1
|
Alvarez JA, Gas-Pascual E, Malhi S, Sánchez-Arcila JC, Njume FN, van der Wel H, Zhao Y, García-López L, Ceron G, Posada J, Souza SP, Yap GS, West CM, Jensen KDC. The GPI sidechain of Toxoplasma gondii inhibits parasite pathogenesis. mBio 2024; 15:e0052724. [PMID: 39302131 PMCID: PMC11481522 DOI: 10.1128/mbio.00527-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024] Open
Abstract
Glycosylphosphatidylinositols (GPIs) are highly conserved anchors for eukaryotic cell surface proteins. The apicomplexan parasite, Toxoplasma gondii, is a widespread intracellular parasite of warm-blooded animals whose plasma membrane is covered with GPI-anchored proteins, and free GPIs called GIPLs. While the glycan portion is conserved, species differ in sidechains added to the triple mannose core. The functional significance of the Glcα1,4GalNAcβ1- sidechain reported in Toxoplasma gondii has remained largely unknown without understanding its biosynthesis. Here we identify and disrupt two glycosyltransferase genes and confirm their respective roles by serology and mass spectrometry. Parasites lacking the sidechain on account of deletion of the first glycosyltransferase, PIGJ, exhibit increased virulence during primary and secondary infections, suggesting it is an important pathogenesis factor. Cytokine responses, antibody recognition of GPI-anchored SAGs, and complement binding to PIGJ mutants are intact. By contrast, the scavenger receptor CD36 shows enhanced binding to PIGJ mutants, potentially explaining a subtle tropism for macrophages detected early in infection. Galectin-3, which binds GIPLs, exhibits an enhancement of binding to PIGJ mutants, and the protection of galectin-3 knockout mice from lethality suggests that Δpigj parasite virulence in this context is sidechain dependent. Parasite numbers are not affected by Δpigj early in the infection in wild-type mice, suggesting a breakdown of tolerance. However, increased tissue cysts in the brains of mice infected with Δpigj parasites indicate an advantage over wild-type strains. Thus, the GPI sidechain of T. gondii plays a crucial and diverse role in regulating disease outcomes in the infected host.IMPORTANCEThe functional significance of sidechain modifications to the glycosylphosphatidylinositol (GPI) anchor in parasites has yet to be determined because the glycosyltransferases responsible for these modifications have not been identified. Here we present identification and characterization of both Toxoplasmsa gondii GPI sidechain-modifying glycosyltransferases. Removal of the glycosyltransferase that adds the first GalNAc to the sidechain results in parasites without a sidechain on the GPI, and increased host susceptibility to infection. Loss of the second glycosyltransferase results in a sidechain with GalNAc alone, and no glucose added, and has negligible effect on disease outcomes. This indicates GPI sidechains are fundamental to host-parasite interactions.
Collapse
Affiliation(s)
- Julia A. Alvarez
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, USA
- Quantitative and Systems Biology Graduate Program, University of California, Merced, California, USA
| | - Elisabet Gas-Pascual
- Department of Biochemistry and Molecular Biology, Center for Tropical and Emerging Global Diseases, and Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Sahil Malhi
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, USA
| | - Juan C. Sánchez-Arcila
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, USA
| | - Ferdinand Ngale Njume
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, USA
| | - Hanke van der Wel
- Department of Biochemistry and Molecular Biology, Center for Tropical and Emerging Global Diseases, and Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Yanlin Zhao
- Department of Medicine and Center for Immunity and Inflammation, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Laura García-López
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, USA
- Quantitative and Systems Biology Graduate Program, University of California, Merced, California, USA
| | - Gabriella Ceron
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, USA
| | - Jasmine Posada
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, USA
| | - Scott P. Souza
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, USA
- Quantitative and Systems Biology Graduate Program, University of California, Merced, California, USA
| | - George S. Yap
- Department of Medicine and Center for Immunity and Inflammation, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Christopher M. West
- Department of Biochemistry and Molecular Biology, Center for Tropical and Emerging Global Diseases, and Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Kirk D. C. Jensen
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, USA
