this phenomenon. We demonstrate that cross-reactivity is closely associated with the anti-virulent antibody repertoire which we have linked with adaptation of this pathogen to the host.
Collapse
Affiliation(s)
- Daria Augustyniak
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148, Wroclaw, Poland.
| | - Rafał Seredyński
- Department of Physiology, Wroclaw Medical University, T. Chalubinskiego 10, 50-368, Wroclaw, Poland.,Department of Physical Chemistry of Microorganisms, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148, Wroclaw, Poland
| | - Siobhán McClean
- School of Biomolecular and Biomedical Sciences, UCD O'Brien Centre for Science West, B304, Dublin, Ireland
| | - Justyna Roszkowiak
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148, Wroclaw, Poland
| | - Bartosz Roszniowski
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148, Wroclaw, Poland
| | - Darren L Smith
- Applied Sciences, University of Northumbria, Ellison Building EBD222, Newcastle upon Tyne, NE1 8ST, UK
| | - Zuzanna Drulis-Kawa
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148, Wroclaw, Poland
| | - Paweł Mackiewicz
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383, Wrocław, Poland.
| |
Collapse
|
18
|
Sevestre J, Hong E, Delbos V, Terrade A, Mallet E, Deghmane AE, Lemée L, Taha MK, Caron F. Durability of immunogenicity and strain coverage of MenBvac, a meningococcal vaccine based on outer membrane vesicles: Lessons of the Normandy campaign. Vaccine 2017. [DOI: 10.1016/j.vaccine.2017.05.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
19
|
Michaelsen TE, Emilsen S, Sandin RH, Granerud BK, Bratlie D, Ihle O, Sandlie I. Human Secretory IgM Antibodies Activate Human Complement and Offer Protection at Mucosal Surface. Scand J Immunol 2017; 85:43-50. [PMID: 27864913 DOI: 10.1111/sji.12508] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 11/11/2016] [Indexed: 12/15/2022]
Abstract
IgM molecules circulate in serum as large polymers, mainly pentamers, which can be transported by the poly-Ig receptor (pIgR) across epithelial cells to mucosal surfaces and released as secretory IgM (SIgM). The mucosal SIgM molecules have non-covalently attached secretory component (SC), which is the extracellular part of pIgR which is cleaved from the epithelial cell membrane. Serum IgM antibodies do not contain SC and have previously been shown to make a conformational change from 'a star' to a 'staple' conformation upon reaction with antigens on a cell surface, enabling them to activate complement. However, it is not clear whether SIgM similarly can induce complement activation. To clarify this issue, we constructed recombinant chimeric (mouse/human) IgM antibodies against hapten 5-iodo-4-hydroxy-3-nitro-phenacetyl (NIP) and in addition studied polyclonal IgM formed after immunization with a meningococcal group B vaccine. The monoclonal and polyclonal IgM molecules were purified by affinity chromatography on a column containing human SC in order to isolate joining-chain (J-chain) containing IgM, followed by addition of excess amounts of soluble SC to create SIgM (IgM J+ SC+). These SIgM preparations were tested for complement activation ability and shown to be nearly as active as the parental IgM J+ molecules. Thus, SIgM may offer protection against pathogens at mucosal surface by complement-mediated cell lysis or by phagocytosis mediated by complement receptors present on effector cells on mucosa.
Collapse
Affiliation(s)
- T E Michaelsen
- Department of Infectious Disease Immunology, Norwegian Institute of Public Health, Oslo, Norway.,School of Pharmacy, University of Oslo, Oslo, Norway
| | | | - R H Sandin
- Department of Infectious Disease Immunology, Norwegian Institute of Public Health, Oslo, Norway
| | - B K Granerud
- Department of Infectious Disease Immunology, Norwegian Institute of Public Health, Oslo, Norway
| | - D Bratlie
- Department of Infectious Disease Immunology, Norwegian Institute of Public Health, Oslo, Norway
| | - O Ihle
- Department of Infectious Disease Immunology, Norwegian Institute of Public Health, Oslo, Norway
| | - I Sandlie
- Centre for Immune Regulation (CIR) University of Oslo, Oslo, Norway.,Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
20
|
Sanders H, Norheim G, Chan H, Dold C, Vipond C, Derrick JP, Pollard AJ, Maiden MCJ, Feavers IM. FetA Antibodies Induced by an Outer Membrane Vesicle Vaccine Derived from a Serogroup B Meningococcal Isolate with Constitutive FetA Expression. PLoS One 2015; 10:e0140345. [PMID: 26466091 PMCID: PMC4605655 DOI: 10.1371/journal.pone.0140345] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 09/24/2015] [Indexed: 02/06/2023] Open
Abstract
Invasive meningococcal disease causes over 3500 cases each year in Europe, with particularly high incidence among young children. Among serogroup B meningococci, which cause most of the cases, high diversity in the outer membrane proteins (OMPs) is observed in endemic situations; however, comprehensive molecular epidemiological data are available for the diversity and distribution of the OMPs PorA and FetA and these can be used to rationally design a vaccine with high coverage of the case isolates. The aim of this study was to determine whether outer membrane vesicles (OMVs) derived from an isolate with constitutive FetA expression (MenPF-1 vaccine) could be used to induce antibodies against both the PorA and FetA antigens. The immunogenicity of various dose levels and number of doses was evaluated in mice and rabbits, and IgG antibody responses tested against OMVs and recombinant PorA and FetA proteins. A panel of four isogenic mutants was generated and used to evaluate the relative ability of the vaccine to induce serum bactericidal activity (SBA) against FetA and PorA. Sera from mice were tested in SBA against the four target strains. Results demonstrated that the MenPF-1 OMVs were immunogenic against PorA and FetA in both animal models. Furthermore, the murine antibodies induced were bactericidal against isogenic mutant strains, suggesting that antibodies to both PorA and FetA were functional. The data presented indicate that the MenPF-1 vaccine is a suitable formulation for presenting PorA and FetA OMPs in order to induce bactericidal antibodies, and that proceeding to a Phase I clinical trial with this vaccine candidate is justified.
