1
|
Forconi CS, Nixon C, Wu HW, Odwar B, Pond-Tor S, Ong'echa JM, Kurtis JD, Moormann AM. T-follicular helper cell profiles differ by malaria antigen and for children compared to adults. eLife 2025; 13:RP98462. [PMID: 40402846 PMCID: PMC12097790 DOI: 10.7554/elife.98462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2025] Open
Abstract
Circulating T-follicular helper (cTFH) cells have the potential to provide an additional correlate of protection against Plasmodium falciparum (Pf) as they are essential to promote B-cell production of long-lasting antibodies. Assessing the specificity of cTFH subsets to individual malaria antigens is vital to understanding the variation observed in antibody responses and identifying promising malaria vaccine candidates. Using spectral flow cytometry and unbiased clustering analysis, we assessed antigen-specific cTFH cell recall responses in vitro to malaria vaccine candidates Pf-schizont egress antigen-1 (PfSEA-1A) and Pf-glutamic acid-rich protein (PfGARP) within a cross-section of children and adults living in a malaria-holoendemic region of western Kenya. In children, a broad array of cTFH subsets (defined by cytokine and transcription factor expression) were reactive to both malaria antigens, PfSEA-1A and PfGARP, while adults had a narrow profile centering on cTFH17- and cTFH1/17-like subsets following stimulation with PfGARP only. Because TFH17 cells are involved in the maintenance of memory antibody responses within the context of parasitic infections, our results suggest that PfGARP might generate longer-lived antibody responses compared to PfSEA-1A. These findings have intriguing implications for evaluating malaria vaccine candidates as they highlight the importance of including cTFH profiles when assessing interdependent correlates of protective immunity.
Collapse
Affiliation(s)
- Catherine Suzanne Forconi
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Christina Nixon
- Department of Pathology and Laboratory Medicine, Brown UniversityProvidenceUnited States
| | - Hannah W Wu
- Department of Pathology and Laboratory Medicine, Brown UniversityProvidenceUnited States
| | - Boaz Odwar
- Center for Global Health Research, Kenya Medical Research InstituteKisumuKenya
| | - Sunthorn Pond-Tor
- Department of Pathology and Laboratory Medicine, Brown UniversityProvidenceUnited States
| | - John M Ong'echa
- Center for Global Health Research, Kenya Medical Research InstituteKisumuKenya
| | - Jonathan D Kurtis
- Department of Pathology and Laboratory Medicine, Brown UniversityProvidenceUnited States
| | - Ann M Moormann
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| |
Collapse
|
2
|
Forconi CS, Nixon C, Wu HW, Odwar B, Pond-Tor S, Ong’echa JM, Kurtis J, Moormann AM. T follicular helper cell profiles differ by malaria antigen and for children compared to adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.04.13.589352. [PMID: 38659768 PMCID: PMC11042194 DOI: 10.1101/2024.04.13.589352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Background Circulating T-follicular helper (cTFH) cells have the potential to provide an additional correlate of protection against Plasmodium falciparum (Pf) as they are essential to promote B-cell production of long-lasting antibodies. Assessing the specificity of cTFH subsets to individual malaria antigens is vital to understanding the variation observed in antibody responses and identifying promising malaria vaccine candidates. Methods Using spectral flow cytometry and unbiased clustering analysis, we assessed antigen-specific cTFH cell recall responses in vitro to malaria vaccine candidates Pf-schizont egress antigen-1 (PfSEA-1A) and Pf-glutamic acid-rich protein (PfGARP) within a cross-section of children and adults living in a malaria-holoendemic region of western Kenya. Findings In children, a broad array of cTFH subsets (defined by cytokine and transcription factor expression) were reactive to both malaria antigens, PfSEA-1A and PfGARP, while adults had a narrow profile centering on cTFH17- and cTFH1/17-like subsets following stimulation with PfGARP only. Interpretation Because TFH17 cells are involved in the maintenance of memory antibody responses within the context of parasitic infections, our results suggest that PfGARP might generate longer-lived antibody responses compared to PfSEA-1A. These findings have intriguing implications for evaluating malaria vaccine candidates as they highlight the importance of including cTFH profiles when assessing interdependent correlates of protective immunity.
