1
|
Ai G, Si J, Cheng Y, Meng R, Wu Z, Xu R, Wang X, Zhai Y, Peng H, Li Y, Dou D, Jing M. The oomycete-specific BAG subfamily maintains protein homeostasis and promotes pathogenicity in an atypical HSP70-independent manner. Cell Rep 2023; 42:113391. [PMID: 37930886 DOI: 10.1016/j.celrep.2023.113391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/08/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023] Open
Abstract
Protein homeostasis is vital for organisms and requires chaperones like the conserved Bcl-2-associated athanogene (BAG) co-chaperones that bind to the heat shock protein 70 (HSP70) through their C-terminal BAG domain (BD). Here, we show an unconventional BAG subfamily exclusively found in oomycetes. Oomycete BAGs feature an atypical N-terminal BD with a short and oomycete-specific α1 helix (α1'), plus a C-terminal small heat shock protein (sHSP) domain. In oomycete pathogen Phytophthora sojae, both BD-α1' and sHSP domains are required for P. sojae BAG (PsBAG) function in cyst germination, pathogenicity, and unfolded protein response assisting in 26S proteasome-mediated degradation of misfolded proteins. PsBAGs form homo- and heterodimers through their unique BD-α1' to function properly, with no recruitment of HSP70s to form the common BAG-HSP70 complex found in other eukaryotes. Our study highlights an oomycete-exclusive protein homeostasis mechanism mediated by atypical BAGs, which provides a potential target for oomycete disease control.
Collapse
Affiliation(s)
- Gan Ai
- Department of Plant Pathology, Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
| | - Jierui Si
- Department of Plant Pathology, Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Cheng
- Department of Plant Pathology, Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
| | - Rui Meng
- Department of Plant Pathology, Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
| | - Zishan Wu
- Department of Plant Pathology, Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
| | - Ruofei Xu
- Department of Plant Pathology, Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaodan Wang
- Department of Plant Pathology, China Agricultural University, Beijing 100091, China
| | - Ying Zhai
- USDA-ARS, Crop Diseases, Pests and Genetics Research Unit, Parlier, CA 93648, USA
| | - Hao Peng
- USDA-ARS, Crop Diseases, Pests and Genetics Research Unit, Parlier, CA 93648, USA
| | - Yurong Li
- Corteva Agriscience, Johnston, IA 50131, USA
| | - Daolong Dou
- Department of Plant Pathology, Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
| | - Maofeng Jing
- Department of Plant Pathology, Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
2
|
Wu S, Edskes HK, Wickner RB. Human proteins curing yeast prions. Proc Natl Acad Sci U S A 2023; 120:e2314781120. [PMID: 37903258 PMCID: PMC10636303 DOI: 10.1073/pnas.2314781120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/25/2023] [Indexed: 11/01/2023] Open
Abstract
Recognition that common human amyloidoses are prion diseases makes the use of the Saccharomyces cerevisiae prion model systems to screen for possible anti-prion components of increasing importance. [PSI+] and [URE3] are amyloid-based prions of Sup35p and Ure2p, respectively. Yeast has at least six anti-prion systems that together cure nearly all [PSI+] and [URE3] prions arising in their absence. We made a GAL-promoted bank of 14,913 human open reading frames in a yeast shuttle plasmid and isolated 20 genes whose expression cures [PSI+] or [URE3]. PRPF19 is an E3 ubiquitin ligase that cures [URE3] if its U-box is intact. DNAJA1 is a J protein that cures [PSI+] unless its interaction with Hsp70s is defective. Human Bag5 efficiently cures [URE3] and [PSI+]. Bag family proteins share a 110 to 130 residue "BAG domain"; Bag 1, 2, 3, 4, and 6 each have one BAG domain while Bag5 has five BAG domains. Two BAG domains are necessary for curing [PSI+], but one can suffice to cure [URE3]. Although most Bag proteins affect autophagy in mammalian cells, mutations blocking autophagy in yeast do not affect Bag5 curing of [PSI+] or [URE3]. Curing by Bag proteins depends on their interaction with Hsp70s, impairing their role, with Hsp104 and Sis1, in the amyloid filament cleavage necessary for prion propagation. Since Bag5 curing is reduced by overproduction of Sis1, we propose that Bag5 cures prions by blocking Sis1 access to Hsp70s in its role with Hsp104 in filament cleavage.
