1
|
Yu P, Zhou M, Yu D, Zhang Z, Ye S, Yu Y, Sun X, Li S, Hu C. Targeted regulation of sterol biosynthesis genes according to perturbations in ergosterol biosynthesis in fungi. J Adv Res 2025:S2090-1232(25)00065-7. [PMID: 39892608 DOI: 10.1016/j.jare.2025.01.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/23/2024] [Accepted: 01/27/2025] [Indexed: 02/04/2025] Open
Abstract
INTRODUCTION The synthesis and regulation of ergosterol are vital for fungal growth and stress adaptation. While ergosterol-mediated feedback regulation is a recognized mechanism controlling sterol biosynthesis in fungi, prior research suggests the presence of additional regulatory mechanisms. However, the specifics of the alternative regulatory mechanisms have not been systematically investigated. OBJECTIVES We proposed that a regulatory network is likely to discern disturbances in sterol biosynthesis and trigger responses accordingly. This study aimed to validate the hypothesis and investigate the regulatory mechanisms. METHODS Quantitative Real-time PCR and HPLC-MS/MS were used to explore and compare the regulation of sterol biosynthesis in different fungi. Key transcription factors involved in the alternative regulatory mechanism in Neurospora crassa were identified by phenotypic profiling of a transcription factor mutant library. ChIP-qPCR, fluorescence confocal imaging, RNA sequencing, and gene set enrichment analysis (GSEA) were used to reveal the mechanism of each transcription factor. RESULTS Unlike the canonical ergosterol-mediated feedback regulation in fungi like C. neoformans, our study demonstrated that the inhibitions of ergosterol biosynthesis at specific steps triggered distinct transcriptional responses of erg genes in fungi, including N. crassa and Aspergillus fumigatus. In N. crassa, the responses were orchestrated by different transcription factors. Specifically, the inhibition of ERG24 and ERG2 activated transcription factors SAH-2 and AtrR, resulting in the upregulation of erg24, erg2, erg25, and erg3. Furthermore, the inhibition of ERG11/CYP51 activated transcription factor NcSR, leading to the upregulation of erg11 and erg6. Phenotypic profiles of mutants of various N. crassa erg genes and the aforementioned transcription factors implied that the targeted regulation of ergosterol biosynthesis could fortify fungal viability within complex habitats. CONCLUSION Our study reveals a novel regulatory mechanism in fungi: targeted upregulation of specific sterol biosynthesis genes in response to given perturbations in ergosterol biosynthesis, exhibiting a higher degree of precision and sophistication in sterol biosynthesis regulation.
Collapse
Affiliation(s)
- Pengju Yu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100101 China
| | - Mi Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 China; National Institute for Radiological Protection, China CDC, Beijing 100101 China
| | - Deshui Yu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010 China
| | - Zhongchi Zhang
- Shanghai Fondin Bio_Tech Company Limited, Shanghai 201204 China
| | - Shuting Ye
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100101 China
| | - Yifa Yu
- Nanning Harworld Biological Technology Company Limited, Nanning 530000 China
| | - Xianyun Sun
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100101 China
| | - Shaojie Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100101 China.
| | - Chengcheng Hu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 China.
| |
Collapse
|
2
|
Kumar D, Kumar A. Molecular Determinants Involved in Candida albicans Biofilm Formation and Regulation. Mol Biotechnol 2024; 66:1640-1659. [PMID: 37410258 DOI: 10.1007/s12033-023-00796-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/14/2023] [Indexed: 07/07/2023]
Abstract
Candida albicans is known for its pathogenicity, although it lives within the human body as a commensal member. The commensal nature of C. albicans is well controlled and regulated by the host's immune system as they live in the harmonized microenvironment. However, the development of certain unusual microhabitat conditions (change in pH, co-inhabiting microorganisms' population ratio, debilitated host-immune system) pokes this commensal fungus to transform into a pathogen in such a way that it starts to propagate very rapidly and tries to breach the epithelial barrier to enter the host's systemic circulations. In addition, Candida is infamous as a major nosocomial (hospital-acquired infection) agent because it enters the human body through venous catheters or medical prostheses. The hysterical mode of C. albicans growth builds its microcolony or biofilm, which is pathogenic for the host. Biofilms propose additional resistance mechanisms from host immunity or extracellular chemicals to aid their survival. Differential gene expressions and regulations within the biofilms cause altered morphology and metabolism. The genes associated with adhesiveness, hyphal/pseudo-hyphal growth, persister cell transformation, and biofilm formation by C. albicans are controlled by myriads of cell-signaling regulators. These genes' transcription is controlled by different molecular determinants like transcription factors and regulators. Therefore, this review has focused discussion on host-immune-sensing molecular determinants of Candida during biofilm formation, regulatory descriptors (secondary messengers, regulatory RNAs, transcription factors) of Candida involved in biofilm formation that could enable small-molecule drug discovery against these molecular determinants, and lead to disrupt the well-structured Candida biofilms effectively.
Collapse
Affiliation(s)
- Dushyant Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, Chhattisgarh, 492010, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, Chhattisgarh, 492010, India.
| |
Collapse
|
3
|
Shrivastava M, Kouyoumdjian GS, Kirbizakis E, Ruiz D, Henry M, Vincent AT, Sellam A, Whiteway M. The Adr1 transcription factor directs regulation of the ergosterol pathway and azole resistance in Candida albicans. mBio 2023; 14:e0180723. [PMID: 37791798 PMCID: PMC10653825 DOI: 10.1128/mbio.01807-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 10/05/2023] Open
Abstract
IMPORTANCE Research often relies on well-studied orthologs within related species, with researchers using a well-studied gene or protein to allow prediction of the function of the ortholog. In the opportunistic pathogen Candida albicans, orthologs are usually compared with Saccharomyces cerevisiae, and this approach has been very fruitful. Many transcription factors (TFs) do similar jobs in the two species, but many do not, and typically changes in function are driven not by modifications in the structures of the TFs themselves but in the connections between the transcription factors and their regulated genes. This strategy of changing TF function has been termed transcription factor rewiring. In this study, we specifically looked for rewired transcription factors, or Candida-specific TFs, that might play a role in drug resistance. We investigated 30 transcription factors that were potentially rewired or were specific to the Candida clade. We found that the Adr1 transcription factor conferred resistance to drugs like fluconazole, amphotericin B, and terbinafine when activated. Adr1 is known for fatty acid and glycerol utilization in Saccharomyces, but our study reveals that it has been rewired and is connected to ergosterol biosynthesis in Candida albicans.
Collapse
Affiliation(s)
- Manjari Shrivastava
- Department of Biology, Concordia University, Montréal, Quebec, Canada
- Center for research, Montreal Heart Institute, Montréal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | | | | | - Daniel Ruiz
- Department of Biology, Concordia University, Montréal, Quebec, Canada
| | - Manon Henry
- Center for research, Montreal Heart Institute, Montréal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Antony T. Vincent
- Department of Animal Sciences, Université Laval, Quebec City, Canada
| | - Adnane Sellam
- Center for research, Montreal Heart Institute, Montréal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Malcolm Whiteway
- Department of Biology, Concordia University, Montréal, Quebec, Canada
| |
Collapse
|
4
|
Kuan CS, Ng KP, Yew SM, Umar Meleh H, Seow HF, How KN, Yeo SK, Jee JM, Tan YC, Yee WY, Hoh CC, Velayuthan RD, Na SL, Masri SN, Chew SY, Than LTL. Comparative genomic and phenotypic analyses of pathogenic fungi Neoscytalidium dimidiatum and Bipolaris papendorfii isolated from human skin scraping. Braz J Microbiol 2023; 54:1351-1372. [PMID: 37351789 PMCID: PMC10485236 DOI: 10.1007/s42770-023-01032-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 06/07/2023] [Indexed: 06/24/2023] Open
Abstract
Neoscytalidium dimidiatum and Bipolaris species are fungal plant pathogens that have been reported to cause human diseases. Recently, we have isolated numerous N. dimidiatum and Bipolaris species from the skin scrapings and nails of different patients. In this work, we have sequenced the genome of one strain of N. dimidiatum. The sequenced genome was compared to that of a previously reported Bipolaris papendorfii genome for a better understanding of their complex lifestyle and broad host-range pathogenicity. Both N. dimidiatum UM 880 (~ 43 Mb) and B. papendorfii UM 226 (~ 33 Mb) genomes include 11,015-12,320 putative coding DNA sequences, of which 0.51-2.49% are predicted transposable elements. Analysis of secondary metabolism gene clusters revealed several genes involved in melanin biosynthesis and iron uptake. The arsenal of CAZymes related to plants pathogenicity is comparable between the species, including genes involved in hemicellulose and pectin decomposition. Several important gene encoding keratinolytic peptidases were identified in N. dimidiatum and B. papendorfii, reflecting their potential pathogenic role in causing skin and nail infections. In this study, additional information on the metabolic features of these two species, such as nutritional profiling, pH tolerance, and osmotolerant, are revealed. The genomic characterization of N. dimidiatum and B. papendorfii provides the basis for the future functional studies to gain further insights as to what makes these fungi persist in plants and why they are pathogenic to humans.
Collapse
Affiliation(s)
- Chee Sian Kuan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kee Peng Ng
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Su Mei Yew
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Hadiza Umar Meleh
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Heng Fong Seow
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Kang Nien How
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Siok Koon Yeo
- School of Biosciences, Taylor's University Lakeside Campus, Subang Jaya, 47500, Selangor, Malaysia
| | - Jap Meng Jee
- School of Biosciences, Taylor's University Lakeside Campus, Subang Jaya, 47500, Selangor, Malaysia
| | - Yung-Chie Tan
- Codon Genomics Sdn Bhd, 43200 Seri Kembangan, Selangor, Malaysia
| | - Wai-Yan Yee
- Codon Genomics Sdn Bhd, 43200 Seri Kembangan, Selangor, Malaysia
| | - Chee-Choong Hoh
- Codon Genomics Sdn Bhd, 43200 Seri Kembangan, Selangor, Malaysia
| | - Rukumani Devi Velayuthan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Shiang Ling Na
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Siti Norbaya Masri
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Shu Yih Chew
- Department of Pathology and Pharmacology, School of Medicine, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Leslie Thian Lung Than
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
5
|
Transcript profiling reveals the role of PDB1, a subunit of the pyruvate dehydrogenase complex, in Candida albicans biofilm formation. Res Microbiol 2023; 174:104014. [PMID: 36535619 DOI: 10.1016/j.resmic.2022.104014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Candida albicans, the most prevalent fungal pathogen in the human microbiota can form biofilms on implanted medical devices. These biofilms are tolerant to conventional antifungal drugs and the host immune system as compared to the free-floating planktonic cells. Several in vitro models of biofilm formation have been used to determine the C. albicans biofilm-forming process, regulatory networks, and their properties. Here, we performed a genome-wide transcript profiling with C. albicans cells grown in YPD medium both in planktonic and biofilm condition. Transcript profiling of YPD-grown biofilms was further compared with published Spider medium-grown biofilm transcriptome data. This comparative analysis highlighted the differentially expressed genes and the pathways altered during biofilm formation. In addition, we demonstrated that overexpression of the PDB1 gene encoding a subunit of the pyruvate dehydrogenase resulted in defective biofilm formation. Altogether, this comparative analysis of transcript profiles from two different studies provides a robust reading on biofilm-altered genes and pathways during C. albicans biofilm development.
Collapse
|
6
|
Branco J, Miranda IM, Rodrigues AG. Candida parapsilosis Virulence and Antifungal Resistance Mechanisms: A Comprehensive Review of Key Determinants. J Fungi (Basel) 2023; 9:jof9010080. [PMID: 36675901 PMCID: PMC9862255 DOI: 10.3390/jof9010080] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
Candida parapsilosis is the second most common Candida species isolated in Asia, Southern Europe, and Latin America and is often involved in invasive infections that seriously impact human health. This pathogen is part of the psilosis complex, which also includes Candida orthopsilosis and Candida metapsilosis. C. parapsilosis infections are particularly prevalent among neonates with low birth weights, individuals who are immunocompromised, and patients who require prolonged use of a central venous catheter or other indwelling devices, whose surfaces C. parapsilosis exhibits an enhanced capacity to adhere to and form biofilms. Despite this well-acknowledged prevalence, the biology of C. parapsilosis has not been as extensively explored as that of Candida albicans. In this paper, we describe the molecular mechanistic pathways of virulence in C. parapsilosis and show how they differ from those of C. albicans. We also describe the mode of action of antifungal drugs used for the treatment of Candida infections, namely, polyenes, echinocandins, and azoles, as well as the resistance mechanisms developed by C. parapsilosis to overcome them. Finally, we stress the importance of the ongoing search for species-specific features that may aid the development of effective control strategies and thus reduce the burden on patients and healthcare costs.
