1
|
Ni Y, Gao X. Uncovering the role of mitochondrial genome in pathogenicity and drug resistance in pathogenic fungi. Front Cell Infect Microbiol 2025; 15:1576485. [PMID: 40308969 PMCID: PMC12040666 DOI: 10.3389/fcimb.2025.1576485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 03/28/2025] [Indexed: 05/02/2025] Open
Abstract
Fungal infections are becoming more prevalent globally, particularly affecting immunocompromised populations, such as people living with HIV, organ transplant recipients and those on immunomodulatory therapy. Globally, approximately 6.55 million people are affected by invasive fungal infections annually, leading to serious health consequences and death. Mitochondria are membrane-bound organelles found in almost all eukaryotic cells and play an important role in cellular metabolism and energy production, including pathogenic fungi. These organelles possess their own genome, the mitochondrial genome, which is usually circular and encodes proteins essential for energy production. Variation and evolutionary adaptation within and between species' mitochondrial genomes can affect mitochondrial function, and consequently cellular energy production and metabolic activity, which may contribute to pathogenicity and drug resistance in certain fungal species. This review explores the link between the mitochondrial genome and mechanisms of fungal pathogenicity and drug resistance, with a particular focus on Cryptococcus neoformans and Candida albicans. These insights deepen our understanding of fungal biology and may provide new avenues for developing innovative therapeutic strategies.
Collapse
Affiliation(s)
- Yue Ni
- College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning, China
| | - Xindi Gao
- Department of Emergency, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
2
|
Kim H, Heredia MY, Chen X, Ahmed M, Qasim M, Callender TL, Hernday AD, Rauceo JM. Mitochondrial targeting of Candida albicans SPFH proteins and requirement of stomatins for SDS-induced stress tolerance. Microbiol Spectr 2025; 13:e0173324. [PMID: 39641539 PMCID: PMC11705831 DOI: 10.1128/spectrum.01733-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
The SPFH (stomatin, prohibitin, flotillin, and HflK/HflC) protein superfamily is conserved across all domains of life. Fungal SPFH proteins are required for respiration, stress adaptation, and membrane scaffolding. In the yeast Candida albicans, stomatin-like protein 3 (Slp3) forms punctate foci at the plasma membrane, and SLP3 overexpression causes cell death following exposure to the surfactant, SDS, and the oxidative stressor, H2O2. Here, we sought to determine the cellular localization and functionally characterize stomatin-like protein 2 (Slp2), prohibitin-1 (Phb1), prohibitin-2 (Phb2), and prohibitin-12 (Phb12) in C. albicans. Cytological and western blotting results showed that Slp2-Gfp/Rfp and prohibitin-Gfp fusion proteins localize to the mitochondrion in yeast cells. Growth assay results did not identify any respiration defects in a panel of stomatin and prohibitin mutant strains, suggesting that SPFH respiratory function has diverged in C. albicans from other model eukaryotes. However, a slp2Δ/Δ/slp3Δ/Δ double mutant strain grew poorly in the presence of 0.08% SDS, accumulated intracellular reactive oxidative species, and displayed aberrant ergosterol distribution in the plasma membrane. These phenotypes were not observed in slp2Δ/Δ or slp3Δ/Δ single mutants, indicating a possible indirect genetic interaction between SLP2 and SLP3. In addition, slp2Δ/Δ and slp2Δ/Δ/slp3Δ/Δ mutant strains were slightly resistant to the antifungal drug, fluconazole. Collectively, these findings reveal the cellular localization of Slp2, Phb1, Phb2, and Phb12, highlight the significance of stomatins in C. albicans SDS stress tolerance, and, for the first time, associate stomatins with antifungal resistance. IMPORTANCE Stomatins and prohibitins coordinate respiration and stress adaptation in fungi. Invasive mycoses caused by Candida albicans are a significant cause of morbidity, and candidemia patients show high mortality rates worldwide. Mitochondria are essential for C. albicans commensalism and virulence, and mitochondrial proteins are targets for antifungal interventions. C. albicans encodes five SPFH proteins: two stomatin-like proteins and three prohibitins. We have previously shown that Slp3 is important for C. albicans adaptation to various types of environmental stress. Moreover, synthetic compounds that bind to mammalian prohibitins inhibit C. albicans filamentation and are fungicidal. However, there is limited information available regarding the remaining SPFH proteins. Our findings show that mitochondrial localization of SPFH proteins is conserved in C. albicans. In addition, we demonstrate the importance of stomatins in plasma membrane and mitochondrial stress tolerance.
Collapse
Affiliation(s)
- Hyunjeong Kim
- Department of Sciences, John Jay College of the City University of New York, New York, New York, USA
| | - Marienela Y. Heredia
- Department of Sciences, John Jay College of the City University of New York, New York, New York, USA
| | - Xiao Chen
- Department of Sciences, John Jay College of the City University of New York, New York, New York, USA
| | - Maisha Ahmed
- Department of Sciences, John Jay College of the City University of New York, New York, New York, USA
| | - Mohammad Qasim
- Department of Molecular and Cellular Biology, School of Natural Sciences, University of California, Merced, California, USA
| | - Tracy L. Callender
- Department of Biology, Farmingdale State College of the State University of New York, Farmingdale, New York, USA
| | - Aaron D. Hernday
- Department of Molecular and Cellular Biology, School of Natural Sciences, University of California, Merced, California, USA
| | - Jason M. Rauceo
- Department of Sciences, John Jay College of the City University of New York, New York, New York, USA
| |
Collapse
|
3
|
She X, Zhou X, Zhou M, Zhang L, Calderone R, Bellanti JA, Liu W, Li D. Histone-like transcription factor Hfl1p in Candida albicans harmonizes nuclear and mitochondrial genomic network in regulation of energy metabolism and filamentation development. Virulence 2024; 15:2412750. [PMID: 39370643 PMCID: PMC11469427 DOI: 10.1080/21505594.2024.2412750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/08/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024] Open
Abstract
Candida albicans is an opportunistic fungal pathogen known for surviving in various nutrient-limited conditions within the host and causing infections. Our prior research revealed that Hfl1p, an archaeal histone-like or Hap5-like protein, is linked to mitochondrial ATP generation and yeast-hyphae morphogenesis. However, the specific roles of Hfl1p in these virulence behaviours, through its function in the CBF/NF-Y complex or as a DNA polymerase II subunit, remain unclear. This study explores Hfl1p's diverse functions in energy metabolism and morphogenesis. By combining proteomic analysis and phenotypic evaluations of the hfl1Δ/hfl1Δ mutant with ChIP data, we found that Hfl1p significantly impacts mitochondrial DNA-encoded CI subunits, the tricarboxylic acid (TCA) cycle, and morphogenetic pathways. This influence occurs either independently or alongside other transcription factors recognizing a conserved DNA motif (TAXXTAATTA). These findings emphasize Hfl1p's critical role in linking carbon metabolism and mitochondrial respiration to the yeast-to-filamentous form transition, enhancing our understanding of C. albicans' metabolic adaptability during morphological transition, an important pathogenic trait of this fungus. This could help identify therapeutic targets by disrupting the relationship between energy metabolism and cell morphology in C. albicans.
Collapse
Affiliation(s)
- Xiaodong She
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Nanjing, China
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, USA
- Department of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Xiaowei Zhou
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Nanjing, China
- Department of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Meng Zhou
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Nanjing, China
- Department of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Lulu Zhang
- Department Dermatology, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Richard Calderone
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, USA
| | - Joseph A. Bellanti
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, USA
- Department of Pediatrics, Georgetown University Medical Center, Washington, DC, USA
| | - Weida Liu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Nanjing, China
- Department of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Dongmei Li
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
4
|
Prusty JS, Kumar A, Kumar A. Anti-fungal peptides: an emerging category with enthralling therapeutic prospects in the treatment of candidiasis. Crit Rev Microbiol 2024:1-37. [PMID: 39440616 DOI: 10.1080/1040841x.2024.2418125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
Candida infections, particularly invasive candidiasis, pose a serious global health threat. Candida albicans is the most prevalent species causing candidiasis, and resistance to key antifungal drugs, such as azoles, echinocandins, polyenes, and fluoropyrimidines, has emerged. This growing multidrug resistance (MDR) complicates treatment options, highlighting the need for novel therapeutic approaches. Antifungal peptides (AFPs) are gaining recognition for their potential as new antifungal agents due to their diverse structures and functions. These natural or recombinant peptides can effectively target fungal virulence and viability, making them promising candidates for future antifungal development. This review examines infections caused by Candida species, the limitations of current antifungal treatments, and the therapeutic potential of AFPs. It emphasizes the importance of identifying novel AFP targets and their production for advancing treatment strategies. By discussing the therapeutic development of AFPs, the review aims to draw researchers' attention to this promising field. The integration of knowledge about AFPs could pave the way for novel antifungal agents with broad-spectrum activity, reduced toxicity, targeted action, and mechanisms that limit resistance in pathogenic fungi, offering significant advancements in antifungal therapeutics.
Collapse
Affiliation(s)
- Jyoti Sankar Prusty
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, India
| | - Ashwini Kumar
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, India
| |
Collapse
|
5
|
Hu QL, Zhong H, Wang XR, Han L, Ma SS, Li L, Wang Y. Mitochondrial phosphate carrier plays an important role in virulence of Candida albicans. Mycology 2024; 16:369-381. [PMID: 40083413 PMCID: PMC11899212 DOI: 10.1080/21501203.2024.2354876] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/08/2024] [Indexed: 03/16/2025] Open
Abstract
Candida albicans is a common fungal pathogen that can cause life-threatening infections. MIR1 is considered to be a mitochondrial phosphate carrier of C. albicans, while its role in virulence has not been fully elucidated. In this study, we found that mir1Δ/Δ mutant exhibited severe virulence defect in both nematode and murine models. Further mechanism studies revealed that the mir1Δ/Δ mutant grew more slowly than the wild-type strain and showed severe filamentation defects on the hypha-inducing agar media, including YPD + serum, Lee, Spider + glucose, SLAD, SLD, and YPS. Furthermore, the loss of MIR1 resulted in unfermentable carbon utilisation defect, ATP decrease, and reactive oxygen species (ROS) accumulation in C. albicans. Antioxidant proanthocyanidins, vitamin E, and N-acetyl cysteine (NAC) could reduce intracellular ROS levels and partially rescue the filamentation defects of the mir1Δ/Δ mutant. Accordingly, hypha-specific genes, as well as CEK1 and RIM101 were down-regulated in the mir1Δ/Δ mutant, and this down-regulation could be partially rescued by the addition of the antioxidant NAC. Collectively, MIR1 plays an important role in C. albicans mitochondrial function, filamentation and virulence, and would be a promising antifungal target.
Collapse
Affiliation(s)
- Qiao-Ling Hu
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Hua Zhong
- School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Xin-Rong Wang
- School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Lei Han
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Shan-Shan Ma
- School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Ling Li
- School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Yan Wang
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai, China
- The Center for Fungal Infectious Diseases Basic Research and Innovation of Medicine and Pharmacy, Ministry of Education, Shanghai, China
| |
Collapse
|
6
|
Zhou M, Peng J, Ren K, Yu Y, Li D, She X, Liu W. Divergent mitochondrial responses and metabolic signal pathways secure the azole resistance in Crabtree-positive and negative Candida species. Microbiol Spectr 2024; 12:e0404223. [PMID: 38442003 PMCID: PMC10986575 DOI: 10.1128/spectrum.04042-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/07/2024] [Indexed: 03/07/2024] Open
Abstract
Azole drugs are the main therapeutic drugs for invasive fungal infections. However, azole-resistant strains appear repeatedly in the environment, posing a major threat to human health. Several reports have shown that mitochondria are associated with the virulence of pathogenic fungi. However, there are few studies on the mechanisms of mitochondria-mediated azoles resistance. Here, we first performed mitochondrial proteomic analysis on multiple Candida species (Candida albicans, Nakaseomyces glabrata, Pichia kudriavzevii, and Candida auris) and analyzed the differentially expressed mitochondrial proteins (DEMPs) between azole-sensitive and azole-resistant Candida species. Subsequently, we performed Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, gene ontology analysis, and protein-protein interaction network analysis of DEMPs. Our results showed that a total of 417, 165, and 25 DEMPs were identified in resistant C. albicans, N. glabrata, and C. auris, respectively. These DEMPs were enriched in ribosomal biogenesis at cytosol and mitochondria, tricarboxylic acid cycle, glycolysis, transporters, ergosterol, and cell wall mannan biosynthesis. The high activations of these cellular activities, found in C. albicans and C. auris (at low scale), were mostly opposite to those observed in two fermenter species-N. glabrata and P. kudriavzevii. Several transcription factors including Rtg3 were highly produced in resistant C. albicans that experienced a complex I activation of mitochondrial electron transport chain (ETC). The reduction of mitochondrial-related activities and complex IV/V of ETC in N. glabrata and P. kudriavzevii was companying with the reduced proteins of Tor1, Hog1, and Snf1/Snf4.IMPORTANCECandida spp. are common organisms that cause a variety of invasive diseases. However, Candida spp. are resistant to azoles, which hinders antifungal therapy. Exploring the drug-resistance mechanism of pathogenic Candida spp. will help improve the prevention and control strategy and discover new targets. Mitochondria, as an important organelle in eukaryotic cells, are closely related to a variety of cellular activities. However, the role of mitochondrial proteins in mediating azole resistance in Candida spp. has not been elucidated. Here, we analyzed the mitochondrial proteins and signaling pathways that mediate azole resistance in Candida spp. to provide ideas and references for solving the problem of azole resistance. Our work may offer new insights into the connection between mitochondria and azoles resistance in pathogenic fungi and highlight the potential clinical value of mitochondrial proteins in the treatment of invasive fungal infections.
