1
|
Baradaran-Seyed Z, Mosavari N, Bazargani TT, ArefPajoohi R. Enhancing the sensitivity of the agar gel immunodiffusion test for the diagnosis of bovine paratuberculosis through efficient media cultivation and modified loading pattern of surface antigens extracted by ethanol and vortex. Microb Pathog 2025; 204:107571. [PMID: 40216100 DOI: 10.1016/j.micpath.2025.107571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 04/09/2025] [Accepted: 04/09/2025] [Indexed: 04/20/2025]
Abstract
This study evaluated the efficacy of four different culture media in cultivating Mycobacterium avium subspecies paratuberculosis (MAP). Additionally, it examined the extraction of surface antigens through the suspension of harvested bacteria in ethanol, followed by vortex agitation. The potential of the extracted antigens in the agar gel immunodiffusion test (AGID) was evaluated by altering the loading pattern. This modification involved adding varying concentrations of antigens to peripheral wells and comparing the results to the conventional technique, which typically places a single antigen concentration in the center with sera surrounding it. The findings indicated that the Reid medium promoted the highest bacterial growth in the shortest period, yielding a larger volume of extractable antigens. Middlebrook 7H9 Glycerol Dextrose and Dorset Henley media ranked second and third, respectively, while Middlebrook 7H9-OADC required mycobactin enrichment and exhibited discrete bacterial growth foci, yielding minimal extracted antigens. The ethanol vortex-agar gel immunodiffusion (EV-AGID) demonstrated 92.3 % sensitivity and 100 % specificity in diagnosing bovine clinical paratuberculosis. The study detected 24 positive cases of Johne's disease in 26 Holstein-Friesian cows exhibiting clinical signs and isolated MAP bacteria from the fecal or intestinal mucosa. Furthermore, EV-AGID confirmed that 26 clinically healthy calves, which tested negative through ELISA and fecal cultures, were deemed disease-free. The modification of using serial dilutions of antigens increased sensitivity by 15.3 %. In conclusion, the findings affirm that a sensitive and specific immunodiffusion test can effectively confirm the diagnosis of bovine clinical paratuberculosis using a serial dilution of subspecies-specific surface antigens extracted via the ethanol and vortex technique.
Collapse
Affiliation(s)
- Zahra Baradaran-Seyed
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Nader Mosavari
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | | | - Reza ArefPajoohi
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
2
|
Applied Proteomics in 'One Health'. Proteomes 2021; 9:proteomes9030031. [PMID: 34208880 PMCID: PMC8293331 DOI: 10.3390/proteomes9030031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/19/2022] Open
Abstract
‘One Health’ summarises the idea that human health and animal health are interdependent and bound to the health of ecosystems. The purpose of proteomics methodologies and studies is to determine proteins present in samples of interest and to quantify changes in protein expression during pathological conditions. The objectives of this paper are to review the application of proteomics technologies within the One Health concept and to appraise their role in the elucidation of diseases and situations relevant to One Health. The paper develops in three sections. Proteomics Applications in Zoonotic Infections part discusses proteomics applications in zoonotic infections and explores the use of proteomics for studying pathogenetic pathways, transmission dynamics, diagnostic biomarkers and novel vaccines in prion, viral, bacterial, protozoan and metazoan zoonotic infections. Proteomics Applications in Antibiotic Resistance part discusses proteomics applications in mechanisms of resistance development and discovery of novel treatments for antibiotic resistance. Proteomics Applications in Food Safety part discusses the detection of allergens, exposure of adulteration, identification of pathogens and toxins, study of product traits and characterisation of proteins in food safety. Sensitive analysis of proteins, including low-abundant ones in complex biological samples, will be achieved in the future, thus enabling implementation of targeted proteomics in clinical settings, shedding light on biomarker research and promoting the One Health concept.
Collapse
|
3
|
Karuppusamy S, Mutharia L, Kelton D, Plattner B, Mallikarjunappa S, Karrow N, Kirby G. Detection of Mycobacterium avium Subspecies paratuberculosis (MAP) Microorganisms Using Antigenic MAP Cell Envelope Proteins. Front Vet Sci 2021; 8:615029. [PMID: 33614761 PMCID: PMC7887298 DOI: 10.3389/fvets.2021.615029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/13/2021] [Indexed: 11/13/2022] Open
Abstract
Cell envelope proteins from Mycobacterium avium subspecies paratuberculosis (MAP) that are antigenically distinct from closely related mycobacterial species are potentially useful for Johne's Disease (JD) diagnosis. We evaluated the potential of ELISAs, based on six antigenically distinct recombinant MAP cell envelope proteins (SdhA, FadE25_2, FadE3_2, Mkl, DesA2, and hypothetical protein MAP1233) as well as an extract of MAP total cell envelope proteins, to detect antibodies against MAP in the sera of infected cattle. The sensitivity (Se) and specificity (Sp) of an ELISA based on MAP total cell envelope proteins, when analyzing 153 bovine serum samples, was 75 and 96%, respectively. Analysis of the same samples, using a commercial serum ELISA resulted in a Se of 56% and Sp of 99%. Results of ELISA analysis using plates coated with recombinant cell envelope proteins ranged from a highest Se of 94% and a lowest Sp of 79% for Sdh A to a lowest Se of 67% and a highest Sp of 95% for hypothetical protein MAP1233. Using polyclonal antibodies to MAP total cell envelope proteins, immunohistochemical analysis of intestinal and lymph node tissues from JD-positive cattle detected MAP organisms whereas antibodies to recombinant proteins did not. Finally, polyclonal antibodies to MAP total cell envelope protein and to recombinant SdhA, FadE25_2, and DesA2 proteins immunomagnetically separated MAP microorganisms spiked in PBS. These results suggest that antigenically distinct MAP cell envelope proteins and antibodies to these proteins may have potential to detect MAP infection in dairy cattle.