Collapse
Affiliation(s)
- Songsong Wu
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892-0830
| | - Herman K. Edskes
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892-0830
| | - Reed B. Wickner
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892-0830
| |
Collapse
|
3
|
Bracher A, Verghese J. Nucleotide Exchange Factors for Hsp70 Molecular Chaperones: GrpE, Hsp110/Grp170, HspBP1/Sil1, and BAG Domain Proteins. Subcell Biochem 2023; 101:1-39. [PMID: 36520302 DOI: 10.1007/978-3-031-14740-1_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Molecular chaperones of the Hsp70 family are key components of the cellular protein-folding machinery. Substrate folding is accomplished by iterative cycles of ATP binding, hydrolysis, and release. The ATPase activity of Hsp70 is regulated by two main classes of cochaperones: J-domain proteins stimulate ATPase hydrolysis by Hsp70, while nucleotide exchange factors (NEFs) facilitate the conversion from the ADP-bound to the ATP-bound state, thus closing the chaperone folding cycle. NEF function can additionally be antagonized by ADP dissociation inhibitors. Beginning with the discovery of the prototypical bacterial NEF, GrpE, a large diversity of nucleotide exchange factors for Hsp70 have been identified, connecting it to a multitude of cellular processes in the eukaryotic cell. Here we review recent advances toward structure and function of nucleotide exchange factors from the Hsp110/Grp170, HspBP1/Sil1, and BAG domain protein families and discuss how these cochaperones connect protein folding with cellular quality control and degradation pathways.
Collapse
Affiliation(s)
- Andreas Bracher
- Department of Cellular Biochemistry, Max-Planck-Institute of Biochemistry, Martinsried, Germany.
| | - Jacob Verghese
- Department of Cellular Biochemistry, Max-Planck-Institute of Biochemistry, Martinsried, Germany
- Trophic Communications GmbH, Munich, Germany
| |
Collapse
|
4
|
Zahrl RJ, Prielhofer R, Ata Ö, Baumann K, Mattanovich D, Gasser B. Pushing and pulling proteins into the yeast secretory pathway enhances recombinant protein secretion. Metab Eng 2022; 74:36-48. [PMID: 36057427 DOI: 10.1016/j.ymben.2022.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022]
Abstract
Yeasts and especially Pichia pastoris (syn Komagataella spp.) are popular microbial expression systems for the production of recombinant proteins. One of the key advantages of yeast host systems is their ability to secrete the recombinant protein into the culture media. However, secretion of some recombinant proteins is less efficient. These proteins include antibody fragments such as Fabs or scFvs. We have recently identified translocation of nascent Fab fragments from the cytosol into the endoplasmic reticulum (ER) as one major bottleneck. Conceptually, this bottleneck requires engineering to increase the flux of recombinant proteins at the translocation step by pushing on the cytosolic side and pulling on the ER side. This engineering strategy is well-known in the field of metabolic engineering. To apply the push-and-pull strategy to recombinant protein secretion, we chose to modulate the cytosolic and ER Hsp70 cycles, which have a key impact on the translocation process. After identifying the relevant candidate factors of the Hsp70 cycles, we combined the push-and-pull factors in a single strain and achieved synergistic effects for antibody fragment secretion. With this concept we were able to successfully engineer strains and improve protein secretion up to 5-fold for different model protein classes. Overall, titers of more than 1.3 g/L Fab and scFv were reached in bioreactor cultivations.
Collapse
Affiliation(s)
- Richard J Zahrl
- ACIB GmbH, Muthgasse 11, 1190, Vienna, Austria; Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology (IMMB), University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria
| | - Roland Prielhofer
- ACIB GmbH, Muthgasse 11, 1190, Vienna, Austria; Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology (IMMB), University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria
| | - Özge Ata
- ACIB GmbH, Muthgasse 11, 1190, Vienna, Austria; Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology (IMMB), University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria
| | - Kristin Baumann
- ACIB GmbH, Muthgasse 11, 1190, Vienna, Austria; Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology (IMMB), University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria
| | - Diethard Mattanovich
- ACIB GmbH, Muthgasse 11, 1190, Vienna, Austria; Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology (IMMB), University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria
| | - Brigitte Gasser
- ACIB GmbH, Muthgasse 11, 1190, Vienna, Austria; Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology (IMMB), University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria.