Collapse
Affiliation(s)
- Meng Zhou
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Jingwen Peng
- Department of Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medicine School, Nanjing University, Nanjing, China
| | - Kun Ren
- Centers for pharmaceutical preparations, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Yu Yu
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Dongmei Li
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, USA
| | - Xiaodong She
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Weida Liu
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Zhang L, Meng Z, Calderone R, Liu W, She X, Li D. Mitochondria complex I deficiency in Candida albicans arrests the cell cycle at S phase through suppressive TOR and PKA pathways. FEMS Yeast Res 2024; 24:foae010. [PMID: 38592962 PMCID: PMC11008738 DOI: 10.1093/femsyr/foae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/16/2024] [Accepted: 04/08/2024] [Indexed: 04/11/2024] Open
Abstract
How mutations in mitochondrial electron transport chain (ETC) proteins impact the cell cycle of Candida albicans was investigated in this study. Using genetic null mutants targeting ETC complexes I (CI), III (CIII), and IV (CIV), the cell cycle stages (G0/G1, S phase, and G2/M) were analyzed via fluorescence-activated cell sorting (FACS). Four CI null mutants exhibited distinct alterations, including extended S phase, shortened G2/M population, and a reduction in cells size exceeding 10 µM. Conversely, CIII mutants showed an increased population in G1/G0 phase. Among four CI mutants, ndh51Δ/Δ and goa1Δ/Δ displayed aberrant cell cycle patterns correlated with previously reported cAMP/PKA downregulation. Specifically, nuo1Δ/Δ and nuo2Δ/Δ mutants exhibited increased transcription of RIM15, a central hub linking cell cycle with nutrient-dependent TOR1 and cAMP/PKA pathways and Snf1 aging pathway. These findings suggest that suppression of TOR1 and cAMP/PKA pathways or enhanced Snf1 disrupts cell cycle progression, influencing cell longevity and growth among CI mutants. Overall, our study highlights the intricate interplay between mitochondrial ETC, cell cycle, and signaling pathways.
Collapse
Affiliation(s)
- Lulu Zhang
- Department of Dermatology, Jiangsu Province Hospital of Traditional Chinese Medicine, No.155 Hanzhong Road, Qinhuai District, Nanjing, 210029, China
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington DC, 20057, United States
| | - Zhou Meng
- Institute of Dermatology, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), No. 12 Jiangwangmiao Street, Xuanwu District, Naning, 210042, China
| | - Richard Calderone
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington DC, 20057, United States
| | - Weida Liu
- Institute of Dermatology, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), No. 12 Jiangwangmiao Street, Xuanwu District, Naning, 210042, China
| | - Xiaodong She
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington DC, 20057, United States
- Institute of Dermatology, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), No. 12 Jiangwangmiao Street, Xuanwu District, Naning, 210042, China
| | - Dongmei Li
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington DC, 20057, United States
| |
Collapse
|
8
|
Case NT, Westman J, Hallett MT, Plumb J, Farheen A, Maxson ME, MacAlpine J, Liston SD, Hube B, Robbins N, Whitesell L, Grinstein S, Cowen LE. Respiration supports intraphagosomal filamentation and escape of Candida albicans from macrophages. mBio 2023; 14:e0274523. [PMID: 38038475 PMCID: PMC10746240 DOI: 10.1128/mbio.02745-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023] Open
Abstract
IMPORTANCE Candida albicans is a leading human fungal pathogen that often causes life-threatening infections in immunocompromised individuals. The ability of C. albicans to transition between yeast and filamentous forms is key to its virulence, and this occurs in response to many host-relevant cues, including engulfment by host macrophages. While previous efforts identified C. albicans genes required for filamentation in other conditions, the genes important for this morphological transition upon internalization by macrophages remained largely enigmatic. Here, we employed a functional genomic approach to identify genes that enable C. albicans filamentation within macrophages and uncovered a role for the mitochondrial ribosome, respiration, and the SNF1 AMP-activated kinase complex. Additionally, we showed that glucose uptake and glycolysis by macrophages support C. albicans filamentation. This work provides insights into the metabolic dueling that occurs during the interaction of C. albicans with macrophages and identifies vulnerabilities in C. albicans that could serve as promising therapeutic targets.
Collapse
Affiliation(s)
- Nicola T. Case
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Johannes Westman
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Jonathan Plumb
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Aiman Farheen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Michelle E. Maxson
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jessie MacAlpine
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sean D. Liston
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Keenan Research Center of the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Telzrow CL, Esher Righi S, Cathey JM, Granek JA, Alspaugh JA. Cryptococcus neoformans Mar1 function links mitochondrial metabolism, oxidative stress, and antifungal tolerance. Front Physiol 2023; 14:1150272. [PMID: 36969606 PMCID: PMC10033685 DOI: 10.3389/fphys.2023.1150272] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
Introduction: Microbial pathogens undergo significant physiological changes during interactions with the infected host, including alterations in metabolism and cell architecture. The Cryptococcus neoformans Mar1 protein is required for the proper ordering of the fungal cell wall in response to host-relevant stresses. However, the precise mechanism by which this Cryptococcus-specific protein regulates cell wall homeostasis was not defined. Methods: Here, we use comparative transcriptomics, protein localization, and phenotypic analysis of a mar1D loss-of-function mutant strain to further define the role of C. neoformans Mar1 in stress response and antifungal resistance. Results: We demonstrate that C. neoformans Mar1 is highly enriched in mitochondria. Furthermore, a mar1Δ mutant strain is impaired in growth in the presence of select electron transport chain inhibitors, has altered ATP homeostasis, and promotes proper mitochondrial morphogenesis. Pharmacological inhibition of complex IV of the electron transport chain in wild-type cells promotes similar cell wall changes as the mar1Δ mutant strain, supporting prior associations between mitochondrial function and cell wall homeostasis. Although Mar1 is not required for general susceptibility to the azole antifungals, the mar1Δ mutant strain displays increased tolerance to fluconazole that correlates with repressed mitochondrial metabolic activity. Discussion: Together, these studies support an emerging model in which the metabolic activity of microbial cells directs cell physiological changes to allow persistence in the face of antimicrobial and host stress.
Collapse
Affiliation(s)
- Calla L. Telzrow
- Department of Medicine, Duke University School of Medicine, Durham, NC, United States
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| | - Shannon Esher Righi
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Jackson M. Cathey
- Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Joshua A. Granek
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, United States
| | - J. Andrew Alspaugh
- Department of Medicine, Duke University School of Medicine, Durham, NC, United States
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
10
|
She X, Zhang P, Shi D, Peng J, Wang Q, Meng X, Jiang Y, Calderone R, Bellanti JA, Liu W, Li D. The mitochondrial complex I proteins of Candida albicans moderate phagocytosis and the production of pro-inflammatory cytokines in murine macrophages and dendritic cells. FASEB J 2022; 36:e22575. [PMID: 36208290 DOI: 10.1096/fj.202200275rrr] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/10/2022] [Accepted: 09/19/2022] [Indexed: 11/11/2022]
Abstract
Loss of respiratory functions impairs Candida albicans colonization of host tissues and virulence in a murine model of candidiasis. Furthermore, it is known that respiratory inhibitors decrease mannan synthesis and glucan exposure and thereby promotes phagocytosis. To understand the impact of respiratory proteins of C. albicans on host innate immunity, we characterized cell wall defects in three mitochondrial complex I (CI) null mutants (nuo1Δ, nuo2Δ and ndh51Δ) and in one CI regulator mutant (goa1Δ), and we studied the corresponding effects of these mutants on phagocytosis, neutrophil killing and cytokine production by dendritic cells (DCs). We find that reductions of phosphopeptidomannan (PPM) in goa1Δ, nuo1Δ and phospholipomannan (PLM) in nuo2Δ lead to reductions of IL-2, IL-4, and IL-10 but increase of TNF-α in infected DCs. While PPM loss is a consequence of a reduced phospho-Cek1/2 MAPK that failed to promote phagocytosis and IL-22 production in goa1Δ and nuo1Δ, a 30% glucan reduction and a defective Mek1 MAPK response in ndh51Δ lead to only minor changes in phagocytosis and cytokine production. Glucan exposure and PLM abundance seem to remain sufficient to opsonize neutrophil killing perhaps via humoral immunity. The diversity of immune phenotypes in these mutants possessing divergent cell wall defects is further supported by their transcriptional profiles in each infected murine macrophage scenario. Since metabolic processes, oxidative stress-induced senescence, and apoptosis are differently affected in these scenarios, we speculate that during the early stages of infection, host immune cells coordinate their bioactivities based upon a mixture of signals generated during host-fungi interactions.
Collapse
Affiliation(s)
- Xiaodong She
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China.,Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, USA.,Jiangsu Key laboratory of Molecular Biology for Skin Disease and STIs, Nanjing, China
| | - Pengyi Zhang
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, USA.,Sport Science Research Center, Shandong Sport University, Jinan, China
| | - Dongmei Shi
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China.,Department of Dermatology, Jining No. 1 People's Hospital, Jining, China
| | - Jingwen Peng
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Qiong Wang
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Xiangjing Meng
- Shandong Academy of Pharmaceutical Science, Jinan, China
| | - Yong Jiang
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, USA.,Department of Dermatology, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Richard Calderone
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, USA
| | - Joseph A Bellanti
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, USA
| | - Weida Liu
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China.,Jiangsu Key laboratory of Molecular Biology for Skin Disease and STIs, Nanjing, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Dongmei Li
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
11
|
Hidalgo-Vico S, Casas J, García C, Lillo MP, Alonso-Monge R, Román E, Pla J. Overexpression of the White Opaque Switching Master Regulator Wor1 Alters Lipid Metabolism and Mitochondrial Function in Candida albicans. J Fungi (Basel) 2022; 8:1028. [PMID: 36294593 PMCID: PMC9604646 DOI: 10.3390/jof8101028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/15/2022] [Accepted: 09/26/2022] [Indexed: 02/26/2024] Open
Abstract
Candida albicans is a commensal yeast that inhabits the gastrointestinal tract of humans; increased colonization of this yeast in this niche has implicated the master regulator of the white-opaque transition, Wor1, by mechanisms not completely understood. We have addressed the role that this transcription factor has on commensalism by the characterization of strains overexpressing this gene. We show that WOR1 overexpression causes an alteration of the total lipid content of the fungal cell and significantly alters the composition of structural and reserve molecular species lipids as determined by lipidomic analysis. These cells are hypersensitive to membrane-disturbing agents such as SDS, have increased tolerance to azoles, an augmented number of peroxisomes, and increased phospholipase activity. WOR1 overexpression also decreases mitochondrial activity and results in altered susceptibility to certain oxidants. All together, these changes reflect drastic alterations in the cellular physiology that facilitate adaptation to the gastrointestinal tract environment.
Collapse
Affiliation(s)
- Susana Hidalgo-Vico
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, Avda. Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Josefina Casas
- Research Unit on BioActive Molecules (RUBAM), Department of Biological Chemistry, Instituto de Química Avanzada de Cataluña, Jordi Girona 18–26, 08034 Barcelona, Spain
| | - Carolina García
- Departamento de Química Física Biológica, Instituto Química Física “Rocasolano”, Consejo Superior de Investigaciones Científicas, Serrano 119, 28006 Madrid, Spain
| | - M. Pilar Lillo
- Departamento de Química Física Biológica, Instituto Química Física “Rocasolano”, Consejo Superior de Investigaciones Científicas, Serrano 119, 28006 Madrid, Spain
| | - Rebeca Alonso-Monge
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, Avda. Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Elvira Román
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, Avda. Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Jesús Pla
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, Avda. Ramón y Cajal s/n, 28040 Madrid, Spain
| |
Collapse
|
12
|
Asadi E, Najafi A, Benson JD. Exogenous Melatonin Ameliorates the Negative Effect of Osmotic Stress in Human and Bovine Ovarian Stromal Cells. Antioxidants (Basel) 2022; 11:antiox11061054. [PMID: 35739950 PMCID: PMC9219940 DOI: 10.3390/antiox11061054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022] Open
Abstract
Ovarian tissue cryopreservation transplantation (OTCT) is the most flexible option to preserve fertility in women and children with cancer. However, OTCT is associated with follicle loss and an accompanying short lifespan of the grafts. Cryopreservation-induced damage could be due to cryoprotective agent (CPA) toxicity and osmotic shock. Therefore, one way to avoid this damage is to maintain the cell volume within osmotic tolerance limits (OTLs). Here, we aimed to determine, for the first time, the OTLs of ovarian stromal cells (OSCs) and their relationship with reactive oxygen species (ROS) and mitochondrial respiratory chain activity (MRCA) of OSCs. We evaluated the effect of an optimal dose of melatonin on OTLs, viability, MRCA, ROS and total antioxidant capacity (TAC) of both human and bovine OSCs in plated and suspended cells. The OTLs of OSCs were between 200 and 375 mOsm/kg in bovine and between 150 and 500 mOsm/kg in human. Melatonin expands OTLs of OSCs. Furthermore, melatonin significantly reduced ROS and improved TAC, MRCA and viability. Due to the narrow osmotic window of OSCs, it is important to optimize the current protocols of OTCT to maintain enough alive stromal cells, which are necessary for follicle development and graft longevity. The addition of melatonin is a promising strategy for improved cryopreservation media.