Collapse
Affiliation(s)
| | - Lucy Mutharia
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON, Canada
| | - David Kelton
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Brandon Plattner
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Sanjay Mallikarjunappa
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, ON, Canada
| | - Niel Karrow
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, ON, Canada
| | - Gordon Kirby
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
4
|
Hermann C, Karamchand L, Blackburn JM, Soares NC. Cell Envelope Proteomics of Mycobacteria. J Proteome Res 2020; 20:94-109. [PMID: 33140963 DOI: 10.1021/acs.jproteome.0c00650] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The World Health Organization (WHO) estimates that Mycobacterium tuberculosis, the most pathogenic mycobacterium species to humans, has infected up to a quarter of the world's population, with the occurrence of multidrug-resistant strains on the rise. Research into the detailed composition of the cell envelope proteome in mycobacteria over the last 20 years has formed a key part of the efforts to understand host-pathogen interactions and to control the current tuberculosis epidemic. This is due to the great importance of the cell envelope proteome during infection and during the development of antibiotic resistance as well as the search of surface-exposed proteins that could be targeted by therapeutics and vaccines. A variety of experimental approaches and mycobacterial species have been used in proteomic studies thus far. Here we provide for the first time an extensive summary of the different approaches to isolate the mycobacterial cell envelope, highlight some of the limitations of the studies performed thus far, and comment on how the recent advances in membrane proteomics in other fields might be translated into the field of mycobacteria to provide deeper coverage.
Collapse
Affiliation(s)
- Clemens Hermann
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Leshern Karamchand
- National Research Council Canada, Nanotechnology Research Centre, Biomedical Nanotechnologies, 11421 Saskatchewan Drive NW, Edmonton, Alberta T6G 2M9, Canada
| | - Jonathan M Blackburn
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Nelson C Soares
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates.,College of Pharmacy, Department of Medicinal Chemistry, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
5
|
Hemati Z, Haghkhah M, Derakhshandeh A, Chaubey KK, Singh SV. Novel recombinant Mce-truncated protein based ELISA for the diagnosis of Mycobacterium avium subsp. paratuberculosis infection in domestic livestock. PLoS One 2020; 15:e0233695. [PMID: 32479551 PMCID: PMC7263793 DOI: 10.1371/journal.pone.0233695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 05/11/2020] [Indexed: 01/17/2023] Open
Abstract
Johne’s disease (JD) is an infectious wasting condition of ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP) in domestic livestock of every country that has been investigated. Controlling JD is problematic due to the lack of sensitive, specific, efficient, and cost-effective diagnostic tests. A major challenge in the development of diagnostics like ELISA is the selection of an ideal antigen/(s) that is pathogen-specific and allows sensitive recognition. Therefore, the purpose of this study was to identify and use Mce-truncated protein-based ELISA assay for the diagnosis of MAP infection with high sensitivity and specificity. In silico epitope prediction by epitope mapping throughout the whole length of MAP2191 protein revealed that C-terminal portion of this protein presented potential T- and B-cell epitopes. Therefore, a novel Mce-truncated protein encoded by the selected region of MAP2191 gene was expressed, purified with Ni-NTA gel matrix and confirmed by SDS PAGE and western blot. A profiling ELISA assay was developed to evaluate sera from MAP infected and non-infected ruminant species for antibodies against Mce-truncated protein to infer the immunogenicity of this protein in the host. Using this Mce protein-based ELISA, 251 goats, 53 sheep, 117 buffaloes, and 33 cattle serum samples were screened and 49.4, 51.0, 69.2, and 54.6% animals, respectively, were found positive. Comparing with i-ELISA, the new Mce-based ELISA kit showed a relatively higher specificity but suffered from slightly reduced sensitivity. Mce-based ELISA excluded apparently false positive results of i-ELISA. Mce protein was found to be antigenic and Mce-ELISA test could be employed as a diagnostic test for JD in domestic livestock in view of the a relatively higher specificity and accuracy. The antigenic potential of Mce antigen can also be exploited for the development of a new vaccine for the control of MAP infection.