- Health Sciences Research Institute, University of California, Merced, California, USA
| |
Collapse
|
2
|
Hirata T, Mishra SK, Nakamura S, Saito K, Motooka D, Takada Y, Kanzawa N, Murakami Y, Maeda Y, Fujita M, Yamaguchi Y, Kinoshita T. Identification of a Golgi GPI-N-acetylgalactosamine transferase with tandem transmembrane regions in the catalytic domain. Nat Commun 2018; 9:405. [PMID: 29374258 PMCID: PMC5785973 DOI: 10.1038/s41467-017-02799-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 12/28/2017] [Indexed: 12/31/2022] Open
Abstract
Many eukaryotic proteins are anchored to the cell surface via the glycolipid glycosylphosphatidylinositol (GPI). Mammalian GPIs have a conserved core but exhibit diverse N-acetylgalactosamine (GalNAc) modifications, which are added via a yet unresolved process. Here we identify the Golgi-resident GPI-GalNAc transferase PGAP4 and show by mass spectrometry that PGAP4 knockout cells lose GPI-GalNAc structures. Furthermore, we demonstrate that PGAP4, in contrast to known Golgi glycosyltransferases, is not a single-pass membrane protein but contains three transmembrane domains, including a tandem transmembrane domain insertion into its glycosyltransferase-A fold as indicated by comparative modeling. Mutational analysis reveals a catalytic site, a DXD-like motif for UDP-GalNAc donor binding, and several residues potentially involved in acceptor binding. We suggest that a juxtamembrane region of PGAP4 accommodates various GPI-anchored proteins, presenting their acceptor residue toward the catalytic center. In summary, we present insights into the structure of PGAP4 and elucidate the initial step of GPI-GalNAc biosynthesis.
Collapse
Affiliation(s)
- Tetsuya Hirata
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
| | - Sushil K Mishra
- Structural Glycobiology Team, Systems Glycobiology Research Group, RIKEN Global Research Cluster, Wako, Saitama, 351-0198, Japan
| | - Shota Nakamura
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kazunobu Saito
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Daisuke Motooka
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yoko Takada
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Noriyuki Kanzawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yoshiko Murakami
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yusuke Maeda
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Morihisa Fujita
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yoshiki Yamaguchi
- Structural Glycobiology Team, Systems Glycobiology Research Group, RIKEN Global Research Cluster, Wako, Saitama, 351-0198, Japan
| | - Taroh Kinoshita
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan.
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
3
|
Rahman K, Zhao P, Mandalasi M, van der Wel H, Wells L, Blader IJ, West CM. The E3 Ubiquitin Ligase Adaptor Protein Skp1 Is Glycosylated by an Evolutionarily Conserved Pathway That Regulates Protist Growth and Development. J Biol Chem 2016; 291:4268-80. [PMID: 26719340 PMCID: PMC4813455 DOI: 10.1074/jbc.m115.703751] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/19/2015] [Indexed: 01/12/2023] Open
Abstract
Toxoplasma gondii is a protist parasite of warm-blooded animals that causes disease by proliferating intracellularly in muscle and the central nervous system. Previous studies showed that a prolyl 4-hydroxylase related to animal HIFα prolyl hydroxylases is required for optimal parasite proliferation, especially at low O2. We also observed that Pro-154 of Skp1, a subunit of the Skp1/Cullin-1/F-box protein (SCF)-class of E3-ubiquitin ligases, is a natural substrate of this enzyme. In an unrelated protist, Dictyostelium discoideum, Skp1 hydroxyproline is modified by five sugars via the action of three glycosyltransferases, Gnt1, PgtA, and AgtA, which are required for optimal O2-dependent development. We show here that TgSkp1 hydroxyproline is modified by a similar pentasaccharide, based on mass spectrometry, and that assembly of the first three sugars is dependent on Toxoplasma homologs of Gnt1 and PgtA. Reconstitution of the glycosyltransferase reactions in extracts with radioactive sugar nucleotide substrates and appropriate Skp1 glycoforms, followed by chromatographic analysis of acid hydrolysates of the reaction products, confirmed the predicted sugar identities as GlcNAc, Gal, and Fuc. Disruptions of gnt1 or pgtA resulted in decreased parasite growth. Off target effects were excluded based on restoration of the normal glycan chain and growth upon genetic complementation. By analogy to Dictyostelium Skp1, the mechanism may involve regulation of assembly of the SCF complex. Understanding the mechanism of Toxoplasma Skp1 glycosylation is expected to help develop it as a drug target for control of the pathogen, as the glycosyltransferases are absent from mammalian hosts.