Collapse
|
13
|
The sat1 Gene Is Required for the Growth and Virulence of the Human Pathogenic Fungus Aspergillus fumigatus. Microbiol Spectr 2022; 10:e0155821. [PMID: 35107385 PMCID: PMC8809347 DOI: 10.1128/spectrum.01558-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aspergillus fumigatus is an important opportunistic pathogenic fungus that causes invasive aspergillosis in immunocompromised humans. Regulated fungal growth is essential for disease development and progression. Thus, screening for genes that regulate fungal growth may lead to the identification of potential therapeutic targets for invasive aspergillosis (IA). Screening of the transfer DNA (T-DNA) random-insertion A. fumigatus mutants identified a severe growth deficiency mutant AFM2954 and featured sat1 as the mutated gene described as a putative intracellular protein transporter of unknown function. The deletion of sat1 exhibited severe growth defects and significantly increased the nematode and mouse survival rates and decreased the fungal loads and histopathological damages in mouse lungs. Transcriptomic analyses revealed expression changes associated with the cell wall synthesis, the tricarboxylic acid cycle (TCA cycle), and oxidative phosphorylation genes in the sat1 mutant. Deletion of the gene resulted in resistance to cell wall-perturbing agents and thickened cell wall as well as reduced ATP contents and mitochondrial membrane potential, suggested that sat1 affected the cell wall synthesis and mitochondrial function of A. fumigatus. All together, our study uncovered novel functions of sat1 in growth and virulence of A. fumigatus and provided a theoretical basis for the development of new therapeutic target for treating IA patients. IMPORTANCE Aspergillus fumigatus is the main causative agent of invasive aspergillosis in immunocompromised hosts, with up to 90% lethality. Nevertheless, the fungal factors that regulate the pathogenesis of A. fumigatus remain largely unknown. Better understanding of the mechanisms controlling growth of A. fumigatus may provide novel therapeutic targets. In the present study, we characterized sat1 in the opportunistic pathogen A. fumigatus. The function of sat1 remains unknown. We proved its important role in growth and virulence, likely because of its effects on cell wall synthesis and mitochondrial functions.
Collapse
|
14
|
Li D, She X, Calderone R. Assessing Complex I (CI) Mitochondrial Subunit Protein Functions in Candida albicans. Methods Mol Biol 2022; 2542:151-160. [PMID: 36008663 DOI: 10.1007/978-1-0716-2549-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mitochondria of Candida species play critical roles in cell metabolism and pathogenesis. Greater emphasis in specific mitochondria activities of this fungus have been revealed through studies that defined fungal or Candida-specific subunit proteins of ETC Complexes I, III, and IV (CI, CIII, and CIV). Functional activities of these subunits have been characterized through the construction of single-gene null mutants. Activities common to mitochondria of most eukaryotes include their importance in metabolism, ATP synthesis, oxidative phosphorylation, oxygen consumption, and redox potential. An important difference among specific subunits compared to eukaryotic species is the role of CI fungal-specific subunit proteins in activities specific to Candida albicans, such as cell wall synthesis, especially cell wall mannan and β-glucan synthesis. We have associated cell wall synthesis with a signal transduction pathway that includes a Chk1p fungal-specific pathway. Recently, based upon the specificity of CI subunit specificities, a suggestion is the development of novel antifungals that target mitochondrial activity.
Collapse
Affiliation(s)
- Dongmei Li
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, USA
| | - Xiaodong She
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, USA
- Institute of Dermatology, Chinese Academy of Medical Sciences (CAMS), Jiangsu Key Laboratory of Molecular Biology for Skin Disease and STIs, Nanjing, China
| | - Richard Calderone
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
15
|
The SPFH Protein Superfamily in Fungi: Impact on Mitochondrial Function and Implications in Virulence. Microorganisms 2021; 9:microorganisms9112287. [PMID: 34835412 PMCID: PMC8624314 DOI: 10.3390/microorganisms9112287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 11/17/2022] Open
Abstract
Integral membrane proteins from the ancient SPFH (stomatin, prohibitin, flotillin, HflK/HflC) protein superfamily are found in nearly all living organisms. Mammalian SPFH proteins are primarily associated with mitochondrial functions but also coordinate key processes such as ion transport, signaling, and mechanosensation. In addition, SPFH proteins are required for virulence in parasites. While mitochondrial functions of SPFH proteins are conserved in fungi, recent evidence has uncovered additional roles for SPFH proteins in filamentation and stress signaling. Inhibitors that target SPFH proteins have been successfully used in cancer and inflammation treatment. Thus, SPFH proteins may serve as a potential target for novel antifungal drug development. This review article surveys SPFH function in various fungal species with a special focus on the most common human fungal pathogen, Candida albicans.
Collapse
|
16
|
Mamouei Z, Singh S, Lemire B, Gu Y, Alqarihi A, Nabeela S, Li D, Ibrahim A, Uppuluri P. An evolutionarily diverged mitochondrial protein controls biofilm growth and virulence in Candida albicans. PLoS Biol 2021; 19:e3000957. [PMID: 33720927 PMCID: PMC8007014 DOI: 10.1371/journal.pbio.3000957] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/29/2021] [Accepted: 01/29/2021] [Indexed: 11/19/2022] Open
Abstract
A forward genetic screening approach identified orf19.2500 as a gene controlling Candida albicans biofilm dispersal and biofilm detachment. Three-dimensional (3D) protein modeling and bioinformatics revealed that orf19.2500 is a conserved mitochondrial protein, structurally similar to, but functionally diverged from, the squalene/phytoene synthases family. The C. albicans orf19.2500 is distinguished by 3 evolutionarily acquired stretches of amino acid inserts, absent from all other eukaryotes except a small number of ascomycete fungi. Biochemical assays showed that orf19.2500 is required for the assembly and activity of the NADH ubiquinone oxidoreductase Complex I (CI) of the respiratory electron transport chain (ETC) and was thereby named NDU1. NDU1 is essential for respiration and growth on alternative carbon sources, important for immune evasion, required for virulence in a mouse model of hematogenously disseminated candidiasis, and for potentiating resistance to antifungal drugs. Our study is the first report on a protein that sets the Candida-like fungi phylogenetically apart from all other eukaryotes, based solely on evolutionary "gain" of new amino acid inserts that are also the functional hub of the protein.
Collapse
Affiliation(s)
- Zeinab Mamouei
- David Geffen School of Medicine, University of California (UCLA), Los Angeles, California, United States of America
| | - Shakti Singh
- Division of Infectious Disease, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Bernard Lemire
- Department of Biochemistry, University of Alberta, Alberta, Canada
| | - Yiyou Gu
- Division of Infectious Disease, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Abdullah Alqarihi
- Division of Infectious Disease, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Sunna Nabeela
- Division of Infectious Disease, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Dongmei Li
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Ashraf Ibrahim
- David Geffen School of Medicine, University of California (UCLA), Los Angeles, California, United States of America
- Division of Infectious Disease, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Priya Uppuluri
- David Geffen School of Medicine, University of California (UCLA), Los Angeles, California, United States of America
- Division of Infectious Disease, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America
- * E-mail:
| |
Collapse
|
17
|
Ke CL, Liao YT, Lin CH. MSS2 maintains mitochondrial function and is required for chitosan resistance, invasive growth, biofilm formation and virulence in Candida albicans. Virulence 2021; 12:281-297. [PMID: 33427576 PMCID: PMC7808435 DOI: 10.1080/21505594.2020.1870082] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Candida albicans is the most prevalent fungal pathogen in humans, particularly in immunocompromised patients. In this study, by screening a C. albicans mutant library, we first identified that the MSS2 gene, an ortholog of Saccharomyces cerevisiae MSS2 required for mitochondrial respiration, mediates chitosan resistance. Upon treatment with 0.2% chitosan, the growth of mss2Δ strains was strikingly impaired, and MSS2 expression was significantly repressed by chitosan. Furthermore, mss2Δ strains exhibited slow growth on medium supplemented with glycerol as the sole carbon source. Similar to the chitosan-treated wild-type strain, the mss2Δ strain exhibited a significantly impaired ATP production ability. These data suggest that an antifungal mechanism of chitosan against C. albicans acts by inhibiting MSS2 gene expression, leading to repression of mitochondrial function. Normal respiratory function is suggested to be required for fungal virulence. Interestingly, the mss2Δ mutant strains exhibited significantly impaired invasive ability in vitro and ex vivo but retained normal hyphal development ability in liquid medium. Furthermore, the MSS2 deletion strains could not form robust biofilms and exhibited significantly reduced virulence. Collectively, these results demonstrated that the antifungal effect of chitosan against C. albicans is mediated via inhibition of mitochondrial biogenesis. These data may provide another strategy for antifungal drug development via inhibition of fungal mitochondria.
Collapse
Affiliation(s)
- Cai-Ling Ke
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University , Taipei, Taiwan
| | - Yu-Ting Liao
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University , Taipei, Taiwan
| | - Ching-Hsuan Lin
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University , Taipei, Taiwan
| |
Collapse
|
18
|
She X, Zhang L, Peng J, Zhang J, Li H, Zhang P, Calderone R, Liu W, Li D. Mitochondrial Complex I Core Protein Regulates cAMP Signaling via Phosphodiesterase Pde2 and NAD Homeostasis in Candida albicans. Front Microbiol 2020; 11:559975. [PMID: 33324355 PMCID: PMC7726218 DOI: 10.3389/fmicb.2020.559975] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/29/2020] [Indexed: 11/25/2022] Open
Abstract
The cyclic adenosine 3',5'-monophosphate (cAMP)/protein kinase A (PKA) pathway of Candida albicans responds to nutrient availability to coordinate a series of cellular processes for its replication and survival. The elevation of cAMP for PKA signaling must be both transitory and tightly regulated. Otherwise, any abnormal cAMP/PKA pathway would disrupt metabolic potential and ergosterol synthesis and promote a stress response. One possible mechanism for controlling cAMP levels is direct induction of the phosphodiesterase PDE2 gene by cAMP itself. Our earlier studies have shown that most single-gene-deletion mutants of the mitochondrial electron transport chain (ETC) complex I (CI) are hypersensitive to fluconazole. To understand the fluconazole hypersensitivity observed in these mutants, we focused upon the cAMP/PKA-mediated ergosterol synthesis in CI mutants. Two groups of the ETC mutants were used in this study. Group I includes CI mutants. Group II is composed of CIII and CIV mutants; group II mutants are known to have greater respiratory loss. All mutants are not identical in cAMP/PKA-mediated ergosterol response. We found that ergosterol levels are decreased by 47.3% in the ndh51Δ (CI core subunit mutant) and by 23.5% in goa1Δ (CI regulator mutant). Both mutants exhibited a greater reduction of cAMP and excessive trehalose production compared with other mutants. Despite the normal cAMP level, ergosterol content decreased by 33.0% in the CIII mutant qce1Δ as well, thereby displaying a cAMP/PKA-independent ergosterol response. While the two CI mutants have some unique cAMP/PKA-mediated ergosterol responses, we found that the degree of cAMP reduction correlates linearly with a decrease in total nicotinamide adenine dinucleotide (NAD) levels in all mutants, particularly in the seven CI mutants. A mechanism study demonstrates that overactive PDE2 and cPDE activity must be the cause of the suppressive cAMP-mediated ergosterol response in the ndh51Δ and goa1Δ. While the purpose of this study is to understand the impact of ETC proteins on pathogenesis-associated cellular events, our results reveal the importance of Ndh51p in the regulation of the cAMP/PKA pathway through Pde2p inhibition in normal physiological environments. As a direct link between Ndh51p and Pde2p remains elusive, we suggest that Ndh51p participates in NAD homeostasis that might regulate Pde2p activity for the optimal cAMP pathway state.
Collapse
Affiliation(s)
- Xiaodong She
- Institute of Dermatology, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Nanjing, China
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Lulu Zhang
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, United States
- Department of Dermatology, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Jingwen Peng
- Institute of Dermatology, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Nanjing, China
| | - Jingyun Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Nanjing, China
| | - Hongbin Li
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, United States
- Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Pengyi Zhang
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, United States
- Sport Science Research Center, Shandong Sport University, Jinan, China
| | - Richard Calderone
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Weida Liu
- Institute of Dermatology, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Nanjing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Dongmei Li
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
19
|
Saibabu V, Fatima Z, Ahmad K, Khan LA, Hameed S. Octyl gallate triggers dysfunctional mitochondria leading to ROS driven membrane damage and metabolic inflexibility along with attenuated virulence in Candida albicans. Med Mycol 2020; 58:380-392. [PMID: 31135913 DOI: 10.1093/mmy/myz054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/11/2019] [Accepted: 05/02/2019] [Indexed: 01/07/2023] Open
Abstract
Recently the high incidence of worldwide Candida infections has substantially increased. The growing problem about toxicity of antifungal drugs and multidrug resistance aggravates the need for the development of new effective strategies. Natural compounds in this context represent promising alternatives having potential to be exploited for improving human health. The present study was therefore designed to evaluate the antifungal effect of a naturally occurring phenolic, octyl gallate (OG), on Candida albicans and to investigate the underlying mechanisms involved. We demonstrated that OG at 25 μg/ml could effectively inhibit C. albicans. Mechanistic insights revealed that OG affects mitochondrial functioning as Candida cells exposed to OG did not grow on non-fermentable carbon sources. Dysfunctional mitochondria triggered generation of reactive oxygen species (ROS), which led to membrane damage mediated by lipid peroxidation. We explored that OG inhibited glucose-induced reduction in external pH and causes decrement in ergosterol levels by 45%. Furthermore, OG impedes the metabolic flexibility of C. albicans by inhibiting the glyoxylate enzyme isocitrate lyase, which was also confirmed by docking analysis. Additionally, OG affected virulence traits such as morphological transition and cell adherence. Furthermore, we depicted that OG not only prevented biofilm formation but eliminates the preformed biofilms. In vivo studies with Caenorhabditis elegans nematode model confirmed that OG could enhance the survival of C. elegans after infection with Candida. Toxicity assay using red blood cells showed only 27.5% haemolytic activity. Taken together, OG is a potent inhibitor of C. albicans that warrants further structural optimization and pharmacological investigations.