Collapse
Affiliation(s)
- Zahra Hemati
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Masoud Haghkhah
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
- * E-mail: ,
| | - Abdollah Derakhshandeh
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Kundan Kumar Chaubey
- Animal Health Division, Central Institute for Research on Goats, Makhdoom, Farah, Mathura Uttar Pradesh, India
| | - Shoor Vir Singh
- Animal Health Division, Central Institute for Research on Goats, Makhdoom, Farah, Mathura Uttar Pradesh, India
| |
Collapse
|
6
|
Li L, Bannantine JP, Campo JJ, Randall A, Grohn YT, Schilling MA, Katani R, Radzio-Basu J, Easterling L, Kapur V. Identification of Sero-Diagnostic Antigens for the Early Diagnosis of Johne's Disease using MAP Protein Microarrays. Sci Rep 2019; 9:17573. [PMID: 31772281 PMCID: PMC6879513 DOI: 10.1038/s41598-019-53973-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 11/07/2019] [Indexed: 01/20/2023] Open
Abstract
Considerable effort has been directed toward controlling Johne’s disease (JD), a chronic granulomatous intestinal inflammatory disease caused by Mycobacterium avium subsp. paratuberculosis (MAP) in cattle and other ruminants. However, progress in controlling the spread of MAP infection has been impeded by the lack of reliable diagnostic tests that can identify animals early in the infection process and help break the transmission chain. To identify reliable antigens for early diagnosis of MAP infection, we constructed a MAP protein array with 868 purified recombinant MAP proteins, and screened a total of 180 well-characterized serum samples from cows assigned to 4 groups based on previous serological and fecal test results: negative low exposure (NL, n = 30); negative high exposure (NH, n = 30); fecal-positive, ELISA-negative (F + E−, n = 60); and both fecal- and ELISA-positive (F + E+, n = 60). The analyses identified a total of 49 candidate antigens in the NH, F + E−, and F + E+ with reactivity compared with the NL group (p < 0.01), a majority of which have not been previously identified. While some of the antigens were identified as reactive in only one of the groups, others showed reactivity in multiple groups, including NH (n = 28), F + E− (n = 26), and F + E+ (n = 17) groups. Using combinations of top reactive antigens in each group, the results reveal sensitivities of 60.0%, 73.3%, and 81.7% in the NH, F + E−, and F + E+, respectively at 90% specificity, suggesting that early detection of infection in animals may be possible and enable better opportunities to reduce within herd transmission that may be otherwise missed by traditional serological assays that are biased towards more heavily infected animals. Together, the results suggest that several of the novel candidate antigens identified in this study, particularly those that were reactive in the NH and F + E− groups, have potential utility for the early sero-diagnosis of MAP infection.
Collapse
Affiliation(s)
- Lingling Li
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States of America.,Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, United States of America
| | - John P Bannantine
- National Animal Disease Center, USDA-ARS, Ames, IA, United States of America
| | - Joseph J Campo
- Antigen Discovery, Inc., Irvine, CA, United States of America
| | - Arlo Randall
- Antigen Discovery, Inc., Irvine, CA, United States of America
| | - Yrjo T Grohn
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY, United States of America
| | - Megan A Schilling
- Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, United States of America.,Department of Animal Science, Pennsylvania State University, University Park, PA, United States of America
| | - Robab Katani
- Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, United States of America.,Department of Animal Science, Pennsylvania State University, University Park, PA, United States of America.,Applied Biological and Biosafety Research Laboratory, The Pennsylvania State University, University Park, PA, United States of America
| | - Jessica Radzio-Basu
- Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, United States of America.,Applied Biological and Biosafety Research Laboratory, The Pennsylvania State University, University Park, PA, United States of America
| | - Laurel Easterling
- Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, United States of America.,Department of Animal Science, Pennsylvania State University, University Park, PA, United States of America
| | - Vivek Kapur
- Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, United States of America. .,Department of Animal Science, Pennsylvania State University, University Park, PA, United States of America. .,Applied Biological and Biosafety Research Laboratory, The Pennsylvania State University, University Park, PA, United States of America.
| |
Collapse
|
7
|
Proteomic characterisation of the Chlamydia abortus outer membrane complex (COMC) using combined rapid monolithic column liquid chromatography and fast MS/MS scanning. PLoS One 2019; 14:e0224070. [PMID: 31647835 PMCID: PMC6812762 DOI: 10.1371/journal.pone.0224070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/01/2019] [Indexed: 11/22/2022] Open
Abstract
Data are presented on the identification and partial characterisation of proteins comprising the chlamydial outer membrane complex (COMC) fraction of Chlamydia abortus (C. abortus)—the aetiological agent of ovine enzootic abortion. Inoculation with the COMC fraction is known to be highly effective in protecting sheep against experimental challenge and its constituent proteins are therefore of interest as potential vaccine candidates. Sodium N-lauroylsarcosine (sarkosyl) insoluble COMC proteins resolved by SDS-PAGE were interrogated by mass spectrometry using combined rapid monolithic column liquid chromatography and fast MS/MS scanning. Downstream database mining of processed tandem MS data revealed the presence of 67 proteins in total, including putative membrane associated proteins (n = 36), such as porins, polymorphic membrane proteins (Pmps), chaperonins and hypothetical membrane proteins, in addition to others (n = 22) that appear more likely to have originated from other subcellular compartments. Electrophoretic mobility data combined with detailed amino acid sequence information derived from secondary fragmentation spectra for 8 Pmps enabled peptides originating from protein cleavage fragments to be mapped to corresponding regions of parent precursor molecules yielding preliminary evidence in support of endogenous post-translational processing of outer membrane proteins in C. abortus. The data presented here will facilitate a deeper understanding of the pathogenesis of C. abortus infection and represent an important step towards the elucidation of the mechanisms of immunoprotection against C. abortus infection and the identification of potential target vaccine candidate antigens.