Collapse
Affiliation(s)
- Catherine S. Forconi
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Christina Nixon
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Hannah W. Wu
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Boaz Odwar
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Sunthorn Pond-Tor
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - John M. Ong’echa
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Jonathan Kurtis
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Ann M. Moormann
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
3
|
B-Cell Epitope Mapping of the Plasmodium falciparum Malaria Vaccine Candidate GMZ2.6c in a Naturally Exposed Population of the Brazilian Amazon. Vaccines (Basel) 2023; 11:vaccines11020446. [PMID: 36851323 PMCID: PMC9966924 DOI: 10.3390/vaccines11020446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
The GMZ2.6c malaria vaccine candidate is a multi-stage P. falciparum chimeric protein that contains a fragment of the sexual-stage Pfs48/45-6C protein genetically fused to GMZ2, an asexual-stage vaccine construction consisting of the N-terminal region of the glutamate-rich protein (GLURP) and the C-terminal region of the merozoite surface protein-3 (MSP-3). Previous studies showed that GMZ2.6c is widely recognized by antibodies from Brazilian exposed individuals and that its components are immunogenic in natural infection by P. falciparum. In addition, anti-GMZ2.6c antibodies increase with exposure to infection and may contribute to parasite immunity. Therefore, identifying epitopes of proteins recognized by antibodies may be an important tool for understanding protective immunity. Herein, we identify and validate the B-cell epitopes of GMZ2.6c as immunogenic and immunodominant in individuals exposed to malaria living in endemic areas of the Brazilian Amazon. Specific IgG antibodies and subclasses against MSP-3, GLURP, and Pfs48/45 epitopes were detected by ELISA using synthetic peptides corresponding to B-cell epitopes previously described for MSP-3 and GLURP or identified by BepiPred for Pfs48/45. The results showed that the immunodominant epitopes were P11 from GLURP and MSP-3c and DG210 from MSP-3. The IgG1 and IgG3 subclasses were preferentially induced against these epitopes, supporting previous studies that these proteins are targets for cytophilic antibodies, important for the acquisition of protective immunity. Most individuals presented detectable IgG antibodies against Pfs48/45a and/or Pfs48/45b, validating the prediction of linear B-cell epitopes. The higher frequency and antibody levels against different epitopes from GLURP, MSP-3, and Pfs48/45 provide additional information that may suggest the relevance of GMZ2.6c as a multi-stage malaria vaccine candidate.
Collapse
|
4
|
Cyclic constrained immunoreactive peptides from crucial P. falciparum proteins: potential implications in malaria diagnostics. Transl Res 2022; 249:28-36. [PMID: 35697275 DOI: 10.1016/j.trsl.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 11/23/2022]
Abstract
Malaria is still a global challenge with significant morbidity and mortality, especially in the African, South-East Asian, and Latin American regions. Malaria diagnosis is a crucial pillar in the control and elimination efforts, often accomplished by the administration of mass-scale Rapid diagnostic tests (RDTs). The inherent limitations of RDTs- insensitivity in scenarios of low transmission settings and deletion of one of the target proteins- Histidine rich protein 2/3 (HRP-2/3) are evident from multiple reports, thus necessitating the need to explore novel diagnostic tools/targets. The present study used peptide microarray to screen potential epitopes from 13 antigenic proteins (CSP, EXP1, LSA1, TRAP, AARP, AMA1, GLURP, MSP1, MSP2, MSP3, MSP4, P48/45, HAP2) of P. falciparum. Three cyclic constrained immunoreactive peptides- C6 (EXP1), A8 (MSP2), B7 (GLURP) were identified from 5458 cyclic constrained peptides (in duplicate) against P. falciparum-infected sera. Peptides (C6, A8, B7- cyclic constrained) and (G11, DSQ, NQN- corresponding linear peptides) were fairly immunoreactive towards P. falciparum-infected sera in dot-blot assay. Using direct ELISA, cyclic constrained peptides (C6 and B7) were found to be specific to P. falciparum-infected sera. A substantial number of samples were tested and the peptides successfully differentiated the P. falciparum positive and negative samples with high confidence. In conclusion, the study identified 3 cyclic constrained immunoreactive peptides (C6, B7, and A8) from P. falciparum secretory/surface proteins and further validated for diagnostic potential of 2 peptides (C6 and B7) with field-collected P. falciparum-infected sera samples.
