1
|
Toyoshima M, Okuda H, Okada Y, Yoneda K, Shimakawa G, Matsuda Y. Overexpression of Plastid Acetyl-CoA Carboxylase Confers Stress Tolerances with Increased Levels of Unsaturated Fatty Acids in the Marine Diatom Phaeodactylum tricornutum. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2025; 27:67. [PMID: 40138040 DOI: 10.1007/s10126-025-10446-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/14/2025] [Indexed: 03/29/2025]
Abstract
Acetyl-coenzyme A carboxylases (ACCs) catalyze the initial reaction of fatty acid (FA) biosynthesis. The marine diatom Phaeodactylum tricornutum has two nuclear-encoded ACCs (PtACC1 (Phatr3_EG01955) and PtACC2 (Phatr3_J55209)), both which are homomeric and predicted to be localized in the plastids and the cytosol, respectively. In this study, we focused on stromal ACC1 by constructing P. tricornutum strains expressing GFP-tagged PtACC1 (ACCG strains) and confirmed that PtACC1 was localized in or around the pyrenoid. Here, we showed that unsaturated FAs (UFAs) composing the thylakoid membrane lipids increased in PtACC1 strains grown under high light conditions (190 µmol photons m-2 s-1), and that the content of triacylglycerol (TAG) and unsaturation ratios in TAG increased under oxidative stresses (with added 50 µM H2O2). ACCG strains showed faster growth rates than wild type under high light and/or oxidative stress conditions. These results suggest that cell proliferation is maintained by an accelerated recovery of PSII due to the increased UFAs in the thylakoid membrane in ACCG strains grown in high light, and that increased UFAs in ACCG cells enhanced the tolerance to oxidative stresses presumably due to the increased scavenging capacity of UFAs against reactive oxygen species. The introduction of plastidic ACC resulted in stimulating supply of UFAs to specific lipids that in turn enhanced tolerance to various stresses.
Collapse
Affiliation(s)
- Masakazu Toyoshima
- Department of Bioscience, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo, 669-1330, Japan
| | - Hajime Okuda
- Department of Bioscience, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo, 669-1330, Japan
| | - Yuya Okada
- Department of Bioscience, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo, 669-1330, Japan
| | - Kohei Yoneda
- Institute of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Ginga Shimakawa
- Department of Bioscience, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo, 669-1330, Japan
- Division of Plant Health, Environment and Biotechnology, Graduate School of Agricultural Sciences, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan
| | - Yusuke Matsuda
- Department of Bioscience, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo, 669-1330, Japan.
| |
Collapse
|
2
|
Sato N, Ikemura E, Uemura M, Awai K. Genomic and biochemical analyses of lipid biosynthesis in Cyanophora paradoxa: limited role of the chloroplast in fatty acid synthesis. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:532-545. [PMID: 39377269 PMCID: PMC11714747 DOI: 10.1093/jxb/erae420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/07/2024] [Indexed: 10/09/2024]
Abstract
Archaeplastida, a group of photosynthetic organisms with primary plastids, consists of green algae (plus land plants), red algae, and glaucophytes. In contrast to green and red algae, information on lipids and lipid biosynthesis is still incomplete in the glaucophytes. The chloroplast is the site of photosynthesis and fatty acid synthesis in all photosynthetic organisms known to date. However, the genomic data of the glaucophyte Cyanophora paradoxa indicated the lack of acetyl-CoA carboxylase and most components of fatty acid synthase in the chloroplast. Instead, multifunctional fatty acid synthase and acetyl-CoA carboxylase are likely to reside in the cytosol. To examine this hypothesis, we measured fatty acid synthesis in isolated chloroplasts and whole cells using stable isotope labeling. The chloroplasts had very low fatty acid synthesis activity, if any. Most processes of fatty acid synthesis, including elongation and desaturation, must be performed within the cytosol, and the fatty acids imported into the chloroplasts are assembled into the chloroplast lipids by the enzymes common to other algae and plants. Cyanophora paradoxa is a rare organism in which fatty acid synthesis and photosynthesis are not tightly linked. This could question the common origin of these two biosynthetic processes in Archaeplastida.