Collapse
|
8
|
Karuppusamy S, Mutharia L, Kelton D, Karrow N, Kirby G. Identification of antigenic proteins from Mycobacterium avium subspecies paratuberculosis cell envelope by comparative proteomic analysis. MICROBIOLOGY-SGM 2018; 164:322-337. [PMID: 29458660 DOI: 10.1099/mic.0.000606] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Johne's disease (JD) is a contagious, chronic granulomatous enteritis of ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP). The aim of this study was to identify antigenic proteins from the MAP cell envelope (i.e. cell wall and cytoplasmic membranes) by comparing MAP, M. avium subsp. hominissuis (MAH) and M. smegmatis (MS) cell envelope protein profiles using a proteomic approach. Composite two-dimensional (2D) difference gel electrophoresis images revealed 13 spots present only in the image of the MAP cell envelope proteins. Using serum from MAP-infected cattle, immunoblot analysis of 2D gels revealed that proteins in the 13 spots were antigenic. These proteins were identified by liquid chromatography tandem mass spectrometry as products of the following genes: sdhA, fadE25_2, mkl, citA, gapdh, fadE3_2, moxR1, mmp, purC, mdh, atpG, fbpB and desA2 as well as two proteins without gene names identified as transcriptional regulator (MAP0035) protein and hypothetical protein (MAP1233). Protein functions ranged from energy generation, cell wall biosynthesis, protein maturation, bacterial replication and invasion of epithelial cells, functions considered essential to MAP virulence and intracellular survival. Five MAP cell envelope proteins, i.e. SdhA, FadE25_2, FadE3_2, MAP0035 and DesA2 were recombinantly expressed, three of which, i.e. SdhA, FadE25_2 and DesA2, were of sufficient purity and yield to generate polyclonal antibodies. Immunoblot analysis revealed antibodies reacted specifically to the respective MAP cell envelope proteins with minimal cross-reactivity with MAH and MS cell envelope proteins. Identification and characterization of MAP-specific proteins and antibodies to those proteins may be useful in developing new diagnostic tests for JD diagnosis.
Collapse
Affiliation(s)
| | - Lucy Mutharia
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - David Kelton
- Department of Population Medicine, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Niel Karrow
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Gordon Kirby
- Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
9
|
Identification of sero-reactive antigens for the early diagnosis of Johne's disease in cattle. PLoS One 2017; 12:e0184373. [PMID: 28863177 PMCID: PMC5581170 DOI: 10.1371/journal.pone.0184373] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/22/2017] [Indexed: 12/18/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of Johne's disease (JD), a chronic intestinal inflammatory disease of cattle and other ruminants. JD has a high herd prevalence and causes serious animal health problems and significant economic loss in domesticated ruminants throughout the world. Since serological detection of MAP infected animals during the early stages of infection remains challenging due to the low sensitivity of extant assays, we screened 180 well-characterized serum samples using a whole proteome microarray from Mycobacterium tuberculosis (MTB), a close relative of MAP. Based on extensive testing of serum and milk samples, fecal culture and qPCR for direct detection of MAP, the samples were previously assigned to one of 4 groups: negative low exposure (n = 30, NL); negative high exposure (n = 30, NH); fecal positive, ELISA negative (n = 60, F+E-); and fecal positive, ELISA positive (n = 60, F+E+). Of the 740 reactive proteins, several antigens were serologically recognized early but not late in infection, suggesting a complex and dynamic evolution of the MAP humoral immune response during disease progression. Ordinal logistic regression models identified a subset of 47 candidate proteins with significantly different normalized intensity values (p<0.05), including 12 in the NH and 23 in F+E- groups, suggesting potential utility for the early detection of MAP infected animals. Next, the diagnostic utility of four MAP orthologs (MAP1569, MAP2942c, MAP2609, and MAP1272c) was assessed and reveal moderate to high diagnostic sensitivities (range 48.3% to 76.7%) and specificity (range 96.7% to 100%), with a combined 88.3% sensitivity and 96.7% specificity. Taken together, the results of our analyses have identified several candidate MAP proteins of potential utility for the early detection of MAP infection, as well individual MAP proteins that may serve as the foundation for the next generation of well-defined serological diagnosis of JD in cattle.
Collapse
|
10
|
Identification of Novel Seroreactive Antigens in Johne's Disease Cattle by Using the Mycobacterium tuberculosis Protein Array. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00081-17. [PMID: 28515134 DOI: 10.1128/cvi.00081-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/10/2017] [Indexed: 11/20/2022]
Abstract
Johne's disease, a chronic gastrointestinal inflammatory disease caused by Mycobacterium avium subspecies paratuberculosis, is endemic in dairy cattle and other ruminants worldwide and remains a challenge to diagnose using traditional serological methods. Given the close phylogenetic relationship between M. avium subsp. paratuberculosis and the human pathogen Mycobacterium tuberculosis, here, we applied a whole-proteome M. tuberculosis protein array to identify seroreactive and diagnostic M. avium subsp. paratuberculosis antigens. A genome-scale pairwise analysis of amino acid identity levels between orthologous proteins in M. avium subsp. paratuberculosis and M. tuberculosis showed an average of 62% identity, with more than half the orthologous proteins sharing >75% identity. Analysis of the M. tuberculosis protein array probed with sera from M. avium subsp. paratuberculosis-infected cattle showed antibody binding to 729 M. tuberculosis proteins, with 58% of them having ≥70% identity to M. avium subsp. paratuberculosis orthologs. The results showed that only 4 of the top 40 seroreactive M. tuberculosis antigens were orthologs of previously reported M. avium subsp. paratuberculosis antigens, revealing the existence of a large number of previously unrecognized candidate diagnostic antigens. Enzyme-linked immunosorbent assay (ELISA) testing of 20 M. avium subsp. paratuberculosis recombinant proteins, representing reactive and nonreactive M. tuberculosis orthologs, further confirmed that the M. tuberculosis array has utility as a screening tool for identifying candidate antigens for Johne's disease diagnostics. Additional ELISA testing of field serum samples collected from dairy herds around the United States revealed that MAP2942c had the strongest seroreactivity with Johne's disease-positive samples. Collectively, our studies have considerably expanded the number of candidate M. avium subsp. paratuberculosis proteins with potential utility in the next generation of rationally designed Johne's disease diagnostic assays.