Collapse
Affiliation(s)
- Holly Sanders
- National Institute of Biological Standards and Control, South Mimms, Potters Bar, United Kingdom
| | - Gunnstein Norheim
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
- Division of Infectious Disease Control, Norwegian Institute of Public Health, Oslo, Norway Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Hannah Chan
- National Institute of Biological Standards and Control, South Mimms, Potters Bar, United Kingdom
- * E-mail:
| | - Christina Dold
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Caroline Vipond
- National Institute of Biological Standards and Control, South Mimms, Potters Bar, United Kingdom
| | - Jeremy P. Derrick
- Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, United Kingdom
| | - Andrew J. Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | | | - Ian M. Feavers
- National Institute of Biological Standards and Control, South Mimms, Potters Bar, United Kingdom
| |
Collapse
|
21
|
Norheim G, Sanders H, Mellesdal JW, Sundfør I, Chan H, Brehony C, Vipond C, Dold C, Care R, Saleem M, Maiden MCJ, Derrick JP, Feavers I, Pollard AJ. An OMV Vaccine Derived from a Capsular Group B Meningococcus with Constitutive FetA Expression: Preclinical Evaluation of Immunogenicity and Toxicity. PLoS One 2015; 10:e0134353. [PMID: 26390123 PMCID: PMC4577077 DOI: 10.1371/journal.pone.0134353] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 07/09/2015] [Indexed: 11/26/2022] Open
Abstract
Following the introduction of effective protein-polysaccharide conjugate vaccines against capsular group C meningococcal disease in Europe, meningococci of capsular group B remain a major cause of death and can result in debilitating sequelae. The outer membrane proteins PorA and FetA have previously been shown to induce bactericidal antibodies in humans. Despite considerable antigenic variation among PorA and FetA OMPs in meningococci, systematic molecular epidemiological studies revealed this variation is highly structured so that a limited repertoire of antigenic types is congruent with the hyperinvasive meningococcal lineages that have caused most of the meningococcal disease in Europe in recent decades. Here we describe the development of a prototype vaccine against capsular group B meningococcal infection based on a N. meningitidis isolate genetically engineered to have constitutive expression of the outer membrane protein FetA. Deoxycholate outer membrane vesicles (dOMVs) extracted from cells cultivated in modified Frantz medium contained 21.8% PorA protein, 7.7% FetA protein and 0.03 μg LPS per μg protein (3%). The antibody response to the vaccine was tested in three mouse strains and the toxicological profile of the vaccine was tested in New Zealand white rabbits. Administration of the vaccine, MenPF-1, when given by intramuscular injection on 4 occasions over a 9 week period, was well tolerated in rabbits up to 50 μg/dose, with no evidence of systemic toxicity. These data indicated that the MenPF-1 vaccine had a toxicological profile suitable for testing in a phase I clinical trial.
Collapse
Affiliation(s)
- Gunnstein Norheim
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
- Norwegian Institute of Public Health, Oslo, Norway
- * E-mail:
| | - Holly Sanders
- National Institute of Biological Standards and Control, Potters Bar, United Kingdom
| | | | | | - Hannah Chan
- National Institute of Biological Standards and Control, Potters Bar, United Kingdom
| | - Carina Brehony
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Caroline Vipond
- National Institute of Biological Standards and Control, Potters Bar, United Kingdom
| | - Chris Dold
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Rory Care
- National Institute of Biological Standards and Control, Potters Bar, United Kingdom
| | | | | | | | - Ian Feavers
- National Institute of Biological Standards and Control, Potters Bar, United Kingdom
| | - Andrew J. Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
22
|
Marsay L, Dold C, Green CA, Rollier CS, Norheim G, Sadarangani M, Shanyinde M, Brehony C, Thompson AJ, Sanders H, Chan H, Haworth K, Derrick JP, Feavers IM, Maiden MC, Pollard AJ. A novel meningococcal outer membrane vesicle vaccine with constitutive expression of FetA: A phase I clinical trial. J Infect 2015; 71:326-37. [PMID: 25982025 PMCID: PMC4535279 DOI: 10.1016/j.jinf.2015.05.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/05/2015] [Accepted: 05/09/2015] [Indexed: 12/01/2022]
Abstract
Objectives Outer membrane vesicle (OMV) vaccines are used against outbreaks of capsular group B Neisseria meningitidis (MenB) caused by strains expressing particular PorA outer membrane proteins (OMPs). Ferric enterobactin receptor (FetA) is another variable OMP that induces type-specific bactericidal antibodies, and the combination of judiciously chosen PorA and FetA variants in vaccine formulations is a potential approach to broaden protection of such vaccines. Methods The OMV vaccine MenPF-1 was generated by genetically modifying N. meningitidis strain 44/76 to constitutively express FetA. Three doses of 25 μg or 50 μg of MenPF-1 were delivered intra-muscularly to 52 healthy adults. Results MenPF-1 was safe and well tolerated. Immunogenicity was measured by serum bactericidal assay (SBA) against wild-type and isogenic mutant strains. After 3 doses, the proportion of volunteers with SBA titres ≥1:4 (the putative protective titre) was 98% for the wild-type strain, and 77% for the strain 44/76 FetAonPorAoff compared to 51% in the strain 44/76 FetAoffPorAoff, demonstrating that vaccination with MenPF-1 simultaneously induced FetA and PorA bactericidal antibodies. Conclusion This study provides a proof-of-concept for generating bactericidal antibodies against FetA after OMV vaccination in humans. Prevalence-based choice of PorA and FetA types can be used to formulate a vaccine for broad protection against MenB disease. MenB OMV vaccines' efficacy is strain-restricted by the variable antigen PorA. FetA is another variable antigen, but has iron-dependent expression. The combination of only a few PorA and FetA can induce broad-protection. A mutated OMV was created containing one PorA and one FetA. FetA induces bactericidal antibody response in addition to the PorA response in a Phase I trial.