Collapse
Affiliation(s)
- Kazi Rahman
- From the Departments of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, the Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Peng Zhao
- the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, the Complex Carbohydrate Research Center, Athens, Georgia 30602, and
| | - Msano Mandalasi
- From the Departments of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Hanke van der Wel
- From the Departments of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Lance Wells
- the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, the Complex Carbohydrate Research Center, Athens, Georgia 30602, and
| | - Ira J Blader
- the Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, the Department of Microbiology and Immunology, University at Buffalo, Buffalo, New York 14214
| | - Christopher M West
- From the Departments of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602,
| |
Collapse
|
4
|
Caffaro CE, Koshy AA, Liu L, Zeiner GM, Hirschberg CB, Boothroyd JC. A nucleotide sugar transporter involved in glycosylation of the Toxoplasma tissue cyst wall is required for efficient persistence of bradyzoites. PLoS Pathog 2013; 9:e1003331. [PMID: 23658519 PMCID: PMC3642066 DOI: 10.1371/journal.ppat.1003331] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 03/15/2013] [Indexed: 11/18/2022] Open
Abstract
Toxoplasma gondii is an intracellular parasite that transitions from acute infection to a chronic infective state in its intermediate host via encystation, which enables the parasite to evade immune detection and clearance. It is widely accepted that the tissue cyst perimeter is highly and specifically decorated with glycan modifications; however, the role of these modifications in the establishment and persistence of chronic infection has not been investigated. Here we identify and biochemically and biologically characterize a Toxoplasma nucleotide-sugar transporter (TgNST1) that is required for cyst wall glycosylation. Toxoplasma strains deleted for the TgNST1 gene (Δnst1) form cyst-like structures in vitro but no longer interact with lectins, suggesting that Δnst1 strains are deficient in the transport and use of sugars for the biosynthesis of cyst-wall structures. In vivo infection experiments demonstrate that the lack of TgNST1 activity does not detectably impact the acute (tachyzoite) stages of an infection or tropism of the parasite for the brain but that Δnst1 parasites are severely defective in persistence during the chronic stages of the infection. These results demonstrate for the first time the critical role of parasite glycoconjugates in the persistence of Toxoplasma tissue cysts. The Toxoplasma tissue cyst is essential to the persistence of the parasite during the chronic infection of an immunocompetent host. While significant efforts have been made to identify molecular factors that trigger and sustain parasite encystation, the role of the glycoconjugates that decorate the cyst wall has received little attention. Here we identify and characterize a bona fide nucleotide-sugar transporter, TgNST1, whose activity is required for the proper assembly of cyst wall glycoconjugates. We found that deletion of TgNST1 interferes with glycosylation during both the tachyzoite and bradyzoite stages of infection, and we observed substantial defects in the ability of Δnst1 parasites to maintain chronic infection. Surprisingly, Δnst1 parasites were not significantly defective in acute infection of mice, and showed wild type levels and migration rates to the brain. These results highlight the important role of cyst-wall glycosylation in parasite persistence during chronic infection, and suggest that drugs targeting nucleotide-sugar transporters and other enzymes required for glycosylation, perhaps in combination with drugs targeting other pathways, might be useful to prevent the establishment of chronic parasite infection.