Collapse
Affiliation(s)
- Naoki Sato
- Graduate School of Arts and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Eri Ikemura
- Graduate School of Integrated Science and Technology, Shizuoka University, Suruga-ku, Shizuoka 422-8529, Japan
| | - Mana Uemura
- Graduate School of Integrated Science and Technology, Shizuoka University, Suruga-ku, Shizuoka 422-8529, Japan
| | - Koichiro Awai
- Graduate School of Integrated Science and Technology, Shizuoka University, Suruga-ku, Shizuoka 422-8529, Japan
- Department of Biological Science, Faculty of Science, Shizuoka University, Suruga-ku, Shizuoka 422-8529, Japan
- Research Institute of Electronics, Shizuoka University, Chuo-ku, Hamamatsu 432-8561, Japan
| |
Collapse
|
3
|
Mori-Moriyama N, Yoshitomi T, Sato N. Acyl plastoquinol is a major cyanobacterial substance that co-migrates with triacylglycerol in thin-layer chromatography. Biochem Biophys Res Commun 2023; 641:18-26. [PMID: 36516585 DOI: 10.1016/j.bbrc.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Various studies have suggested the presence of triacylglycerol in cyanobacteria, but no convincing evidence exists. We purified a substance co-migrating with triacylglycerol in thin-layer chromatography and determined its structure using mass spectrometry, gas chromatography, and 1H and 13C NMR. The major components were palmitoyl and stearoyl plastoquinols (acyl plastoquinol). Acyl plastoquinol has never been described before, although acyloxy derivative of plastoquione has been described as plastoquinone B. The level of acyl plastoquinol was 0.4% of the total lipids. We still do not have clear evidence for the presence of triacylglycerol. If present, the maximum triacylglycerol level must be at most 10% of acyl plastoquinol. The Synechocystis Slr2103 protein was suggested to synthesize triacylglycerol, but the product could be acyl plastoquinol. The possible roles of this novel compound in photosynthesis should be a new focus of research.
Collapse
Affiliation(s)
- Natsumi Mori-Moriyama
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902, Japan.
| | - Toru Yoshitomi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902, Japan.
| | - Naoki Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902, Japan.
| |
Collapse
|
4
|
Yoshitomi T, Karita H, Mori-Moriyama N, Sato N, Yoshimoto K. Reduced cytotoxicity of polyethyleneimine by covalent modification of antioxidant and its application to microalgal transformation. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 22:864-874. [PMID: 34658670 PMCID: PMC8519552 DOI: 10.1080/14686996.2021.1978273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
The conversion of carbon dioxide into valuable chemicals is an effective strategy for combating augmented concentrations of carbon dioxide in the environment. Microalgae photosynthetically produce valuable chemicals that are used as biofuels, sources for industrial materials, medicinal leads, and food additives. Thus, improvements in microalgal technology via genetic engineering may prove to be promising for the tailored production of novel metabolites. For the transformation of microalgae, nucleic acids such as plasmid DNA (pDNA) are delivered into the cells using physical and mechanical techniques, such as electroporation, bombardment with DNA-coated microprojectiles, and vortexing with glass beads. However, owing to the electrostatic repulsion between negatively charged cell walls and nucleic acids, the delivery of nucleic acids into the microalgal cells is challenging. To solve this issue, in this study, we investigated microalgal transformation via electroporation using polyplexes with linear polyethyleneimine (LPEI) and pDNA. However, the high toxicity of LPEI decreased the transformation efficiency in Chlamydomonas reinhardtii cells. We revealed that the toxicity of LPEI was due to oxidative stress resulting from the cellular uptake of LPEI. To suppress the toxicity of LPEI, an antioxidant, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), was covalently conjugated with LPEI; the conjugate was named as TEMPO-LPEI. Interestingly, with a cellular uptake tendency similar to that of LPEI, TEMPO-LPEI dramatically decreased oxidative stress and cytotoxicity. Electroporation using polyplexes of TEMPO-LPEI and pDNA enhanced the transformation efficiency, compared to those treated with bare pDNA and polyplexes of LPEI/pDNA. This result indicates that polycations conjugated with antioxidants could be useful in facilitating microalgal transformation.
Collapse
Affiliation(s)
- Toru Yoshitomi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- Research Center for Functional Materials, National Institute for Materials Science, Ibaraki, Japan
| | - Haruka Karita
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Natsumi Mori-Moriyama
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Naoki Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Keitaro Yoshimoto
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Sato N, Toyoshima M. Dynamism of Metabolic Carbon Flow of Starch and Lipids in Chlamydomonas debaryana. FRONTIERS IN PLANT SCIENCE 2021; 12:646498. [PMID: 33868347 PMCID: PMC8047662 DOI: 10.3389/fpls.2021.646498] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/08/2021] [Indexed: 06/01/2023]
Abstract
Microalgae have the potential to recycle CO2 as starch and triacylglycerol (TAG), which provide alternative source of biofuel and high added-value chemicals. Starch accumulates in the chloroplast, whereas TAG accumulates in the cytoplasmic lipid droplets (LD). Preferential accumulation of starch or TAG may be achieved by switching intracellular metabolic carbon flow, but our knowledge on this control remains limited. Are these two products mutually exclusive? Or, does starch act as a precursor to TAG synthesis, or vice versa? To answer these questions, we analyzed carbon flow in starch and lipids using a stable isotope 13C in Chlamydomonas debaryana NIES-2212, which accumulates, without nutrient limitation, starch in the exponential growth phase and TAG in the stationary phase. Pulse labeling experiments as well as pulse labeling and chase experiments were conducted, and then, gas chromatography-mass spectrometry (GC-MS) analysis was performed on starch-derived glucose and lipid-bound fatty acids. We exploited the previously developed method of isotopomer analysis to estimate the proportion of various pools with different isotopic abundance. Starch turned over rapidly to provide carbon for the synthesis of fatty acids in the exponential phase cells. Most fatty acids showed rapid and slow components of metabolism, whereas oleic acid decayed according to a single exponential curve. Highly labeled population of fatty acids that accumulated during the initial labeling decreased rapidly, and replaced by low abundance population during the chase time, indicating that highly labeled fatty acids were degraded and the resulting carbons were re-used in the re-synthesis with about 9-fold unlabeled, newly fixed carbons. Elongation of C16-C18 acids in vivo was indicated by partially labeled C18 acids. The accumulation of TAG in the stationary growth phase was accounted for by both de novo synthesis and remodeling of membrane lipids. These results suggest that de novo synthesis of starch and TAG was rapid and transient, and also almost independent to each other, but there is a pool of starch quickly turning over for the synthesis of fatty acids. Fatty acids were also subject to re-synthesis. Evidence was also provided for remodeling of lipids, namely, re-use of acyl groups in polar lipids for TAG synthesis.