| |
Collapse
|
5
|
Santiago A, Morano KA. Oxidation of two cysteines within yeast Hsp70 impairs proteostasis while directly triggering an Hsf1-dependent cytoprotective response. J Biol Chem 2022; 298:102424. [PMID: 36030825 PMCID: PMC9508553 DOI: 10.1016/j.jbc.2022.102424] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and Huntington’s diseases affect millions of Americans every year. One factor linked to the formation of aggregates associated with these diseases is damage sustained to proteins by oxidative stress. Management of protein misfolding by the ubiquitous Hsp70 chaperone family can be modulated by modification of two key cysteines in the ATPase domain by oxidizing or thiol-modifying compounds. To investigate the biological consequences of cysteine modification on the Hsp70 Ssa1 in budding yeast, we generated cysteine null (cysteine to serine) and oxidomimetic (cysteine to aspartic acid) mutant variants of both C264 and C303 and demonstrate reduced ATP binding, hydrolysis, and protein folding properties in both the oxidomimetic and hydrogen peroxide–treated Ssa1. In contrast, cysteine nullification rendered Ssa1 insensitive to oxidative inhibition. Additionally, we determined the oxidomimetic ssa1-2CD (C264D, C303D) allele was unable to function as the sole Ssa1 isoform in yeast cells and also exhibited dominant negative effects on cell growth and viability. Ssa1 binds to and represses Hsf1, the major transcription factor controlling the heat shock response, and we found the oxidomimetic Ssa1 failed to stably interact with Hsf1, resulting in constitutive activation of the heat shock response. Consistent with our in vitro findings, ssa1-2CD cells were compromised for de novo folding, post-stress protein refolding, and in regulated degradation of a model terminally misfolded protein. Together, these findings pinpoint Hsp70 as a key link between oxidative stress and proteostasis, information critical to understanding cytoprotective systems that prevent and manage cellular insults underlying complex disease states.
Collapse
Affiliation(s)
- Alec Santiago
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth Houston, Houston, Texas, USA; MD Anderson UTHealth Graduate School of Biomedical Sciences at UTHealth Houston, Houston, Texas, USA
| | - Kevin A Morano
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth Houston, Houston, Texas, USA.
| |
Collapse
|
6
|
Fajardo AS, Legrand P, Payá-Tormo LA, Martin L, Pellicer Martı Nez MT, Echavarri-Erasun C, Vernède X, Rubio LM, Nicolet Y. Structural Insights into the Mechanism of the Radical SAM Carbide Synthase NifB, a Key Nitrogenase Cofactor Maturating Enzyme. J Am Chem Soc 2020; 142:11006-11012. [PMID: 32476412 DOI: 10.1021/jacs.0c02243] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nitrogenase is a key player in the global nitrogen cycle, as it catalyzes the reduction of dinitrogen into ammonia. The active site of the nitrogenase MoFe protein corresponds to a [MoFe7S9C-(R)-homocitrate] species designated FeMo-cofactor, whose biosynthesis and insertion requires the action of over a dozen maturation proteins provided by the NIF (for NItrogen Fixation) assembly machinery. Among them, the radical SAM protein NifB plays an essential role, concomitantly inserting a carbide ion and coupling two [Fe4S4] clusters to form a [Fe8S9C] precursor called NifB-co. Here we report on the X-ray structure of NifB from Methanotrix thermoacetophila at 1.95 Å resolution in a state pending the binding of one [Fe4S4] cluster substrate. The overall NifB architecture indicates that this enzyme has a single SAM binding site, which at this stage is occupied by cysteine residue 62. The structure reveals a unique ligand binding mode for the K1-cluster involving cysteine residues 29 and 128 in addition to histidine 42 and glutamate 65. The latter, together with cysteine 62, belongs to a loop inserted in the active site, likely protecting the already present [Fe4S4] clusters. These two residues regulate the sequence of events, controlling SAM dual reactivity and preventing unwanted radical-based chemistry before the K2 [Fe4S4] cluster substrate is loaded into the protein. The location of the K1-cluster, too far away from the SAM binding site, supports a mechanism in which the K2-cluster is the site of methylation.