Collapse
|
5
|
Chidzwondo F, Mutapi F. Challenge of diagnosing acute infections in poor resource settings in Africa. AAS Open Res 2021. [DOI: 10.12688/aasopenres.13234.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Frequent disease outbreaks and acute infections occur in rural and low-income urban areas of Africa, with many health systems unprepared to diagnose and control diseases that are recurrent, endemic or have extended their geographic zone. In this review, we focus on acute infections that can be characterized by sudden onset, rapid progression, severe symptoms and poor prognosis. Consequently, these infections require early diagnosis and intervention. While effective vaccines have been developed against some of these diseases, lack of compliance and accessibility, and the need for repeated or multiple vaccinations mean large populations can remain vulnerable to infection. It follows that there is a need for enhancement of national surveillance and diagnostic capacity to avert morbidity and mortality from acute infections. We discuss the limitations of traditional diagnostic methods and explore the relative merits and applicability of protein-, carbohydrate- and nucleic acid-based rapid diagnostic tests that have been trialled for some infectious diseases. We also discuss the utility and limitations of antibody-based serological diagnostics and explore how systems biology approaches can better inform diagnosis. Lastly, given the complexity and high cost associated with after-service support of emerging technologies, we propose that, for resource-limited settings in Africa, multiplex point-of-care diagnostic tools be tailor-made to detect both recurrent acute infections and endemic infections.
Collapse
|
6
|
Perrin AJ, Bisson C, Faull PA, Renshaw MJ, Lees RA, Fleck RA, Saibil HR, Snijders AP, Baker DA, Blackman MJ. Malaria Parasite Schizont Egress Antigen-1 Plays an Essential Role in Nuclear Segregation during Schizogony. mBio 2021; 12:e03377-20. [PMID: 33688001 PMCID: PMC8092294 DOI: 10.1128/mbio.03377-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/25/2021] [Indexed: 01/08/2023] Open
Abstract
Malaria parasites cause disease through repeated cycles of intraerythrocytic proliferation. Within each cycle, several rounds of DNA replication produce multinucleated forms, called schizonts, that undergo segmentation to form daughter merozoites. Upon rupture of the infected cell, the merozoites egress to invade new erythrocytes and repeat the cycle. In human malarial infections, an antibody response specific for the Plasmodium falciparum protein PF3D7_1021800 was previously associated with protection against malaria, leading to an interest in PF3D7_1021800 as a candidate vaccine antigen. Antibodies to the protein were reported to inhibit egress, resulting in it being named schizont egress antigen-1 (SEA1). A separate study found that SEA1 undergoes phosphorylation in a manner dependent upon the parasite cGMP-dependent protein kinase PKG, which triggers egress. While these findings imply a role for SEA1 in merozoite egress, this protein has also been implicated in kinetochore function during schizont development. Therefore, the function of SEA1 remains unclear. Here, we show that P. falciparum SEA1 localizes in proximity to centromeres within dividing nuclei and that conditional disruption of SEA1 expression severely impacts the distribution of DNA and formation of merozoites during schizont development, with a proportion of SEA1-null merozoites completely lacking nuclei. SEA1-null schizonts rupture, albeit with low efficiency, suggesting that neither SEA1 function nor normal segmentation is a prerequisite for egress. We conclude that SEA1 does not play a direct mechanistic role in egress but instead acts upstream of egress as an essential regulator required to ensure the correct packaging of nuclei within merozoites.IMPORTANCE Malaria is a deadly infectious disease. Rationally designed novel therapeutics will be essential for its control and eradication. The Plasmodium falciparum protein PF3D7_1021800, annotated as SEA1, is under investigation as a prospective component of a malaria vaccine, based on previous indications that antibodies to SEA1 interfere with parasite egress from infected erythrocytes. However, a consensus on the function of SEA1 is lacking. Here, we demonstrate that SEA1 localizes to dividing parasite nuclei and is necessary for the correct segregation of replicated DNA into individual daughter merozoites. In the absence of SEA1, merozoites develop defectively, often completely lacking a nucleus, and, consequently, egress is impaired and/or aberrant. Our findings provide insights into the divergent mechanisms by which intraerythrocytic malaria parasites develop and divide. Our conclusions regarding the localization and function of SEA1 are not consistent with the hypothesis that antibodies against it confer protective immunity to malaria by blocking merozoite egress.