Collapse
Affiliation(s)
- Venkata Saibabu
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar)-122413, India.,Department of Biosciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Zeeshan Fatima
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar)-122413, India
| | - Kamal Ahmad
- Center for Interdisciplinary Research, Jamia Millia Islamia, New Delhi-110025, India
| | - Luqman Ahmad Khan
- Department of Biosciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Saif Hameed
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar)-122413, India
| |
Collapse
|
20
|
Song J, Zhou J, Zhang L, Li R. Mitochondria-Mediated Azole Drug Resistance and Fungal Pathogenicity: Opportunities for Therapeutic Development. Microorganisms 2020; 8:E1574. [PMID: 33066090 PMCID: PMC7600254 DOI: 10.3390/microorganisms8101574] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 12/16/2022] Open
Abstract
In recent years, the role of mitochondria in pathogenic fungi in terms of azole resistance and fungal pathogenicity has been a rapidly developing field. In this review, we describe the molecular mechanisms by which mitochondria are involved in regulating azole resistance and fungal pathogenicity. Mitochondrial function is involved in the regulation of drug efflux pumps at the transcriptional and posttranslational levels. On the one hand, defects in mitochondrial function can serve as the signal leading to activation of calcium signaling and the pleiotropic drug resistance pathway and, therefore, can globally upregulate the expression of drug efflux pump genes, leading to azole drug resistance. On the other hand, mitochondria also contribute to azole resistance through modulation of drug efflux pump localization and activity. Mitochondria further contribute to azole resistance through participating in iron homeostasis and lipid biosynthesis. Additionally, mitochondrial dynamics play an important role in azole resistance. Meanwhile, mitochondrial morphology is important for fungal virulence, playing roles in growth in stressful conditions in a host. Furthermore, there is a close link between mitochondrial respiration and fungal virulence, and mitochondrial respiration plays an important role in morphogenetic transition, hypoxia adaptation, and cell wall biosynthesis. Finally, we discuss the possibility for targeting mitochondrial factors for the development of antifungal therapies.
Collapse
Affiliation(s)
- Jinxing Song
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China;
- Shandong Provincial Key Laboratory of Infection and Immunity, Jinan 250012, China;
| | - Jingwen Zhou
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China;
| | - Lei Zhang
- Shandong Provincial Key Laboratory of Infection and Immunity, Jinan 250012, China;
| | - Rongpeng Li
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China;
| |
Collapse
|
21
|
Culbertson EM, Bruno VM, Cormack BP, Culotta VC. Expanded role of the Cu-sensing transcription factor Mac1p in Candida albicans. Mol Microbiol 2020; 114:1006-1018. [PMID: 32808698 DOI: 10.1111/mmi.14591] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022]
Abstract
As part of the innate immune response, the host withholds metal micronutrients such as Cu from invading pathogens, and microbes respond through metal starvation stress responses. With the opportunistic fungal pathogen Candida albicans, the Cu-sensing transcription factor Mac1p governs the cellular response to Cu starvation by controlling Cu import. Mac1p additionally controls reactive oxygen species (ROS) homeostasis by repressing a Cu-containing superoxide dismutase (SOD1) and inducing Mn-containing SOD3 as a non-Cu alternative. We show here that C. albicans Mac1p is essential for virulence in a mouse model for disseminated candidiasis and that the cellular functions of Mac1p extend beyond Cu uptake and ROS homeostasis. Specifically, mac1∆/∆ mutants are profoundly deficient in mitochondrial respiration and Fe accumulation, both Cu-dependent processes. Surprisingly, these deficiencies are not simply the product of impaired Cu uptake; rather mac1∆/∆ mutants appear defective in Cu allocation. The respiratory defect of mac1∆/∆ mutants was greatly improved by a sod1∆/∆ mutation, demonstrating a role for SOD1 repression by Mac1p in preserving respiration. Mac1p downregulates the major Cu consumer SOD1 to spare Cu for respiration that is essential for virulence of this fungal pathogen. The implications for such Cu homeostasis control in other pathogenic fungi are discussed.
Collapse
Affiliation(s)
- Edward M Culbertson
- The Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Vincent M Bruno
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Brendan P Cormack
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Valeria C Culotta
- The Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
22
|
Abstract
Aspergillus fumigatus, one of the most important human-pathogenic fungal species, is able to cause aspergillosis, a heterogeneous group of diseases that presents a wide range of clinical manifestations. Invasive pulmonary aspergillosis is the most serious pathology in terms of patient outcome and treatment, with a high mortality rate ranging from 50% to 95% primarily affecting immunocompromised patients. Azoles have been used for many years as the main antifungal agents to treat and prevent invasive aspergillosis. However, there were several reports of evolution of clinical azole resistance in the last decade. Caspofungin, a noncompetitive β-1,3-glucan synthase inhibitor, has been used against A. fumigatus, but it is fungistatic and is recommended as second-line therapy for invasive aspergillosis. More information about caspofungin tolerance and resistance is necessary in order to refine antifungal strategies that target the fungal cell wall. Here, we screened a transcription factor (TF) deletion library for TFs that can mediate caspofungin tolerance and resistance. We have identified 11 TFs that are important for caspofungin sensitivity and/or for the caspofungin paradoxical effect (CPE). These TFs encode proteins involved in the basal modulation of the RNA polymerase II initiation sites, calcium metabolism or cell wall remodeling, and mitochondrial respiratory function. The study of those genes regulated by TFs identified in this work will provide a better understanding of the signaling pathways that are important for caspofungin tolerance and resistance. Aspergillus fumigatus is the leading cause of pulmonary fungal diseases. Azoles have been used for many years as the main antifungal agents to treat and prevent invasive aspergillosis. However, in the last 10 years there have been several reports of azole resistance in A. fumigatus and new strategies are needed to combat invasive aspergillosis. Caspofungin is effective against other human-pathogenic fungal species, but it is fungistatic only against A. fumigatus. Resistance to caspofungin in A. fumigatus has been linked to mutations in the fksA gene that encodes the target enzyme of the drug β-1,3-glucan synthase. However, tolerance of high caspofungin concentrations, a phenomenon known as the caspofungin paradoxical effect (CPE), is also important for subsequent adaptation and drug resistance evolution. Here, we identified and characterized the transcription factors involved in the response to CPE by screening an A. fumigatus library of 484 null transcription factors (TFs) in CPE drug concentrations. We identified 11 TFs that had reduced CPE and that encoded proteins involved in the basal modulation of the RNA polymerase II initiation sites, calcium metabolism, and cell wall remodeling. One of these TFs, FhdA, was important for mitochondrial respiratory function and iron metabolism. The ΔfhdA mutant showed decreased growth when exposed to Congo red or to high temperature. Transcriptome sequencing (RNA-seq) analysis and further experimental validation indicated that the ΔfhdA mutant showed diminished respiratory capacity, probably affecting several pathways related to the caspofungin tolerance and resistance. Our results provide the foundation to understand signaling pathways that are important for caspofungin tolerance and resistance.
Collapse
|
23
|
Shen M, Li PT, Wu YJ, Lin CH, Chai E, Chang TC, Chen CT. The antifungal activities and biological consequences of BMVC-12C-P, a carbazole derivative against Candida species. Med Mycol 2020; 58:521-529. [PMID: 31281934 DOI: 10.1093/mmy/myz071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/19/2019] [Accepted: 06/05/2019] [Indexed: 11/14/2022] Open
Abstract
Fungal infections, particularly Candida species, have increased worldwide and caused high morbidity and mortality rates. The toxicity and development of resistance in present antifungal drugs justify the need of new drugs with different mechanism of action. BMVC-12C-P, a carbazole-type compound, has been found to dysfunction mitochondria. BMVC-12C-P displayed the strongest antifungal activities among all of the BMVC derivatives. The minimal inhibitory concentration (MIC) of BMVC-12C-P against Candida species ranged from 1 to 2 μg/ml. Fluconazole-resistant clinical isolates of Candida species were highly susceptible to BMVC-12C-P. The potent fungicidal activity of BMVC-12C-P relates to its impairing mitochondrial function. Furthermore, we found that the hyphae growth and biofilm formation were suppressed in C. albicans survived from BMVC-12C-P treatment. This study demonstrates the potential of BMVC-12C-P as an antifungal agent for treating Candida infections.
Collapse
Affiliation(s)
- Mandy Shen
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Pei-Tzu Li
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Yan-Jia Wu
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Ching-Hsuan Lin
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Eric Chai
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Ta-Chau Chang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Chin-Tin Chen
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
24
|
Li D, She X, Calderone R. The antifungal pipeline: the need is established. Are there new compounds? FEMS Yeast Res 2020; 20:5827531. [DOI: 10.1093/femsyr/foaa023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 04/28/2020] [Indexed: 12/19/2022] Open
Abstract
ABSTRACT
Our review summarizes and compares the temporal development (eras) of antifungal drug discovery as well as antibacterial ventures. The innovation gap that occurred in antibacterial discovery from 1960 to 2000 was likely due to tailoring of existing compounds to have better activity than predecessors. Antifungal discovery also faced innovation gaps. The semi-synthetic antibiotic era was followed closely by the resistance era and the heightened need for new compounds and targets. With the immense contribution of comparative genomics, antifungal targets became part of the discovery focus. These targets by definition are absolutely required to be fungal- or even lineage (clade) specific. Importantly, targets need to be essential for growth and/or have important roles in disease and pathogenesis. Two types of antifungals are discussed that are mostly in the FDA phase I–III clinical trials. New antifungals are either modified to increase bioavailability and stability for instance, or are new compounds that inhibit new targets. One of the important developments in incentivizing new antifungal discovery has been the prolific number of publications of global and country-specific incidence. International efforts that champion global antimicrobial drug discovery are discussed. Still, interventions are needed. The current pipeline of antifungals and alternatives to antifungals are discussed including vaccines.
Collapse
Affiliation(s)
- Dongmei Li
- Department of Microbiology and Immunology, Georgetown University Medical Center, Georgetown University, NW 302 Med Dent Building, 3900 Reservoir Rd NW, Washington, DC 20057, USA
| | - Xiaodong She
- Jiangsu Key laboratory of Molecular Biology for Skin Disease and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences (CAMS), Nanjing 210029, China
| | - Richard Calderone
- Department of Microbiology and Immunology, Georgetown University Medical Center, Georgetown University, NW 302 Med Dent Building, 3900 Reservoir Rd NW, Washington, DC 20057, USA
| |
Collapse
|
25
|
Liu S, Wei Y, Zhang SH. The C3HC type zinc-finger protein (ZFC3) interacting with Lon/MAP1 is important for mitochondrial gene regulation, infection hypha development and longevity of Magnaporthe oryzae. BMC Microbiol 2020; 20:23. [PMID: 32000669 PMCID: PMC6993355 DOI: 10.1186/s12866-020-1711-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/22/2020] [Indexed: 12/20/2022] Open
Abstract
Background The rice blast is a typical fungal disease caused by Magnaporthe oryzae, and the mitochondrial ATP-dependent Lon protease (MAP1) has been proven to be involved in blast development. We previously screened a C3HC type Zinc-finger domain protein (ZFC3), which is interacted with MAP1. The purpose of this research was to study the biological function of ZFC3 protein in M. oryzae. Results We first confirmed that the ZFC3-RFP fusion protein is localized within the mitochondria. The deleted mutant strains of ZFC3 (∆ZFC3) showed the enhanced expression level of mtATP6, particularly mtATP8, and almost unchanged nATP9. ΔZFC3 produces more conidia and more tolerance to multiple stressors. The knock-out strain shows more melanin accumulation suggests the susceptibility to aging. ΔZFC3 displays faster early-stage hypha infiltration involved in MAP1-mediated pathogenicity in host rice. Conclusion These results support the view that ZFC3 is a key regulator involved in gene regulation, stress response, cell wall integrity, longevity, conidiation, infection hypha development and MAP1-mediated pathogenicity in M. oryzae.
Collapse
Affiliation(s)
- Shaoshuai Liu
- College of Plant Sciences, Jilin University, Changchun, China.,Present address: Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, Heinrich Buff-Ring 26-32, D-35392, Giessen, Germany
| | - Yi Wei
- College of Plant Sciences, Jilin University, Changchun, China
| | - Shi-Hong Zhang
- College of Plant Sciences, Jilin University, Changchun, China.
| |
Collapse
|
26
|
Non-canonical signalling mediates changes in fungal cell wall PAMPs that drive immune evasion. Nat Commun 2019; 10:5315. [PMID: 31757950 PMCID: PMC6876565 DOI: 10.1038/s41467-019-13298-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 10/29/2019] [Indexed: 01/09/2023] Open
Abstract
To colonise their host, pathogens must counter local environmental and immunological challenges. Here, we reveal that the fungal pathogen Candida albicans exploits diverse host-associated signals to promote immune evasion by masking of a major pathogen-associated molecular pattern (PAMP), β-glucan. Certain nutrients, stresses and antifungal drugs trigger β-glucan masking, whereas other inputs, such as nitrogen sources and quorum sensing molecules, exert limited effects on this PAMP. In particular, iron limitation triggers substantial changes in the cell wall that reduce β-glucan exposure. This correlates with reduced phagocytosis by macrophages and attenuated cytokine responses by peripheral blood mononuclear cells. Iron limitation-induced β-glucan masking depends on parallel signalling via the iron transceptor Ftr1 and the iron-responsive transcription factor Sef1, and the protein kinase A pathway. Our data reveal that C. albicans exploits a diverse range of specific host signals to trigger protective anticipatory responses against impending phagocytic attack and promote host colonisation. The authors show that the fungal pathogen Candida albicans exploits diverse host-associated signals, including specific nutrients and stresses, to promote immune evasion by masking cell wall β-glucan, a major pathogen-associated molecular pattern.