Collapse
Affiliation(s)
- Joana Branco
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Center for Health Technology and Services Research—CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
- Correspondence: ; Tel./Fax: +351-225513662
| | - Isabel M. Miranda
- Cardiovascular Research & Development Centre—UnIC@RISE, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
| | - Acácio G. Rodrigues
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Center for Health Technology and Services Research—CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
| |
Collapse
|
7
|
Henry M, Burgain A, Tebbji F, Sellam A. Transcriptional Control of Hypoxic Hyphal Growth in the Fungal Pathogen Candida albicans. Front Cell Infect Microbiol 2022; 11:770478. [PMID: 35127551 PMCID: PMC8807691 DOI: 10.3389/fcimb.2021.770478] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/26/2021] [Indexed: 12/18/2022] Open
Abstract
The ability of Candida albicans, an important human fungal pathogen, to develop filamentous forms is a crucial determinant for host invasion and virulence. While hypoxia is one of the predominant host cues that promote C. albicans filamentous growth, the regulatory circuits that link oxygen availability to filamentation remain poorly characterized. We have undertaken a genetic screen and identified the two transcription factors Ahr1 and Tye7 as central regulators of the hypoxic filamentation. Both ahr1 and tye7 mutants exhibited a hyperfilamentous phenotype specifically under an oxygen-depleted environment suggesting that these transcription factors act as negative regulators of hypoxic filamentation. By combining microarray and ChIP-chip analyses, we have characterized the set of genes that are directly modulated by Ahr1 and Tye7. We found that both Ahr1 and Tye7 modulate a distinct set of genes and biological processes. Our genetic epistasis analysis supports our genomic finding and suggests that Ahr1 and Tye7 act independently to modulate hyphal growth in response to hypoxia. Furthermore, our genetic interaction experiments uncovered that Ahr1 and Tye7 repress the hypoxic filamentation via the Efg1 and Ras1/Cyr1 pathways, respectively. This study yielded a new and an unprecedented insight into the oxygen-sensitive regulatory circuit that control morphogenesis in a fungal pathogen.
Collapse
Affiliation(s)
- Manon Henry
- Montreal Heart Institute, Université de Montréal, Montréal, QC, Canada
| | - Anaïs Burgain
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Faiza Tebbji
- Montreal Heart Institute, Université de Montréal, Montréal, QC, Canada
| | - Adnane Sellam
- Montreal Heart Institute, Université de Montréal, Montréal, QC, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- *Correspondence: Adnane Sellam,
| |
Collapse
|
8
|
Lu H, Shrivastava M, Whiteway M, Jiang Y. Candida albicans targets that potentially synergize with fluconazole. Crit Rev Microbiol 2021; 47:323-337. [PMID: 33587857 DOI: 10.1080/1040841x.2021.1884641] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 01/11/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
Fluconazole has characteristics that make it widely used in the clinical treatment of C. albicans infections. However, fluconazole has only a fungistatic activity in C. albicans, therefore, in the long-term treatment of C. albicans infection with fluconazole, C. albicans has the potential to acquire fluconazole resistance. A promising approach to increase fluconazole's efficacy is identifying potential targets of drugs that can enhance the antifungal effect of fluconazole, or even make the drug fungicidal. In this review, we systematically provide a global overview of potential targets of drugs synergistic with fluconazole in C. albicans, identify new avenues for research on fluconazole potentiation, and highlight the promise of combinatorial strategies with fluconazole in combatting C. albicans infections.
Collapse
Affiliation(s)
- Hui Lu
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | | | - Malcolm Whiteway
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Yuanying Jiang
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Branco J, Martins-Cruz C, Rodrigues L, Silva RM, Araújo-Gomes N, Gonçalves T, Miranda IM, Rodrigues AG. The transcription factor Ndt80 is a repressor of Candida parapsilosis virulence attributes. Virulence 2021; 12:601-614. [PMID: 33538224 PMCID: PMC7872087 DOI: 10.1080/21505594.2021.1878743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Candida parapsilosis is an emergent opportunistic yeast among hospital settings that affects mainly neonates and immunocompromised patients. Its most remarkable virulence traits are the ability to adhere to prosthetic materials, as well as the formation of biofilm on abiotic surfaces. The Ndt80 transcription factor was identified as one of the regulators of biofilm formation by C. parapsilosis; however, its function in this process was not yet clarified. By knocking out NDT80 (CPAR2-213640) gene, or even just one single copy of the gene, we observed substantial alterations of virulence attributes, including morphogenetic changes, adhesion and biofilm growth profiles. Both ndt80Δ and ndt80ΔΔ mutants changed colony and cell morphologies from smooth, yeast-shaped to crepe and pseudohyphal elongated forms, exhibiting promoted adherence to polystyrene microspheres and notably, forming a higher amount of biofilm compared to wild-type strain. Interestingly, we identified transcription factors Ume6, Cph2, Cwh41, Ace2, Bcr1, protein kinase Mkc1 and adhesin Als7 to be under Ndt80 negative regulation, partially explaining the phenotypes displayed by the ndt80ΔΔ mutant. Furthermore, ndt80ΔΔ pseudohyphae adhered more rapidly and were more resistant to murine macrophage attack, becoming deleterious to such cells after phagocytosis. Unexpectedly, our findings provide the first evidence for a direct role of Ndt80 as a repressor of C. parapsilosis virulence attributes. This finding shows that C. parapsilosis Ndt80 functionally diverges from its homolog in the close related fungal pathogen C. albicans.
Collapse
Affiliation(s)
- Joana Branco
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto , Porto, Portugal.,CINTESIS - Center for Health Technology and Services Research, Faculty of Medicine, University of Porto , Porto, Portugal
| | - Cláudia Martins-Cruz
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto , Porto, Portugal
| | - Lisa Rodrigues
- CNC - Centre for Neuroscience and Cell Biology, University of Coimbra , Coimbra, Portugal.,FMUC - Faculty of Medicine, University of Coimbra , Coimbra, Portugal
| | - Raquel M Silva
- Faculdade De Medicina Dentária, CIIS - Centro De Investigação Interdisciplinar Em Saúde, Universidade Católica Portuguesa , Viseu, Portugal
| | - Nuno Araújo-Gomes
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto , Porto, Portugal
| | - Teresa Gonçalves
- CNC - Centre for Neuroscience and Cell Biology, University of Coimbra , Coimbra, Portugal.,FMUC - Faculty of Medicine, University of Coimbra , Coimbra, Portugal
| | - Isabel M Miranda
- Cardiovascular R&D Centre, Faculty of Medicine, University of Porto , Porto, Portugal
| | - Acácio G Rodrigues
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto , Porto, Portugal.,CINTESIS - Center for Health Technology and Services Research, Faculty of Medicine, University of Porto , Porto, Portugal
| |
Collapse
|
10
|
A conserved regulator controls asexual sporulation in the fungal pathogen Candida albicans. Nat Commun 2020; 11:6224. [PMID: 33277479 PMCID: PMC7718266 DOI: 10.1038/s41467-020-20010-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 11/03/2020] [Indexed: 12/16/2022] Open
Abstract
Transcription factor Rme1 is conserved among ascomycetes and regulates meiosis and pseudohyphal growth in Saccharomyces cerevisiae. The genome of the meiosis-defective pathogen Candida albicans encodes an Rme1 homolog that is part of a transcriptional circuitry controlling hyphal growth. Here, we use chromatin immunoprecipitation and genome-wide expression analyses to study a possible role of Rme1 in C. albicans morphogenesis. We find that Rme1 binds upstream and activates the expression of genes that are upregulated during chlamydosporulation, an asexual process leading to formation of large, spherical, thick-walled cells during nutrient starvation. RME1 deletion abolishes chlamydosporulation in three Candida species, whereas its overexpression bypasses the requirement for chlamydosporulation cues and regulators. RME1 expression levels correlate with chlamydosporulation efficiency across clinical isolates. Interestingly, RME1 displays a biphasic pattern of expression, with a first phase independent of Rme1 function and dependent on chlamydospore-inducing cues, and a second phase dependent on Rme1 function and independent of chlamydospore-inducing cues. Our results indicate that Rme1 plays a central role in chlamydospore development in Candida species.
Collapse
|
11
|
Rodriguez DL, Quail MM, Hernday AD, Nobile CJ. Transcriptional Circuits Regulating Developmental Processes in Candida albicans. Front Cell Infect Microbiol 2020; 10:605711. [PMID: 33425784 PMCID: PMC7793994 DOI: 10.3389/fcimb.2020.605711] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 11/04/2020] [Indexed: 12/21/2022] Open
Abstract
Candida albicans is a commensal member of the human microbiota that colonizes multiple niches in the body including the skin, oral cavity, and gastrointestinal and genitourinary tracts of healthy individuals. It is also the most common human fungal pathogen isolated from patients in clinical settings. C. albicans can cause a number of superficial and invasive infections, especially in immunocompromised individuals. The ability of C. albicans to succeed as both a commensal and a pathogen, and to thrive in a wide range of environmental niches within the host, requires sophisticated transcriptional regulatory programs that can integrate and respond to host specific environmental signals. Identifying and characterizing the transcriptional regulatory networks that control important developmental processes in C. albicans will shed new light on the strategies used by C. albicans to colonize and infect its host. Here, we discuss the transcriptional regulatory circuits controlling three major developmental processes in C. albicans: biofilm formation, the white-opaque phenotypic switch, and the commensal-pathogen transition. Each of these three circuits are tightly knit and, through our analyses, we show that they are integrated together by extensive regulatory crosstalk between the core regulators that comprise each circuit.
Collapse
Affiliation(s)
- Diana L. Rodriguez
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California—Merced, Merced, CA, United States
- Quantitative and Systems Biology Graduate Program, University of California—Merced, Merced, CA, United States
| | - Morgan M. Quail
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California—Merced, Merced, CA, United States
- Quantitative and Systems Biology Graduate Program, University of California—Merced, Merced, CA, United States
| | - Aaron D. Hernday
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California—Merced, Merced, CA, United States
- Health Sciences Research Institute, University of California - Merced, Merced, CA, United States
| | - Clarissa J. Nobile
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California—Merced, Merced, CA, United States
- Health Sciences Research Institute, University of California - Merced, Merced, CA, United States
| |
Collapse
|
12
|
Abstract
Hypoxia is the predominant condition that the human opportunistic fungus Candida albicans encounters in the majority of the colonized niches within the host. So far, the impact of such a condition on the overall metabolism of this important human-pathogenic yeast has not been investigated. Here, we have undertaken a time-resolved metabolomics analysis to uncover the metabolic landscape of fungal cells experiencing hypoxia. Our data showed a dynamic reprogramming of many fundamental metabolic pathways, such as glycolysis, the pentose phosphate pathway, and different metabolic routes related to fungal cell wall biogenesis. The C. albicans lipidome was highly affected by oxygen depletion, with an increased level of free fatty acids and biochemical intermediates of membrane lipids, including phospholipids, lysophospholipids, sphingolipids, and mevalonate. The depletion of oxygen-dependent lipids such as ergosterol or phosphatidylcholine with longer and polyunsaturated lateral fatty acid chains was observed only at the later hypoxic time point (180 min). Transcriptomics data supported the main metabolic response to hypoxia when matched to our metabolomic profiles. The hypoxic metabolome reflected different physiological alterations of the cell wall and plasma membrane of C. albicans under an oxygen-limiting environment that were confirmed by different approaches. This study provided a framework for future in vivo investigations to examine relevant hypoxic metabolic trajectories in fungal virulence and fitness within the host.IMPORTANCE A critical aspect of cell fitness is the ability to sense and adapt to variations in oxygen levels in their local environment. Candida albicans is an opportunistic yeast that is the most prevalent human fungal pathogen. While hypoxia is the predominant condition that C. albicans encounters in most of its niches, its impact on fungal metabolism remains unexplored so far. Here, we provided a detailed landscape of the C. albicans metabolome that emphasized the importance of many metabolic routes for the adaptation of this yeast to oxygen depletion. The fungal hypoxic metabolome identified in this work provides a framework for future investigations to assess the contribution of relevant metabolic pathways in the fitness of C. albicans and other human eukaryotic pathogens with similar colonized human niches. As hypoxia is present at most of the fungal infection foci in the host, hypoxic metabolic pathways are thus an attractive target for antifungal therapy.