Collapse
Affiliation(s)
- Abigail J Perrin
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Claudine Bisson
- Department of Biological Sciences, Institute of Structural & Molecular Biology, Birkbeck College, University of London, London, United Kingdom
- Centre for Ultrastructural Imaging, Guy's Campus, King's College London, London, United Kingdom
| | - Peter A Faull
- Mass Spectrometry Proteomics Platform, The Francis Crick Institute, London, United Kingdom
| | - Matthew J Renshaw
- Advanced Light Microscopy, The Francis Crick Institute, London, United Kingdom
| | - Rebecca A Lees
- Department of Biological Sciences, Institute of Structural & Molecular Biology, Birkbeck College, University of London, London, United Kingdom
| | - Roland A Fleck
- Centre for Ultrastructural Imaging, Guy's Campus, King's College London, London, United Kingdom
| | - Helen R Saibil
- Department of Biological Sciences, Institute of Structural & Molecular Biology, Birkbeck College, University of London, London, United Kingdom
| | - Ambrosius P Snijders
- Mass Spectrometry Proteomics Platform, The Francis Crick Institute, London, United Kingdom
| | - David A Baker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
7
|
Farias LP, Vance GM, Coulson PS, Vitoriano-Souza J, Neto APDS, Wangwiwatsin A, Neves LX, Castro-Borges W, McNicholas S, Wilson KS, Leite LCC, Wilson RA. Epitope Mapping of Exposed Tegument and Alimentary Tract Proteins Identifies Putative Antigenic Targets of the Attenuated Schistosome Vaccine. Front Immunol 2021; 11:624613. [PMID: 33763055 PMCID: PMC7982949 DOI: 10.3389/fimmu.2020.624613] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/14/2020] [Indexed: 02/03/2023] Open
Abstract
The radiation-attenuated cercarial vaccine remains the gold standard for the induction of protective immunity against Schistosoma mansoni. Furthermore, the protection can be passively transferred to naïve recipient mice from multiply vaccinated donors, especially IFNgR KO mice. We have used such sera versus day 28 infection serum, to screen peptide arrays and identify likely epitopes that mediate the protection. The arrays encompassed 55 secreted or exposed proteins from the alimentary tract and tegument, the principal interfaces with the host bloodstream. The proteins were printed onto glass slides as overlapping 15mer peptides, reacted with primary and secondary antibodies, and reactive regions detected using an Agilent array scanner. Pep Slide Analyzer software provided a numerical value above background for each peptide from which an aggregate score could be derived for a putative epitope. The reactive regions of 26 proteins were mapped onto crystal structures using the CCP4 molecular graphics, to aid selection of peptides with the greatest accessibility and reactivity, prioritizing vaccine over infection serum. A further eight MEG proteins were mapped to regions conserved between family members. The result is a list of priority peptides from 44 proteins for further investigation in multiepitope vaccine constructs and as targets of monoclonal antibodies.
Collapse
Affiliation(s)
- Leonardo P. Farias
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Gillian M. Vance
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - Patricia S. Coulson
- York Biomedical Research Institute, University of York, York, United Kingdom
| | | | - Almiro Pires da Silva Neto
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Arporn Wangwiwatsin
- Parasite Genomics, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Leandro Xavier Neves
- Instituto de Ciẽncias Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - William Castro-Borges
- Instituto de Ciẽncias Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Stuart McNicholas
- York Structural Biology Laboratory, University of York, York, United Kingdom
| | - Keith S. Wilson
- York Structural Biology Laboratory, University of York, York, United Kingdom
| | - Luciana C. C. Leite
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | - R. Alan Wilson
- York Biomedical Research Institute, University of York, York, United Kingdom
| |
Collapse
|
8
|
Heiss K, Heidepriem J, Fischer N, Weber LK, Dahlke C, Jaenisch T, Loeffler FF. Rapid Response to Pandemic Threats: Immunogenic Epitope Detection of Pandemic Pathogens for Diagnostics and Vaccine Development Using Peptide Microarrays. J Proteome Res 2020; 19:4339-4354. [PMID: 32892628 PMCID: PMC7640972 DOI: 10.1021/acs.jproteome.0c00484] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Indexed: 12/18/2022]
Abstract
Emergence and re-emergence of pathogens bearing the risk of becoming a pandemic threat are on the rise. Increased travel and trade, growing population density, changes in urbanization, and climate have a critical impact on infectious disease spread. Currently, the world is confronted with the emergence of a novel coronavirus SARS-CoV-2, responsible for yet more than 800 000 deaths globally. Outbreaks caused by viruses, such as SARS-CoV-2, HIV, Ebola, influenza, and Zika, have increased over the past decade, underlining the need for a rapid development of diagnostics and vaccines. Hence, the rational identification of biomarkers for diagnostic measures on the one hand, and antigenic targets for vaccine development on the other, are of utmost importance. Peptide microarrays can display large numbers of putative target proteins translated into overlapping linear (and cyclic) peptides for a multiplexed, high-throughput antibody analysis. This enabled for example the identification of discriminant/diagnostic epitopes in Zika or influenza and mapping epitope evolution in natural infections versus vaccinations. In this review, we highlight synthesis platforms that facilitate fast and flexible generation of high-density peptide microarrays. We further outline the multifaceted applications of these peptide array platforms for the development of serological tests and vaccines to quickly encounter pandemic threats.