Collapse
Affiliation(s)
- Ana Sosa Fajardo
- Centro de Biotecnologı́a y Genómica de Plantas, Universidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnologı́a Agraria y Alimentaria, Pozuelo de Alarcón, 28223 Madrid, Spain.,Univ. Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins Unit, F-38000 Grenoble, France
| | - Pierre Legrand
- Synchrotron SOLEIL, L'Orme des Merisiers, Gif-sur-Yvette, France
| | - Lucı A Payá-Tormo
- Centro de Biotecnologı́a y Genómica de Plantas, Universidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnologı́a Agraria y Alimentaria, Pozuelo de Alarcón, 28223 Madrid, Spain.,Departamento de Biotecnologı́a-Biología Vegetal, Escuela Técnica Superior de Ingenierı́a Agronómica, Alimentarı́a y de Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Lydie Martin
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins Unit, F-38000 Grenoble, France
| | - Maria Teresa Pellicer Martı Nez
- Centro de Biotecnologı́a y Genómica de Plantas, Universidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnologı́a Agraria y Alimentaria, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Carlos Echavarri-Erasun
- Centro de Biotecnologı́a y Genómica de Plantas, Universidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnologı́a Agraria y Alimentaria, Pozuelo de Alarcón, 28223 Madrid, Spain.,Departamento de Biotecnologı́a-Biología Vegetal, Escuela Técnica Superior de Ingenierı́a Agronómica, Alimentarı́a y de Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Xavier Vernède
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins Unit, F-38000 Grenoble, France
| | - Luis M Rubio
- Centro de Biotecnologı́a y Genómica de Plantas, Universidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnologı́a Agraria y Alimentaria, Pozuelo de Alarcón, 28223 Madrid, Spain.,Departamento de Biotecnologı́a-Biología Vegetal, Escuela Técnica Superior de Ingenierı́a Agronómica, Alimentarı́a y de Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Yvain Nicolet
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins Unit, F-38000 Grenoble, France
| |
Collapse
|
7
|
Peffer S, Gonçalves D, Morano KA. Regulation of the Hsf1-dependent transcriptome via conserved bipartite contacts with Hsp70 promotes survival in yeast. J Biol Chem 2019; 294:12191-12202. [PMID: 31239354 DOI: 10.1074/jbc.ra119.008822] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/20/2019] [Indexed: 12/23/2022] Open
Abstract
Protein homeostasis and cellular fitness in the presence of proteotoxic stress is promoted by heat shock factor 1 (Hsf1), which controls basal and stress-induced expression of molecular chaperones and other targets. The major heat shock proteins and molecular chaperones Hsp70 and Hsp90, in turn, participate in a negative feedback loop that ensures appropriate coordination of the heat shock response with environmental conditions. Features of this regulatory circuit in the budding yeast Saccharomyces cerevisiae have been recently defined, most notably regarding direct interaction between Hsf1 and the constitutively expressed Hsp70 protein Ssa1. Here, we sought to further examine the Ssa1/Hsf1 regulation. We found that Ssa1 interacts independently with both the previously defined CE2 site in the Hsf1 C-terminal transcriptional activation domain and with an additional site that we identified within the N-terminal activation domain. Consistent with both sites bearing a recognition signature for Hsp70, we demonstrate that Ssa1 contacts Hsf1 via its substrate-binding domain and that abolishing either regulatory site results in loss of Ssa1 interaction. Removing Hsp70 regulation of Hsf1 globally dysregulated Hsf1 transcriptional activity, with synergistic effects on both gene expression and cellular fitness when both sites are disrupted together. Finally, we report that Hsp70 interacts with both transcriptional activation domains of Hsf1 in the related yeast Lachancea kluyveri Our findings indicate that Hsf1 transcriptional activity is tightly regulated to ensure cellular fitness and that a general and conserved Hsp70-HSF1 feedback loop regulates cellular proteostasis in yeast.
Collapse
Affiliation(s)
- Sara Peffer
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School at Houston, Houston, Texas 77030; M.D. Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas 77030
| | - Davi Gonçalves
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School at Houston, Houston, Texas 77030
| | - Kevin A Morano
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School at Houston, Houston, Texas 77030.
| |
Collapse
|
8
|
Yakubu UM, Morano KA. Roles of the nucleotide exchange factor and chaperone Hsp110 in cellular proteostasis and diseases of protein misfolding. Biol Chem 2019; 399:1215-1221. [PMID: 29908125 DOI: 10.1515/hsz-2018-0209] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/30/2018] [Indexed: 01/15/2023]
Abstract
Cellular protein homeostasis (proteostasis) is maintained by a broad network of proteins involved in synthesis, folding, triage, repair and degradation. Chief among these are molecular chaperones and their cofactors that act as powerful protein remodelers. The growing realization that many human pathologies are fundamentally diseases of protein misfolding (proteopathies) has generated interest in understanding how the proteostasis network impacts onset and progression of these diseases. In this minireview, we highlight recent progress in understanding the enigmatic Hsp110 class of heat shock protein that acts as both a potent nucleotide exchange factor to regulate activity of the foldase Hsp70, and as a passive chaperone capable of recognizing and binding cellular substrates on its own, and its integration into the proteostasis network.