Collapse
|
13
|
Burgain A, Pic É, Markey L, Tebbji F, Kumamoto CA, Sellam A. A novel genetic circuitry governing hypoxic metabolic flexibility, commensalism and virulence in the fungal pathogen Candida albicans. PLoS Pathog 2019; 15:e1007823. [PMID: 31809527 PMCID: PMC6919631 DOI: 10.1371/journal.ppat.1007823] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 12/18/2019] [Accepted: 10/18/2019] [Indexed: 01/04/2023] Open
Abstract
Inside the human host, the pathogenic yeast Candida albicans colonizes predominantly oxygen-poor niches such as the gastrointestinal and vaginal tracts, but also oxygen-rich environments such as cutaneous epithelial cells and oral mucosa. This suppleness requires an effective mechanism to reversibly reprogram the primary metabolism in response to oxygen variation. Here, we have uncovered that Snf5, a subunit of SWI/SNF chromatin remodeling complex, is a major transcriptional regulator that links oxygen status to the metabolic capacity of C. albicans. Snf5 and other subunits of SWI/SNF complex were required to activate genes of carbon utilization and other carbohydrates related process specifically under hypoxia. snf5 mutant exhibited an altered metabolome reflecting that SWI/SNF plays an essential role in maintaining metabolic homeostasis and carbon flux in C. albicans under hypoxia. Snf5 was necessary to activate the transcriptional program linked to both commensal and invasive growth. Accordingly, snf5 was unable to maintain its growth in the stomach, the cecum and the colon of mice. snf5 was also avirulent as it was unable to invade Galleria larvae or to cause damage to human enterocytes and murine macrophages. Among candidates of signaling pathways in which Snf5 might operate, phenotypic analysis revealed that mutants of Ras1-cAMP-PKA pathway, as well as mutants of Yak1 and Yck2 kinases exhibited a similar carbon flexibility phenotype as did snf5 under hypoxia. Genetic interaction analysis indicated that the adenylate cyclase Cyr1, a key component of the Ras1-cAMP pathway interacted genetically with Snf5. Our study yielded new insight into the oxygen-sensitive regulatory circuit that control metabolic flexibility, stress, commensalism and virulence in C. albicans. A critical aspect of eukaryotic cell fitness is the ability to sense and adapt to variations in oxygen level in their local environment. Hypoxia leads to a substantial remodeling of cell metabolism and energy homeostasis, and thus, organisms must develop an effective regulatory mechanism to cope with oxygen depletion. Candida albicans is an opportunistic yeast that is the most prevalent human fungal pathogens. This yeast colonizes diverse niches inside the human host with contrasting carbon sources and oxygen concentrations. While hypoxia is the predominant condition that C. albicans encounters inside most of the niches, the impact of this condition on metabolic flexibility, a major determinant of fungal virulence, was completely unexplored. Here, we uncovered that the chromatin remodelling complex SWI/SNF is a master regulator of the circuit that links oxygen status to a broad spectrum of carbon utilization routes. Snf5 was essential for the maintenance of C. albicans as a commensal and also for the expression of its virulence. The oxygen-sensitive regulators identified in this work provide a framework to comprehensively understand the virulence of human fungal pathogens and represent a therapeutic value to fight fungal infections.
Collapse
Affiliation(s)
- Anaïs Burgain
- CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, Quebec, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Émilie Pic
- CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, Quebec, Canada
| | - Laura Markey
- Program in Molecular Microbiology, Tufts University, Boston, Massachusetts, United States of America
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, United States of America
| | - Faiza Tebbji
- CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, Quebec, Canada
| | - Carol A. Kumamoto
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, United States of America
| | - Adnane Sellam
- CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, Quebec, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
- Big Data Research Centre (BDRC-UL), Université Laval, Faculty of Sciences and Engineering, Quebec City, Quebec, Canada
- * E-mail:
| |
Collapse
|
14
|
A phosphorylated transcription factor regulates sterol biosynthesis in Fusarium graminearum. Nat Commun 2019; 10:1228. [PMID: 30874562 PMCID: PMC6420630 DOI: 10.1038/s41467-019-09145-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/20/2019] [Indexed: 11/08/2022] Open
Abstract
Sterol biosynthesis is controlled by transcription factor SREBP in many eukaryotes. Here, we show that SREBP orthologs are not involved in the regulation of sterol biosynthesis in Fusarium graminearum, a fungal pathogen of cereal crops worldwide. Instead, sterol production is controlled in this organism by a different transcription factor, FgSR, that forms a homodimer and binds to a 16-bp cis-element of its target gene promoters containing two conserved CGAA repeat sequences. FgSR is phosphorylated by the MAP kinase FgHog1, and the phosphorylated FgSR interacts with the chromatin remodeling complex SWI/SNF at the target genes, leading to enhanced transcription. Interestingly, FgSR orthologs exist only in Sordariomycetes and Leotiomycetes fungi. Additionally, FgSR controls virulence mainly via modulating deoxynivalenol biosynthesis and responses to phytoalexin.
Collapse
|
15
|
Sellam A, Chaillot J, Mallick J, Tebbji F, Richard Albert J, Cook MA, Tyers M. The p38/HOG stress-activated protein kinase network couples growth to division in Candida albicans. PLoS Genet 2019; 15:e1008052. [PMID: 30921326 PMCID: PMC6456229 DOI: 10.1371/journal.pgen.1008052] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/09/2019] [Accepted: 02/28/2019] [Indexed: 12/26/2022] Open
Abstract
Cell size is a complex trait that responds to developmental and environmental cues. Quantitative size analysis of mutant strain collections disrupted for protein kinases and transcriptional regulators in the pathogenic yeast Candida albicans uncovered 66 genes that altered cell size, few of which overlapped with known size genes in the budding yeast Saccharomyces cerevisiae. A potent size regulator specific to C. albicans was the conserved p38/HOG MAPK module that mediates the osmostress response. Basal HOG activity inhibited the SBF G1/S transcription factor complex in a stress-independent fashion to delay the G1/S transition. The HOG network also governed ribosome biogenesis through the master transcriptional regulator Sfp1. Hog1 bound to the promoters and cognate transcription factors for ribosome biogenesis regulons and interacted genetically with the SBF G1/S machinery, and thereby directly linked cell growth and division. These results illuminate the evolutionary plasticity of size control and identify the HOG module as a nexus of cell cycle and growth regulation.
Collapse
Affiliation(s)
- Adnane Sellam
- Infectious Diseases Research Centre (CRI), CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, QC, Canada
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Julien Chaillot
- Infectious Diseases Research Centre (CRI), CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, QC, Canada
| | - Jaideep Mallick
- Institute for Research in Immunology and Cancer (IRIC), Department of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Faiza Tebbji
- Infectious Diseases Research Centre (CRI), CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, QC, Canada
| | - Julien Richard Albert
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael A. Cook
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Mike Tyers
- Institute for Research in Immunology and Cancer (IRIC), Department of Medicine, Université de Montréal, Montréal, Québec, Canada
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| |
Collapse
|
16
|
Abstract
Patients with suppressed immunity are at the highest risk for hospital-acquired infections. Among these, invasive candidiasis is the most prevalent systemic fungal nosocomial infection. Over recent decades, the combined prevalence of non-albicans Candida species outranked Candida albicans infections in several geographical regions worldwide, highlighting the need to understand their pathobiology in order to develop effective treatment and to prevent future outbreaks. Candida parapsilosis is the second or third most frequently isolated Candida species from patients. Besides being highly prevalent, its biology differs markedly from that of C. albicans, which may be associated with C. parapsilosis' increased incidence. Differences in virulence, regulatory and antifungal drug resistance mechanisms, and the patient groups at risk indicate that conclusions drawn from C. albicans pathobiology cannot be simply extrapolated to C. parapsilosis Such species-specific characteristics may also influence their recognition and elimination by the host and the efficacy of antifungal drugs. Due to the availability of high-throughput, state-of-the-art experimental tools and molecular genetic methods adapted to C. parapsilosis, genome and transcriptome studies are now available that greatly contribute to our understanding of what makes this species a threat. In this review, we summarize 10 years of findings on C. parapsilosis pathogenesis, including the species' genetic properties, transcriptome studies, host responses, and molecular mechanisms of virulence. Antifungal susceptibility studies and clinician perspectives are discussed. We also present regional incidence reports in order to provide an updated worldwide epidemiology summary.
Collapse
|
17
|
Sharma J, Rosiana S, Razzaq I, Shapiro RS. Linking Cellular Morphogenesis with Antifungal Treatment and Susceptibility in Candida Pathogens. J Fungi (Basel) 2019; 5:E17. [PMID: 30795580 PMCID: PMC6463059 DOI: 10.3390/jof5010017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 02/07/2023] Open
Abstract
Fungal infections are a growing public health concern, and an increasingly important cause of human mortality, with Candida species being amongst the most frequently encountered of these opportunistic fungal pathogens. Several Candida species are polymorphic, and able to transition between distinct morphological states, including yeast, hyphal, and pseudohyphal forms. While not all Candida pathogens are polymorphic, the ability to undergo morphogenesis is linked with the virulence of many of these pathogens. There are also many connections between Candida morphogenesis and antifungal drug treatment and susceptibility. Here, we review how Candida morphogenesis-a key virulence trait-is linked with antifungal drugs and antifungal drug resistance. We highlight how antifungal therapeutics are able to modulate morphogenesis in both sensitive and drug-resistant Candida strains, the shared signaling pathways that mediate both morphogenesis and the cellular response to antifungal drugs and drug resistance, and the connection between Candida morphology, drug resistance, and biofilm growth. We further review the development of anti-virulence drugs, and targeting Candida morphogenesis as a novel therapeutic strategy to target fungal pathogens. Together, this review highlights important connections between fungal morphogenesis, virulence, and susceptibility to antifungals.
Collapse
Affiliation(s)
- Jehoshua Sharma
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Sierra Rosiana
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Iqra Razzaq
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
18
|
Integration of Growth and Cell Size via the TOR Pathway and the Dot6 Transcription Factor in Candida albicans. Genetics 2018; 211:637-650. [PMID: 30593490 DOI: 10.1534/genetics.118.301872] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022] Open
Abstract
In most species, size homeostasis appears to be exerted in late G1 phase as cells commit to division, called Start in yeast and the Restriction Point in metazoans. This size threshold couples cell growth to division, and, thereby, establishes long-term size homeostasis. Our former investigations have shown that hundreds of genes markedly altered cell size under homeostatic growth conditions in the opportunistic yeast Candida albicans, but surprisingly only few of these overlapped with size control genes in the budding yeast Saccharomyces cerevisiae Here, we investigated one of the divergent potent size regulators in C. albicans, the Myb-like HTH transcription factor Dot6. Our data demonstrated that Dot6 is a negative regulator of Start, and also acts as a transcriptional activator of ribosome biogenesis (Ribi) genes. Genetic epistasis uncovered that Dot6 interacted with the master transcriptional regulator of the G1 machinery, SBF complex, but not with the Ribi and cell size regulators Sch9, Sfp1, and p38/Hog1. Dot6 was required for carbon-source modulation of cell size, and it is regulated at the level of nuclear localization by the TOR pathway. Our findings support a model where Dot6 acts as a hub that integrates growth cues directly via the TOR pathway to control the commitment to mitotic division at G1.