Collapse
|
27
|
Abstract
In eukaryotic cells, mitochondria are responsible for the synthesis of ATP using power generated by the electron transport chain (ETC). While much of what is known about mitochondria has been gained from a study of a small number of model species, including the yeast Saccharomyces cerevisiae, the general mechanisms of mitochondrial respiration have been recognized as being highly conserved across eukaryotes. Now, Sun et al. (N. Sun, R. S. Parrish, R. A. Calderone, and W. A. In eukaryotic cells, mitochondria are responsible for the synthesis of ATP using power generated by the electron transport chain (ETC). While much of what is known about mitochondria has been gained from a study of a small number of model species, including the yeast Saccharomyces cerevisiae, the general mechanisms of mitochondrial respiration have been recognized as being highly conserved across eukaryotes. Now, Sun et al. (N. Sun, R. S. Parrish, R. A. Calderone, and W. A. Fonzi, mBio 10:e00300-19, 2019, https://doi.org/10.1128/mBio.00300-19) take the next steps in understanding mitochondrial function by identifying proteins that are unique to a smaller phylogenetic group of microbes. Using the combination of in silico, biochemical, and microbiological assays, Sun and colleagues identified seven genes that are unique to the CTG fungal clade, which contains multiple important human pathogens, including Candida albicans, and showed that they are required for full ETC function during respiratory metabolism. Because respiratory metabolism is critical for fungal pathogenesis, these clade-specific mitochondrial factors may represent novel therapeutic targets.
Collapse
|
28
|
Xue YP, Kao MC, Lan CY. Novel mitochondrial complex I-inhibiting peptides restrain NADH dehydrogenase activity. Sci Rep 2019; 9:13694. [PMID: 31548559 PMCID: PMC6757105 DOI: 10.1038/s41598-019-50114-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 08/29/2019] [Indexed: 12/14/2022] Open
Abstract
The emergence of drug-resistant fungal pathogens is becoming increasingly serious due to overuse of antifungals. Antimicrobial peptides have potent activity against a broad spectrum of pathogens, including fungi, and are considered a potential new class of antifungals. In this study, we examined the activities of the newly designed peptides P-113Du and P-113Tri, together with their parental peptide P-113, against the human fungal pathogen Candida albicans. The results showed that these peptides inhibit mitochondrial complex I, specifically NADH dehydrogenase, of the electron transport chain. Moreover, P-113Du and P-113Tri also block alternative NADH dehydrogenases. Currently, most inhibitors of the mitochondrial complex I are small molecules or artificially-designed antibodies. Here, we demonstrated novel functions of antimicrobial peptides in inhibiting the mitochondrial complex I of C. albicans, providing insight in the development of new antifungal agents.
Collapse
Affiliation(s)
- Yao-Peng Xue
- Institute of Molecular and Cellular Biology, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan, ROC
| | - Mou-Chieh Kao
- Institute of Molecular Medicine, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan, ROC. .,Department of Life Science, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan, ROC.
| | - Chung-Yu Lan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan, ROC. .,Department of Life Science, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan, ROC.
| |
Collapse
|
29
|
Song Y, Li S, Zhao Y, Zhang Y, Lv Y, Jiang Y, Wang Y, Li D, Zhang H. ADH1 promotes Candida albicans pathogenicity by stimulating oxidative phosphorylation. Int J Med Microbiol 2019; 309:151330. [DOI: 10.1016/j.ijmm.2019.151330] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/24/2019] [Accepted: 07/09/2019] [Indexed: 01/06/2023] Open
|
30
|
Abstract
Candida albicans is an opportunistic fungal pathogen of major clinical concern. The virulence of this pathogen is intimately intertwined with its metabolism. Mitochondria, which have a central metabolic role, have undergone many lineage-specific adaptations in association with their eukaryotic host. A screen for lineage-specific genes identified seven such genes specific to the CTG clade of fungi, of which C. albicans is a member. Each is required for respiratory growth and is integral to expression of complex I, III, or IV of the electron transport chain. Two genes, NUO3 and NUO4, encode supernumerary subunits of complex I, whereas NUE1 and NUE2 have nonstructural roles in expression of complex I. Similarly, the other three genes have nonstructural roles in expression of complex III (QCE1) or complex IV (COE1 and COE2). In addition to these novel additions, an alternative functional assignment was found for the mitochondrial protein encoded by MNE1 MNE1 was required for complex I expression in C. albicans, whereas the distantly related Saccharomyces cerevisiae ortholog participates in expression of complex III. Phenotypic analysis of deletion mutants showed that fermentative metabolism is unable to support optimal growth rates or yields of C. albicans However, yeast-hypha morphogenesis, an important virulence attribute, did not require respiratory metabolism under hypoxic conditions. The inability to respire also resulted in hypersensitivity to the antifungal fluconazole and in attenuated virulence in a Galleria mellonella infection model. The results show that lineage-specific adaptations have occurred in C. albicans mitochondria and highlight the significance of respiratory metabolism in the pathobiology of C. albicans IMPORTANCE Candida albicans is an opportunistic fungal pathogen of major clinical concern. The virulence of this pathogen is intimately intertwined with its metabolic behavior, and mitochondria have a central role in that metabolism. Mitochondria have undergone many evolutionary changes, which include lineage-specific adaptations in association with their eukaryotic host. Seven lineage-specific genes required for electron transport chain function were identified in the CTG clade of fungi, of which C. albicans is a member. Additionally, examination of several highly diverged orthologs encoding mitochondrial proteins demonstrated functional reassignment for one of these. Deficits imparted by deletion of these genes revealed the critical role of respiration in virulence attributes of the fungus and highlight important evolutionary adaptations in C. albicans metabolism.
Collapse
|
31
|
Silao FGS, Ward M, Ryman K, Wallström A, Brindefalk B, Udekwu K, Ljungdahl PO. Mitochondrial proline catabolism activates Ras1/cAMP/PKA-induced filamentation in Candida albicans. PLoS Genet 2019; 15:e1007976. [PMID: 30742618 PMCID: PMC6386415 DOI: 10.1371/journal.pgen.1007976] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/22/2019] [Accepted: 01/21/2019] [Indexed: 11/18/2022] Open
Abstract
Amino acids are among the earliest identified inducers of yeast-to-hyphal transitions in Candida albicans, an opportunistic fungal pathogen of humans. Here, we show that the morphogenic amino acids arginine, ornithine and proline are internalized and metabolized in mitochondria via a PUT1- and PUT2-dependent pathway that results in enhanced ATP production. Elevated ATP levels correlate with Ras1/cAMP/PKA pathway activation and Efg1-induced gene expression. The magnitude of amino acid-induced filamentation is linked to glucose availability; high levels of glucose repress mitochondrial function thereby dampening filamentation. Furthermore, arginine-induced morphogenesis occurs more rapidly and independently of Dur1,2-catalyzed urea degradation, indicating that mitochondrial-generated ATP, not CO2, is the primary morphogenic signal derived from arginine metabolism. The important role of the SPS-sensor of extracellular amino acids in morphogenesis is the consequence of induced amino acid permease gene expression, i.e., SPS-sensor activation enhances the capacity of cells to take up morphogenic amino acids, a requisite for their catabolism. C. albicans cells engulfed by murine macrophages filament, resulting in macrophage lysis. Phagocytosed put1-/- and put2-/- cells do not filament and exhibit reduced viability, consistent with a critical role of mitochondrial proline metabolism in virulence.
Collapse
Affiliation(s)
- Fitz Gerald S. Silao
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Meliza Ward
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Kicki Ryman
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Axel Wallström
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Björn Brindefalk
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Klas Udekwu
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Per O. Ljungdahl
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
32
|
Koch B, Traven A. Mitochondrial Control of Fungal Cell Walls: Models and Relevance in Fungal Pathogens. Curr Top Microbiol Immunol 2019; 425:277-296. [PMID: 31807895 DOI: 10.1007/82_2019_183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Proper structure and function of the fungal cell wall are controlled by metabolic processes, as well as an interplay between a range of cellular organelles. Somewhat surprisingly, mitochondrial function has been shown to be important for proper cell wall biogenesis and integrity. Mitochondria also play a role in the susceptibility of fungi to cell wall-targeting drugs. This is true in a range of fungal species, including important human fungal pathogens. The biochemical mechanisms that explain the roles of mitochondria in cell wall biology have remained elusive, but studies to date strongly support the idea that mitochondrial control over cellular lipid homeostasis is at the core of these processes. Excitingly, recent evidence suggests that the mitochondria-lipid linkages drive resistance to the echinocandin drug caspofungin, a clinically important therapeutic that targets cell wall biosynthesis. Here, we review the state of affairs in mitochondria-fungal cell wall research and propose models that could be tested in future studies. Elucidating the mechanisms that drive fungal cell wall integrity through mitochondrial functions holds promise for developing new strategies to combat fungal infections, including the possibility to potentiate the effects of antifungal drugs and curb drug resistance.
Collapse
Affiliation(s)
- Barbara Koch
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash University, Clayton, 3800, VIC, Australia.,Protein, Science and Engineering, Callaghan Innovation, Christchurch, 8140, New Zealand
| | - Ana Traven
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Monash University, Clayton, 3800, VIC, Australia.
| |
Collapse
|
33
|
Hypoxia Promotes Immune Evasion by Triggering β-Glucan Masking on the Candida albicans Cell Surface via Mitochondrial and cAMP-Protein Kinase A Signaling. mBio 2018; 9:mBio.01318-18. [PMID: 30401773 PMCID: PMC6222127 DOI: 10.1128/mbio.01318-18] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Organisms must adapt to changes in oxygen tension if they are to exploit the energetic benefits of reducing oxygen while minimizing the potentially damaging effects of oxidation. Consequently, organisms in all eukaryotic kingdoms display robust adaptation to hypoxia (low oxygen levels). This is particularly important for fungal pathogens that colonize hypoxic niches in the host. We show that adaptation to hypoxia in the major fungal pathogen of humans Candida albicans includes changes in cell wall structure and reduced exposure, at the cell surface, of β-glucan, a key pathogen-associated molecular pattern (PAMP). This leads to reduced phagocytosis by murine bone marrow-derived macrophages and decreased production of IL-10, RANTES, and TNF-α by peripheral blood mononuclear cells, suggesting that hypoxia-induced β-glucan masking has a significant effect upon C. albicans-host interactions. We show that hypoxia-induced β-glucan masking is dependent upon both mitochondrial and cAMP-protein kinase A (PKA) signaling. The decrease in β-glucan exposure is blocked by mutations that affect mitochondrial functionality (goa1Δ and upc2Δ) or that decrease production of hydrogen peroxide in the inner membrane space (sod1Δ). Furthermore, β-glucan masking is enhanced by mutations that elevate mitochondrial reactive oxygen species (aox1Δ). The β-glucan masking defects displayed by goa1Δ and upc2Δ cells are suppressed by exogenous dibutyryl-cAMP. Also, mutations that inactivate cAMP synthesis (cyr1Δ) or PKA (tpk1Δ tpk2Δ) block the masking phenotype. Our data suggest that C. albicans responds to hypoxic niches by inducing β-glucan masking via a mitochondrial cAMP-PKA signaling pathway, thereby modulating local immune responses and promoting fungal colonization.IMPORTANCE Animal, plant, and fungal cells occupy environments that impose changes in oxygen tension. Consequently, many species have evolved mechanisms that permit robust adaptation to these changes. The fungal pathogen Candida albicans can colonize hypoxic (low oxygen) niches in its human host, such as the lower gastrointestinal tract and inflamed tissues, but to colonize its host, the fungus must also evade local immune defenses. We reveal, for the first time, a defined link between hypoxic adaptation and immune evasion in C. albicans As this pathogen adapts to hypoxia, it undergoes changes in cell wall structure that include masking of β-glucan at its cell surface, and it becomes better able to evade phagocytosis by innate immune cells. We also define the signaling mechanisms that mediate hypoxia-induced β-glucan masking, showing that they are dependent on mitochondrial signaling and the cAMP-protein kinase pathway. Therefore, hypoxia appears to trigger immune evasion in this fungal pathogen.