Collapse
Affiliation(s)
- L Marsay
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, CCVTM, Churchill Lane, Oxford OX37LE, United Kingdom
| | - C Dold
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, CCVTM, Churchill Lane, Oxford OX37LE, United Kingdom
| | - C A Green
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, CCVTM, Churchill Lane, Oxford OX37LE, United Kingdom
| | - C S Rollier
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, CCVTM, Churchill Lane, Oxford OX37LE, United Kingdom.
| | - G Norheim
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, CCVTM, Churchill Lane, Oxford OX37LE, United Kingdom
| | - M Sadarangani
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, CCVTM, Churchill Lane, Oxford OX37LE, United Kingdom
| | - M Shanyinde
- Nuffield Department of Primary Health Care Sciences, Primary Care Clinical Trials Unit, University of Oxford, 23-38 Hythe Bridge Street, Oxford, United Kingdom
| | - C Brehony
- Department of Zoology, University of Oxford, South Parks Road, United Kingdom
| | - A J Thompson
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, CCVTM, Churchill Lane, Oxford OX37LE, United Kingdom
| | - H Sanders
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, United Kingdom
| | - H Chan
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, United Kingdom
| | - K Haworth
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, CCVTM, Churchill Lane, Oxford OX37LE, United Kingdom
| | - J P Derrick
- Michael Smith Building, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - I M Feavers
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, United Kingdom
| | - M C Maiden
- Department of Zoology, University of Oxford, South Parks Road, United Kingdom
| | - A J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, CCVTM, Churchill Lane, Oxford OX37LE, United Kingdom
| |
Collapse
|
23
|
Seib KL, Scarselli M, Comanducci M, Toneatto D, Masignani V. Neisseria meningitidis factor H-binding protein fHbp: a key virulence factor and vaccine antigen. Expert Rev Vaccines 2015; 14:841-59. [PMID: 25704037 DOI: 10.1586/14760584.2015.1016915] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neisseria meningitidis is a leading cause of meningitis and sepsis worldwide. The first broad-spectrum multicomponent vaccine against serogroup B meningococcus (MenB), 4CMenB (Bexsero(®)), was approved by the EMA in 2013, for prevention of MenB disease in all age groups, and by the US FDA in January 2015 for use in adolescents. A second protein-based MenB vaccine has also been approved in the USA for adolescents (rLP2086, Trumenba(®)). Both vaccines contain the lipoprotein factor H-binding protein (fHbp). Preclinical studies demonstrated that fHbp elicits a robust bactericidal antibody response that correlates with the amount of fHbp expressed on the bacterial surface. fHbp is able to selectively bind human factor H, the key regulator of the alternative complement pathway, and this has important implications both for meningococcal pathogenesis and for vaccine design. Here, we review the functional and structural properties of fHbp, the strategies that led to the design of the two fHbp-based vaccines and the data generated during clinical studies.
Collapse
Affiliation(s)
- Kate L Seib
- Institute for Glycomics, Griffith University, Southport, Queensland, 4215, Australia
| | | | | | | | | |
Collapse
|
24
|
Diversity of Greek meningococcal serogroup B isolates and estimated coverage of the 4CMenB meningococcal vaccine. BMC Microbiol 2014; 14:111. [PMID: 24779381 PMCID: PMC4018652 DOI: 10.1186/1471-2180-14-111] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 04/15/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Serogroup B meningococcal (MenB) isolates currently account for approximately 90% of invasive meningococcal disease (IMD) in Greece with ST-162 clonal complex predominating. The potential of a multicomponent meningococcal B vaccine (4CMenB) recently licensed in Europe was investigated in order to find whether the aforementioned vaccine will cover the MenB strains circulating in Greece. A panel of 148 serogroup B invasive meningococcal strains was characterized by multilocus sequence typing (MLST) and PorA subtyping. Vaccine components were typed by sequencing for factor H-binding protein (fHbp), Neisserial Heparin Binding Antigen (NHBA) and Neisseria adhesin A (NadA). Their expression was explored by Meningococcal Antigen Typing System (MATS). RESULTS Global strain coverage predicted by MATS was 89.2% (95% CI 63.5%-98.6%) with 44.6%, 38.5% and 6.1% of strains covered by one, two and three vaccine antigens respectively. NHBA was the antigen responsible for the highest coverage (78.4%), followed by fHbp (52.7%), PorA (8.1%) and NadA (0.7%). The coverage of the major genotypes did not differ significantly. The most prevalent MLST genotype was the ST-162 clonal complex , accounting for 44.6% of the strains in the panel and with a predicted coverage of 86.4%, mainly due to NHBA and fHbp. CONCLUSIONS 4CMenB has the potential to protect against a significant proportion of Greek invasive MenB strains.
Collapse
|
25
|
Tsolakos N, Brookes C, Taylor S, Gorringe A, Tang CM, Feavers IM, Wheeler JX. Identification of vaccine antigens using integrated proteomic analyses of surface immunogens from serogroup B Neisseria meningitidis. J Proteomics 2014; 101:63-76. [PMID: 24561796 DOI: 10.1016/j.jprot.2014.02.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/07/2014] [Accepted: 02/12/2014] [Indexed: 01/19/2023]
Abstract
UNLABELLED Meningococcal surface proteins capable of evoking a protective immune response are candidates for inclusion in protein-based vaccines against serogroup B Neisseria meningitidis (NmB). In this study, a 2-dimensional (2-D) gel-based platform integrating surface and immune-proteomics was developed to characterize NmB surface protein antigens. The surface proteome was analyzed by differential 2-D gel electrophoresis following treatment of live bacteria with proteinase K. Alongside, proteins recognized by immune sera from mice challenged with live meningococci were detected using 2-D immunoblots. In combination, seventeen proteins were identified including the well documented antigens PorA, OpcA and factor H-binding protein, previously reported potential antigens and novel potential immunogens. Results were validated for the macrophage infectivity potentiator (MIP), a recently proposed NmB vaccine candidate. MIP-specific antisera bound to meningococci in whole-cell ELISA and facilitated opsonophagocytosis and deposition of complement factors on the surface of meningococcal isolates of different serosubtypes. Cleavage by proteinase K was confirmed in western blots and shown to occur in a fraction of the MIP expressed by meningococci suggesting transient or limited surface exposure. These observations add knowledge for the development of a protein NmB vaccine. The proteomic workflow presented here may be used for the discovery of vaccine candidates against other pathogens. BIOLOGICAL SIGNIFICANCE This study presents an integrated proteomic strategy to identify proteins from N. meningitidis with desirable properties (i.e. surface exposure and immunogenicity) for inclusion in subunit vaccines against bacterial meningitis. The effectiveness of the method was demonstrated by the identification of some of the major meningococcal vaccine antigens. Information was also obtained about novel potential immunogens as well as the recently described potential antigen macrophage infectivity potentiator which can be useful for its consideration as a vaccine candidate. Additionally, the proteomic strategy presented in this study provides a generic 2-D gel-based platform for the discovery of vaccine candidates against other bacterial infections.