Collapse
|
19
|
Katz ME. Nutrient sensing-the key to fungal p53-like transcription factors? Fungal Genet Biol 2018; 124:8-16. [PMID: 30579885 DOI: 10.1016/j.fgb.2018.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/12/2018] [Accepted: 12/18/2018] [Indexed: 02/02/2023]
Abstract
The mammalian tumour suppressor protein, p53, plays an important role in cell cycle control, DNA repair and apoptotic cell death. Transcription factors belonging to the "p53-like" superfamily are found exclusively in the Amorphea branch of eukaryotes, which includes animals, fungi and slime molds. Many members of the p53-like superfamily (proteins containing p53, Rel/Dorsal, T-box, STAT, Runt, Ndt80, and the CSL DNA-binding domains) are involved in development. Two families of p53-like proteins (Ndt80 and CSL) are widespread in fungi as well as animals. The Basidiomycetes and the Ascomycetes have undergone reciprocal loss of the Ndt80 and CSL classes of transcription factors, with the CSL class preserved in only one branch of Ascomycetes and the Ndt80 class found in only one branch of Basidiomycetes. Recent studies have greatly expanded the known functions of fungal Ndt80-like proteins and shown that they play important roles in sexual reproduction, cell death, N-acetylglucosamine sensing and catabolism, secondary metabolism, and production of extracellular hydrolases such as proteases, chitinases and cellulases. In the opportunistic pathogen, Candida albicans, Ndt80-like proteins are essential for hyphal growth and virulence and also play a role in antifungal resistance. These recent studies have confirmed that nutrient sensing is a common feature of fungal Ndt80-like proteins and is also found in fungal CSL-like transcription factors, which in animals is the mediator of Notch signalling. Thus, nutrient sensing may represent the ancestral role of the p53-like superfamily.
Collapse
Affiliation(s)
- Margaret E Katz
- Molecular and Cellular Biology, University of New England, Armidale, NSW 2351, Australia.
| |
Collapse
|
20
|
Lv QZ, Qin YL, Yan L, Wang L, Zhang C, Jiang YY. NSG2 ( ORF19.273) Encoding Protein Controls Sensitivity of Candida albicans to Azoles through Regulating the Synthesis of C14-Methylated Sterols. Front Microbiol 2018. [PMID: 29515531 PMCID: PMC5826172 DOI: 10.3389/fmicb.2018.00218] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Antifungal azole drugs inhibit the synthesis of ergosterol and cause the accumulation of sterols containing a 14α-methyl group, which is related to the properties of cell membrane. Due to the frequent recurrence of fungal infections and clinical long-term prophylaxis, azole resistance is increasing rapidly. In our research, Nsg2p, encoded by the ORF19.273 in Candida albicans, is found to be involved in the inhibition of 14α-methylated sterols and resistance to azoles. Under the action of fluconazole, nsg2Δ/Δ mutants are seriously damaged in the integrity and functions of cell membranes with a decrease of ergosterol ratio and an increase of both obtusifoliol and 14α-methylfecosterol ratio. The balance between ergosterol and 14α-methyl sterols mediated by NSG2 plays an important role in C. albicans responding to azoles in vitro as well as in vivo. These phenotypes are completely different from those of Nsg2p in Saccharomyces cerevisiae, which is proved to increase the stability of HMG-CoA and resistance to lovastatin. Based on the evidence above, it is indicated that the decrease of 14α-methylated sterols is an azole-resistant mechanism in C. albicans, which may provide new strategies for overcoming the problems of azole resistance.
Collapse
Affiliation(s)
- Quan-Zhen Lv
- Center for New Drug Research, College of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yu-Lin Qin
- Center for New Drug Research, College of Pharmacy, Second Military Medical University, Shanghai, China
| | - Lan Yan
- Center for New Drug Research, College of Pharmacy, Second Military Medical University, Shanghai, China
| | - Liang Wang
- Center for New Drug Research, College of Pharmacy, Second Military Medical University, Shanghai, China
| | - Chuyue Zhang
- Shanghai Pinghe Bilingual School, Shanghai, China
| | - Yuan-Ying Jiang
- Center for New Drug Research, College of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
21
|
Cavalheiro M, Teixeira MC. Candida Biofilms: Threats, Challenges, and Promising Strategies. Front Med (Lausanne) 2018; 5:28. [PMID: 29487851 PMCID: PMC5816785 DOI: 10.3389/fmed.2018.00028] [Citation(s) in RCA: 411] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/26/2018] [Indexed: 12/19/2022] Open
Abstract
Candida species are fungal pathogens known for their ability to cause superficial and systemic infections in the human host. These pathogens are able to persist inside the host due to the development of pathogenicity and multidrug resistance traits, often leading to the failure of therapeutic strategies. One specific feature of Candida species pathogenicity is their ability to form biofilms, which protects them from external factors such as host immune system defenses and antifungal drugs. This review focuses on the current threats and challenges when dealing with biofilms formed by Candida albicans, Candida glabrata, Candida tropicalis, and Candida parapsilosis, highlighting the differences between the four species. Biofilm characteristics depend on the ability of each species to produce extracellular polymeric substances (EPS) and display dimorphic growth, but also on the biofilm substratum, carbon source availability and other factors. Additionally, the transcriptional control over processes like adhesion, biofilm formation, filamentation, and EPS production displays great complexity and diversity within pathogenic yeasts of the Candida genus. These differences not only have implications in the persistence of colonization and infections but also on antifungal resistance typically found in Candida biofilm cells, potentiated by EPS, that functions as a barrier to drug diffusion, and by the overexpression of drug resistance transporters. The ability to interact with different species in in vivo Candida biofilms is also a key factor to consider when dealing with this problem. Despite many challenges, the most promising strategies that are currently available or under development to limit biofilm formation or to eradicate mature biofilms are discussed.
Collapse
Affiliation(s)
- Mafalda Cavalheiro
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,iBB - Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Miguel Cacho Teixeira
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,iBB - Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
22
|
Shemesh E, Hanf B, Hagag S, Attias S, Shadkchan Y, Fichtman B, Harel A, Krüger T, Brakhage AA, Kniemeyer O, Osherov N. Phenotypic and Proteomic Analysis of the Aspergillus fumigatus Δ PrtT, Δ XprG and Δ XprG/Δ PrtT Protease-Deficient Mutants. Front Microbiol 2017; 8:2490. [PMID: 29312198 PMCID: PMC5732999 DOI: 10.3389/fmicb.2017.02490] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 11/30/2017] [Indexed: 11/13/2022] Open
Abstract
Aspergillus fumigatus is the most common mold species to cause disease in immunocompromised patients. Infection usually begins when its spores (conidia) are inhaled into the airways, where they germinate, forming hyphae that penetrate and destroy the lungs and disseminate to other organs, leading to high mortality. The ability of hyphae to penetrate the pulmonary epithelium is a key step in the infectious process. A. fumigatus produces extracellular proteases that are thought to enhance penetration by degrading host structural barriers. This study explores the role of the A. fumigatus transcription factor XprG in controlling secreted proteolytic activity and fungal virulence. We deleted xprG, alone and in combination with prtT, a transcription factor previously shown to regulate extracellular proteolysis. xprG deletion resulted in abnormal conidiogenesis and formation of lighter colored, more fragile conidia and a moderate reduction in the ability of culture filtrates (CFs) to degrade substrate proteins. Deletion of both xprG and prtT resulted in an additive reduction, generating a mutant strain producing CF with almost no ability to degrade substrate proteins. Detailed proteomic analysis identified numerous secreted proteases regulated by XprG and PrtT, alone and in combination. Interestingly, proteomics also identified reduced levels of secreted cell wall modifying enzymes (glucanases, chitinases) and allergens following deletion of these genes, suggesting they target additional cellular processes. Surprisingly, despite the major alteration in the secretome of the xprG/prtT null mutant, including two to fivefold reductions in the level of 24 proteases, 18 glucanases, 6 chitinases, and 19 allergens, it retained wild-type virulence in murine systemic and pulmonary models of infection. This study highlights the extreme adaptability of A. fumigatus during infection based on extensive gene redundancy.
Collapse
Affiliation(s)
- Einav Shemesh
- Aspergillus and Antifungal Research Laboratory, Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Benjamin Hanf
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany.,Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Shelly Hagag
- Aspergillus and Antifungal Research Laboratory, Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shani Attias
- Aspergillus and Antifungal Research Laboratory, Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yana Shadkchan
- Aspergillus and Antifungal Research Laboratory, Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Boris Fichtman
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Amnon Harel
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Thomas Krüger
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany.,Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Axel A Brakhage
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany.,Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Olaf Kniemeyer
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany.,Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Nir Osherov
- Aspergillus and Antifungal Research Laboratory, Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
23
|
The Genomic Landscape of the Fungus-Specific SWI/SNF Complex Subunit, Snf6, in Candida albicans. mSphere 2017; 2:mSphere00497-17. [PMID: 29152582 PMCID: PMC5687922 DOI: 10.1128/msphere.00497-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 10/26/2017] [Indexed: 12/14/2022] Open
Abstract
SWI/SNF is an ATP-dependent chromatin-remodeling complex that is required for the regulation of gene expression in eukaryotes. While most of the fungal SWI/SNF components are evolutionarily conserved with those of the metazoan SWI/SNF, subunits such as Snf6 are specific to certain fungi and thus represent potential antifungal targets. We have characterized the role of the Snf6 protein in Candida albicans. Our data showed that although there was low conservation of its protein sequence with other fungal orthologs, Snf6 was copurified with bona fide SWI/SNF complex subunits. The role of Snf6 in C. albicans was investigated by determining its genome-wide occupancy using chromatin immunoprecipitation coupled to tiling arrays in addition to transcriptional profiling of the snf6 conditional mutant. Snf6 directs targets that were enriched in functions related to carbohydrate and amino acid metabolic circuits, to cellular transport, and to heat stress responses. Under hypha-promoting conditions, Snf6 expanded its set of targets to include promoters of genes related to respiration, ribosome biogenesis, mating, and vesicle transport. In accordance with the genomic occupancy data, an snf6 doxycycline-repressible mutant exhibited growth defects in response to heat stress and also when grown in the presence of different fermentable and nonfermentable carbon sources. Snf6 was also required to differentiate invasive hyphae in response to different cues. This study represents the first comprehensive characterization, at the genomic level, of the role of SWI/SNF in the pathogenic yeast C. albicans and uncovers functions that are essential for fungal morphogenesis and metabolic flexibility. IMPORTANCECandida albicans is a natural component of the human microbiota but also an opportunistic pathogen that causes life-threatening infections in immunosuppressed patients. Current therapeutics include a limited number of molecules that suffer from limitations, including growing clinical resistance and toxicity. New molecules are being clinically investigated; however, the majority of these potential antifungals target the same processes as do the standard antifungals and might confront the same problems of toxicity and loss of efficiency due to the common resistance mechanisms. Here, we characterized the role of Snf6, a fungus-specific subunit of the chromatin-remodeling complex SWI/SNF. Our genomic and phenotypic data demonstrated a central role of Snf6 in biological processes that are critical for a fungal pathogen to colonize its host and cause disease, suggesting Snf6 as a possible antifungal target.
Collapse
|
24
|
Basso V, Znaidi S, Lagage V, Cabral V, Schoenherr F, LeibundGut-Landmann S, d'Enfert C, Bachellier-Bassi S. The two-component response regulator Skn7 belongs to a network of transcription factors regulating morphogenesis in Candida albicans and independently limits morphogenesis-induced ROS accumulation. Mol Microbiol 2017; 106:157-182. [PMID: 28752552 DOI: 10.1111/mmi.13758] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2017] [Indexed: 01/01/2023]
Abstract
Skn7 is a conserved fungal heat shock factor-type transcriptional regulator. It participates in maintaining cell wall integrity and regulates the osmotic/oxidative stress response (OSR) in S. cerevisiae, where it is part of a two-component signal transduction system. Here, we comprehensively address the function of Skn7 in the human fungal pathogen Candida albicans. We provide evidence reinforcing functional divergence, with loss of the cell wall/osmotic stress-protective roles and acquisition of the ability to regulate morphogenesis on solid medium. Mapping of the Skn7 transcriptional circuitry, through combination of genome-wide expression and location technologies, pointed to a dual regulatory role encompassing OSR and filamentous growth. Genetic interaction analyses revealed close functional interactions between Skn7 and master regulators of morphogenesis, including Efg1, Cph1 and Ume6. Intracellular biochemical assays revealed that Skn7 is crucial for limiting the accumulation of reactive oxygen species (ROS) in filament-inducing conditions on solid medium. Interestingly, functional domain mapping using site-directed mutagenesis allowed decoupling of Skn7 function in morphogenesis from protection against intracellular ROS. Our work identifies Skn7 as an integral part of the transcriptional circuitry controlling C. albicans filamentous growth and illuminates how C. albicans relies on an evolutionarily-conserved regulator to protect itself from intracellular ROS during morphological development.