Collapse
|
34
|
Singh S, Fatima Z, Ahmad K, Hameed S. Fungicidal action of geraniol against Candida albicans is potentiated by abrogated CaCdr1p drug efflux and fluconazole synergism. PLoS One 2018; 13:e0203079. [PMID: 30157240 PMCID: PMC6114893 DOI: 10.1371/journal.pone.0203079] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/14/2018] [Indexed: 12/16/2022] Open
Abstract
Among the several mechanisms of multidrug resistance (MDR), overexpression of drug efflux pumps CaCdr1p and CaMdr1p belonging to ATP binding cassette (ABC) and major facilitator superfamily (MFS) respectively remain the predominant mechanisms of candidal infections. Therefore inhibiting or modulating the function of these transporters continues to draw attention as effective strategy to combat MDR. We have previously reported the antifungal potential of Geraniol (Ger), a natural monoterpenoid from Palmarosa oil, against Candida albicans. Herein, we explored the fungicidal nature of Ger. The Rhodamine 6G (R6G) and Nile red accumulation confirms the specific effect on CaCdr1p. Mechanistic insights with Candida cells overexpressing CaCdr1p and CaMdr1p revealed that Ger specifically modulates CaCdr1p activity. Kinetic studies further unraveled the competitive inhibition of Ger for R6G efflux as evident from increased apparent Km without affecting Vmax value. The effect of Ger on CaCdr1p was substantiated by molecular docking analyses, which depicted in-silico binding affinity of Ger with CaCdr1p and explored that Ger binds to the active site of CaCdr1p with higher binding energy. Although RT-PCR and western blot revealed no change in expressions of CDR1 and CaCdr1p, confocal microscopy images however depicted CaCdr1p mislocalization in presence of Ger. Interestingly, Ger was synergistic (FICI<0.5) with fluconazole (FLC) which is a well known antifungal drug. Furthermore, Ger sensitizes the FLC sensitive and resistant clinical matched pair of isolates Gu4/Gu5 and led to abrogated R6G efflux and depleted ergosterol. Furthermore, Rhodamine B labeling demonstrates altered mitochondrial potential with Ger which suggest possible linkage of dysfunctional mitochondria with CaCdr1p activity. We also estimated phenotypic virulence marker extracellular phospholipase activity which was considerably diminished along with inhibited cell adherence and biofilm biomass. Lastly, antifungal efficacy of Ger was demonstrated by enhanced survival of Caenorhabditis elegans model and negligible hemolytic activity (20%). Together, modulation of efflux pump activity by Ger and FLC synergism represent a promising approach for combinatorial treatment of candidiasis.
Collapse
Affiliation(s)
- Shweta Singh
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar), India
| | - Zeeshan Fatima
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar), India
| | - Kamal Ahmad
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Saif Hameed
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram (Manesar), India
| |
Collapse
|
35
|
Bi S, Lv QZ, Wang TT, Fuchs BB, Hu DD, Anastassopoulou CG, Desalermos A, Muhammed M, Wu CL, Jiang YY, Mylonakis E, Wang Y. SDH2 is involved in proper hypha formation and virulence in Candida albicans. Future Microbiol 2018; 13:1141-1156. [PMID: 30113213 DOI: 10.2217/fmb-2018-0033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To investigate the role of SDH2 in Candida albicans filamentation and virulence. MATERIALS & METHODS Caenorhabditis elegans and mouse candidiasis models were used to assess the virulence of a sdh2Δ/Δ mutant. Various hypha-inducing media were used to evaluate the hyphal development of C. albicans. DCFH-DA was used to measure intracellular Reactive Oxygen Species (ROS) levels. RESULTS The sdh2Δ/Δ mutant was avirulent in the C. elegans model, hypovirulent in a murine candidiasis model, and defective to form filaments both in vitro and in vivo. Intracellular ROS level increased in the sdh2Δ/Δ mutant, and the filamentation defects of sdh2Δ/Δ were rescued by decreasing intracellular ROS. CONCLUSION SDH2 plays an important role in C. albicans filamentation and virulence probably through affecting intracellular ROS. [Formula: see text].
Collapse
Affiliation(s)
- Shuang Bi
- School of Pharmacy, Second Military Medical University, Shanghai 200433, PR China
| | - Quan-Zhen Lv
- School of Pharmacy, Second Military Medical University, Shanghai 200433, PR China
| | - Tian-Tian Wang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, PR China
| | - Beth Burgwyn Fuchs
- Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School of Brown University, RI 02903, USA
| | - Dan-Dan Hu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, PR China
| | - Cleo G Anastassopoulou
- Division of Genetics, Cell & Developmental Biology, Department of Biology, University of Patras, Patras, Greece.,Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Athanasios Desalermos
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Maged Muhammed
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.,Division of Infectious Diseases, and Division of Gastroenterology, Boston Children's Hospital. Department of Medicine, Department of Adult Inpatient Medicine, Newton Wellesley Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Chin-Lee Wu
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Yuan-Ying Jiang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, PR China
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School of Brown University, RI 02903, USA.,Division of Genetics, Cell & Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| | - Yan Wang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, PR China.,Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School of Brown University, RI 02903, USA.,Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
36
|
Wang TM, Xie XH, Li K, Deng YH, Chen H. Alternative Oxidase Promotes Biofilm Formation of Candida albicans. Curr Med Sci 2018; 38:443-448. [PMID: 30074210 DOI: 10.1007/s11596-018-1898-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/24/2018] [Indexed: 01/21/2023]
Abstract
This study was designed to analyze the effect of the mitochondrial respiratory pathways of Candida albicans (C. albicans) on the biofilm formation. The 2, 3-bis (2-methoxy- 4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) reduction assay was used to measure the metabolic activities of biofilms formed by the C. albicans which were cultured in the presence of respiratory pathways inhibitors. The biofilms formed by the wide type (WT), GOA7-deleted (GOA31), GOAV-reconstituted (GOA32), AOXla-deleted (AOX1) and AOXlb-deleted (AOX2) C. albicans strains were examined by the XTT reduction assay and fluorescence microscopy. The expression of adhesion-related genes BCR1, ALS1, ALS3, ECE1 and HWP1 in the biofilms formed by the above five C. albicans strains was detected by real time polymerase chain reaction. It was found that the metabolic activity of biofilms formed by C. albicans was decreased in the presence of alternative oxidase inhibitor whereas it was increased in the presence of classical mitochondrial respiratory pathway complex HI or complex IV inhibitor. AOX1 strain produced scarce biofilms interspersed with few hyphal filaments. Moreover, no significant changes in the expression of BCR1 and ALS3 were observed in the AOX1 strain, but the expression of ALSI and ECE1 was down-regulated, and that of HWP1 was up-regulated. These results indicate that both AOX1 and AOX2 can promote the biofilm formation. However, AOXla primarily plays a regulatory role in biofilm formation in the absence of inducers where the promoting effect is mainly achieved by promoting mycelial formation.
Collapse
Affiliation(s)
- Ting-Mei Wang
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Hui Xie
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ke Li
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yun-Hua Deng
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hui Chen
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
37
|
Truong T, Suriyanarayanan T, Zeng G, Le TD, Liu L, Li J, Tong C, Wang Y, Seneviratne CJ. Use of Haploid Model of Candida albicans to Uncover Mechanism of Action of a Novel Antifungal Agent. Front Cell Infect Microbiol 2018; 8:164. [PMID: 29938200 PMCID: PMC6002804 DOI: 10.3389/fcimb.2018.00164] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/01/2018] [Indexed: 11/13/2022] Open
Abstract
Antifungal agents for the treatment of Candida albicans infections are limited. We recently discovered a novel antifungal small molecule, SM21, with promising in vivo activity. Herein, we employed the newly developed C. albicans haploid toolbox to uncover the mechanism of action of SM21. Comprehensive RNA-Seq analyses of the haploid susceptible GZY803 strain revealed significant gene expression changes related to mitochondria when exposed to SM21. Mitochondrial structure visualization and measurement of ATP generation, reactive oxygen species (ROS) levels, and the antioxidant potential of SM21-treated and untreated GZY803, mitochondrial structure defective haploid mutant (dnm1Δ), and wild-type diploid SC5314 strains confirmed defects in mitochondria. Exploiting the advantage of C. albicans haploids as a single ploidy model, we further exposed GZY803 to repetitive treatments of SM21 in order to generate resistant mutants. Three colonies designated S3, S5 and S6, which displayed resistance to SM21, were isolated. All resistant strains exhibited enhanced transcriptomic responses for peptide and protein metabolism and secreted aspartate proteases (SAPs) activity under SM21 treatment compared to the parent strain GZY803. Consistently, supplementing the resistant strains, GZY803, and SC5314 with peptone, a form of digested peptides, decreased susceptibility to SM21. The present study demonstrates the usefulness of haploid C. albicans model in antifungal drug discovery. The findings will be invaluable to develop SM21 as a novel antifungal agent, which will benefit millions of patients suffering from Candida infections.
Collapse
Affiliation(s)
- Thuyen Truong
- Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | | | - Guisheng Zeng
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Thuc D Le
- School of Information Technology and Mathematical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Lin Liu
- School of Information Technology and Mathematical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Jiuyong Li
- School of Information Technology and Mathematical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Cao Tong
- Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | - Yue Wang
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chaminda J Seneviratne
- Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| |
Collapse
|
38
|
Bartelli TF, Bruno DCF, Briones MRS. Evidence for Mitochondrial Genome Methylation in the Yeast Candida albicans: A Potential Novel Epigenetic Mechanism Affecting Adaptation and Pathogenicity? Front Genet 2018; 9:166. [PMID: 29896215 PMCID: PMC5986885 DOI: 10.3389/fgene.2018.00166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 04/26/2018] [Indexed: 12/23/2022] Open
Abstract
The commensal yeast Candida albicans is an opportunistic pathogen. In order to successfully colonize or infect the human body, the fungus must adapt to the host’s environmental conditions, such as low oxygen tension (hypoxia), temperature (37°C), and the different carbon sources available. Previous studies demonstrated the adaptive importance of C. albicans genetic variability for its pathogenicity, although the contributions of epigenetic and the influence of environmental factors are not fully understood. Mitochondria play important roles in fungal energetic metabolism, regulation of nuclear epigenetic mechanisms and pathogenicity. However, the specific impact of inter-strain mitochondrial genome variability and mitochondrial epigenetics in pathogenicity is unclear. Here, we draw attention to this relevant organelle and its potential role in C. albicans pathogenicity and provide preliminary evidence, for the first time, for methylation of the yeast mitochondrial genome. Our results indicate that environmental conditions, such as continuous exposure for 12 weeks to hypoxia and 37°C, decrease the mitochondrial genome methylation in strains SC5314 and L757. However, the methylation decrease is quantitatively different in specific genome positions when strains SC5314 and L757 are compared. We hypothesize that this phenomenon can be promising for future research to understand how physical factors of the host affect the C. albicans mitochondrial genome and its possible impact on adaptation and pathogenicity.
Collapse
Affiliation(s)
- Thais F Bartelli
- Laboratory of Evolutionary Genomics and Biocomplexity, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil.,Laboratory of Medical Genomics, A. C. Camargo Cancer Center, São Paulo, Brazil
| | - Danielle C F Bruno
- Laboratory of Evolutionary Genomics and Biocomplexity, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Marcelo R S Briones
- Laboratory of Evolutionary Genomics and Biocomplexity, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil.,Department of Health Informatics, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
39
|
Li SX, Wu HT, Liu YT, Jiang YY, Zhang YS, Liu WD, Zhu KJ, Li DM, Zhang H. The F 1F o-ATP Synthase β Subunit Is Required for Candida albicans Pathogenicity Due to Its Role in Carbon Flexibility. Front Microbiol 2018; 9:1025. [PMID: 29875745 PMCID: PMC5974098 DOI: 10.3389/fmicb.2018.01025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 05/01/2018] [Indexed: 11/13/2022] Open
Abstract
Previous work has explored link between mitochondrial biology and fungal pathogenicity in F1Fo-ATP synthase in Candida albicans. In this work we have detailed the more specific roles of the F1Fo-ATP synthase β subunit, a key protein subunit of F1Fo-ATP synthase. The ability to assimilate alternative carbons in glucose-limited host niches is known to be a critical factor for infection caused by opportunistic pathogens including C. albicans. The function of the F1Fo-ATP synthase β subunit was characterized through the construction of an ATP2 gene null mutant (atp2Δ/Δ) and the gene-reconstituted strain (atp2Δ/ATP2) in order to understand the link between carbon metabolism and C. albicans pathogenesis. Cell growth, viability, cellular ATP content, mitochondrial membrane potential (ΔΨm), and intracellular ROS were compared between null mutant and control strain. Results showed that growth of the atp2Δ/Δ mutant in synthetic medium was slower than in complex medium. However, the synthetic medium delayed the onset of reduced cell viability and kept cellular ATP content from becoming fully depleted. Consistent with these observations, we identified transcriptional changes in metabolic response that activated other ATP-generating pathways, thereby improving cell viability during the initial phase. Unlike glucose effects, the atp2Δ/Δ mutant exhibited an immediate and sharp reduction in cell viability on non-fermentable carbon sources, consistent with an immediate depletion of cellular ATP content. Along with a reduced viability in non-fermentable carbon sources, the atp2Δ/Δ mutant displayed avirulence in a murine model of disseminated candidiasis as well as lower fungal loads in mouse organs. Regardless of the medium, however, a decrease in mitochondrial membrane potential (ΔΨm) was found in the atp2Δ/Δ mutant but ROS levels remained in the normal range. These results suggest that the F1Fo-ATP synthase β subunit is required for C. albicans pathogenicity and operates by affecting metabolic flexibility in carbon consumption.