Collapse
Affiliation(s)
- Unekwu M Yakubu
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School at Houston, Houston, TX 77030, USA.,MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Kevin A Morano
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School at Houston, Houston, TX 77030, USA
| |
Collapse
|
9
|
Zhang H, Li Y, Dickman MB, Wang Z. Cytoprotective Co-chaperone BcBAG1 Is a Component for Fungal Development, Virulence, and Unfolded Protein Response (UPR) of Botrytis cinerea. Front Microbiol 2019; 10:685. [PMID: 31024482 PMCID: PMC6467101 DOI: 10.3389/fmicb.2019.00685] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/19/2019] [Indexed: 11/25/2022] Open
Abstract
The Bcl-2 associated athanogene (BAG) family is an evolutionarily conserved group of co-chaperones that confers stress protection against a variety of cellular insults extending from yeasts, plants to humans. Little is known, however, regarding the biological role of BAG proteins in phytopathogenic fungi. Here, we identified the unique BAG gene (BcBAG1) from the necrotrophic fungal pathogen, Botrytis cinerea. BcBAG1 is the homolog of Arabidopsis thaliana AtBAG4, and ectopic expression of BcBAG1 in atbag4 knock-out mutants restores salt tolerance. BcBAG1 deletion mutants (ΔBcbag1) exhibited decreased conidiation, enhanced melanin accumulation and lost the ability to develop sclerotia. Also, BcBAG1 disruption blocked fungal conidial germination and successful penetration, leading to a reduced virulence in host plants. BcBAG1 contains BAG (BD) domain at C-terminus and ubiquitin-like (UBL) domain at N-terminus. Complementation assays indicated that BD can largely restored pathogenicity of ΔBcbag1. Abiotic stress assays showed ΔBcbag1 was more sensitive than the wild-type strain to NaCl, calcofluor white, SDS, tunicamycin, dithiothreitol (DTT), heat and cold stress, suggesting BcBAG1 plays a cytoprotective role during salt stress, cell wall stress, and ER stress. BcBAG1 negatively regulated the expression of BcBIP1, BcIRE1 and the splicing of BcHAC1 mRNA, which are core regulators of unfolded protein response (UPR) during ER stress. Moreover, BcBAG1 interacted with HSP70-type chaperones, BcBIP1 and BcSKS2. In summary, this work demonstrates that BcBAG1 is pleiotropic and not only essential for fungal development, hyphal melanization, and virulence, but also required for response to multiple abiotic stresses and UPR pathway of B. cinerea.
Collapse
Affiliation(s)
- Honghong Zhang
- Fujian University Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute for Plant Genomics and Biotechnology, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, United States.,Department of Plant Pathology and Microbiology, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, United States
| | - Yurong Li
- Institute for Plant Genomics and Biotechnology, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, United States.,Department of Plant Pathology and Microbiology, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, United States
| | - Martin B Dickman
- Institute for Plant Genomics and Biotechnology, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, United States.,Department of Plant Pathology and Microbiology, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, United States
| | - Zonghua Wang
- Fujian University Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Oceanography, Minjiang University, Fuzhou, China
| |
Collapse
|
10
|
Jain S, Wiemann P, Thill E, Williams B, Keller NP, Kabbage M. A Bcl-2 Associated Athanogene ( bagA) Modulates Sexual Development and Secondary Metabolism in the Filamentous Fungus Aspergillus nidulans. Front Microbiol 2018; 9:1316. [PMID: 29963036 PMCID: PMC6013550 DOI: 10.3389/fmicb.2018.01316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/30/2018] [Indexed: 02/06/2023] Open
Abstract
The Bcl-2 associated athanogene (Bag) family is a multifunctional group of proteins distinguished by a conserved region known as the Bag domain (BD). Herein, we discuss the discovery and characterization of a Bag protein in the model genetic fungus Aspergillus nidulans, we designated BagA. BagA shares striking similarities in 3D structure, domain organization, amino acid properties, and Hsp70 binding surfaces to animal and plant Bags. While Hsp70 binding is a common feature of Bag proteins, our experimental evidence shows that BagA does not cooperate with A. nidulans Hsp70s, suggesting this association may not be a universal feature of Bag proteins. Gene expression of bagA was strongly induced during sexual development suggesting a role in developmental processes. Accordingly, the deletion of bagA (ΔbagA) negatively impacted sexual development, while its overexpression resulted in constitutive induction of sexual fruiting bodies and spores. Asexual and sexual development was linked to secondary metabolism in A. nidulans. Our data show that the deletion of bagA also provoked an altered secondary metabolite (SM) profile in both sexual and vegetative growth phases. Indeed, LC-MS analysis showed a significant enrichment of SMs in ΔbagA, including novel metabolites not produced by wild type strain. Enrichment of SMs in ΔbagA strain is particularly intriguing and suggest that altering cellular homeostasis can be used as a provocative strategy to activate cryptic metabolites and uncover novel bioactive compounds. Overall, our results indicate that Bag proteins in filamentous fungi share developmental regulatory roles with their animal and plant counterparts. We also show a potentially unique role for BagA in modulating secondary metabolism in A. nidulans. To our knowledge, this study provides a first insight into Bag function in filamentous fungi.