Collapse
Affiliation(s)
- Virginia Basso
- Institut Pasteur, INRA, Unité Biologie et Pathogénicité Fongiques, 25 rue du Docteur Roux, Paris, France.,Univ. Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, rue du Dr. Roux, Paris, France
| | - Sadri Znaidi
- Institut Pasteur, INRA, Unité Biologie et Pathogénicité Fongiques, 25 rue du Docteur Roux, Paris, France.,Institut Pasteur de Tunis, Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique, 13 Place Pasteur, Tunis-Belvédère, B.P. 74, 1002, Tunisia.,University of Tunis El Manar, Tunis 1036, Tunisia
| | - Valentine Lagage
- Institut Pasteur, INRA, Unité Biologie et Pathogénicité Fongiques, 25 rue du Docteur Roux, Paris, France
| | - Vitor Cabral
- Institut Pasteur, INRA, Unité Biologie et Pathogénicité Fongiques, 25 rue du Docteur Roux, Paris, France.,Univ. Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, rue du Dr. Roux, Paris, France
| | - Franziska Schoenherr
- Institute of Virology, Winterthurerstr. 266a, Zürich, Switzerland.,SUPSI, Laboratorio Microbiologia Applicata, via Mirasole 22a, Bellinzona, Switzerland
| | | | - Christophe d'Enfert
- Institut Pasteur, INRA, Unité Biologie et Pathogénicité Fongiques, 25 rue du Docteur Roux, Paris, France
| | - Sophie Bachellier-Bassi
- Institut Pasteur, INRA, Unité Biologie et Pathogénicité Fongiques, 25 rue du Docteur Roux, Paris, France
| |
Collapse
|
25
|
The global regulator Ncb2 escapes from the core promoter and impacts transcription in response to drug stress in Candida albicans. Sci Rep 2017; 7:46084. [PMID: 28383050 PMCID: PMC5382705 DOI: 10.1038/srep46084] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/10/2017] [Indexed: 11/28/2022] Open
Abstract
Ncb2, the β subunit of NC2 complex, a heterodimeric regulator of transcription was earlier shown to be involved in the activated transcription of CDR1 gene in azole resistant isolate (AR) of Candida albicans. This study examines its genome-wide role by profiling Ncb2 occupancy between genetically matched pair of azole sensitive (AS) and AR clinical isolates. A comparison of Ncb2 recruitment between the two isolates displayed that 29 genes had higher promoter occupancy of Ncb2 in the AR isolate. Additionally, a host of genes exhibited exclusive occupancy of Ncb2 at promoters of either AR or AS isolate. The analysis also divulged new actors of multi-drug resistance, whose transcription was activated owing to the differential occupancy of Ncb2. The conditional, sequence-specific positional escape of Ncb2 from the core promoter in AS isolate and its preferential recruitment to the core promoter of certain genes in AR isolates was most noteworthy means of transcription regulation. Together, we show that positional rearrangement of Ncb2 resulting in either activation or repression of gene expression in response to drug-induced stress, represents a novel regulatory mechanism that opens new opportunities for therapeutic intervention to prevent development of drug tolerance in C. albicans cells.
Collapse
|
26
|
Branco J, Ola M, Silva RM, Fonseca E, Gomes NC, Martins-Cruz C, Silva AP, Silva-Dias A, Pina-Vaz C, Erraught C, Brennan L, Rodrigues AG, Butler G, Miranda IM. Impact of ERG3 mutations and expression of ergosterol genes controlled by UPC2 and NDT80 in Candida parapsilosis azole resistance. Clin Microbiol Infect 2017; 23:575.e1-575.e8. [PMID: 28196695 DOI: 10.1016/j.cmi.2017.02.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 02/05/2017] [Accepted: 02/06/2017] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Candida parapsilosis is a healthcare-related fungal pathogen particularly common among immunocompromised patients. Our understanding of antifungal resistance mechanisms in C. parapsilosis remains very limited. We previously described an azole-resistant strain of C. parapsilosis (BC014RPSC), obtained following exposure in vitro to posaconazole. Resistance was associated with overexpression of ergosterol biosynthetic genes (ERG genes), together with the transcription factors UPC2 (CPAR2-207280) and NDT80 (CPAR2-213640). The aim of this study was to identify the mechanisms underlying posaconazole resistance of the BC014RPSC strain. METHODS To identify the causative mutation, we sequenced the genomes of the susceptible (BC014S) and resistant (BC014RPSC) isolates, using Illumina technology. Ergosterol content was assessed in both strains by mass spectrometry. UPC2 and NDT80 genes were deleted in BC014RPSC strain. Mutants were characterized regarding their azole susceptibility profile and ERG gene expression. RESULTS One homozygous missense mutation (R135I) was found in ERG3 (CPAR2-105550) in the azole-resistant isolate. We show that Erg3 activity is completely impaired, resulting in a build up of sterol intermediates and a failure to generate ergosterol. Deleting UPC2 and NDT80 in BC014RPSC reduces the expression of ERG genes and restores susceptibility to azole drugs. CONCLUSIONS A missense mutation in the ERG3 gene results in azole resistance and up-regulation of ERG genes expression. We propose that this mutation prevents the formation of toxic intermediates when cells are treated with azoles. Resistance can be reversed by deleting Upc2 and Ndt80 transcription factors. UPC2 plays a stronger role in C. parapsilosis azole resistance than does NDT80.
Collapse
Affiliation(s)
- J Branco
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - M Ola
- UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - R M Silva
- Department of Medical Sciences, iBiMED & IEETA, University of Aveiro, Aveiro, Portugal
| | - E Fonseca
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - N C Gomes
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - C Martins-Cruz
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - A P Silva
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal; CINTESIS-Centre for Health Technology and Services Research, Faculty of Medicine, University of Porto, Porto, Portugal
| | - A Silva-Dias
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal; CINTESIS-Centre for Health Technology and Services Research, Faculty of Medicine, University of Porto, Porto, Portugal
| | - C Pina-Vaz
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal; CINTESIS-Centre for Health Technology and Services Research, Faculty of Medicine, University of Porto, Porto, Portugal
| | - C Erraught
- Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - L Brennan
- Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - A G Rodrigues
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal; CINTESIS-Centre for Health Technology and Services Research, Faculty of Medicine, University of Porto, Porto, Portugal
| | - G Butler
- UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - I M Miranda
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal; CINTESIS-Centre for Health Technology and Services Research, Faculty of Medicine, University of Porto, Porto, Portugal.
| |
Collapse
|
27
|
Genome-Wide Screen for Haploinsufficient Cell Size Genes in the Opportunistic Yeast Candida albicans. G3-GENES GENOMES GENETICS 2017; 7:355-360. [PMID: 28040776 PMCID: PMC5295585 DOI: 10.1534/g3.116.037986] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
One of the most critical but still poorly understood aspects of eukaryotic cell proliferation is the basis for commitment to cell division in late G1 phase, called Start in yeast and the Restriction Point in metazoans. In all species, a critical cell size threshold coordinates cell growth with cell division and thereby establishes a homeostatic cell size. While a comprehensive survey of cell size genetic determinism has been performed in the saprophytic yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, very little is known in pathogenic fungi. As a number of critical Start regulators are haploinsufficient for cell size, we applied a quantitative analysis of the size phenome, using elutriation-barcode sequencing methodology, to 5639 barcoded heterozygous deletion strains of the opportunistic yeast Candida albicans. Our screen identified conserved known regulators and biological processes required to maintain size homeostasis in the opportunistic yeast C. albicans. We also identified novel C. albicans-specific size genes and provided a conceptual framework for future mechanistic studies. Interestingly, some of the size genes identified were required for fungal pathogenicity suggesting that cell size homeostasis may be elemental to C. albicans fitness or virulence inside the host.
Collapse
|
28
|
Kuan CS, Cham CY, Singh G, Yew SM, Tan YC, Chong PS, Toh YF, Atiya N, Na SL, Lee KW, Hoh CC, Yee WY, Ng KP. Genomic Analyses of Cladophialophora bantiana, a Major Cause of Cerebral Phaeohyphomycosis Provides Insight into Its Lifestyle, Virulence and Adaption in Host. PLoS One 2016; 11:e0161008. [PMID: 27570972 PMCID: PMC5003357 DOI: 10.1371/journal.pone.0161008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/28/2016] [Indexed: 11/18/2022] Open
Abstract
Cladophialophora bantiana is a dematiaceous fungus with a predilection for causing central nervous system (CNS) infection manifesting as brain abscess in both immunocompetent and immunocompromised patients. In this paper, we report comprehensive genomic analyses of C. bantiana isolated from the brain abscess of an immunocompetent man, the first reported case in Malaysia and Southeast Asia. The identity of the fungus was determined using combined morphological analysis and multilocus phylogeny. The draft genome sequence of a neurotrophic fungus, C. bantiana UM 956 was generated using Illumina sequencing technology to dissect its genetic fundamental and basic biology. The assembled 37.1 Mb genome encodes 12,155 putative coding genes, of which, 1.01% are predicted transposable elements. Its genomic features support its saprophytic lifestyle, renowned for its versatility in decomposing hemicellulose and pectin components. The C. bantiana UM 956 was also found to carry some important putative genes that engaged in pathogenicity, iron uptake and homeostasis as well as adaptation to various stresses to enable the organism to survive in hostile microenvironment. This wealth of resource will further catalyse more downstream functional studies to provide better understanding on how this fungus can be a successful and persistent pathogen in human.
Collapse
Affiliation(s)
- Chee Sian Kuan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chun Yoong Cham
- Department of Neurosurgery, Hospital Pulau Pinang, Jalan Residensi, Georgetown, Pulau Pinang, Malaysia
- Department of Surgery, Neurosurgical Division, University of Malaya, Kuala Lumpur, Malaysia
| | - Gurmit Singh
- Department of Neurosurgery, Hospital Pulau Pinang, Jalan Residensi, Georgetown, Pulau Pinang, Malaysia
| | - Su Mei Yew
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | | | - Yue Fen Toh
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Nadia Atiya
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Shiang Ling Na
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kok Wei Lee
- Codon Genomics SB, Selangor Darul Ehsan, Malaysia
| | | | - Wai-Yan Yee
- Codon Genomics SB, Selangor Darul Ehsan, Malaysia
| | - Kee Peng Ng
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail:
| |
Collapse
|
29
|
Lv QZ, Yan L, Jiang YY. The synthesis, regulation, and functions of sterols in Candida albicans: Well-known but still lots to learn. Virulence 2016; 7:649-59. [PMID: 27221657 DOI: 10.1080/21505594.2016.1188236] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Sterols are the basal components of the membranes of the fungal pathogen Candida albicans, and these membranes determine the susceptibility of C. albicans cells to a variety of stresses, such as ionic, osmotic and oxidative pressures, and treatment with antifungal drugs. The common antifungal azoles in clinical use are targeted to the biosynthesis of ergosterol. In the past years, the synthesis, storage and metabolism of ergosterol in Saccharomyces cerevisiae has been characterized in some detail; however, these processes has not been as well investigated in the human opportunistic pathogen C. albicans. In this review, we summarize the genes involved in ergosterol synthesis and regulation in C. albicans. As well, genes in S. cerevisiae implicated in ergosterol storage and conversions with other lipids are noted, as these provide us clues and directions for the study of the homologous genes in C. albicans. In this report we have particularly focused on the essential roles of ergosterol in the dynamic process of cell biology and its fundamental status in the biological membrane system that includes lipid rafts, lipid droplets, vacuoles and mitochondria. We believe that a thorough understanding of this classic and essential pathway will give us new ideas about drug resistance and morphological switching in C. albicans.