Collapse
|
11
|
Hughes V, McNair J, Strain S, Barry C, McLuckie J, Nath M, Caldow G, Stevenson K. Gamma interferon responses to proteome-determined specific recombinant proteins in cattle experimentally- and naturally-infected with paratuberculosis. Res Vet Sci 2017; 114:244-253. [PMID: 28521263 DOI: 10.1016/j.rvsc.2017.04.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 11/19/2022]
Abstract
Johne's disease (JD), is a fatal enteritis of animals caused by infection with Mycobacterium avium subspecies paratuberculosis (Map). Diagnosis of subclinical JD is problematic as test sensitivity is limited. Th1 responses to Map are activated early, thus detection of a cell-mediated response, indicated by measuring interferon gamma (IFN-γ) stimulated by mycobacterial antigens, may give the first indication of sub-clinical infection. Crude extracts of Map (PPDJ) have been used to detect the cell-mediated response in infected cattle. More specific, quantifiable antigens may improve test specificity and reproducibility. Map-specific proteins, MAP_3651c and MAP_0268c, raised a cell-mediated immune response in sub-clinically infected sheep. Results presented in this manuscript demonstrate these proteins elicit a cell-mediated response in experimental and natural infections of cattle. Individual ranked IFN-γ responses of experimentally infected calves to PPDJ showed a high, statistically significant association with ranked responses of recombinant Map antigens. Responses of infected animals were higher than the control group. Threshold values determined using data from an experimental infection were applied to naturally infected animals. Some animals exhibited responses above these threshold values. Responses to MAP_3651c on a farm categorised as high-risk for JD showed strong evidence (P<0.001) that responses were significantly different to lower-risk farms. The IGRA test may prove to be an additional tool for the diagnosis of JD, and inclusion of specific antigens a refinement however, understanding and interpretation of IGRA results remain challenging and further investigation will be required to determine whether the IGRA test can detect exposure and hence predict clinical JD.
Collapse
Affiliation(s)
- Valerie Hughes
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, United Kingdom.
| | - Jim McNair
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Stoney Road, Stormont Belfast BT4 3SD, United Kingdom
| | - Samuel Strain
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Stoney Road, Stormont Belfast BT4 3SD, United Kingdom
| | - Claire Barry
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Stoney Road, Stormont Belfast BT4 3SD, United Kingdom
| | - Joyce McLuckie
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, United Kingdom
| | - Mintu Nath
- Biomathematics & Statistics Scotland, James Clerk Maxwell Building, The King's Building, Edinburgh EH9 3JZ, United Kingdom
| | - George Caldow
- SRUC, Greycrook, St Boswells, Roxburghshire TD6 0EQ, United Kingdom
| | - Karen Stevenson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, United Kingdom
| |
Collapse
|
12
|
Katsafadou A, Tsangaris G, Billinis C, Fthenakis G. Use of proteomics in the study of microbial diseases of small ruminants. Vet Microbiol 2015; 181:27-33. [DOI: 10.1016/j.vetmic.2015.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Rana A, Rub A, Akhter Y. Proteome-wide B and T cell epitope repertoires in outer membrane proteins of Mycobacterium avium subsp. paratuberculosis have vaccine and diagnostic relevance: a holistic approach. J Mol Recognit 2015; 28:506-20. [PMID: 25727233 DOI: 10.1002/jmr.2458] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/05/2014] [Accepted: 12/16/2014] [Indexed: 11/11/2022]
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is an etiological agent of chronic inflammation of the intestine among ruminants and humans. Currently, there are no effective vaccines and sensitive diagnostic tests available for its control and detection. For this, it is of paramount importance to identify the MAP antigens, which may be immunologically recognized by the host immune system. To address this challenge, we performed identification of the immunogenic epitopes in the MAP outer membrane proteins (OMPs). We have previously identified 57 MAP proteins as OMPs [Rana A, Rub A, Akhter Y. 2014. Molecular BioSystems, 10:2329-2337] and have evaluated them for the epitope selection and analysis employing a computational approach. Thirty-five MAP OMPs are reported with nine-mer peptides showing high binding affinity to major histocompatibility complex (MHC) class I molecules and 28 MAP OMPs with 15-mer peptides of high binding affinity for MHC class II molecules. The presence of MHC binding epitopes indicates the potential cell-mediated immune response inducing capacity of these MAP OMPs in infected host. To further investigate the humoral response inducing properties of OMPs of MAP, we report potential B cell epitopes based on the sequences of peptide antigens and their molecular structures. We also report 10 proteins having epitopes for both B and T cells representing potential candidates which may invoke both humoral and cellular immune responses in the host. These findings will greatly accelerate and expedite the formulation of effective and cost-efficient vaccines and diagnostic tests against MAP infection.