Collapse
Affiliation(s)
- Sachin Jain
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States
| | - Philipp Wiemann
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| | - Elizabeth Thill
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States
| | - Brett Williams
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States.,Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - Mehdi Kabbage
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
11
|
Taketa DA, Nydam ML, Langenbacher AD, Rodriguez D, Sanders E, De Tomaso AW. Molecular evolution and in vitro characterization of Botryllus histocompatibility factor. Immunogenetics 2015; 67:605-23. [PMID: 26359175 PMCID: PMC11614195 DOI: 10.1007/s00251-015-0870-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/01/2015] [Indexed: 10/23/2022]
Abstract
Botryllus schlosseri is a colonial ascidian with a natural ability to anastomose with another colony to form a vascular and hematopoietic chimera. In order to fuse, two individuals must share at least one allele at the highly polymorphic fuhc locus. Otherwise, a blood-based inflammatory response will occur resulting in a melanin scar at the sites of interaction. The single-locus genetic control of allorecognition makes B. schlosseri an attractive model to study the underlying molecular mechanisms. Over the past decade, several candidate genes involved in allorecognition have been identified, but how they ultimately contribute to allorecognition outcome remains poorly understood. Here, we report our initial molecular characterization of a recently identified candidate allodeterminant called Botryllus histocompatibility factor (bhf). bhf, both on a DNA and protein level, is the least polymorphic protein in the fuhc locus studied so far and, unlike other known allorecognition determinants, does not appear to be under any form of balancing or directional selection. Additionally, we identified a second isoform through mRNA-Seq and an EST assembly library which is missing exon 3, resulting in a C-terminally truncated form. We report via whole-mount fluorescent in situ hybridization that a subset of cells co-express bhf and cfuhc(sec). Finally, we observed BHF's localization in HEK293T at the cytoplasmic side of the plasma membrane in addition to the nucleus via a nuclear localization signal. Given the localization data thus far, we hypothesize that BHF may function as a scaffolding protein in a complex with other Botryllus proteins, rather than functioning as an allorecognition determinant.
Collapse
Affiliation(s)
- Daryl A Taketa
- Department of Molecular, Cellular and Developmental Biology, University of California-Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Marie L Nydam
- Division of Science and Mathematics, Centre College, Danville, KY, 40422, USA
| | - Adam D Langenbacher
- Department of Molecular, Cellular and Developmental Biology, University of California-Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Delany Rodriguez
- Department of Molecular, Cellular and Developmental Biology, University of California-Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Erin Sanders
- Department of Molecular, Cellular and Developmental Biology, University of California-Santa Barbara, Santa Barbara, CA, 93106, USA
- Department of Developmental Biology, Stanford University, Stanford, CA, 94505, USA
| | - Anthony W De Tomaso
- Department of Molecular, Cellular and Developmental Biology, University of California-Santa Barbara, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
12
|
Bracher A, Verghese J. GrpE, Hsp110/Grp170, HspBP1/Sil1 and BAG domain proteins: nucleotide exchange factors for Hsp70 molecular chaperones. Subcell Biochem 2015; 78:1-33. [PMID: 25487014 DOI: 10.1007/978-3-319-11731-7_1] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Molecular chaperones of the Hsp70 family are key components of the cellular protein folding machinery. Substrate folding is accomplished by iterative cycles of ATP binding, hydrolysis and release. The ATPase activity of Hsp70 is regulated by two main classes of cochaperones: J-domain proteins stimulate ATPase hydrolysis by Hsp70, while nucleotide exchange factors (NEF) facilitate its conversion from the ADP-bound to the ATP-bound state, thus closing the chaperone folding cycle. Beginning with the discovery of the prototypical bacterial NEF GrpE, a large diversity of Hsp70 nucleotide exchange factors has been identified, connecting Hsp70 to a multitude of cellular processes in the eukaryotic cell. Here we review recent advances towards structure and function of nucleotide exchange factors from the Hsp110/Grp170, HspBP1/Sil1 and BAG domain protein families and discuss how these cochaperones connect protein folding with quality control and degradation pathways.