Collapse
Affiliation(s)
- Quan-Zhen Lv
- a Center for New Drug Research, College of Pharmacy, Second Military Medical University , Shanghai , P.R. China
| | - Lan Yan
- a Center for New Drug Research, College of Pharmacy, Second Military Medical University , Shanghai , P.R. China
| | - Yuan-Ying Jiang
- a Center for New Drug Research, College of Pharmacy, Second Military Medical University , Shanghai , P.R. China
| |
Collapse
|
30
|
Gonçalves SS, Souza ACR, Chowdhary A, Meis JF, Colombo AL. Epidemiology and molecular mechanisms of antifungal resistance in CandidaandAspergillus. Mycoses 2016; 59:198-219. [DOI: 10.1111/myc.12469] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 12/14/2015] [Accepted: 12/18/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Sarah Santos Gonçalves
- Laboratório Especial de Micologia, Disciplina de Infectologia, Escola Paulista de Medicina; Universidade Federal de São Paulo; São Paulo SP Brazil
| | - Ana Carolina Remondi Souza
- Laboratório Especial de Micologia, Disciplina de Infectologia, Escola Paulista de Medicina; Universidade Federal de São Paulo; São Paulo SP Brazil
| | - Anuradha Chowdhary
- Department of Medical Mycology; Vallabhbhai Patel Chest Institute; University of Delhi; Delhi India
| | - Jacques F. Meis
- Department of Medical Microbiology and Infectious Diseases; Canisius Wilhelmina Hospital; Nijmegen the Netherlands
- Department of Medical Microbiology; Radboud University Medical Centre; Nijmegen the Netherlands
| | - Arnaldo Lopes Colombo
- Laboratório Especial de Micologia, Disciplina de Infectologia, Escola Paulista de Medicina; Universidade Federal de São Paulo; São Paulo SP Brazil
| |
Collapse
|
31
|
Mutations in transcription factor Mrr2p contribute to fluconazole resistance in clinical isolates of Candida albicans. Int J Antimicrob Agents 2015; 46:552-9. [DOI: 10.1016/j.ijantimicag.2015.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/11/2015] [Accepted: 08/03/2015] [Indexed: 11/18/2022]
|
32
|
Extreme Diversity in the Regulation of Ndt80-Like Transcription Factors in Fungi. G3-GENES GENOMES GENETICS 2015; 5:2783-92. [PMID: 26497142 PMCID: PMC4683649 DOI: 10.1534/g3.115.021378] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Saccharomyces cerevisiaeNdt80 protein is the founding member of a class of p53-like transcription factors that is known as the NDT80/PhoG-like DNA-binding family. The number of NDT80-like genes in different fungi is highly variable and their roles, which have been examined in only a few species, include regulation of meiosis, sexual development, biofilm formation, drug resistance, virulence, the response to nutrient stress and programmed cell death. The protein kinase Ime2 regulates the single NDT80 gene present in S. cerevisiae. In this study we used a genetic approach to investigate whether the Aspergillus nidulansIme2 homolog, ImeB, and/or protein kinases MpkC, PhoA and PhoB regulate the two NDT80-like genes (xprG and ndtA) in A. nidulans. Disruption of imeB, but not mpkC, phoA or phoB, led to increased extracellular protease activity and a defect in mycotoxin production similar to the xprG1 gain-of-function mutation. Quantitative RT-PCR showed that ImeB is a negative regulator of xprG expression and XprG is a negative regulator of xprG and ndtA expression. Thus, in contrast to Ime2, which is a positive regulator of NDT80 in S. cerevisiae, ImeB is a negative regulator as in Neurospora crassa. However, the ability of Ndt80 to autoregulate NDT80 is conserved in A. nidulans though the autoregulatory effect is negative rather than positive. Unlike N. crassa, a null mutation in imeB does not circumvent the requirement for XprG or NdtA. These results show that the regulatory activities of Ime2 and Ndt80-like proteins display an extraordinarily level of evolutionary flexibility.
Collapse
|
33
|
Niones JT, Takemoto D. VibA, a homologue of a transcription factor for fungal heterokaryon incompatibility, is involved in antifungal compound production in the plant-symbiotic fungus Epichloë festucae. EUKARYOTIC CELL 2015; 14:13-24. [PMID: 24906411 PMCID: PMC4279024 DOI: 10.1128/ec.00034-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 05/30/2014] [Indexed: 01/12/2023]
Abstract
Symbiotic association of epichloae endophytes (Epichloë/Neotyphodium species) with cool-season grasses of the subfamily Pooideae confers bioprotective benefits to the host plants against abiotic and biotic stresses. While the production of fungal bioprotective metabolites is a well-studied mechanism of host protection from insect herbivory, little is known about the antibiosis mechanism against grass pathogens by the mutualistic endophyte. In this study, an Epichloë festucae mutant defective in antimicrobial substance production was isolated by a mutagenesis approach. In an isolated mutant that had lost antifungal activity, the exogenous DNA fragment was integrated into the promoter region of the vibA gene, encoding a homologue of the transcription factor VIB-1. VIB-1 in Neurospora crassa is a regulator of genes essential in vegetative incompatibility and promotion of cell death. Here we show that deletion of the vibA gene severely affected the antifungal activity of the mutant against the test pathogen Drechslera erythrospila. Further analyses showed that overexpressing vibA enhanced the antifungal activity of the wild-type isolate against test pathogens. Transformants overexpressing vibA showed an inhibitory activity on test pathogens that the wild-type isolate could not. Moreover, overexpressing vibA in a nonantifungal E. festucae wild-type Fl1 isolate enabled the transformant to inhibit the mycelial and spore germination of D. erythrospila. These results demonstrate that enhanced expression of vibA is sufficient for a nonantifungal isolate to obtain antifungal activity, implicating the critical role of VibA in antifungal compound production by epichloae endophytes.
Collapse
Affiliation(s)
- Jennifer T Niones
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Daigo Takemoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
34
|
Lo HJ, Chu WL, Liou CH, Huang SH, Khoo KH, Yang YL. Ndt80p is involved in L-sorbose utilization through regulating SOU1 in Candida albicans. Int J Med Microbiol 2014; 305:170-3. [PMID: 25497969 DOI: 10.1016/j.ijmm.2014.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 10/30/2014] [Accepted: 11/04/2014] [Indexed: 01/21/2023] Open
Abstract
Ndt80p, a known transcriptional factor, regulates various targets involved in stress responses, filamentous growth, and virulence in Candida albicans. Potential targets of Ndt80p have been identified at the transcriptional level. The present study was conducted to identify genes regulated by Ndt80p from the protein level. We found that the levels of Ahp1p, Fma1p, Hsp21p, Rfa2p, Snz1p, Sod1p, Sou1p, Trp99p, orf19.251, orf19.1862, and orf19.5620, were affected by the null mutation of NDT80 by two-dimensional polyacrylamide gel-electrophoresis analysis. Among the 11 proteins, all but Sou1p and Rfa2p are suggested to be involved in known functions of Ndt80p. Here, we demonstrate that Ndt80p plays a role in l-sorbose utilization through regulating SOU1 in C. albicans.
Collapse
Affiliation(s)
- Hsiu-Jung Lo
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan; School of Dentistry, China Medical University, Taichung, Taiwan
| | - Wen-Li Chu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Ci-Hong Liou
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Szu-Hsuan Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Kay-Hooi Khoo
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yun-Liang Yang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan; Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
35
|
Cowen LE, Sanglard D, Howard SJ, Rogers PD, Perlin DS. Mechanisms of Antifungal Drug Resistance. Cold Spring Harb Perspect Med 2014; 5:a019752. [PMID: 25384768 DOI: 10.1101/cshperspect.a019752] [Citation(s) in RCA: 373] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Antifungal therapy is a central component of patient management for acute and chronic mycoses. Yet, treatment choices are restricted because of the sparse number of antifungal drug classes. Clinical management of fungal diseases is further compromised by the emergence of antifungal drug resistance, which eliminates available drug classes as treatment options. Once considered a rare occurrence, antifungal drug resistance is on the rise in many high-risk medical centers. Most concerning is the evolution of multidrug- resistant organisms refractory to several different classes of antifungal agents, especially among common Candida species. The mechanisms responsible are mostly shared by both resistant strains displaying inherently reduced susceptibility and those acquiring resistance during therapy. The molecular mechanisms include altered drug affinity and target abundance, reduced intracellular drug levels caused by efflux pumps, and formation of biofilms. New insights into genetic factors regulating these mechanisms, as well as cellular factors important for stress adaptation, provide a foundation to better understand the emergence of antifungal drug resistance.
Collapse
Affiliation(s)
- Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Dominique Sanglard
- University of Lausanne and University Hospital Center, Institute of Microbiology, 1011 Lausanne, Switzerland
| | - Susan J Howard
- University of Liverpool, Sherrington Building, Ashton Street, Liverpool L69 3GE, United Kingdom
| | - P David Rogers
- College of Pharmacy, The University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - David S Perlin
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103
| |
Collapse
|
36
|
A functional portrait of Med7 and the mediator complex in Candida albicans. PLoS Genet 2014; 10:e1004770. [PMID: 25375174 PMCID: PMC4222720 DOI: 10.1371/journal.pgen.1004770] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/22/2014] [Indexed: 11/19/2022] Open
Abstract
Mediator is a multi-subunit protein complex that regulates gene expression in eukaryotes by integrating physiological and developmental signals and transmitting them to the general RNA polymerase II machinery. We examined, in the fungal pathogen Candida albicans, a set of conditional alleles of genes encoding Mediator subunits of the head, middle, and tail modules that were found to be essential in the related ascomycete Saccharomyces cerevisiae. Intriguingly, while the Med4, 8, 10, 11, 14, 17, 21 and 22 subunits were essential in both fungi, the structurally highly conserved Med7 subunit was apparently non-essential in C. albicans. While loss of CaMed7 did not lead to loss of viability under normal growth conditions, it dramatically influenced the pathogen's ability to grow in different carbon sources, to form hyphae and biofilms, and to colonize the gastrointestinal tracts of mice. We used epitope tagging and location profiling of the Med7 subunit to examine the distribution of the DNA sites bound by Mediator during growth in either the yeast or the hyphal form, two distinct morphologies characterized by different transcription profiles. We observed a core set of 200 genes bound by Med7 under both conditions; this core set is expanded moderately during yeast growth, but is expanded considerably during hyphal growth, supporting the idea that Mediator binding correlates with changes in transcriptional activity and that this binding is condition specific. Med7 bound not only in the promoter regions of active genes but also within coding regions and at the 3′ ends of genes. By combining genome-wide location profiling, expression analyses and phenotyping, we have identified different Med7p-influenced regulons including genes related to glycolysis and the Filamentous Growth Regulator family. In the absence of Med7, the ribosomal regulon is de-repressed, suggesting Med7 is involved in central aspects of growth control. In this study, we have investigated Mediator function in the human fungal pathogen C. albicans. An initial screening of conditionally regulated Mediator subunits showed that the Med7 of C. albicans was not essential, in contrast to the situation noted for S. cerevisiae. While loss of CaMed7 did not lead to loss of viability under normal growth conditions, it dramatically influenced the pathogen's ability to grow in different carbon sources, to form hyphae and biofilms, and to colonize the gastrointestinal tracts of mice. We used location profiling to determine Mediator binding under yeast and hyphal morphologies characterized by different transcription profiles. We observed a core set of specific and common genes bound by Med7 under both conditions; this specific core set is expanded considerably during hyphal growth, supporting the idea that Mediator binding correlates with changes in transcriptional activity and that this binding is condition specific. Med7 bound not only in the promoter regions of active genes but also of inactive genes and within coding regions and at the 3′ ends of genes. By combining genome-wide location profiling, expression analyses and phenotyping, we have identified different Med7 regulons including genes related to glycolysis and the Filamentous Growth Regulator family.
Collapse
|
37
|
Modeling the transcriptional regulatory network that controls the early hypoxic response in Candida albicans. EUKARYOTIC CELL 2014; 13:675-90. [PMID: 24681685 DOI: 10.1128/ec.00292-13] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We determined the changes in transcriptional profiles that occur in the first hour following the transfer of Candida albicans to hypoxic growth conditions. The impressive speed of this response is not compatible with current models of fungal adaptation to hypoxia that depend on the depletion of sterol and heme. Functional analysis using Gene Set Enrichment Analysis (GSEA) identified the Sit4 phosphatase, Ccr4 mRNA deacetylase, and Sko1 transcription factor (TF) as potential regulators of the early hypoxic response. Cells mutated in these and other regulators exhibit a delay in their transcriptional responses to hypoxia. Promoter occupancy data for 29 TFs were combined with the transcriptional profiles of 3,111 in vivo target genes in a Network Component Analysis (NCA) to produce a model of the dynamic and highly interconnected TF network that controls this process. With data from the TF network obtained from a variety of sources, we generated an edge and node model that was capable of separating many of the hypoxia-upregulated and -downregulated genes. Upregulated genes are centered on Tye7, Upc2, and Mrr1, which are associated with many of the gene promoters that exhibit the strongest activations. The connectivity of the model illustrates the high redundancy of this response system and the challenges that lie in determining the individual contributions of specific TFs. Finally, treating cells with an inhibitor of the oxidative phosphorylation chain mimics most of the early hypoxic profile, which suggests that this response may be initiated by a drop in ATP production.