Collapse
Affiliation(s)
- Kirsten Heiss
- PEPperPRINT
GmbH, Rischerstrasse
12, 69123 Heidelberg, Germany
| | - Jasmin Heidepriem
- Max
Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Nico Fischer
- Section
Clinical Tropical Medicine, Department of Infectious Diseases, Heidelberg University Hospital, INF 324, 69120 Heidelberg, Germany
| | - Laura K. Weber
- PEPperPRINT
GmbH, Rischerstrasse
12, 69123 Heidelberg, Germany
- Institute
of Microstructure Technology, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Christine Dahlke
- Division
of Infectious Diseases, First Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Department
of Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- German
Center for Infection Research, Partner Site
Hamburg-Lübeck-Borstel-Riems, 38124 Braunschweig, Germany
| | - Thomas Jaenisch
- Heidelberg
Institute of Global Health (HIGH), Heidelberg
University Hospital, Im Neuenheimer Feld 130, 69120 Heidelberg, Germany
- Center
for Global Health, Colorado School of Public Health, University of Colorado, Aurora, Colorado 80045, United States
- Department
of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, Colorado 80045, United States
| | - Felix F. Loeffler
- Max
Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Muehlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
9
|
Discovery of four new B-cell protective epitopes for malaria using Q beta virus-like particle as platform. NPJ Vaccines 2020; 5:92. [PMID: 33083027 PMCID: PMC7546618 DOI: 10.1038/s41541-020-00242-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 09/17/2020] [Indexed: 12/26/2022] Open
Abstract
Malaria remains one of the world’s most urgent global health problems, with almost half a million deaths and hundreds of millions of clinical cases each year. Existing interventions by themselves will not be enough to tackle infection in high-transmission areas. The best new intervention would be an effective vaccine; but the leading P. falciparum and P. vivax vaccine candidates, RTS,S and VMP001, show only modest to low field efficacy. New antigens and improved ways for screening antigens for protective efficacy will be required. This study exploits the potential of Virus-Like Particles (VLP) to enhance immune responses to antigens, the ease of coupling peptides to the Q beta (Qβ) VLP and the existing murine malaria challenge to screen B-cell epitopes for protective efficacy. We screened P. vivax TRAP (PvTRAP) immune sera against individual 20-mer PvTRAP peptides. The most immunogenic peptides associated with protection were loaded onto Qβ VLPs to assess protective efficacy in a malaria sporozoite challenge. A second approach focused on identifying conserved regions within known sporozoite invasion proteins and assessing them as part of the Qβ. Using this VLP as a peptide scaffold, four new protective B-cell epitopes were discovered: three from the disordered region of PvTRAP and one from Thrombospondin-related sporozoite protein (TRSP). Antigenic interference between these and other B-cell epitopes was also explored using the virus-like particle/peptide platform. This approach demonstrates the utility of VLPs to help identifying new B-cell epitopes for inclusion in next-generation malaria vaccines.