Collapse
MESH Headings
- Animals
- Antigens, Bacterial/isolation & purification
- Antigens, Bacterial/metabolism
- Antigens, Surface/analysis
- Antigens, Surface/isolation & purification
- Antigens, Surface/metabolism
- Bacterial Proteins/immunology
- Bacterial Proteins/isolation & purification
- Bacterial Proteins/metabolism
- Endopeptidase K/pharmacology
- Female
- Meningitis, Meningococcal/immunology
- Meningococcal Vaccines/isolation & purification
- Meningococcal Vaccines/metabolism
- Mice
- Mice, Inbred BALB C
- Neisseria meningitidis, Serogroup B/chemistry
- Neisseria meningitidis, Serogroup B/immunology
- Neisseria meningitidis, Serogroup B/metabolism
- Proteomics/methods
Collapse
Affiliation(s)
- Nikos Tsolakos
- National Institute for Biological Standards and Control, Medicine and Healthcare Products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom; Centre for Molecular Microbiology and Infection, Division of Infectious Diseases, Department of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - Charlotte Brookes
- Public Health England, Porton Down, Salisbury SP4 0JG, United Kingdom
| | - Stephen Taylor
- Public Health England, Porton Down, Salisbury SP4 0JG, United Kingdom
| | - Andrew Gorringe
- Public Health England, Porton Down, Salisbury SP4 0JG, United Kingdom
| | - Christoph M Tang
- Centre for Molecular Microbiology and Infection, Division of Infectious Diseases, Department of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - Ian M Feavers
- National Institute for Biological Standards and Control, Medicine and Healthcare Products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom
| | - Jun X Wheeler
- National Institute for Biological Standards and Control, Medicine and Healthcare Products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom.
| |
Collapse
|
26
|
Bai X, Borrow R. Genetic shifts ofNeisseria meningitidisserogroup B antigens and the quest for a broadly cross-protective vaccine. Expert Rev Vaccines 2014; 9:1203-17. [DOI: 10.1586/erv.10.116] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Frosi G, Biolchi A, Lo Sapio M, Rigat F, Gilchrist S, Lucidarme J, Findlow J, Borrow R, Pizza M, Giuliani MM, Medini D. Bactericidal antibody against a representative epidemiological meningococcal serogroup B panel confirms that MATS underestimates 4CMenB vaccine strain coverage. Vaccine 2013; 31:4968-74. [PMID: 23954380 DOI: 10.1016/j.vaccine.2013.08.006] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/31/2013] [Accepted: 08/02/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND 4CMenB (Bexsero), a vaccine developed against invasive meningococcal disease caused by capsular group B strains (MenB), was recently licensed for use by the European Medicines Agency. Assessment of 4CMenB strain coverage in specific epidemiologic settings is of primary importance to predict vaccination impact on the burden of disease. The Meningococcal Antigen Typing System (MATS) was developed to predict 4CMenB strain coverage, using serum bactericidal antibody assay with human complement (hSBA) data from a diverse panel of strains not representative of any specific epidemiology. OBJECTIVE To experimentally validate the accuracy of MATS-based predictions against strains representative of a specific epidemiologic setting. METHODS AND RESULTS We used a stratified sampling method to identify a representative sample from all MenB disease isolates collected from England and Wales in 2007-2008, tested the strains in the hSBA assay with pooled sera from infant and adolescent vaccinees, and compared these results with MATS. MATS predictions and hSBA results were significantly associated (P=0.022). MATS predicted coverage of 70% (95% CI, 55-85%) was largely confirmed by 88% killing in the hSBA (95% CI, 72-95%). MATS had 78% accuracy and 96% positive predictive value against hSBA. CONCLUSION MATS is a conservative predictor of strain coverage by the 4CMenB vaccine in infants and adolescents.
Collapse
Affiliation(s)
- Giacomo Frosi
- Research Center, Novartis Vaccines and Diagnostics, Via Fiorentina 1, 53100 Siena, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wedege E, Lie K, Bolstad K, Weynants VE, Halstensen A, Herstad TK, Kreutzberger J, Nome L, Naess LM, Aase A. Meningococcal omp85 in detergent-extracted outer membrane vesicle vaccines induces high levels of non-functional antibodies in mice. Scand J Immunol 2013; 77:452-9. [PMID: 23521186 DOI: 10.1111/sji.12051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 03/09/2013] [Indexed: 11/28/2022]
Abstract
The vaccine potential of meningococcal Omp85 was studied by comparing the immune responses of genetically modified deoxycholate-extracted outer membrane vesicles, expressing five-fold higher levels of Omp85, with wild-type vesicles. Groups (n = 6-12) of inbred and outbred mouse strains (Balb/c, C57BL/6, OFI and NMRI) were immunized with the two vaccines, and the induced antibody levels and bactericidal and opsonic activities measured. Except for Balb/c mice, which were low responders, the genetically modified vaccine raised high Omp85 antibody levels in all mouse strains. In comparison, the wild-type vaccine gave lower antibody levels, but NMRI mice responded to this vaccine with the same high levels as the modified vaccine in the other strains. Although the vaccines induced strain-dependent Omp85 antibody responses, the mouse strains showed high and similar serum bactericidal titres. Titres were negligible with heterologous or PorA-negative meningococcal target strains, demonstrating the presence of the dominant bactericidal PorA antibodies. The two vaccines induced the same opsonic titres. Thus, the genetically modified vaccine with high Omp85 antibody levels and the wild-type vaccine induced the same levels of functional activities related to protection against meningococcal disease, suggesting that meningococcal Omp85 is a less attractive vaccine antigen.