Collapse
|
38
|
Znaidi S, Nesseir A, Chauvel M, Rossignol T, d'Enfert C. A comprehensive functional portrait of two heat shock factor-type transcriptional regulators involved in Candida albicans morphogenesis and virulence. PLoS Pathog 2013; 9:e1003519. [PMID: 23966855 PMCID: PMC3744398 DOI: 10.1371/journal.ppat.1003519] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 06/08/2013] [Indexed: 12/01/2022] Open
Abstract
Sfl1p and Sfl2p are two homologous heat shock factor-type transcriptional regulators that antagonistically control morphogenesis in Candida albicans, while being required for full pathogenesis and virulence. To understand how Sfl1p and Sfl2p exert their function, we combined genome-wide location and expression analyses to reveal their transcriptional targets in vivo together with the associated changes of the C. albicans transcriptome. We show that Sfl1p and Sfl2p bind to the promoter of at least 113 common targets through divergent binding motifs and modulate directly the expression of key transcriptional regulators of C. albicans morphogenesis and/or virulence. Surprisingly, we found that Sfl2p additionally binds to the promoter of 75 specific targets, including a high proportion of hyphal-specific genes (HSGs; HWP1, HYR1, ECE1, others), revealing a direct link between Sfl2p and hyphal development. Data mining pointed to a regulatory network in which Sfl1p and Sfl2p act as both transcriptional activators and repressors. Sfl1p directly represses the expression of positive regulators of hyphal growth (BRG1, UME6, TEC1, SFL2), while upregulating both yeast form-associated genes (RME1, RHD1, YWP1) and repressors of morphogenesis (SSN6, NRG1). On the other hand, Sfl2p directly upregulates HSGs and activators of hyphal growth (UME6, TEC1), while downregulating yeast form-associated genes and repressors of morphogenesis (NRG1, RFG1, SFL1). Using genetic interaction analyses, we provide further evidences that Sfl1p and Sfl2p antagonistically control C. albicans morphogenesis through direct modulation of the expression of important regulators of hyphal growth. Bioinformatic analyses suggest that binding of Sfl1p and Sfl2p to their targets occurs with the co-binding of Efg1p and/or Ndt80p. We show, indeed, that Sfl1p and Sfl2p targets are bound by Efg1p and that both Sfl1p and Sfl2p associate in vivo with Efg1p. Taken together, our data suggest that Sfl1p and Sfl2p act as central “switch on/off” proteins to coordinate the regulation of C. albicans morphogenesis. Candida albicans can switch from a harmless colonizer of body organs to a life-threatening invasive pathogen. This switch is linked to the ability of C. albicans to undergo a yeast-to-filament shift induced by various cues, including temperature. Sfl1p and Sfl2p are two transcription factors required for C. albicans virulence, but antagonistically regulate morphogenesis: Sfl1p represses it, whereas Sfl2p activates it in response to temperature. We show here that Sfl1p and Sfl2p bind in vivo, via divergent motifs, to the regulatory region of a common set of targets encoding key determinants of morphogenesis and virulence and exert both activating and repressing effects on gene expression. Additionally, Sfl2p binds to specific targets, including genes essential for hyphal development. Bioinformatic analyses suggest that Sfl1p and Sfl2p control C. albicans morphogenesis by cooperating with two important regulators of filamentous growth, Efg1p and Ndt80p, a premise that was confirmed by the observation of concomitant binding of Sfl1p, Sfl2p and Efg1p to the promoter of target genes and the demonstration of direct or indirect physical association of Sfl1p and Sfl2p with Efg1p, in vivo. Our data suggest that Sfl1p and Sfl2p act as central “switch on/off” proteins to coordinate the regulation of C. albicans morphogenesis.
Collapse
Affiliation(s)
- Sadri Znaidi
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
| | - Audrey Nesseir
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Murielle Chauvel
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
| | - Tristan Rossignol
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
| | - Christophe d'Enfert
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
- * E-mail:
| |
Collapse
|
39
|
Kabir MA, Hussain MA, Ahmad Z. Candida albicans: A Model Organism for Studying Fungal Pathogens. ISRN MICROBIOLOGY 2012; 2012:538694. [PMID: 23762753 PMCID: PMC3671685 DOI: 10.5402/2012/538694] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Accepted: 08/30/2012] [Indexed: 01/12/2023]
Abstract
Candida albicans is an opportunistic human fungal pathogen that causes candidiasis. As healthcare has been improved worldwide, the number of immunocompromised patients has been increased to a greater extent and they are highly susceptible to various pathogenic microbes and C. albicans has been prominent among the fungal pathogens. The complete genome sequence of this pathogen is now available and has been extremely useful for the identification of repertoire of genes present in this pathogen. The major challenge is now to assign the functions to these genes of which 13% are specific to C. albicans. Due to its close relationship with yeast Saccharomyces cerevisiae, an edge over other fungal pathogens because most of the technologies can be directly transferred to C. albicans from S. cerevisiae and it is amenable to mutation, gene disruption, and transformation. The last two decades have witnessed enormous amount of research activities on this pathogen that leads to the understanding of host-parasite interaction, infections, and disease propagation. Clearly, C. albicans has emerged as a model organism for studying fungal pathogens along with other two fungi Aspergillus fumigatus and Cryptococcus neoformans. Understanding its complete life style of C. albicans will undoubtedly be useful for developing potential antifungal drugs and tackling Candida infections. This will also shed light on the functioning of other fungal pathogens.
Collapse
Affiliation(s)
- M Anaul Kabir
- Molecular Genetics Laboratory, School of Biotechnology, National Institute of Technology Calicut, Calicut 673601, Kerala, India
| | | | | |
Collapse
|
40
|
Sellam A, Tebbji F, Whiteway M, Nantel A. A novel role for the transcription factor Cwt1p as a negative regulator of nitrosative stress in Candida albicans. PLoS One 2012; 7:e43956. [PMID: 22952822 PMCID: PMC3430608 DOI: 10.1371/journal.pone.0043956] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 07/27/2012] [Indexed: 11/21/2022] Open
Abstract
The ability of Candida albicans to survive in the presence of nitrosative stress during the initial contact with the host immune system is crucial for its ability to colonize mammalian hosts. Thus, this fungus must activate robust mechanisms to neutralize and repair nitrosative-induced damage. Until now, very little was known regarding the regulatory circuits associated with reactive nitrogen species detoxification in fungi. To gain insight into the transcriptional regulatory networks controlling nitrosative stress response (NRS) in C. albicans a compilation of transcriptional regulator-defective mutants were screened. This led to the identification of Cwt1p as a negative regulator of NSR. By combining genome-wide location and expression analyses, we have characterized the Cwt1p regulon and demonstrated that Cwt1p is directly required for proper repression of the flavohemoglobin Yhb1p, a key NO-detoxification enzyme. Furthermore, Cwt1p operates both by activating and repressing genes of specific functions solicited upon NSR. Additionally, we used Gene Set Enrichment Analysis to reinvestigate the C. albicans NSR-transcriptome and demonstrate a significant similarity with the transcriptional profiles of C. albicans interacting with phagocytic host-cells. In summary, we have characterized a novel negative regulator of NSR and bring new insights into the transcriptional regulatory network governing fungal NSR.
Collapse
Affiliation(s)
- Adnane Sellam
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montréal, QC, Canada
- * E-mail: (AS); (AN)
| | - Faiza Tebbji
- Biotechnology Research Institute, National Research Council of Canada, Montréal, QC, Canada
- Department of Biology, McGill University, Montréal, QC, Canada
| | - Malcolm Whiteway
- Biotechnology Research Institute, National Research Council of Canada, Montréal, QC, Canada
- Department of Biology, McGill University, Montréal, QC, Canada
| | - André Nantel
- Biotechnology Research Institute, National Research Council of Canada, Montréal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
- * E-mail: (AS); (AN)
| |
Collapse
|
41
|
Identification and functional characterization of Rca1, a transcription factor involved in both antifungal susceptibility and host response in Candida albicans. EUKARYOTIC CELL 2012; 11:916-31. [PMID: 22581526 DOI: 10.1128/ec.00134-12] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The identification of novel transcription factors associated with antifungal response may allow the discovery of fungus-specific targets for new therapeutic strategies. A collection of 241 Candida albicans transcriptional regulator mutants was screened for altered susceptibility to fluconazole, caspofungin, amphotericin B, and 5-fluorocytosine. Thirteen of these mutants not yet identified in terms of their role in antifungal response were further investigated, and the function of one of them, a mutant of orf19.6102 (RCA1), was characterized by transcriptome analysis. Strand-specific RNA sequencing and phenotypic tests assigned Rca1 as the regulator of hyphal formation through the cyclic AMP/protein kinase A (cAMP/PKA) signaling pathway and the transcription factor Efg1, but also probably through its interaction with a transcriptional repressor, most likely Tup1. The mechanisms responsible for the high level of resistance to caspofungin and fluconazole observed resulting from RCA1 deletion were investigated. From our observations, we propose that caspofungin resistance was the consequence of the deregulation of cell wall gene expression and that fluconazole resistance was linked to the modulation of the cAMP/PKA signaling pathway activity. In conclusion, our large-scale screening of a C. albicans transcription factor mutant collection allowed the identification of new effectors of the response to antifungals. The functional characterization of Rca1 assigned this transcription factor and its downstream targets as promising candidates for the development of new therapeutic strategies, as Rca1 influences host sensing, hyphal development, and antifungal response.
Collapse
|
42
|
Sequence and analysis of the genome of the pathogenic yeast Candida orthopsilosis. PLoS One 2012; 7:e35750. [PMID: 22563396 PMCID: PMC3338533 DOI: 10.1371/journal.pone.0035750] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 03/24/2012] [Indexed: 01/09/2023] Open
Abstract
Candida orthopsilosis is closely related to the fungal pathogen Candida parapsilosis. However, whereas C. parapsilosis is a major cause of disease in immunosuppressed individuals and in premature neonates, C. orthopsilosis is more rarely associated with infection. We sequenced the C. orthopsilosis genome to facilitate the identification of genes associated with virulence. Here, we report the de novo assembly and annotation of the genome of a Type 2 isolate of C. orthopsilosis. The sequence was obtained by combining data from next generation sequencing (454 Life Sciences and Illumina) with paired-end Sanger reads from a fosmid library. The final assembly contains 12.6 Mb on 8 chromosomes. The genome was annotated using an automated pipeline based on comparative analysis of genomes of Candida species, together with manual identification of introns. We identified 5700 protein-coding genes in C. orthopsilosis, of which 5570 have an ortholog in C. parapsilosis. The time of divergence between C. orthopsilosis and C. parapsilosis is estimated to be twice as great as that between Candida albicans and Candida dubliniensis. There has been an expansion of the Hyr/Iff family of cell wall genes and the JEN family of monocarboxylic transporters in C. parapsilosis relative to C. orthopsilosis. We identified one gene from a Maltose/Galactoside O-acetyltransferase family that originated by horizontal gene transfer from a bacterium to the common ancestor of C. orthopsilosis and C. parapsilosis. We report that TFB3, a component of the general transcription factor TFIIH, undergoes alternative splicing by intron retention in multiple Candida species. We also show that an intein in the vacuolar ATPase gene VMA1 is present in C. orthopsilosis but not C. parapsilosis, and has a patchy distribution in Candida species. Our results suggest that the difference in virulence between C. parapsilosis and C. orthopsilosis may be associated with expansion of gene families.