Collapse
|
10
|
Jamal F, Singh MK, Hansa J, Pushpanjali, Ahmad G, Dikhit MR, Umar MS, Bimal S, Das P, Mujeeb AA, Singh SK, Zubair S, Owais M. Leishmania-Specific Promiscuous Membrane Protein Tubulin Folding Cofactor D Divulges Th 1/Th 2 Polarization in the Host via ERK -1/2 and p38 MAPK Signaling Cascade. Front Immunol 2020; 11:817. [PMID: 32582140 PMCID: PMC7280453 DOI: 10.3389/fimmu.2020.00817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/09/2020] [Indexed: 11/24/2022] Open
Abstract
Visceral leishmaniasis (VL)-related mortality and morbidity imposes a great deal of health concern across the globe. The existing anti-leishmanial drug regimen generally fails to eliminate newly emerging resistant isolates of this dreadful parasite. In such circumstances, the development of a prophylactic strategy to impart protection against the disease is likely to take center stage. In order to develop a promising prophylactic vaccine, it is desirable to identify an adequately potential vaccine candidate. In silico analysis of Leishmania tubulin folding cofactor D protein predicted its potential to activate both B- and T-cell repertoires. Furthermore, the ELISA employing anti-peptide27 (a segment of tubulin folding cofactor D) antibody revealed its proficiency in VL diagnosis and treatment monitoring. The peptide27 and its cocktail with another Leishmania peptide (peptide23) prompted the up-regulation of pro-inflammatory cytokines, such as IFN-γ, TNF-α, IL-2, IL-17, etc., and the down-regulation of immune-regulatory cytokines, such as IL-10, in the immunized BALB/c mice. Coherent to the consequence of peptide-specific humoral immune response, peptide cocktail-based immunization ensued in the predominant amplification of pathogen-specific IgG2a over the IgG1 isotype, up-regulated proliferation of T lymphocytes, and enhanced production of nitric oxide, reactive oxygen species, etc. We also established that the peptide cocktail modulated host MAPK signaling to favor the amplification of Th1-dominated immune response in the host. The peptide cocktail mediated the activation of the host immune armory, which was eventually translated into a significant decline in parasitic load in the visceral organs of experimental animals challenged with Leishmania donovani.
Collapse
Affiliation(s)
- Fauzia Jamal
- Interdesciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Manish K Singh
- Department of Microbiology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Jagadish Hansa
- Department of Microbiology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Pushpanjali
- Department of Microbiology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Ghufran Ahmad
- Department of Microbiology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Manas Ranjan Dikhit
- Department of Bioinformatics, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Mohd Saad Umar
- Interdesciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Sanjiva Bimal
- Department of Immunology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Pradeep Das
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Anzar Abdul Mujeeb
- Interdesciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Shubhankar K Singh
- Department of Microbiology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Swaleha Zubair
- Department of Computer Science, Aligarh Muslim University, Aligarh, India
| | - Mohammad Owais
- Interdesciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
11
|
Sanasam BD, Kumar S. In-silico structural modeling and epitope prediction of highly conserved Plasmodium falciparum protein AMR1. Mol Immunol 2019; 116:131-139. [PMID: 31648168 DOI: 10.1016/j.molimm.2019.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/29/2019] [Accepted: 10/01/2019] [Indexed: 11/17/2022]
Abstract
Malaria caused by Plasmodium falciparum is the most deadly and a major health issue worldwide. In spite of several control programs, there hasn't been much improvement in keeping the disease under control. The appearance of drug resistant strains of Plasmodium in addition to insecticide resistance of the Anopheles vector has been a hurdle. Therefore, it is highly desirable to identify new potential candidates that can be targeted for therapeutic intervention. The present study identifies AMR1, a highly conserved essential protein of Plasmodium falciparum, as a potential candidate for vaccine development. AMR1 is an exposed surface protein with high antigenic property and conservancy among other species of the parasite. Reverse vaccinology approach (RV) is adopted to determine the best epitopes of AMR1 protein. The protein was further evaluated for several important physiochemical parameters. The study revealed the 3D structure of AMR1, as well as the best B cell and helper T-cell epitopes of the protein. These resulted epitopes might be of great importance in the development of an effective vaccine to combat the deadly disease.
Collapse
Affiliation(s)
- Bijara Devi Sanasam
- Department of Life science & Bioinformatics, Assam University, Silchar, 788011, India
| | - Sanjeev Kumar
- Department of Life science & Bioinformatics, Assam University, Silchar, 788011, India.