Collapse
Affiliation(s)
- Shui-Xiu Li
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Institute of Mycology, Jinan University, Guangzhou, China
| | - Hao-Tian Wu
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Institute of Mycology, Jinan University, Guangzhou, China
| | - Yu-Ting Liu
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Institute of Mycology, Jinan University, Guangzhou, China
| | - Yi-Ying Jiang
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Institute of Mycology, Jinan University, Guangzhou, China
| | - Yi-Shan Zhang
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Institute of Mycology, Jinan University, Guangzhou, China
| | - Wei-Da Liu
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Kun-Ju Zhu
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Institute of Mycology, Jinan University, Guangzhou, China
| | - Dong-Mei Li
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Hong Zhang
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Institute of Mycology, Jinan University, Guangzhou, China
| |
Collapse
|
40
|
Identification and Characterization of Key Charged Residues in the Cofilin Protein Involved in Azole Susceptibility, Apoptosis, and Virulence of Aspergillus fumigatus. Antimicrob Agents Chemother 2018; 62:AAC.01659-17. [PMID: 29483117 DOI: 10.1128/aac.01659-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 02/10/2018] [Indexed: 12/28/2022] Open
Abstract
Through some specific amino acid residues, cofilin, a ubiquitous actin depolymerization factor, can significantly affect mitochondrial function related to drug resistance and apoptosis in Saccharomyces cerevisiae; however, this modulation in a major fungal pathogen, Aspergillus fumigatus, was still unclear. Hereby, it was found, first, that mutations on several charged residues in cofilin to alanine, D19A-R21A, E48A, and K36A, increased the formation of reactive oxygen species and induced apoptosis along with typical hallmarks, including mitochondrial membrane potential depolarization, cytochrome c release, upregulation of metacaspases, and DNA cleavage, in A. fumigatus Two of these mutations (D19A-R21A and K36A) increased acetyl coenzyme A and ATP concentrations by triggering fatty acid β-oxidation. The upregulated acetyl coenzyme A affected the ergosterol biosynthetic pathway, leading to overexpression of cyp51A and -B, while excess ATP fueled ATP-binding cassette transporters. Besides, both of these mutations reduced the susceptibility of A. fumigatus to azole drugs and enhanced the virulence of A. fumigatus in a Galleria mellonella infection model. Taken together, novel and key charged residues in cofilin were identified to be essential modules regulating the mitochondrial function involved in azole susceptibility, apoptosis, and virulence of A. fumigatus.
Collapse
|
41
|
Verma S, Shakya VPS, Idnurm A. Exploring and exploiting the connection between mitochondria and the virulence of human pathogenic fungi. Virulence 2018; 9:426-446. [PMID: 29261004 PMCID: PMC5955198 DOI: 10.1080/21505594.2017.1414133] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 12/04/2017] [Accepted: 12/04/2017] [Indexed: 12/17/2022] Open
Abstract
Mitochondria are best known for their role in the production of ATP; however, recent research implicates other mitochondrial functions in the virulence of human pathogenic fungi. Inhibitors of mitochondrial succinate dehydrogenase or the electron transport chain are successfully used to combat plant pathogenic fungi, but similar inhibition of mitochondrial functions has not been pursued for applications in medical mycology. Advances in understanding mitochondrial function relevant to human pathogenic fungi are in four major directions: 1) the role of mitochondrial morphology in virulence, 2) mitochondrial genetics, with a focus on mitochondrial DNA recombination and mitochondrial inheritance 3) the role of mitochondria in drug resistance, and 4) the interaction of mitochondria with other organelles. Collectively, despite the similarities in mitochondrial functions between fungi and animals, this organelle is currently an under-explored potential target to treat medical mycoses. Future research could define and then exploit those mitochondrial components best suited as drug targets.
Collapse
Affiliation(s)
- Surbhi Verma
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Viplendra P. S. Shakya
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Alexander Idnurm
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
42
|
Awadi A. Host species and pathogenicity effects in the evolution of the mitochondrial genomes of Eimeria species (Apicomplexa; Coccidia; Eimeriidae). ACTA ACUST UNITED AC 2017; 24:13. [PMID: 29299440 PMCID: PMC5740889 DOI: 10.1186/s40709-017-0070-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/14/2017] [Indexed: 11/10/2022]
Abstract
Background Mitochondria are fundamental organelles responsible for cellular metabolism and energy production in eukaryotes via the oxidative phosphorylation pathway. Mitochondrial DNA is often used in population and species studies with the assumption of neutral evolution. However, evidence of positive selection in mitochondrial coding genes of various animal species has accumulated suggesting that amino acid changes in mtDNA might be adaptive. The functional and physiological implications of the inferred positively selected sites are usually unknown and are only evaluated based on available structural and functional models. Such studies are absent in unicellular organisms that show several crucial differences to the electron transport chain of animal mitochondria. In the present study, we explored Eimeria mitogenomes for positive selection. We also tested for association between mtDNA polymorphism and environmental variation (i.e. host species), parasite life cycle (i.e. sporulation period), and efficient host cell invasion (i.e. pathogenicity, prepatent period). Findings We used site- and branch-site tests to estimate the extent of purifying and positive selection at each site and each lineage of several Eimeria parasite mitogenomes retrieved from GenBank. We founded sixteen codons in the three mtDNA-encoded proteins to be under positive selection compared to a strong purifying selection. Variation in the ratios of non-synonymous to synonymous changes of the studied parasites was associated with their different host species (F = 13.748; p < 0.001), whereas pathogenicity levels were associated with both synonymous and non-synonymous changes. This association was also confirmed by the multiple regression analysis. Conclusions Our results suggest that host species and pathogenicity are important factors that might shape mitochondrial variation in Eimeria parasites. This supports the important role of mtDNA variations in the evolution and adaptation of these parasites.
Collapse
Affiliation(s)
- Asma Awadi
- UR Génomique des Insectes Ravageurs des Cultures d'intérêt agronomique, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092 Tunis, Tunisia
| |
Collapse
|
43
|
Zhang P, Li H, Cheng J, Sun AY, Wang L, Mirchevska G, Calderone R, Li D. Respiratory stress in mitochondrial electron transport chain complex mutants of Candida albicans activates Snf1 kinase response. Fungal Genet Biol 2017; 111:73-84. [PMID: 29146491 DOI: 10.1016/j.fgb.2017.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 11/02/2017] [Accepted: 11/12/2017] [Indexed: 01/23/2023]
Abstract
We have previously established that mitochondrial Complex I (CI) mutants of Candida albicans display reduced oxygen consumption, decreased ATP production, and increased reactive oxidant species (ROS) during cell growth. Using the Seahorse XF96 analyzer, the energetic phenotypes of Electron Transport Chain (ETC) complex mutants are further characterized in the current study. The underlying regulation of energetic changes in these mutants is determined in glucose and non-glucose conditions when compared to wild type (WT) cells. In parental cells, the rate of oxygen consumption remains constant for 2.5 h following the addition of glucose, oligomycin, and 2-DG, but glycolysis is highly active upon the addition of glucose. In comparison, over the same time period, electron transport complex mutants (CI, CIII and CIV) have heightened activities in both oxygen consumption and glycolysis upon glucose uptake. We refer to the response in these mutants as an "explosive respiration," which we believe is caused by low energy levels and increased production of reactive oxygen species (ROS). Accompanying this phenotype in mutants is a hyperphosphorylation of Snf1p which in Saccharomyces cerevisiae serves as an energetic stress response protein kinase for maintaining energy homeostasis. Compared to wild type cells, a 2.9- to 4.4-fold hyperphosphorylation of Snf1p is observed in all ETC mutants in the presence of glucose. However, the explosive respiration and hyperphosphorylation of Snf1 can be partially reduced by the replacement of glucose with either glycerol or oleic acid in a mutant-specific manner. Furthermore, Inhibitors of glutathione synthesis (BSO) or anti-oxidants (mito-TEMPO) likewise confirmed an increase of Sfn1 phosphorylation in WT or mutant due to increased levels of ROS. Our data establish the role of the C. albicans Snf1 as a surveyor of cell energy and ROS levels. We interpret the "explosive respiration" as a failed attempt by ETC mutants to restore energy and ROS homeostasis via Snf1 activation. An inherently high OCR baseline in WT C. albicans with a background level of Snf1 activation is a prerequisite for success in quickly fermenting glucose.
Collapse
Affiliation(s)
- Pengyi Zhang
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA; Sport Science Research Center, Shandong Sport University, Jinan 250102, China
| | - Hongbin Li
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA; Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650031, China
| | - Jie Cheng
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - April Y Sun
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Liqing Wang
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Gordana Mirchevska
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA; Institute of Microbiology and Parasitology, Medical Faculty University Sts Cyril and Methodius, 50 Divizija. No. 6, 1000 Skopje, Macedonia
| | - Richard Calderone
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Dongmei Li
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA.
| |
Collapse
|
44
|
Xie JL, Bohovych I, Wong EOY, Lambert JP, Gingras AC, Khalimonchuk O, Cowen LE, Leach MD. Ydj1 governs fungal morphogenesis and stress response, and facilitates mitochondrial protein import via Mas1 and Mas2. MICROBIAL CELL 2017; 4:342-361. [PMID: 29082232 PMCID: PMC5657825 DOI: 10.15698/mic2017.10.594] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mitochondria underpin metabolism, bioenergetics, signalling, development and cell death in eukaryotes. Most of the ~1,000 yeast mitochondrial proteins are encoded in the nucleus and synthesised as precursors in the cytosol, with mitochondrial import facilitated by molecular chaperones. Here, we focus on the Hsp40 chaperone Ydj1 in the fungal pathogen Candida albicans, finding that it is localised to both the cytosol and outer mitochondrial membrane, and is required for cellular stress responses and for filamentation, a key virulence trait. Mapping the Ydj1 protein interaction network highlighted connections with co-chaperones and regulators of filamentation. Furthermore, the mitochondrial processing peptidases Mas1 and Mas2 were highly enriched for interaction with Ydj1. Additional analysis demonstrated that loss of MAS1, MAS2 or YDJ1 perturbs mitochondrial morphology and function. Deletion of YDJ1 impairs import of Su9, a protein that is cleaved to a mature form by Mas1 and Mas2. Thus, we highlight a novel role for Ydj1 in cellular morphogenesis, stress responses, and mitochondrial import in the fungal kingdom.
Collapse
Affiliation(s)
- Jinglin L Xie
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Iryna Bohovych
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Erin O Y Wong
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Jean-Philippe Lambert
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, ON, M5G 1X5, Canada
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.,Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, ON, M5G 1X5, Canada
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA.,Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA.,Fred & Pamela Buffett Cancer Center, Omaha, NE 68198, USA
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Michelle D Leach
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| |
Collapse
|
45
|
A mitochondrial proteomics view of complex I deficiency in Candida albicans. Mitochondrion 2017; 38:48-57. [PMID: 28801230 DOI: 10.1016/j.mito.2017.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/01/2017] [Accepted: 08/07/2017] [Indexed: 12/28/2022]
Abstract
Proteomic analyses were carried out on isolated mitochondrial samples of C. albicans from gene-deleted mutants (nuo1Δ, nuo2Δ and goa1Δ) as well as the parental strain in order to better understand the contribution of these three fungal-specific mitochondrial ETC complex I (CI) subunits to cellular activities. Herein, we identify 2333 putative proteins from four strains, in which a total of 663 proteins (28.5%) are putatively located in mitochondria. Comparison of protein abundances between mutants and the parental strain reveal 146 differentially-expressed proteins, of which 78 are decreased and 68 are increased in at least one mutant. The common changes across the three mutants include the down-regulation of nuclear-encoded CI subunit proteins as well as phospholipid, ergosterol and cell wall mannan synthesis, and up-regulated proteins in CIV and the alternative oxidase (AOX2). As for gene-specific functions, we find that NUO1 participates in nucleotide synthesis and ribosomal biogenesis; NUO2 is involved in vesicle trafficking; and GOA1 appears to regulate membrane transporter proteins, ROS removal, and substrates trafficking between peroxisomes and mitochondria. The proteomic view of general as well as mutant-specific proteins further extends our understanding of the functional roles of non-mammalian CI-specific subunit proteins in cell processes. Particularly intriguing is the confirmation of a regulatory role for GOA1 on ETC function, a protein found almost exclusively in Candida species. SIGNIFICANCE Fungal mitochondria are critical for fungal pathogenesis. The absence of any of the three fungal specific CI subunits in mitochondria causes an avirulence phenotype of C. albicans in a murine model of invasive disease. As model yeast (Saccharomyces cerevisiae) lacks a CI and is rarely a pathogen of humans, C. albicans is a better choice for establishing a link between mitochondrial CI and pathogenesis. Apart from the general effects of CI mutants on respiration, previous phenotyping of these mutants were quite similar to each other or to CI conservative subunit. By comparison to transcriptional data, the proteomic data obtained in this study indicate that biosynthetic events in each mutant such as cell wall and cell membrane phospholipids and ergosterol are generally decreased in both transcriptomal and translational levels. However, in the case of mitochondrial function, glycolysis/gluconeogenesis, and ROS scavengers, often gene changes are opposite that of proteomic data in mutants. We hypothesize that the loss of energy production in mutants is compensated by increases in protein levels of glycolysis, gluconeogenesis, and anti-ROS scavengers that at least extend mutant survival.