Collapse
Affiliation(s)
- Andreas Bracher
- Dept. of Cellular Biochemistry, Max-Planck-Institute of Biochemistry, 82152, Martinsried, Germany,
| | | |
Collapse
|
13
|
Bracher A, Verghese J. The nucleotide exchange factors of Hsp70 molecular chaperones. Front Mol Biosci 2015; 2:10. [PMID: 26913285 PMCID: PMC4753570 DOI: 10.3389/fmolb.2015.00010] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/18/2015] [Indexed: 11/13/2022] Open
Abstract
Molecular chaperones of the Hsp70 family form an important hub in the cellular protein folding networks in bacteria and eukaryotes, connecting translation with the downstream machineries of protein folding and degradation. The Hsp70 folding cycle is driven by two types of cochaperones: J-domain proteins stimulate ATP hydrolysis by Hsp70, while nucleotide exchange factors (NEFs) promote replacement of Hsp70-bound ADP with ATP. Bacteria and organelles of bacterial origin have only one known NEF type for Hsp70, GrpE. In contrast, a large diversity of Hsp70 NEFs has been discovered in the eukaryotic cell. These NEFs belong to the Hsp110/Grp170, HspBP1/Sil1, and BAG domain protein families. In this short review we compare the structures and molecular mechanisms of nucleotide exchange factors for Hsp70 and discuss how these cochaperones contribute to protein folding and quality control in the cell.
Collapse
Affiliation(s)
- Andreas Bracher
- Department of Cellular Biochemistry, Max-Planck-Institute of Biochemistry Martinsried, Germany
| | - Jacob Verghese
- Department of Cellular Biochemistry, Max-Planck-Institute of Biochemistry Martinsried, Germany
| |
Collapse
|
14
|
Tenge VR, Zuehlke AD, Shrestha N, Johnson JL. The Hsp90 cochaperones Cpr6, Cpr7, and Cns1 interact with the intact ribosome. EUKARYOTIC CELL 2015; 14:55-63. [PMID: 25380751 PMCID: PMC4279014 DOI: 10.1128/ec.00170-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 11/05/2014] [Indexed: 01/02/2023]
Abstract
The abundant molecular chaperone Hsp90 is essential for the folding and stabilization of hundreds of distinct client proteins. Hsp90 is assisted by multiple cochaperones that modulate Hsp90's ATPase activity and/or promote client interaction, but the in vivo functions of many of these cochaperones are largely unknown. We found that Cpr6, Cpr7, and Cns1 interact with the intact ribosome and that Saccharomyces cerevisiae lacking CPR7 or containing mutations in CNS1 exhibited sensitivity to the translation inhibitor hygromycin. Cpr6 contains a peptidyl-prolyl isomerase (PPIase) domain and a tetratricopeptide repeat (TPR) domain flanked by charged regions. Truncation or alteration of basic residues near the carboxy terminus of Cpr6 disrupted ribosome interaction. Cns1 contains an amino-terminal TPR domain and a poorly characterized carboxy-terminal domain. The isolated carboxy-terminal domain was able to interact with the ribosome. Although loss of CPR6 does not cause noticeable growth defects, overexpression of CPR6 results in enhanced growth defects in cells expressing the temperature-sensitive cns1-G90D mutation (the G-to-D change at position 90 encoded by cns1). Cpr6 mutants that exhibit reduced ribosome interaction failed to cause growth defects, indicating that ribosome interaction is required for in vivo functions of Cpr6. Together, these results represent a novel link between the Hsp90 molecular-chaperone machine and protein synthesis.
Collapse
Affiliation(s)
- Victoria R Tenge
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Abbey D Zuehlke
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Neelima Shrestha
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Jill L Johnson
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
15
|
Abrams JL, Verghese J, Gibney PA, Morano KA. Hierarchical functional specificity of cytosolic heat shock protein 70 (Hsp70) nucleotide exchange factors in yeast. J Biol Chem 2014; 289:13155-67. [PMID: 24671421 DOI: 10.1074/jbc.m113.530014] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Heat shock protein 70 (Hsp70) molecular chaperones play critical roles in protein homeostasis. In the budding yeast Saccharomyces cerevisiae, cytosolic Hsp70 interacts with up to three types of nucleotide exchange factors (NEFs) homologous to human counterparts: Sse1/Sse2 (Heat shock protein 110 (Hsp110)), Fes1 (HspBP1), and Snl1 (Bag-1). All three NEFs stimulate ADP release; however, it is unclear why multiple distinct families have been maintained throughout eukaryotic evolution. In this study we investigate NEF roles in Hsp70 cell biology using an isogenic combinatorial collection of NEF deletion mutants. Utilizing well characterized model substrates, we find that Sse1 participates in most Hsp70-mediated processes and is of particular importance in protein biogenesis and degradation, whereas Fes1 contributes to a minimal extent. Surprisingly, disaggregation and resolubilization of thermally denatured firefly luciferase occurred independently of NEF activity. Simultaneous deletion of SSE1 and FES1 resulted in constitutive activation of heat shock protein expression mediated by the transcription factor Hsf1, suggesting that these two factors are important for modulating stress response. Fes1 was found to interact in vivo preferentially with the Ssa family of cytosolic Hsp70 and not the co-translational Ssb homolog, consistent with the lack of cold sensitivity and protein biogenesis phenotypes for fes1Δ cells. No significant consequence could be attributed to deletion of the minor Hsp110 SSE2 or the Bag homolog SNL1. Together, these lines of investigation provide a comparative analysis of NEF function in yeast that implies Hsp110 is the principal NEF for cytosolic Hsp70, making it an ideal candidate for therapeutic intervention in human protein folding disorders.