Collapse
|
6
|
Sato N, Yoshitomi T, Mori-Moriyama N. Characterization and Biosynthesis of Lipids in Paulinella micropora MYN1: Evidence for Efficient Integration of Chromatophores into Cellular Lipid Metabolism. PLANT & CELL PHYSIOLOGY 2020; 61:869-881. [PMID: 32044983 DOI: 10.1093/pcp/pcaa011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
The chromatophores found in the cells of photosynthetic Paulinella species, once believed to be endosymbiotic cyanobacteria, are photosynthetic organelles that are distinct from chloroplasts. The chromatophore genome is similar to the genomes of α-cyanobacteria and encodes about 1,000 genes. Therefore, the chromatophore is an intriguing model of organelle formation. In this study, we analyzed the lipids of Paulinella micropora MYN1 to verify that this organism is a composite of cyanobacterial descendants and a heterotrophic protist. We detected glycolipids and phospholipids, as well as a betaine lipid diacylglyceryl-3-O-carboxyhydroxymethylcholine, previously detected in many marine algae. Cholesterol was the only sterol component detected, suggesting that the host cell is similar to animal cells. The glycolipids, presumably present in the chromatophores, contained mainly C16 fatty acids, whereas other classes of lipids, presumably present in the other compartments, were abundant in C20 and C22 polyunsaturated fatty acids. This suggests that chromatophores are metabolically distinct from the rest of the cell. Metabolic studies using isotopically labeled substrates showed that different fatty acids are synthesized in the chromatophore and the cytosol, which is consistent with the presence of both type I and type II fatty acid synthases, supposedly present in the cytosol and the chromatophore, respectively. Nevertheless, rapid labeling of the fatty acids in triacylglycerol and phosphatidylcholine by photosynthetically fixed carbon suggested that the chromatophores efficiently provide metabolites to the host. The metabolic and ultrastructural evidence suggests that chromatophores are tightly integrated into the whole cellular metabolism.
Collapse
Affiliation(s)
- Naoki Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902 Japan
| | - Toru Yoshitomi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902 Japan
| | - Natsumi Mori-Moriyama
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902 Japan
| |
Collapse
|
7
|
Yoshitomi T, Kaminaga S, Sato N, Toyoshima M, Moriyama T, Yoshimoto K. Formation of Spherical Palmelloid Colony with Enhanced Lipid Accumulation by Gel Encapsulation of Chlamydomonas debaryana NIES-2212. PLANT & CELL PHYSIOLOGY 2020; 61:158-168. [PMID: 31589321 DOI: 10.1093/pcp/pcz188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
Microalgae such as Chlamydomonas reinhardtii accumulate triacylglycerol (TAG), which is a potential source of biofuels, under stress conditions such as nitrogen deprivation, whereas Chlamydomonas debaryana NIES-2212 has previously been identified and characterized as one of the rare species of Chlamydomonas, which massively accumulates TAG in the stationary phase without external stress. As the high density of the cells in the stationary phase was supposed to act as a trigger for the accumulation of TAG in C. debaryana, in this study, C. debaryana was encapsulated in a Ca2+-alginate gel for the culture with high cell density. We discovered that the growth of the encapsulated cells resulted in the formation of spherical palmelloid colonies with high cell density, where daughter cells with truncated flagella remained wrapped within the mother cell walls. Interestingly, gel encapsulation markedly promoted proliferation of C. debaryana cells, and the encapsulated cells reached the stationary phase earlier than that of the free-living cells. Gel encapsulation also enhanced TAG accumulation. Gene expression analysis revealed that two genes of acyltransferases, DGAT1 and DGTT3, were upregulated in the stationary phase of free-living C. debaryana. In addition, the gene expression of these acyltransferases increased earlier in the encapsulated cells than that in the free-living cells. The enhanced production of TAG by alginate gel encapsulation was not found in C. reinhardtii which is known to use a different repertoire of acyltransferases in lipid accumulation.