Collapse
|
43
|
Wang YC, Huang SH, Lan CY, Chen BS. Prediction of phenotype-associated genes via a cellular network approach: a Candida albicans infection case study. PLoS One 2012; 7:e35339. [PMID: 22509408 PMCID: PMC3324557 DOI: 10.1371/journal.pone.0035339] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 03/15/2012] [Indexed: 02/04/2023] Open
Abstract
Candida albicans is the most prevalent opportunistic fungal pathogen in humans causing superficial and serious systemic infections. The infection process can be divided into three stages: adhesion, invasion, and host cell damage. To enhance our understanding of these C. albicans infection stages, this study aimed to predict phenotype-associated genes involved during these three infection stages and their roles in C. albicans-host interactions. In light of the principles that proteins that lie closer to one another in a protein interaction network are more likely to have similar functions, and that genes regulated by the same transcription factors tend to have similar functions, a cellular network approach was proposed to predict the phenotype-associated genes in this study. A total of 4, 12, and 3 genes were predicted as adhesion-, invasion-, and damage-associated genes during C. albicans infection, respectively. These predicted genes highlight the facts that cell surface components are critical for cell adhesion, and that morphogenesis is crucial for cell invasion. In addition, they provide targets for further investigations into the mechanisms of the three C. albicans infection stages. These results give insights into the responses elicited in C. albicans during interaction with the host, possibly instrumental in identifying novel therapies to treat C. albicans infection.
Collapse
Affiliation(s)
- Yu-Chao Wang
- Laboratory of Control and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Shin-Hao Huang
- Laboratory of Control and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Chung-Yu Lan
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Bor-Sen Chen
- Laboratory of Control and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- * E-mail:
| |
Collapse
|
44
|
|
45
|
Winter E. The Sum1/Ndt80 transcriptional switch and commitment to meiosis in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 2012; 76:1-15. [PMID: 22390969 PMCID: PMC3294429 DOI: 10.1128/mmbr.05010-11] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cells encounter numerous signals during the development of an organism that induce division, differentiation, and apoptosis. These signals need to be present for defined intervals in order to induce stable changes in the cellular phenotype. The point after which an inducing signal is no longer needed for completion of a differentiation program can be termed the "commitment point." Meiotic development in the yeast Saccharomyces cerevisiae (sporulation) provides a model system to study commitment. Similar to differentiation programs in multicellular organisms, the sporulation program in yeast is regulated by a transcriptional cascade that produces early, middle, and late sets of sporulation-specific transcripts. Although critical meiosis-specific events occur as early genes are expressed, commitment does not take place until middle genes are induced. Middle promoters are activated by the Ndt80 transcription factor, which is produced and activated shortly before most middle genes are expressed. In this article, I discuss the connection between Ndt80 and meiotic commitment. A transcriptional regulatory pathway makes NDT80 transcription contingent on the prior expression of early genes. Once Ndt80 is produced, the recombination (pachytene) checkpoint prevents activation of the Ndt80 protein. Upon activation, Ndt80 triggers a positive autoregulatory loop that leads to the induction of genes that promote exit from prophase, the meiotic divisions, and spore formation. The pathway is controlled by multiple feed-forward loops that give switch-like properties to the commitment transition. The conservation of regulatory components of the meiotic commitment pathway and the recently reported ability of Ndt80 to increase replicative life span are discussed.
Collapse
Affiliation(s)
- Edward Winter
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
46
|
Yang YL, Wang CW, Leaw SN, Chang TP, Wang IC, Chen CG, Fan JC, Tseng KY, Huang SH, Chen CY, Hsiao TY, Hsiung CA, Chen CT, Hsiao CD, Lo HJ. R432 is a key residue for the multiple functions of Ndt80p in Candida albicans. Cell Mol Life Sci 2012; 69:1011-23. [PMID: 22002580 PMCID: PMC11114742 DOI: 10.1007/s00018-011-0849-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 09/06/2011] [Accepted: 09/22/2011] [Indexed: 11/24/2022]
Abstract
Ndt80p is an important transcription modulator to various stress-response genes in Candida albicans, the most common human fungal pathogen in systemic infections. We found that Ndt80p directly regulated its target genes, such as YHB1, via the mid-sporulation element (MSE). Furthermore, the ndt80(R432A) allele, with a reduced capability to bind MSE, failed to complement the defects caused by null mutations of NDT80. Thus, the R432 residue in the Ndt80p DNA-binding domain is involved in all tested functions, including cell separation, drug resistance, nitric oxide inactivation, germ tube formation, hyphal growth, and virulence. Hence, the importance of the R432 residue suggests a novel approach for designing new antifungal drugs by blocking the interaction between Ndt80p and its targets.
Collapse
Affiliation(s)
- Yun Liang Yang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Chih Wei Wang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan Town, 350, Miaoli, Taiwan
| | - Shiang Ning Leaw
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan Town, 350, Miaoli, Taiwan
| | - Te Pin Chang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan Town, 350, Miaoli, Taiwan
| | - I Chin Wang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Chia Geun Chen
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Jen Chung Fan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan Town, 350, Miaoli, Taiwan
| | - Kuo Yun Tseng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan Town, 350, Miaoli, Taiwan
- Present Address: Institute of Cellular and Systems Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Szu Hsuan Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan Town, 350, Miaoli, Taiwan
| | - Chih Yu Chen
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, Miaoli, Taiwan
| | - Ting Yin Hsiao
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Chao Agnes Hsiung
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, Miaoli, Taiwan
| | - Chiung Tong Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
| | | | - Hsiu Jung Lo
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan Town, 350, Miaoli, Taiwan
- School of Dentistry, China of Medical University, Taichung, Taiwan
| |
Collapse
|
47
|
Shapiro RS, Sellam A, Tebbji F, Whiteway M, Nantel A, Cowen LE. Pho85, Pcl1, and Hms1 signaling governs Candida albicans morphogenesis induced by high temperature or Hsp90 compromise. Curr Biol 2012; 22:461-70. [PMID: 22365851 DOI: 10.1016/j.cub.2012.01.062] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 01/13/2012] [Accepted: 01/30/2012] [Indexed: 12/14/2022]
Abstract
BACKGROUND Temperature exerts powerful control over development and virulence of diverse pathogens. In the leading human fungal pathogen, Candida albicans, temperature governs morphogenesis, a key virulence trait. Many cues that induce the yeast to filament transition are contingent on a minimum of 37°C, whereas further elevation to 39°C serves as an independent inducer. The molecular chaperone Hsp90 is a key regulator of C. albicans temperature-dependent morphogenesis. Compromise of Hsp90 function genetically, pharmacologically, or by elevated temperature induces filamentation in a manner that depends on protein kinase A signaling but is independent of the terminal transcription factor, Efg1. RESULTS Here, we establish that despite morphological and regulatory differences, inhibition of Hsp90 induces a transcriptional profile similar to that induced by other filamentation cues and does so independently of Efg1. Further, we identify Hms1 as a transcriptional regulator required for morphogenesis induced by elevated temperature or Hsp90 compromise. Hms1 functions downstream of the cyclin Pcl1 and the cyclin-dependent kinase Pho85, both of which are required for temperature-dependent filamentation. Upon Hsp90 inhibition, Hms1 binds to DNA elements involved in filamentous growth, including UME6 and RBT5, and regulates their expression, providing a mechanism through which Pho85, Pcl1, and Hms1 govern morphogenesis. Consistent with the importance of morphogenetic flexibility for virulence, deletion of C. albicans HMS1 attenuates virulence in a metazoan model of infection. CONCLUSIONS Thus, we establish a new mechanism through which Hsp90 orchestrates C. albicans morphogenesis, and define novel regulatory circuitry governing a temperature-dependent developmental program, with broad implications for temperature sensing and virulence of microbial pathogens.
Collapse
Affiliation(s)
- Rebecca S Shapiro
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | | | | | | | | | | |
Collapse
|
48
|
Nobile CJ, Fox EP, Nett JE, Sorrells TR, Mitrovich QM, Hernday AD, Tuch BB, Andes DR, Johnson AD. A recently evolved transcriptional network controls biofilm development in Candida albicans. Cell 2012; 148:126-38. [PMID: 22265407 PMCID: PMC3266547 DOI: 10.1016/j.cell.2011.10.048] [Citation(s) in RCA: 536] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 08/09/2011] [Accepted: 10/18/2011] [Indexed: 10/14/2022]
Abstract
A biofilm is an organized, resilient group of microbes in which individual cells acquire properties, such as drug resistance, that are distinct from those observed in suspension cultures. Here, we describe and analyze the transcriptional network controlling biofilm formation in the pathogenic yeast Candida albicans, whose biofilms are a major source of medical device-associated infections. We have combined genetic screens, genome-wide approaches, and two in vivo animal models to describe a master circuit controlling biofilm formation, composed of six transcription regulators that form a tightly woven network with ∼1,000 target genes. Evolutionary analysis indicates that the biofilm network has rapidly evolved: genes in the biofilm circuit are significantly weighted toward genes that arose relatively recently with ancient genes being underrepresented. This circuit provides a framework for understanding many aspects of biofilm formation by C. albicans in a mammalian host. It also provides insights into how complex cell behaviors can arise from the evolution of transcription circuits.
Collapse
Affiliation(s)
- Clarissa J Nobile
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94102, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Antifungal resistance and new strategies to control fungal infections. Int J Microbiol 2011; 2012:713687. [PMID: 22187560 PMCID: PMC3236459 DOI: 10.1155/2012/713687] [Citation(s) in RCA: 269] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 09/06/2011] [Indexed: 11/28/2022] Open
Abstract
Despite improvement of antifungal therapies over the last 30 years, the phenomenon of antifungal resistance is still of major concern in clinical practice. In the last 10 years the molecular mechanisms underlying this phenomenon were extensively unraveled. In this paper, after a brief overview of currently available antifungals, molecular mechanisms of antifungal resistance will be detailed. It appears that major mechanisms of resistance are essential due to the deregulation of antifungal resistance effector genes. This deregulation is a consequence of point mutations occurring in transcriptional regulators of these effector genes. Resistance can also follow the emergence of point mutations directly in the genes coding antifungal targets. In addition we further describe new strategies currently undertaken to discover alternative therapy targets and antifungals. Identification of new antifungals is essentially achieved by the screening of natural or synthetic chemical compound collections. Discovery of new putative antifungal targets is performed through genome-wide approaches for a better understanding of the human pathogenic fungi biology.
Collapse
|
50
|
Vandeputte P, Ischer F, Sanglard D, Coste AT. In vivo systematic analysis of Candida albicans Zn2-Cys6 transcription factors mutants for mice organ colonization. PLoS One 2011; 6:e26962. [PMID: 22073120 PMCID: PMC3205040 DOI: 10.1371/journal.pone.0026962] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 10/07/2011] [Indexed: 12/23/2022] Open
Abstract
The incidence of fungal infections in immuno-compromised patients increased considerably over the last 30 years. New treatments are therefore needed against pathogenic fungi. With Candida albicans as a model, study of host-fungal pathogen interactions might reveal new sources of therapies. Transcription factors (TF) are of interest since they integrate signals from the host environment and participate in an adapted microbial response. TFs of the Zn2-Cys6 class are specific to fungi and are important regulators of fungal metabolism. This work analyzed the importance of the C. albicans Zn2-Cys6 TF for mice kidney colonization. For this purpose, 77 Zn2-Cys6 TF mutants were screened in a systemic mice model of infection by pools of 10 mutants. We developed a simple barcoding strategy to specifically detect each mutant DNA from mice kidney by quantitative PCR. Among the 77 TF mutant strains tested, eight showed a decreased colonization including mutants for orf19.3405, orf19.255, orf19.5133, RGT1, UGA3, orf19.6182, SEF1 and orf19.2646, and four an increased colonization including mutants for orf19.4166, ZFU2, orf19.1685 and UPC2 as compared to the isogenic wild type strain. Our approach was validated by comparable results obtained with the same animal model using a single mutant and the revertant for an ORF (orf19.2646) with still unknown functions. In an attempt to identify putative involvement of such TFs in already known C. albicans virulence mechanisms, we determined their in vitro susceptibility to pH, heat and oxidative stresses, as well as ability to produce hyphae and invade agar. A poor correlation was found between in vitro and in vivo assays, thus suggesting that TFs needed for mice kidney colonization may involve still unknown mechanisms. This large-scale analysis of mice organ colonization by C. albicans can now be extended to other mutant libraries since our in vivo screening strategy can be adapted to any preexisting mutants.
Collapse
Affiliation(s)
- Patrick Vandeputte
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland
| | - Françoise Ischer
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland
| | - Dominique Sanglard
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland
| | - Alix T. Coste
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|