Collapse
Affiliation(s)
- E Wedege
- Division of Infectious Disease Control, Department of Bacteriology and Immunology, Norwegian Institute of Public Health, Oslo, Norway.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Genetic distribution of noncapsular meningococcal group B vaccine antigens in Neisseria lactamica. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:1360-9. [PMID: 23803905 DOI: 10.1128/cvi.00090-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The poor immunogenicity of the meningococcal serogroup B (MenB) capsule has led to the development of vaccines targeting subcapsular antigens, in particular the immunodominant and diverse outer membrane porin, PorA. These vaccines are largely strain specific; however, they offer limited protection against the diverse MenB-associated diseases observed in many industrialized nations. To broaden the scope of its protection, the multicomponent vaccine (4CMenB) incorporates a PorA-containing outer membrane vesicle (OMV) alongside relatively conserved recombinant protein components, including factor H-binding protein (fHbp), Neisseria adhesin A (NadA), and neisserial heparin-binding antigen (NHBA). The expression of PorA is unique to meningococci (Neisseria meningitidis); however, many subcapsular antigens are shared with nonpathogenic members of the genus Neisseria that also inhabit the nasopharynx. These organisms may elicit cross-protective immunity against meningococci and/or occupy a niche that might otherwise accommodate pathogens. The potential for 4CMenB responses to impact such species (and vice versa) was investigated by determining the genetic distribution of the primary 4CMenB antigens among diverse members of the common childhood commensal, Neisseria lactamica. All the isolates possessed nhba but were devoid of fhbp and nadA. The nhba alleles were mainly distinct from but closely related to those observed among a representative panel of invasive MenB isolates from the same broad geographic region. We made similar findings for the immunogenic typing antigen, FetA, which constitutes a major part of the 4CMenB OMV. Thus, 4CMenB vaccine responses may impact or be impacted by nasopharyngeal carriage of commensal neisseriae. This highlights an area for further research and surveillance should the vaccine be routinely implemented.
Collapse
|
30
|
Ziegenbalg A, Prados-Rosales R, Jenny-Avital ER, Kim RS, Casadevall A, Achkar JM. Immunogenicity of mycobacterial vesicles in humans: identification of a new tuberculosis antibody biomarker. Tuberculosis (Edinb) 2013; 93:448-55. [PMID: 23562367 DOI: 10.1016/j.tube.2013.03.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 02/27/2013] [Accepted: 03/02/2013] [Indexed: 01/31/2023]
Abstract
Biomarkers for active tuberculosis (TB) are urgently needed. Mycobacteria produce membrane vesicles (MVs) that contain concentrated immune-modulatory factors that are released into the host. We evaluated the human immune responses to BCG and Mycobacterium tuberculosis MVs to characterize the antibody responses and identify potentially novel TB biomarkers. Serological responses to MVs were evaluated by ELISAs and immunoblots with sera from 16 sputum smear-positive, 12 smear-negative HIV uninfected pulmonary TB patients and 16 BCG vaccinated Tuberculin skin-test positive controls with and without latent tuberculosis infection. MVs from both BCG and M. tuberculosis induced similar responses and were strongly immunogenic in TB patients but not in controls. Several MV-associated antigens appear to induce robust antibody responses, in particular the arabinomanan portion of the cell wall glycolipid lipoarabinomannan. Three proteins at ≈ 36, 25, and 23 kDa were simultaneously recognized by sera from 16/16 smear-positive, 9/12 smear-negative TB patients and 0/16 controls. These results provide promise and encouragement that antibody responses to proteins enriched in MVs of pathogenic mycobacteria may constitute a novel TB biomarker signature that could have diagnostic information.
Collapse
Affiliation(s)
- Anke Ziegenbalg
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
31
|
Gaspar EB, Rosetti AS, Lincopan N, De Gaspari E. Neisseria lactamica antigens complexed with a novel cationic adjuvant. Hum Vaccin Immunother 2013; 9:572-81. [PMID: 23296384 DOI: 10.4161/hv.23237] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Colonization of the nasopharynx by non-pathogenic Neisseria species, including N. lactamica, has been suggested to lead to the acquisition of natural immunity against Neisseria meningitidis in young children. The aim of this study was to identify a model complex of antigens and adjuvant for immunological preparation against N. meningitidis B, based on cross reactivity with N. lactamica outer membrane vesicles (OMV) antigens and the (DDA-BF) adjuvant. Complexes of 25 µg of OMV in 0.1 mM of DDA-BF were colloidally stable, exhibiting a mean diameter and charge optimal for antigen presentation. Immunogenicity tests for these complexes were performed in mice. A single dose of OMV/DDA-BF was sufficient to induce a (DTH) response, while the same result was achieved only after two doses of OMV/alum. In addition, to achieve total IgG levels that are similar to a single immunization with OMV/DDA-BF, it was necessary to give the mice a second dose of OMV/alum. Moreover, the antibodies induced from a single immunization with OMV/DDA-BF had an intermediate avidity, but antibodies with a similar avidity were only induced by OMV/alum after two immunizations. The use of this novel cationic adjuvant for the first time with a N. lactamica OMV preparation revealed good potential for future vaccine design.