| |
Collapse
|
12
|
Cheng CW, Jongwutiwes S, Putaporntip C, Jackson AP. Clinical expression and antigenic profiles of a Plasmodium vivax vaccine candidate: merozoite surface protein 7 (PvMSP-7). Malar J 2019; 18:197. [PMID: 31196098 PMCID: PMC6567670 DOI: 10.1186/s12936-019-2826-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 06/04/2019] [Indexed: 12/18/2022] Open
Abstract
Background Vivax malaria is the predominant form of malaria outside Africa, affecting about 14 million people worldwide, with about 2.5 billion people exposed. Development of a Plasmodium vivax vaccine is a priority, and merozoite surface protein 7 (MSP-7) has been proposed as a plausible candidate. The P. vivax genome contains 12 MSP-7 genes, which contribute to erythrocyte invasion during blood-stage infection. Previous analysis of MSP-7 sequence diversity suggested that not all paralogs are functionally equivalent. To explore MSP-7 functional diversity, and to identify the best vaccine candidate within the family, MSP-7 expression and antigenicity during bloodstream infections were examined directly from clinical isolates. Methods Merozoite surface protein 7 gene expression was profiled using RNA-seq data from blood samples isolated from ten human patients with vivax malaria. Differential expression analysis and co-expression cluster analysis were used to relate PvMSP-7 expression to genetic markers of life cycle stage. Plasma from vivax malaria patients was also assayed using a custom peptide microarray to measure antibody responses against the coding regions of 12 MSP-7 paralogs. Results Ten patients presented diverse transcriptional profiles that comprised four patient groups. Two MSP-7 paralogs, 7A and 7F, were expressed abundantly in all patients, while other MSP-7 genes were uniformly rare (e.g. 7J). MSP-7H and 7I were significantly more abundant in patient group 4 only, (two patients having experienced longer patency), and were co-expressed with a schizont-stage marker, while negatively associated with liver-stage and gametocyte-stage markers. Screening infections with a PvMSP-7 peptide array identified 13 linear B-cell epitopes in five MSP-7 paralogs that were recognized by plasma from all patients. Conclusions These results show that MSP-7 family members vary in expression profile during blood infections; MSP-7A and 7F are expressed throughout the intraerythrocytic development cycle, while expression of other paralogs is focused on the schizont. This may reflect developmental regulation, and potentially functional differentiation, within the gene family. The frequency of B-cell epitopes among paralogs also varies, with MSP-7A and 7L consistently the most immunogenic. Thus, MSP-7 paralogs cannot be assumed to have equal potential as vaccines. This analysis of clinical infections indicates that the most abundant and immunogenic paralog is MSP-7A. Electronic supplementary material The online version of this article (10.1186/s12936-019-2826-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chew Weng Cheng
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, 146 Brownlow Hill, Liverpool, L3 5RF, UK.,Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Somchai Jongwutiwes
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chaturong Putaporntip
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Andrew P Jackson
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, 146 Brownlow Hill, Liverpool, L3 5RF, UK.
| |
Collapse
|
13
|
Jaenisch T, Heiss K, Fischer N, Geiger C, Bischoff FR, Moldenhauer G, Rychlewski L, Sié A, Coulibaly B, Seeberger PH, Wyrwicz LS, Breitling F, Loeffler FF. High-density Peptide Arrays Help to Identify Linear Immunogenic B-cell Epitopes in Individuals Naturally Exposed to Malaria Infection. Mol Cell Proteomics 2019; 18:642-656. [PMID: 30630936 PMCID: PMC6442360 DOI: 10.1074/mcp.ra118.000992] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/28/2018] [Indexed: 01/31/2023] Open
Abstract
High-density peptide arrays are an excellent means to profile anti-plasmodial antibody responses. Different protein intrinsic epitopes can be distinguished, and additional insights are gained, when compared with assays involving the full-length protein. Distinct reactivities to specific epitopes within one protein may explain differences in published results, regarding immunity or susceptibility to malaria. We pursued three approaches to find specific epitopes within important plasmodial proteins, (1) twelve leading vaccine candidates were mapped as overlapping 15-mer peptides, (2) a bioinformatical approach served to predict immunogenic malaria epitopes which were subsequently validated in the assay, and (3) randomly selected peptides from the malaria proteome were screened as a control. Several peptide array replicas were prepared, employing particle-based laser printing, and were used to screen 27 serum samples from a malaria-endemic area in Burkina Faso, West Africa. The immunological status of the individuals was classified as "protected" or "unprotected" based on clinical symptoms, parasite density, and age. The vaccine candidate screening approach resulted in significant hits in all twelve proteins and allowed us (1) to verify many known immunogenic structures, (2) to map B-cell epitopes across the entire sequence of each antigen and (3) to uncover novel immunogenic epitopes. Predicting immunogenic regions in the proteome of the human malaria parasite Plasmodium falciparum, via the bioinformatics approach and subsequent array screening, confirmed known immunogenic sequences, such as in the leading malaria vaccine candidate CSP and discovered immunogenic epitopes derived from hypothetical or unknown proteins.