Collapse
Affiliation(s)
- Aarti Rana
- School of Life Sciences, Central University of Himachal Pradesh, Shahpur, Kangra, Himachal Pradesh, 176206, India
| | - Abdur Rub
- Infection and Immunity Laboratory, Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi,, 110025, India
| | - Yusuf Akhter
- School of Life Sciences, Central University of Himachal Pradesh, Shahpur, Kangra, Himachal Pradesh, 176206, India
| |
Collapse
|
14
|
Piras C, Soggiu A, Bonizzi L, Greco V, Ricchi M, Arrigoni N, Bassols A, Urbani A, Roncada P. Identification of immunoreactive proteins of Mycobacterium avium subsp. paratuberculosis. Proteomics 2015; 15:813-23. [PMID: 25404104 DOI: 10.1002/pmic.201400276] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 10/23/2014] [Accepted: 11/13/2014] [Indexed: 11/10/2022]
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the cause of a chronic enteritis of ruminants (bovine paratuberculosis (PTB)--Johne's disease) that is associated with enormous worldwide economic losses for the animal production. Diagnosis is based on observation of clinical signs, the detection of antibodies in milk or serum, or evaluation of bacterial culture from feces. The limit of these methods is that they are not able to detect the disease in the subclinical stage and are applicable only when the disease is already advanced. For this reason, the main purpose of this study is to use the MAP proteome to detect novel immunoreactive proteins that may be helpful for PTB diagnoses. 2DE and 2D immunoblotting of MAP proteins were performed using sera of control cattle and PTB-infected cattle in order to highlight the specific immunoreactive proteins. Among the assigned identifiers to immunoreactive spots it was found that most of them correspond to surface-located proteins while three of them have never been described before as antigens. The identification of these proteins improves scientific knowledge that could be useful for PTB diagnoses. The sequence of the identified protein can be used for the synthesis of immunoreactive peptides that could be screened for their immunoreaction against bovine sera infected with MAP. All MS data have been deposited in the ProteomeXchange consortium with identifier PXD001159 and DOI 10.6019/PXD001159.
Collapse
|
15
|
McNamara M, Tzeng SC, Maier C, Wu M, Bermudez LE. Surface-exposed proteins of pathogenic mycobacteria and the role of cu-zn superoxide dismutase in macrophages and neutrophil survival. Proteome Sci 2013; 11:45. [PMID: 24283571 PMCID: PMC4176128 DOI: 10.1186/1477-5956-11-45] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 11/17/2013] [Indexed: 12/18/2022] Open
Abstract
Pathogenic mycobacteria are important agents causing human disease. Mycobacterium avium subsp. hominissuis (M. avium) is a species of recalcitrant environmental pathogen. The bacterium forms robust biofilms that allow it to colonize and persist in austere environments, such as residential and commercial water systems. M. avium is also an opportunistic pathogen that is a significant source of mortality for immune-compromised individuals. Proteins exposed at the bacterial surface play a central role in mediating the relationship between the bacterium and its environment. The processes underlying both biofilm formation and pathogenesis are directly dependent on this essential subset of the bacterial proteome. Therefore, the characterization of the surface-exposed proteome is an important step towards an improved understanding of the mycobacterial biology and pathogenesis. Here we examined the complement of surface exposed proteins from Mycobacterium avium 104, a clinical isolate and reference strain of Mycobacterium avium subsp. hominissuis. To profile the surface-exposed proteins of viable M. avium 104, bacteria were covalently labeled with a membrane impermeable biotinylation reagent and labeled proteins were affinity purified via the biotin-streptavidin interaction. The results provide a helpful snapshot of the surface-exposed proteome of this frequently utilized reference strain of M. avium. A Cu-Zn SOD knockout mutant, MAV_2043, a surface identified protein, was evaluated regarding its role in the survival in both macrophages and neutrophils.
Collapse
Affiliation(s)
- Michael McNamara
- Department of Biomedical Sciences, Molecular and Cellular Biology Program, Corvallis, USA.,Oregon State University, Corvallis, Oregon 97331-4801, USA
| | - Shin-Cheng Tzeng
- Department of Chemistry, Corvallis, USA.,Oregon State University, Corvallis, Oregon 97331-4801, USA
| | - Claudia Maier
- Department of Chemistry, Corvallis, USA.,Oregon State University, Corvallis, Oregon 97331-4801, USA
| | - Martin Wu
- Department of Biomedical Sciences, Molecular and Cellular Biology Program, Corvallis, USA.,Oregon State University, Corvallis, Oregon 97331-4801, USA
| | - Luiz E Bermudez
- Department of Biomedical Sciences, Molecular and Cellular Biology Program, Corvallis, USA.,Department of Microbiology, Corvallis, USA.,Oregon State University, Corvallis, Oregon 97331-4801, USA
| |
Collapse
|
16
|
Antigenicity of recombinant maltose binding protein-Mycobacterium avium subsp. paratuberculosis fusion proteins with and without factor Xa cleaving. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:1817-26. [PMID: 24132604 DOI: 10.1128/cvi.00596-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mycobacterium avium subsp. paratuberculosis causes Johne's disease (JD) in ruminants. Proteomic studies have shown that M. avium subsp. paratuberculosis expresses certain proteins when exposed to in vitro physiological stress conditions similar to the conditions experienced within a host during natural infection. Such proteins are hypothesized to be expressed in vivo, are recognized by the host immune system, and may be of potential use in the diagnosis of JD. In this study, 50 recombinant maltose binding protein (MBP)-M. avium subsp. paratuberculosis fusion proteins were evaluated using serum samples from sheep infected with M. avium subsp. paratuberculosis, and 29 (58%) were found to be antigenic. Among 50 fusion proteins, 10 were evaluated in MBP fusion and factor Xa-cleaved forms. A total of 31 proteins (62%) were found to be antigenic in either MBP fusion or factor Xa-cleaved forms. Antigenicity after cleavage and removal of the MBP tag was marginally enhanced.