Collapse
Affiliation(s)
- Emanuelle B Gaspar
- Embrapa Southern Region Animal Husbandry; Bagé, RS Brazil; Institute of Biomedical Sciences; Department of Microbiology; University of São Paulo; São Paulo, SP Brazil
| | | | | | | |
Collapse
|
32
|
Clonal analysis of Neisseria meningitidis serogroup B strains in South Africa, 2002 to 2006: emergence of new clone ST-4240/6688. J Clin Microbiol 2012; 50:3678-86. [PMID: 22972827 DOI: 10.1128/jcm.01079-12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
From August 1999 through July 2002, hyperinvasive Neisseria meningitidis serogroup B (MenB) clonal complexes (CCs), namely, ST-32/ET-5 (CC32) and ST-41/44/lineage 3 (CC41/44), were predominant in the Western Cape Province of South Africa. This study analyzed MenB invasive isolates from a national laboratory-based surveillance system that were collected from January 2002 through December 2006. Isolates were characterized by pulsed-field gel electrophoresis (PFGE) (n = 302), and multilocus sequence typing (MLST) and PorA and FetA typing were performed on randomly selected isolates (34/302, 11%). In total, 2,400 cases were reported, with the highest numbers from Gauteng Province (1,307/2,400, 54%) and Western Cape Province (393/2,400, 16%); 67% (1,617/2,400) had viable isolates and 19% (307/1,617) were identified as serogroup B. MenB incidence remained stable over time (P = 0.77) (average incidence, 0.13/100,000 population [range, 0.10 to 0.16/100,000 population]). PFGE (302/307, 98%) divided isolates (206/302, 68%) into 13 clusters and 96 outliers. The largest cluster, B1, accounted for 25% of isolates (76/302) over the study period; its prevalence decreased from 43% (20/47) in 2002 to 13% (8/62) in 2006 (P < 0.001), and it was common in the Western Cape (58/76, 76%). Clusters B2 and B3 accounted for 10% (31/302) and 6% (19/302), respectively, and showed no significant change over time and were predominant in Gauteng. Randomly selected isolates from clusters B1, B2, and B3 belonged to CC32, CC41/44, and the new CC4240/6688, respectively. Overall, 15 PorA and 12 FetA types were identified. MenB isolates were mostly diverse with no single dominant clone; however, CC32 and CC41/44 accounted for 35% and the new CC4240/6688 was the third most prevalent clone.
Collapse
|
33
|
The early clinical development of a multicomponent vaccine against meningococcal serogroup B. ACTA ACUST UNITED AC 2012. [DOI: 10.4155/cli.12.41] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Nieves W, Asakrah S, Qazi O, Brown KA, Kurtz J, Aucoin DP, McLachlan JB, Roy CJ, Morici LA. A naturally derived outer-membrane vesicle vaccine protects against lethal pulmonary Burkholderia pseudomallei infection. Vaccine 2011; 29:8381-9. [PMID: 21871517 DOI: 10.1016/j.vaccine.2011.08.058] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 08/03/2011] [Accepted: 08/07/2011] [Indexed: 12/19/2022]
Abstract
Burkholderia pseudomallei, and other members of the Burkholderia, are among the most antibiotic-resistant bacterial species encountered in human infection. Mortality rates associated with severe B. pseudomallei infection approach 50% despite therapeutic treatment. A protective vaccine against B. pseudomallei would dramatically reduce morbidity and mortality in endemic areas and provide a safeguard for the U.S. and other countries against biological attack with this organism. In this study, we investigated the immunogenicity and protective efficacy of B. pseudomallei-derived outer membrane vesicles (OMVs). Vesicles are produced by Gram-negative and Gram-positive bacteria and contain many of the bacterial products recognized by the host immune system during infection. We demonstrate that subcutaneous (SC) immunization with OMVs provides significant protection against an otherwise lethal B. pseudomallei aerosol challenge in BALB/c mice. Mice immunized with B. pseudomallei OMVs displayed OMV-specific serum antibody and T-cell memory responses. Furthermore, OMV-mediated immunity appears species-specific as cross-reactive antibody and T cells were not generated in mice immunized with Escherichia coli-derived OMVs. These results provide the first compelling evidence that OMVs represent a non-living vaccine formulation that is able to produce protective humoral and cellular immunity against an aerosolized intracellular bacterium. This vaccine platform constitutes a safe and inexpensive immunization strategy against B. pseudomallei that can be exploited for other intracellular respiratory pathogens, including other Burkholderia and bacteria capable of establishing persistent infection.
Collapse
Affiliation(s)
- Wildaliz Nieves
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Stephens DS. Outer-membrane-vesicle vaccines: old but not forgotten. THE LANCET. INFECTIOUS DISEASES 2011; 11:421-2. [DOI: 10.1016/s1473-3099(11)70096-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Influence of sequence variability on bactericidal activity sera induced by Factor H binding protein variant 1.1. Vaccine 2011; 29:1072-81. [PMID: 21130753 DOI: 10.1016/j.vaccine.2010.11.064] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 11/16/2010] [Accepted: 11/18/2010] [Indexed: 11/21/2022]
|
37
|
Qualitative and quantitative assessment of meningococcal antigens to evaluate the potential strain coverage of protein-based vaccines. Proc Natl Acad Sci U S A 2010; 107:19490-5. [PMID: 20962280 DOI: 10.1073/pnas.1013758107] [Citation(s) in RCA: 245] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A unique multicomponent vaccine against serogroup B meningococci incorporates the novel genome-derived proteins fHbp, NHBA, and NadA that may vary in sequence and level of expression. Measuring the effectiveness of such vaccines, using the accepted correlate of protection against invasive meningococcal disease, could require performing the serum bactericidal assay (SBA) against many diverse strains for each geographic region. This approach is impractical, especially for infants, where serum volumes are very limited. To address this, we developed the meningococcal antigen typing system (MATS) by combining a unique vaccine antigen-specific ELISA, which detects qualitative and quantitative differences in antigens, with PorA genotyping information. The ELISA correlates with killing of strains by SBA and measures both immunologic cross-reactivity and quantity of the antigens NHBA, NadA, and fHbp. We found that strains exceeding a threshold value in the ELISA for any of the three vaccine antigens had ≥80% probability of being killed by immune serum in the SBA. Strains positive for two or more antigens had a 96% probability of being killed. Inclusion of multiple different antigens in the vaccine improves breadth of coverage and prevents loss of coverage if one antigen mutates or is lost. The finding that a simple and high-throughput assay correlates with bactericidal activity is a milestone in meningococcal vaccine development. This assay allows typing of large panels of strains and prediction of coverage of protein-based meningococcal vaccines. Similar assays may be used for protein-based vaccines against other bacteria.