Collapse
Affiliation(s)
- Thomas Jaenisch
- From the ‡Center for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Im Neuenheimer Feld 324, D 69120 Heidelberg, Germany;; §German Center for Infectious Disease Research, Heidelberg (DZIF);; ¶HEiKA - Heidelberg Karlsruhe Research Partnership, Heidelberg University, Karlsruhe Institute of Technology (KIT), Germany;.
| | - Kirsten Heiss
- From the ‡Center for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Im Neuenheimer Feld 324, D 69120 Heidelberg, Germany;; §German Center for Infectious Disease Research, Heidelberg (DZIF)
| | - Nico Fischer
- From the ‡Center for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Im Neuenheimer Feld 324, D 69120 Heidelberg, Germany;; §German Center for Infectious Disease Research, Heidelberg (DZIF);; ¶HEiKA - Heidelberg Karlsruhe Research Partnership, Heidelberg University, Karlsruhe Institute of Technology (KIT), Germany
| | - Carolin Geiger
- From the ‡Center for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Im Neuenheimer Feld 324, D 69120 Heidelberg, Germany;; §German Center for Infectious Disease Research, Heidelberg (DZIF)
| | - F Ralf Bischoff
- ‖German Cancer Research Center, Im Neuenheimer Feld 280, D 69120 Heidelberg, Germany
| | - Gerhard Moldenhauer
- ‖German Cancer Research Center, Im Neuenheimer Feld 280, D 69120 Heidelberg, Germany
| | - Leszek Rychlewski
- BioInfoBank Institute, Św. Marcin 80/82 lok. 355, 61-809 Poznań, Poland
| | - Ali Sié
- Centre de Recherche en Santé de Nouna, BP 02 Nouna, Rue Namory Keita, Burkina Faso
| | - Boubacar Coulibaly
- Centre de Recherche en Santé de Nouna, BP 02 Nouna, Rue Namory Keita, Burkina Faso
| | - Peter H Seeberger
- §§Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, D 14476 Potsdam, Germany
| | - Lucjan S Wyrwicz
- Department of Oncology and Radiotherapy, M Sklodowska Curie Memorial Cancer Center, Wawelska 15, 02-034 Warsaw, Poland
| | - Frank Breitling
- ‖‖Institute of Microstructure Technology, Karlsruhe Institute of Technology, Germany Hermann-von-Helmholtz-Platz 1, D 76344 Eggenstein-Leopoldshafen, Germany
| | - Felix F Loeffler
- ¶HEiKA - Heidelberg Karlsruhe Research Partnership, Heidelberg University, Karlsruhe Institute of Technology (KIT), Germany;; §§Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, D 14476 Potsdam, Germany;.
| |
Collapse
|
14
|
Sabalza M, Barber CA, Abrams WR, Montagna R, Malamud D. Zika Virus Specific Diagnostic Epitope Discovery. J Vis Exp 2017. [PMID: 29286404 DOI: 10.3791/56784] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
High-density peptide microarrays allow screening of more than six thousand peptides on a single standard microscopy slide. This method can be applied for drug discovery, therapeutic target identification, and developing of diagnostics. Here, we present a protocol to discover specific Zika virus (ZIKV) diagnostic peptides using a high-density peptide microarray. A human serum sample validated for ZIKV infection was incubated with a high-density peptide microarray containing the entire ZIKV protein translated into 3,423 unique 15 linear amino acid (aa) residues with a 14-aa residue overlap printed in duplicate. Staining with different secondary antibodies within the same array, we detected peptides that bind to Immunoglobulin M (IgM) and Immunoglobulin G (IgG) antibodies present in serum. These peptides were selected for further validation experiments. In this protocol, we describe the strategy followed to design, process, and analyze a high-density peptide microarray.
Collapse
Affiliation(s)
- Maite Sabalza
- Department of Basic Sciences and Craniofacial Development, New York University College of Dentistry;
| | - Cheryl A Barber
- Department of Basic Sciences and Craniofacial Development, New York University College of Dentistry
| | - William R Abrams
- Department of Basic Sciences and Craniofacial Development, New York University College of Dentistry
| | | | - Daniel Malamud
- Department of Basic Sciences and Craniofacial Development, New York University College of Dentistry; Department of Medicine, New York University Langone School of Medicine
| |
Collapse
|