Collapse
|
46
|
Kastora SL, Herrero‐de‐Dios C, Avelar GM, Munro CA, Brown AJP. Sfp1 and Rtg3 reciprocally modulate carbon source-conditional stress adaptation in the pathogenic yeast Candida albicans. Mol Microbiol 2017; 105:620-636. [PMID: 28574606 PMCID: PMC5575477 DOI: 10.1111/mmi.13722] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2017] [Indexed: 11/27/2022]
Abstract
The pathogenicity of the clinically important yeast, Candida albicans, is dependent on robust responses to host-imposed stresses. These stress responses have generally been dissected in vitro at 30°C on artificial growth media that do not mimic host niches. Yet host inputs, such as changes in carbon source or temperature, are known to affect C. albicans stress adaptation. Therefore, we performed screens to identify novel regulators that promote stress resistance during growth on a physiologically relevant carboxylic acid and at elevated temperatures. These screens revealed that, under these 'non-standard' growth conditions, numerous uncharacterised regulators are required for stress resistance in addition to the classical Hog1, Cap1 and Cta4 stress pathways. In particular, two transcription factors (Sfp1 and Rtg3) promote stress resistance in a reciprocal, carbon source-conditional manner. SFP1 is induced in stressed glucose-grown cells, whereas RTG3 is upregulated in stressed lactate-grown cells. Rtg3 and Sfp1 regulate the expression of key stress genes such as CTA4, CAP1 and HOG1 in a carbon source-dependent manner. These mechanisms underlie the stress sensitivity of C. albicans sfp1 cells during growth on glucose, and rtg3 cells on lactate. The data suggest that C. albicans exploits environmentally contingent regulatory mechanisms to retain stress resistance during host colonisation.
Collapse
Affiliation(s)
- Stavroula L. Kastora
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, School of Medical Sciences, Institute of Medical SciencesUniversity of AberdeenAberdeenAB25 2ZDUK
| | - Carmen Herrero‐de‐Dios
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, School of Medical Sciences, Institute of Medical SciencesUniversity of AberdeenAberdeenAB25 2ZDUK
| | - Gabriela M. Avelar
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, School of Medical Sciences, Institute of Medical SciencesUniversity of AberdeenAberdeenAB25 2ZDUK
| | - Carol A. Munro
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, School of Medical Sciences, Institute of Medical SciencesUniversity of AberdeenAberdeenAB25 2ZDUK
| | - Alistair J. P. Brown
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, School of Medical Sciences, Institute of Medical SciencesUniversity of AberdeenAberdeenAB25 2ZDUK
| |
Collapse
|
47
|
A novel bZIP protein, Gsb1, is required for oxidative stress response, mating, and virulence in the human pathogen Cryptococcus neoformans. Sci Rep 2017. [PMID: 28642475 PMCID: PMC5481450 DOI: 10.1038/s41598-017-04290-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The human pathogen Cryptococcus neoformans, which causes life-threatening meningoencephalitis in immunocompromised individuals, normally faces diverse stresses in the human host. Here, we report that a novel, basic, leucine-zipper (bZIP) protein, designated Gsb1 (general stress-related bZIP protein 1), is required for its normal growth and diverse stress responses. C. neoformans gsb1Δ mutants grew slowly even under non-stressed conditions and showed increased sensitivity to high or low temperatures. The hypersensitivity of gsb1Δ to oxidative and nitrosative stresses was reversed by addition of a ROS scavenger. RNA-Seq analysis during normal growth revealed increased expression of a number of genes involved in mitochondrial respiration and cell cycle, but decreased expression of several genes involved in the mating-pheromone-responsive MAPK signaling pathway. Accordingly, gsb1Δ showed defective mating and abnormal cell-cycle progression. Reflecting these pleiotropic phenotypes, gsb1Δ exhibited attenuated virulence in a murine model of cryptococcosis. Moreover, RNA-Seq analysis under oxidative stress revealed that several genes involved in ROS defense, cell-wall remodeling, and protein glycosylation were highly induced in the wild-type strain but not in gsb1Δ. Gsb1 localized exclusively in the nucleus in response to oxidative stress. In conclusion, Gsb1 is a key transcription factor modulating growth, stress responses, differentiation, and virulence in C. neoformans.
Collapse
|
48
|
Huang X, Chen X, He Y, Yu X, Li S, Gao N, Niu L, Mao Y, Wang Y, Wu X, Wu W, Wu J, Zhou D, Zhan X, Chen C. Mitochondrial complex I bridges a connection between regulation of carbon flexibility and gastrointestinal commensalism in the human fungal pathogen Candida albicans. PLoS Pathog 2017; 13:e1006414. [PMID: 28570675 PMCID: PMC5469625 DOI: 10.1371/journal.ppat.1006414] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 06/13/2017] [Accepted: 05/16/2017] [Indexed: 12/26/2022] Open
Abstract
Efficient assimilation of alternative carbon sources in glucose-limited host niches is critical for colonization of Candida albicans, a commensal yeast that frequently causes opportunistic infection in human. C. albicans evolved mechanistically to regulate alternative carbon assimilation for the promotion of fungal growth and commensalism in mammalian hosts. However, this highly adaptive mechanism that C. albicans employs to cope with alternative carbon assimilation has yet to be clearly understood. Here we identified a novel role of C. albicans mitochondrial complex I (CI) in regulating assimilation of alternative carbon sources such as mannitol. Our data demonstrate that CI dysfunction by deleting the subunit Nuo2 decreases the level of NAD+, downregulates the NAD+-dependent mannitol dehydrogenase activity, and consequently inhibits hyphal growth and biofilm formation in conditions when the carbon source is mannitol, but not fermentative sugars like glucose. Mannitol-dependent morphogenesis is controlled by a ROS-induced signaling pathway involving Hog1 activation and Brg1 repression. In vivo studies show that nuo2Δ/Δ mutant cells are severely compromised in gastrointestinal colonization and the defect can be rescued by a glucose-rich diet. Thus, our findings unravel a mechanism by which C. albicans regulates carbon flexibility and commensalism. Alternative carbon assimilation might represent a fitness advantage for commensal fungi in successful colonization of host niches. Most fermentative sugars like glucose, although routinely used in laboratory cell culture medium, are in fact only present at very low levels and even absent in many host niches. Therefore, assimilation of alternative nutrients is essential for the survival, proliferation and infection of most clinically important microbial pathogens like C. albicans in their hosts. In this study, we show that mitochondrial complex I (CI) is indispensable for proper hyphal growth and biofilm formation of C. albicans cells when mannitol, but not fermentative sugars like glucose or mannose, is used as the sole carbon source. We also find that a specific signaling pathway that senses and responds to the alternative carbon source incorporates input from mitochondrially-derived molecules like reactive oxygen species (ROS) to influence activation of the Hog1 MAPK and expression of the biofilm-regulator Brg1. Our findings further demonstrate that CI dysfunction confers a severe defect of C. albicans in gastrointestinal colonization and changing the diet with glucose is able to significantly rescue the commensal defect. Our study suggests that C. albicans has a unique regulatory system to sense and utilize the alternative carbon sources abundant in the GI tract and to promote commensalism. Significantly, CI activity appears to play a vital role in this highly adaptive system to regulate commensalism, in addition to its well-characterized role in virulence.
Collapse
Affiliation(s)
- Xinhua Huang
- Unit of Pathogenic Fungal Infection & Host Immunity, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoqing Chen
- Unit of Pathogenic Fungal Infection & Host Immunity, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- College of Life Science, Shanghai University, Shanghai, China
| | - Yongmin He
- Unit of Pathogenic Fungal Infection & Host Immunity, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoyu Yu
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of medicine, Shanghai, China
| | - Shanshan Li
- Unit of Pathogenic Fungal Infection & Host Immunity, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- College of Life Science, Shanghai Normal University, Shanghai, China
| | - Ning Gao
- Unit of Pathogenic Fungal Infection & Host Immunity, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Lida Niu
- Department of Dermatology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yinhe Mao
- Unit of Pathogenic Fungal Infection & Host Immunity, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Yuanyuan Wang
- Unit of Pathogenic Fungal Infection & Host Immunity, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Xianwei Wu
- Unit of Pathogenic Fungal Infection & Host Immunity, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Wenjuan Wu
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of medicine, Shanghai, China
| | - Jianhua Wu
- Department of Dermatology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiangjiang Zhan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Changbin Chen
- Unit of Pathogenic Fungal Infection & Host Immunity, CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
49
|
Li SX, Song YJ, Zhang YS, Wu HT, Guo H, Zhu KJ, Li DM, Zhang H. Mitochondrial Complex V α Subunit Is Critical for Candida albicans Pathogenicity through Modulating Multiple Virulence Properties. Front Microbiol 2017; 8:285. [PMID: 28280492 PMCID: PMC5322696 DOI: 10.3389/fmicb.2017.00285] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 02/13/2017] [Indexed: 11/22/2022] Open
Abstract
The α subunit (ATP1) is a vital component of mitochondrial complex V which counts for the majority of cellular ATP production in a living organism. Nevertheless, how the α subunit influences other cellular processes such as pathogenicity in Candida albicans remains poorly understood. To address this question, ATP1 mutant (atp1Δ/Δ) and the gene-reconstituted strain (atp1Δ/ATP1) have been constructed in this study and their pathogenicity-related traits are compared to those of wild type (WT). In a murine model of disseminated candidiasis, atp1Δ/Δ infected mice have a significantly higher survival rate and experience a lower fungal burden in tissues. In in vitro studies atp1Δ/Δ lose a capability to damage or destroy macrophages and endothelial cells. Furthermore, atp1Δ/Δ is not able to grow under either glucose-denial conditions or high H2O2 conditions, both of which are associated with the potency of the macrophages to kill C. albicans. Defects in filamentation and biofilm formation may impair the ability of atp1Δ/Δ to penetrate host cells and establish robust colonies in the host tissues. In concert with these pathogenic features, intracellular ATP levels of atp1Δ/Δ can drop to 1/3 of WT level. These results indicate that the α subunit of Complex V play important roles in C. albicans pathogenicity.
Collapse
Affiliation(s)
- Shui-Xiu Li
- The First Affiliated Hospital of Jinan UniversityGuangzhou, China; Institute of Mycology, Jinan UniversityGuangzhou, China
| | - Yan-Jun Song
- The First Affiliated Hospital of Jinan UniversityGuangzhou, China; Institute of Mycology, Jinan UniversityGuangzhou, China
| | - Yi-Shan Zhang
- The First Affiliated Hospital of Jinan UniversityGuangzhou, China; Institute of Mycology, Jinan UniversityGuangzhou, China
| | - Hao-Tian Wu
- The First Affiliated Hospital of Jinan UniversityGuangzhou, China; Institute of Mycology, Jinan UniversityGuangzhou, China
| | - Hui Guo
- The First Affiliated Hospital of Jinan UniversityGuangzhou, China; Institute of Mycology, Jinan UniversityGuangzhou, China
| | - Kun-Ju Zhu
- The First Affiliated Hospital of Jinan UniversityGuangzhou, China; Institute of Mycology, Jinan UniversityGuangzhou, China
| | - Dong-Mei Li
- Department of Microbiology and Immunology, Georgetown University Medical Center Washington, DC, USA
| | - Hong Zhang
- The First Affiliated Hospital of Jinan UniversityGuangzhou, China; Institute of Mycology, Jinan UniversityGuangzhou, China
| |
Collapse
|
50
|
Böttcher B, Pöllath C, Staib P, Hube B, Brunke S. Candida species Rewired Hyphae Developmental Programs for Chlamydospore Formation. Front Microbiol 2016; 7:1697. [PMID: 27833594 PMCID: PMC5081361 DOI: 10.3389/fmicb.2016.01697] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/12/2016] [Indexed: 01/14/2023] Open
Abstract
Chlamydospore formation is a characteristic of many fungal species, among them the closely related human-pathogenic dimorphic yeasts Candida albicans and C. dubliniensis. Whereas function and regulation of filamentation are well-studied in these species, the basis of chlamydospore formation is mostly unknown. Here, we investigate the contribution of environmental and genetic factors and identified central proteins involved in species-specific regulation of chlamydosporulation. We show that specific nutrient levels strongly impact chlamydospore initiation, with starvation favoring sporulation and elevated levels of saccharides or peptone inhibiting it. Thresholds for these nutritional effects differ between C. albicans and C. dubliniensis, which explain species-specific chlamydospore formation on certain diagnostic media. A C. albicans nrg1Δ mutant phenocopied C. dubliniensis, putting Nrg1 regulation at the basis of species-specific chlamydospore formation under various conditions. By screening a series of potential chlamydospore regulators, we identified the TOR and cAMP pathways as crucial for sporulation. As rapamycin treatment blocked chlamydosporulation, a low basal Tor1 activity seems to be essential. In addition, TOR effector pathways play an important role, and loss of the NCR (nitrogen catabolite repression) gene regulators Gat1 and Gln3 reduced chlamydospore formation. A severe reduction was seen for a C. albicans gcn4Δ deletion strain, implicating a link between regulation of amino acid biosynthesis and chlamydospore development. On the other hand, deletion of the GTPase gene RAS1 and the adenylyl cyclase gene CYR1 caused a defect in chlamydospore formation that was mostly rescued by cAMP supplementation. Thus, cAMP-signaling is a second major pathway to control chlamydospore production. Finally, we confirmed light exposure to have a repressive effect on chlamydosporulation. However, permanent illumination only reduced, but not abolished chlamydospore production of C. albicans whereas C. dubliniensis sporulation was unaffected. In summary, we describe novel environmental factors which determine chlamydosporulation and propose a first model for the regulatory network of chlamydospore formation by different Candida species.
Collapse
Affiliation(s)
- Bettina Böttcher
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute Jena, Germany
| | - Christine Pöllath
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-InstituteJena, Germany; Institute for Medical Microbiology, Jena University HospitalJena, Germany; Center for Sepsis Control and Care, Jena University HospitalJena, Germany
| | - Peter Staib
- Department of Research and Development, Kneipp GmbH Würzburg, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-InstituteJena, Germany; Center for Sepsis Control and Care, Jena University HospitalJena, Germany; Friedrich Schiller University JenaJena, Germany
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute Jena, Germany
| |
Collapse
|