Collapse
|
38
|
Three doses of an experimental detoxified L3-derived lipooligosaccharide meningococcal vaccine offer good safety but low immunogenicity in healthy young adults. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:1460-6. [PMID: 20660140 DOI: 10.1128/cvi.00129-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This open, randomized phase I study evaluated the safety and reactogenicity of an experimental meningococcal serogroup B (MenB) vaccine obtained from outer membrane vesicle detoxified L3-derived lipooligosaccharide. Healthy young adults (n = 150) were randomized to receive either experimental vaccine (provided in five formulations, n = 25 in each group) or VA-Mengoc-BC (control, n = 25) administered on a 0- to 6-week/6-month schedule. Serum bactericidal assays performed against three MenB wild-type strains assessed the immune response, defined as a 4-fold increase from pre- to postvaccination. No serious adverse events related to vaccination were reported. Pain at the injection site, fatigue, and headache were the most commonly reported adverse events. Solicited adverse events graded level 3 (i.e., preventing daily activity) were pain (up to 17% of the test subjects versus 32% of the controls), fatigue (up to 12% of the test subjects versus 8% of the controls), and headache (up to 4% of any group). Swelling graded level 3 (greater than 50 mm) occurred in up to 4% of the test subjects versus 8% of the controls. The immune responses ranged from 5% to 36% across experimental vaccines for the L3 H44-76 strain (versus 27% for the control), from 0% to 11% for the L3 NZ98/124 strain (versus 23% for the control), and from 0% to 13% for the L2 760676 strain (versus 59% for the control). All geometric mean titers were below those measured with the control vaccine. The five experimental formulations were safe and well tolerated but tended to be less immunogenic than the control vaccine.
Collapse
|
39
|
Giuliani MM, Biolchi A, Serruto D, Ferlicca F, Vienken K, Oster P, Rappuoli R, Pizza M, Donnelly J. Measuring antigen-specific bactericidal responses to a multicomponent vaccine against serogroup B meningococcus. Vaccine 2010; 28:5023-30. [PMID: 20493284 DOI: 10.1016/j.vaccine.2010.05.014] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 05/03/2010] [Accepted: 05/05/2010] [Indexed: 10/19/2022]
Abstract
Serum bactericidal activity using human complement is the basis for established correlates of protection against invasive meningococcal disease. During the development of multicomponent protein-based vaccines against meningococcus B, it is necessary to measure antigen-specific bactericidal responses. This is not straightforward because each strain may be killed by antibodies to multiple antigens. We characterized a large panel of strains and, using a competitive inhibition SBA, we identified four strains that are each specifically killed by bactericidal antibodies to one of the major vaccine components. These strains provide a straightforward approach to demonstrate protective responses to each component of the vaccine and demonstrate that each of the antigens in the vaccine is sufficient to provide a potentially protective level of bactericidal activity.
Collapse
Affiliation(s)
- Marzia M Giuliani
- Novartis Vaccines and Diagnostics, Via Fiorentina 1, Siena 53100, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Tsolakos N, Lie K, Bolstad K, Maslen S, Kristiansen PA, Høiby EA, Wallington A, Vipond C, Skehel M, Tang CM, Feavers IM, Wedege E, Wheeler JX. Characterization of meningococcal serogroup B outer membrane vesicle vaccines from strain 44/76 after growth in different media. Vaccine 2010; 28:3211-8. [DOI: 10.1016/j.vaccine.2010.02.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 01/20/2010] [Accepted: 02/10/2010] [Indexed: 10/19/2022]
|
41
|
Abstract
The human species is the only natural host of Neisseria meningitidis, an important cause of bacterial meningitis globally, and, despite its association with devastating diseases, N. meningitidis is a commensal organism found frequently in the respiratory tract of healthy individuals. To date, antibiotic resistance is relatively uncommon in N. meningitidis isolates but, due to the rapid onset of disease in susceptible hosts, the mortality rate remains approx. 10%. Additionally, patients who survive meningococcal disease often endure numerous debilitating sequelae. N. meningitidis strains are classified primarily into serogroups based on the type of polysaccharide capsule expressed. In total, 13 serogroups have been described; however, the majority of disease is caused by strains belonging to one of only five serogroups. Although vaccines have been developed against some of these, a universal meningococcal vaccine remains a challenge due to successful immune evasion strategies of the organism, including mimicry of host structures as well as frequent antigenic variation. N. meningitidis express a range of virulence factors including capsular polysaccharide, lipopolysaccharide and a number of surface-expressed adhesive proteins. Variation of these surface structures is necessary for meningococci to evade killing by host defence mechanisms. Nonetheless, adhesion to host cells and tissues needs to be maintained to enable colonization and ensure bacterial survival in the niche. The aims of the present review are to provide a brief outline of meningococcal carriage, disease and burden to society. With this background, we discuss several bacterial strategies that may enable its survival in the human respiratory tract during colonization and in the blood during infection. We also examine several known meningococcal adhesion mechanisms and conclude with a section on the potential processes that may operate in vivo as meningococci progress from the respiratory niche through the blood to reach the central nervous system.
Collapse
|
42
|
de Filippis I. Quest for a broad-range vaccine against Neisseria meningitidis serogroup B: implications of genetic variations of the surface-exposed proteins. J Med Microbiol 2009; 58:1127-1132. [DOI: 10.1099/jmm.0.011189-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Despite the development of new vaccine formulations using new biotechnology resources to combat emerging and re-emerging diseases, serogroup B meningococcal disease is still a worldwide burden, accounting for many deaths and disabilities every year. The successful approach of coupling a polysaccharide (PS) with a carrier protein in order to increase long-lasting immunity could not be exploited againstNeisseria meningitidisB because of the limitations of using the capsular PS of serogroup B meningococci. Tailor-made vaccines based on exposed proteins were shown to be a promising approach to overcome these flaws. However, the continuous adaptation of surface meningococcal structures to the external environment has led to genetic shifts of potential vaccine-target epitopes, hampering the quest for a broad-range vaccine that could be used against all serogroups, especially against serogroup B.