Collapse
Affiliation(s)
- Carolina E. Caffaro
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Anita A. Koshy
- Department of Medicine (Infectious Diseases), Stanford University School of Medicine, Stanford, California, United States of America
| | - Li Liu
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Gusti M. Zeiner
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Carlos B. Hirschberg
- Department of Medicine (Infectious Diseases), Stanford University School of Medicine, Stanford, California, United States of America
| | - John C. Boothroyd
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
5
|
Debierre-Grockiego F, Schwarz RT. Immunological reactions in response to apicomplexan glycosylphosphatidylinositols. Glycobiology 2010; 20:801-11. [PMID: 20378610 DOI: 10.1093/glycob/cwq038] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Apicomplexan protozoa are a phylum of parasites that includes pathogens such as Plasmodium, the causative agent of the most severe form of malaria responsible for almost 1 million deaths per year and Toxoplasma gondii causing toxoplasmosis, a disease leading to cerebral meningitis in immunocompromised individuals or to abortion in farm animals or in women that are infected for the first time during pregnancy. The initial immune reactions developed by the host are similar in response to an infection with Plasmodium and Toxoplasma in the sense that the same cells of the innate immune system are stimulated to produce inflammatory cytokines. The glycosylphosphatidylinositol (GPI) anchor is the major carbohydrate modification in parasite proteins and the GPIs are essential for parasite survival. Two immediate GPI precursors with the structures ethanolamine phosphate-6(Manalpha1-2)Manalpha1-2Manalpha1-6Manalpha1-4GlcN-PI and ethanolamine phosphate-6Manalpha1-2Manalpha1-6Man-alpha1-4-GlcN-PI are synthesized by P. falciparum. Two main structures are synthesized by T. gondii: ethanolamine phosphate-6Manalpha1-2Manalpha1-6(GalNAcbeta1-4)Manalpha1-4GlcN-PI and ethanolamine phosphate-6Manalpha1-2Manalpha1-6(Glcalpha1-4GalNAcbeta1-4)Manalpha1-4GlcN-PI. This review describes the biosynthesis of the apicomplexan GPIs and their role in the activation of the host immune system.
Collapse
Affiliation(s)
- Françoise Debierre-Grockiego
- UMR Université-INRA 0483, Immunologie Parasitaire Vaccinologie et Biothérapies anti-infectieuses, UFR Sciences Pharmaceutiques, 31 avenue Monge, 37200 Tours, France
| | | |
Collapse
|
6
|
Chapter 9 GPIs of Apicomplexan Protozoa. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/s1874-6047(09)26009-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
7
|
Smith TK, Kimmel J, Azzouz N, Shams-Eldin H, Schwarz RT. The role of inositol acylation and inositol deacylation in the Toxoplasma gondii glycosylphosphatidylinositol biosynthetic pathway. J Biol Chem 2007; 282:32032-42. [PMID: 17804418 DOI: 10.1074/jbc.m703784200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Toxoplasma gondii is a ubiquitous parasitic protozoan that invades nucleated cells in a process thought to be in part due to several surface glycosylphosphatidylinositol (GPI)-anchored proteins, like the major surface antigen SAG1 (P30), which dominates the plasma membrane. The serine protease inhibitors phenylmethylsulfonyl fluoride and diisopropyl fluoride were found to have a profound effect on the T. gondii GPI biosynthetic pathway, leading to the observation and characterization of novel inositol-acylated mannosylated GPI intermediates. This inositol acylation is acyl-CoA-dependent and takes place before mannosylation, but uniquely for this class of inositol-acyltransferase, it is inhibited by phenylmethylsulfonyl fluoride. The subsequent inositol deacylation of fully mannosylated GPI intermediates is inhibited by both phenylmethylsulfonyl fluoride and diisopropyl fluoride. The use of these serine protease inhibitors allows observations as to the timing of inositol acylation and subsequent inositol deacylation of the GPI intermediates. Inositol acylation of the non-mannosylated GPI intermediate D-GlcNalpha1-6-D-myo-inositol-1-HPO4-sn-lipid precedes mannosylation. Inositol deacylation of the fully mannosylated GPI intermediate allows further processing, i.e. addition of GalNAc side chain to the first mannose. Characterization of the phosphatidylinositol moieties present on both free GPIs and GPI-anchored proteins shows the presence of a diacylglycerol lipid, whose sn-2 position contains almost exclusively an C18:1 acyl chain. The data presented here identify key novel inositol-acylated mannosylated intermediates, allowing the formulation of an updated T. gondii GPI biosynthetic pathway along with identification of the putative genes involved.
Collapse
Affiliation(s)
- Terry K Smith
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom.
| | | | | | | | | |
Collapse
|