Collapse
Affiliation(s)
- Jennifer L Abrams
- From the Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, Texas 77030
| | | | | | | |
Collapse
|
16
|
The BAG homology domain of Snl1 cures yeast prion [URE3] through regulation of Hsp70 chaperones. G3-GENES GENOMES GENETICS 2014; 4:461-70. [PMID: 24408033 PMCID: PMC3962485 DOI: 10.1534/g3.113.009993] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The BAG family of proteins is evolutionarily conserved from yeast to humans and plants. In animals and plants, the BAG family possesses multiple members with overlapping and distinct functions that regulate many cellular processes, such as signaling, protein degradation, and stress response. The only BAG domain protein in Saccharomyces cerevisiae is Snl1, which is anchored to the endoplasmic reticulum through an amino-terminal transmembrane region. Snl1 is the only known membrane-associated nucleotide exchange factor for 70-kilodalton heat shock protein (Hsp70), and thus its role in regulating cytosolic Hsp70 functions is not clear. Here, we examine whether Snl1 regulates Hsp70 activity in the propagation of stable prion-like protein aggregates. We show that unlike other nucleotide exchange factors, Snl1 is not required for propagation of yeast prions [URE3] and [PSI+]. Overexpressing Snl1 derivative consisting of only the BAG domain (Snl1-S) cures [URE3]; however, elevated levels of the entire cytosolic domain of Snl1 (Snl1-M), which has nine additional amino-terminal residues, has no effect. Substituting the three lysine residues in this region of Snl1-M with alanine restores ability to cure [URE3]. [PSI+] is unaffected by overproduction of either Snl1-S or Snl1-M. The Snl1-S mutant engineered with weaker affinity to Hsp70 does not cure [URE3], indicating that curing of [URE3] by Snl1-S requires Hsp70. Our data suggest that Snl1 anchoring to endoplasmic reticulum or nuclear membrane restricts its ability to modulate cytosolic activities of Hsp70 proteins. Furthermore, the short amino-terminal extension of the BAG domain profoundly affects its function.
Collapse
|
17
|
Delic M, Valli M, Graf AB, Pfeffer M, Mattanovich D, Gasser B. The secretory pathway: exploring yeast diversity. FEMS Microbiol Rev 2013; 37:872-914. [PMID: 23480475 DOI: 10.1111/1574-6976.12020] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 02/14/2013] [Accepted: 02/17/2013] [Indexed: 12/11/2022] Open
Abstract
Protein secretion is an essential process for living organisms. In eukaryotes, this encompasses numerous steps mediated by several hundred cellular proteins. The core functions of translocation through the endoplasmic reticulum membrane, primary glycosylation, folding and quality control, and vesicle-mediated secretion are similar from yeasts to higher eukaryotes. However, recent research has revealed significant functional differences between yeasts and mammalian cells, and even among diverse yeast species. This review provides a current overview of the canonical protein secretion pathway in the model yeast Saccharomyces cerevisiae, highlighting differences to mammalian cells as well as currently unresolved questions, and provides a genomic comparison of the S. cerevisiae pathway to seven other yeast species where secretion has been investigated due to their attraction as protein production platforms, or for their relevance as pathogens. The analysis of Candida albicans, Candida glabrata, Kluyveromyces lactis, Pichia pastoris, Hansenula polymorpha, Yarrowia lipolytica, and Schizosaccharomyces pombe reveals that many - but not all - secretion steps are more redundant in S. cerevisiae due to duplicated genes, while some processes are even absent in this model yeast. Recent research obviates that even where homologous genes are present, small differences in protein sequence and/or differences in the regulation of gene expression may lead to quite different protein secretion phenotypes.
Collapse
Affiliation(s)
- Marizela Delic
- Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria; Austrian Centre of Industrial Biotechnology (ACIB GmbH), Vienna, Austria
| | | | | | | | | | | |
Collapse
|