Collapse
|
17
|
Hughes V, Denham S, Bannantine JP, Chianini F, Kerr K, May L, McLuckie J, Nath M, Stevenson K. Interferon gamma responses to proteome-determined specific recombinant proteins: Potential as diagnostic markers for ovine Johne's disease. Vet Immunol Immunopathol 2013; 155:197-204. [DOI: 10.1016/j.vetimm.2013.06.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 04/17/2013] [Accepted: 06/24/2013] [Indexed: 10/26/2022]
|
18
|
Search for Mycobacterium avium Subspecies paratuberculosis Antigens for the Diagnosis of Paratuberculosis. Vet Med Int 2012; 2012:860362. [PMID: 22792514 PMCID: PMC3389728 DOI: 10.1155/2012/860362] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 05/01/2012] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to evaluate a wide panel of antigens of Mycobacterium avium subsp. paratuberculosis (MAP) to select candidates for the diagnosis of paratuberculosis (PTB). A total of 54 recombinant proteins were spotted onto nitrocellulose membranes and exposed to sera from animals with PTB (n = 25), healthy animals (n = 10), and animals experimentally infected with M. bovis (n = 8). This initial screening allowed us to select seven antigens: MAP 2513, MAP 1693, MAP 2020, MAP 0038, MAP 1272, MAP 0209c, and MAP 0210c, which reacted with sera from animals with PTB and showed little cross-reactivity with sera from healthy animals and animals experimentally infected with M. bovis. The second step was to evaluate the antigen cocktail of these seven antigens by ELISA. For this evaluation, we used sera from animals with PTB (n = 25), healthy animals (n = 26), and animals experimentally infected with M. bovis (n = 17). Using ELISA, the cocktail of the seven selected MAP antigens reacted with sera from 18 of the 25 animals with PTB and did not exhibit cross-reactivity with healthy animals and only low reactivity with animals with bovine tuberculosis. The combined application of these antigens could form part of a test which may help in the diagnosis of PTB.
Collapse
|
19
|
In silico identification of epitopes in Mycobacterium avium subsp. paratuberculosis proteins that were upregulated under stress conditions. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:855-64. [PMID: 22496492 DOI: 10.1128/cvi.00114-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Johne's disease in ruminants is caused by Mycobacterium avium subsp. paratuberculosis. Diagnosis of M. avium subsp. paratuberculosis infection is difficult, especially in the early stages. To date, ideal antigen candidates are not available for efficient immunization or immunodiagnosis. This study reports the in silico selection and subsequent analysis of epitopes of M. avium subsp. paratuberculosis proteins that were found to be upregulated under stress conditions as a means to identify immunogenic candidate proteins. Previous studies have reported differential regulation of proteins when M. avium subsp. paratuberculosis is exposed to stressors which induce a response similar to dormancy. Dormancy may be involved in evading host defense mechanisms, and the host may also mount an immune response against these proteins. Twenty-five M. avium subsp. paratuberculosis proteins that were previously identified as being upregulated under in vitro stress conditions were analyzed for B and T cell epitopes by use of the prediction tools at the Immune Epitope Database and Analysis Resource. Major histocompatibility complex class I T cell epitopes were predicted using an artificial neural network method, and class II T cell epitopes were predicted using the consensus method. Conformational B cell epitopes were predicted from the relevant three-dimensional structure template for each protein. Based on the greatest number of predicted epitopes, eight proteins (MAP2698c [encoded by desA2], MAP2312c [encoded by fadE19], MAP3651c [encoded by fadE3_2], MAP2872c [encoded by fabG5_2], MAP3523c [encoded by oxcA], MAP0187c [encoded by sodA], and the hypothetical proteins MAP3567 and MAP1168c) were identified as potential candidates for study of antibody- and cell-mediated immune responses within infected hosts.
Collapse
|
20
|
Surface proteome of "Mycobacterium avium subsp. hominissuis" during the early stages of macrophage infection. Infect Immun 2012; 80:1868-80. [PMID: 22392927 DOI: 10.1128/iai.06151-11] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
"Mycobacterium avium subsp. hominissuis" is a robust and pervasive environmental bacterium that can cause opportunistic infections in humans. The bacterium overcomes the host immune response and is capable of surviving and replicating within host macrophages. Little is known about the bacterial mechanisms that facilitate these processes, but it can be expected that surface-exposed proteins play an important role. In this study, the selective biotinylation of surface-exposed proteins, streptavidin affinity purification, and shotgun mass spectrometry were used to characterize the surface-exposed proteome of M. avium subsp. hominissuis. This analysis detected more than 100 proteins exposed at the bacterial surface of M. avium subsp. hominissuis. Comparisons of surface-exposed proteins between conditions simulating early infection identified several groups of proteins whose presence on the bacterial surface was either constitutive or appeared to be unique to specific culture conditions. This proteomic profile facilitates an improved understanding of M. avium subsp. hominissuis and how it establishes infection. Additionally, surface-exposed proteins are excellent targets for the host adaptive immune system, and their identification can inform the development of novel treatments, diagnostic tools, and vaccines for mycobacterial disease.