Collapse
Affiliation(s)
- Ivano de Filippis
- Fundacao Oswaldo Cruz, Instituto Nacional de Controle de Qualidade em Saúde, Departamento de Microbiologia, Rio de Janeiro 21045-900, Brazil
| |
Collapse
|
43
|
Lewis S, Sadarangani M, Hoe JC, Pollard AJ. Challenges and progress in the development of a serogroup B meningococcal vaccine. Expert Rev Vaccines 2009; 8:729-45. [PMID: 19485754 DOI: 10.1586/erv.09.30] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Serogroup B meningococci cause the majority of the meningococcal disease burden in developed countries. Production of an effective and safe vaccine for serogroup B organisms has been hampered by the poor immunogenicity of the capsular polysaccharide that defines this group of bacteria. Previous efforts have focused on outer membrane vesicle vaccines, which have been implemented successfully during clonal outbreaks. However, the search for a universal vaccine against endemic polyclonal serogroup B meningococcal disease continues. In this review, we have highlighted recent development of outer membrane vesicle vaccines and progress in the evaluation of recombinant outer membrane protein vaccines.
Collapse
Affiliation(s)
- Susan Lewis
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Headington, Oxford, OX3 7LJ, UK.
| | | | | | | |
Collapse
|
44
|
Binding of complement factor H (fH) to Neisseria meningitidis is specific for human fH and inhibits complement activation by rat and rabbit sera. Infect Immun 2008; 77:764-9. [PMID: 19047406 DOI: 10.1128/iai.01191-08] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Complement factor H (fH), a molecule that downregulates complement activation, binds to Neisseria meningitidis and increases resistance to serum bactericidal activity. We investigated the species specificity of fH binding and the effect of human fH on downregulating rat (relevant for animal models) and rabbit (relevant for vaccine evaluation) complement activation. Binding to N. meningitidis was specific for human fH (low for chimpanzee fH and not detected with fH from lower primates). The addition of human fH decreased rat and rabbit C3 deposition on the bacterial surface and decreased group C bactericidal titers measured with rabbit complement 10- to 60-fold in heat-inactivated sera from human vaccinees. Administration of human fH to infant rats challenged with group B strain H44/76 resulted in an fH dose-dependent increase in CFU/ml of bacteria in blood 8 h later (P < 0.02). At the highest fH dose, 50 microg/rat, the geometric mean number of CFU per ml was higher than that in control animals (1,050 versus 43 [P < 0.005]). The data underscore the importance of binding of human fH for survival of N. meningitidis in vitro and in vivo. The species specificity of binding of human fH adds another mechanism toward our understanding of why N. meningitidis is strictly a human pathogen.
Collapse
|
45
|
Specificity of subcapsular antibody responses in Ethiopian patients following disease caused by serogroup A meningococci. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:863-71. [PMID: 18337382 DOI: 10.1128/cvi.00252-07] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dissecting the specificities of human antibody responses following disease caused by serogroup A meningococci may be important for the development of improved vaccines. We performed a study of Ethiopian patients during outbreaks in 2002 and 2003. Sera were obtained from 71 patients with meningitis caused by bacteria of sequence type 7, as confirmed by PCR or culture, and from 113 Ethiopian controls. Antibody specificities were analyzed by immunoblotting (IB) against outer membrane antigen extracts of a reference strain and of the patients' own isolates and by enzyme-linked immunosorbent assay for immunoglobulin G (IgG) levels against lipooligosaccharide (LOS) L11 and the proteins NadA and NspA. IB revealed that the main antigens targeted were the proteins PorA, PorB, RmpM, and Opa/OpcA, as well as LOS. MenA disease induced significant increases in IgG against LOS L11 and NadA. The IgG levels against LOS remained elevated following disease, whereas the IgG anti-NadA levels returned to acute-phase levels in the late convalescent phase. Among adults, the anti-LOS IgG levels were similar in acute-phase patient sera as in control sera, whereas anti-NadA IgG levels were significantly higher in acute-phase sera than in controls. The IgG antibody levels against LOS and NadA correlated moderately but significantly with serum bactericidal activity against MenA strains. Future studies on immune response during MenA disease should take into account the high levels of anti-MenA polysaccharide IgG commonly found in the population and seek to clarify the role of antibodies against subcapsular antigens in protection against MenA disease.
Collapse
|
46
|
Welsch JA, Granoff D. Immunity to Neisseria meningitidis group B in adults despite lack of serum bactericidal antibody. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:1596-602. [PMID: 17913865 PMCID: PMC2168381 DOI: 10.1128/cvi.00341-07] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Serum-complement-mediated bactericidal antibody (SBA) remains the serologic hallmark of protection against meningococcal disease, despite experimental and epidemiologic data that SBA may underestimate immunity. We measured bactericidal activity against three strains of Neisseria meningitidis group B in sera from 48 healthy adults and in whole blood from 15 subjects. Blood was anticoagulated with lepirudin, a specific thrombin inhibitor not known to activate complement. Depending on the test strain, protective SBA titers of >/=1:4 were present in only 8 to 15% of the subjects, whereas bactericidal activity was present in 40 to 87% of subjects according to the blood assay. Among SBA-negative subjects, blood from 23 to 42% gave a decrease of >/=2 log(10) CFU/ml after 1 h of incubation, and blood from 36 to 83% gave a decrease of >/=1 log(10) after 2 h. For most blood samples, bactericidal antibodies primarily were directed against noncapsular antigens, since activity was not inhibited by group B polysaccharide. For some SBA-negative subjects, white cells were not needed, since similar respective bactericidal activities were observed in blood and plasma. Bactericidal activity by whole blood of SBA-negative subjects can be rapid (<1 h) and effective (>/=2 log(10)) and, among all subjects, was four- to sixfold more prevalent than a positive SBA. Thus, while an SBA titer of >/=1:4 predicts protection against meningococcal disease, a titer of <1:4 is poorly predictive of susceptibility. More sensitive assays than SBA are needed to assess protective meningococcal immunity, or we risk underestimating the extent of immunity in the population and the effectiveness of new meningococcal vaccines.
Collapse
Affiliation(s)
- Jo Anne Welsch
- Children's Hospital Oakland Research Institute, Oakland, California 94609, USA
| | | |
Collapse
|
47
|
Affiliation(s)
- Jamie Findlow
- Vaccine Evaluation Unit, Health Protection Agency North West, Manchester Laboratory, Manchester Medical Microbiology Partnership, Manchester Royal Infirmary, Manchester, M13 9WZ, UK.
| | | | | | | | | | | |
Collapse
|