Collapse
|
21
|
Hughes V, Garcia-Sanchez A, Smith S, Mclean K, Lainson A, Nath M, Stevenson K. Proteome-determined type-specific proteins of Mycobacterium avium subspecies paratuberculosis. Vet Microbiol 2012; 158:153-62. [PMID: 22397939 DOI: 10.1016/j.vetmic.2012.01.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 12/22/2011] [Accepted: 01/31/2012] [Indexed: 10/14/2022]
Abstract
Mycobacterium avium subspecies paratuberculosis (M. a. paratuberculosis) is a pathogen of ruminants, causing paratuberculosis (characterized by severe emaciation). The disease is endemic in many countries including the UK and places a severe economic burden on the global livestock industry. Two types of M. a. paratuberculosis can be classified by pulsed-field electrophoresis (I/III and II), which are phenotypically distinct and appear to have different host preferences. Proteomes of Type I and Type II M. a. paratuberculosis were analyzed by 2-D gel electrophoresis to determine if any significant differences existed between the subtypes. Seven different strains of Type I and 18 strains of Type II were analyzed and compared to detect type-specific differences. These 'type-specific' differences existed regardless of growth phase and were also exhibited in cells isolated directly from pathogenic lesions. Twenty-three spots predominated on the Type I profile, from which 17 proteins were identified. Twenty-one spots predominated on the Type II profile, from which 16 proteins were identified. None of the proteins identified as differentially represented on the profiles of Type I or Type II corresponded to open reading frames of the defining genomic regions as previously described for the Type I (sheep) and Type II (cattle). Sequence polymorphisms existing in Type I and II strains were identified in some open reading frames or regulatory regions of genes that correspond to proteins expressed in a type-specific fashion. The consequence of these is discussed in relation to protein expression and their impact on the type phenotype is discussed.
Collapse
Affiliation(s)
- Valerie Hughes
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
22
|
Dagleish MP, Stevenson K, Foster G, McLuckie J, Sellar M, Harley J, Evans J, Brownlow A. Mycobacterium avium subsp. hominissuis Infection in a captive-bred kiang (Equus kiang). J Comp Pathol 2011; 146:372-7. [PMID: 21906752 DOI: 10.1016/j.jcpa.2011.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 07/14/2011] [Accepted: 07/29/2011] [Indexed: 12/31/2022]
Abstract
Equids are considered highly resistant to mycobacterial infections and clinical cases have been described in domestic horses only. Mycobacterium bovis is the most common species reported, although a single report exists of disease due to definitively diagnosed infection with Mycobacterium avium subsp. hominissuis in two domestic horses. This is the first report of a mycobacterial infection in a kiang (Equus kiang), or indeed any wild equid. The animal had chronic loss of condition and serum biochemical changes suggestive of liver disease and chronic infection. Further investigation showed a chronic granulomatous enteritis, lymphadenitis and hepatitis with focal granulomatous pneumonia due to systemic infection with M. avium subsp. hominissuis. The distribution and severity of the lesions suggested that the route of infection was alimentary.
Collapse
Affiliation(s)
- M P Dagleish
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Near Edinburgh EH26 OPZ, Scotland, UK.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Mikkelsen H, Aagaard C, Nielsen SS, Jungersen G. Review of Mycobacterium avium subsp. paratuberculosis antigen candidates with diagnostic potential. Vet Microbiol 2011; 152:1-20. [DOI: 10.1016/j.vetmic.2011.03.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 03/02/2011] [Accepted: 03/10/2011] [Indexed: 11/25/2022]
|
24
|
Santema W, Overdijk M, Barends J, Krijgsveld J, Rutten V, Koets A. Searching for proteins of Mycobacterium avium subspecies paratuberculosis with diagnostic potential by comparative qualitative proteomic analysis of mycobacterial tuberculins. Vet Microbiol 2009; 138:191-6. [PMID: 19349126 DOI: 10.1016/j.vetmic.2009.03.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 03/02/2009] [Accepted: 03/06/2009] [Indexed: 10/21/2022]
Abstract
Accurate immunodiagnosis of bovine paratuberculosis is among others hampered by the lack of specific antigens. One of the most frequently used antigen preparations is purified protein derivative (PPD), also known as tuberculin. This crude extract has limitations when used in diagnostic assays due to the presence of cross-reactive antigens. The aim of the current study was to systematically analyze the qualitative protein composition of PPD of the major mycobacterial pathogens. One-dimensional gel electrophoresis followed by tandem mass spectrometry analysis of PPD from Mycobacterium avium subspecies paratuberculosis (MAP), Mycobacterium avium subspecies avium (MAA) and Mycobacterium bovis (MB) identified 156, 95 and 132 proteins, respectively. Comparative sequence analysis led to the selection of a MAP-specific protein (MAP1718c), and finally heterologous expression in Escherichia coli of this and other diagnostic candidate proteins (MAP3515c and MAP1138c (LprG)) enabled evaluation of their immunogenicity. Lymphocyte proliferation responses did not indicate substantial diagnostic potential of the antigens tested. In contrast serum antibody levels for MAP1138c in paratuberculosis infected cows (N=20) were significantly higher (p<0.01) than in control animals (N=20), despite the conserved nature of this protein. In conclusion, this study showed that a combination of proteomics and genomics, starting from complex protein mixtures, present in tuberculins, can reveal novel proteins aiding the development of immunodiagnostics for mycobacterial diseases.
Collapse
Affiliation(s)
- Wiebren Santema
- Department of Infectious Diseases and Immunology, Immunology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|