Collapse
Affiliation(s)
- Toru Yoshitomi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902 Japan
| | - Saeko Kaminaga
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902 Japan
| | - Naoki Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902 Japan
| | - Masakazu Toyoshima
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902 Japan
| | - Takashi Moriyama
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902 Japan
| | - Keitaro Yoshimoto
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902 Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902 Japan
| |
Collapse
|
8
|
Chowdhury R, Keen PL, Tao W. Fatty acid profile and energy efficiency of biodiesel production from an alkaliphilic algae grown in the photobioreactor. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Shinkawa H, Kajikawa M, Nomura Y, Ogura M, Sawaragi Y, Yamano T, Nakagami H, Sugiyama N, Ishihama Y, Kanesaki Y, Yoshikawa H, Fukuzawa H. Algal Protein Kinase, Triacylglycerol Accumulation Regulator 1, Modulates Cell Viability and Gametogenesis in Carbon/Nitrogen-Imbalanced Conditions. PLANT & CELL PHYSIOLOGY 2019; 60:916-930. [PMID: 30668822 DOI: 10.1093/pcp/pcz010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 01/08/2019] [Indexed: 05/20/2023]
Abstract
Nutrient-deprived microalgae accumulate triacylglycerol (TAG) in lipid droplets. A dual-specificity tyrosine phosphorylation-regulated kinase, TAG accumulation regulator 1 (TAR1) has been shown to be required for acetate-dependent TAG accumulation and the degradation of chlorophyll and photosynthesis-related proteins in photomixotrophic nitrogen (N)-deficient conditions (Kajikawa et�al. 2015). However, this previous report only examined particular condition. Here, we report that in photoautotrophic N-deficient conditions, tar1-1 cells, with a mutation in the TAR1 gene, maintained higher levels of cell viability and lower levels of hydrogen peroxide generation and accumulated higher levels of TAG and starch compared with those of wild type (WT) cells with bubbling of air containing 5% carbon dioxide. Transcriptomic analyses suggested that genes involved in the scavenging of reactive oxygen species are not repressed in tar1-1 cells. In contrast, the mating efficiency and mRNA levels of key regulatory genes for gametogenesis, MID, MTD and FUS, were suppressed in tar1-1 cells. Among the TAR1-dependent phosphopeptides deduced by phosphoproteomic analysis, protein kinases and enzymes related to N assimilation and carbon (C) metabolism are of particular interest. Characterization of these putative downstream factors may elucidate the molecular pathway whereby TAR1 mediates cellular propagation and C and N metabolism in C/N-imbalanced stress conditions.
Collapse
Affiliation(s)
- Haruka Shinkawa
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | | | - Yuko Nomura
- RIKEN Center for Sustainable Resource Science, Kanagawa, 230-0045 Japan
| | - Mayu Ogura
- Graduate School of Pharmaceutical Science, Kyoto University, Kyoto, 606-8501 Japan
| | - Yuri Sawaragi
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Takashi Yamano
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Hirofumi Nakagami
- RIKEN Center for Sustainable Resource Science, Kanagawa, 230-0045 Japan
| | - Naoyuki Sugiyama
- Graduate School of Pharmaceutical Science, Kyoto University, Kyoto, 606-8501 Japan
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical Science, Kyoto University, Kyoto, 606-8501 Japan
| | - Yu Kanesaki
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, 156-8502 Japan
| | - Hirofumi Yoshikawa
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502 Japan
| | - Hideya Fukuzawa
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
10
|
Li-Beisson Y, Thelen JJ, Fedosejevs E, Harwood JL. The lipid biochemistry of eukaryotic algae. Prog Lipid Res 2019; 74:31-68. [PMID: 30703388 DOI: 10.1016/j.plipres.2019.01.003] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 02/06/2023]
Abstract
Algal lipid metabolism fascinates both scientists and entrepreneurs due to the large diversity of fatty acyl structures that algae produce. Algae have therefore long been studied as sources of genes for novel fatty acids; and, due to their superior biomass productivity, algae are also considered a potential feedstock for biofuels. However, a major issue in a commercially viable "algal oil-to-biofuel" industry is the high production cost, because most algal species only produce large amounts of oils after being exposed to stress conditions. Recent studies have therefore focused on the identification of factors involved in TAG metabolism, on the subcellular organization of lipid pathways, and on interactions between organelles. This has been accompanied by the development of genetic/genomic and synthetic biological tools not only for the reference green alga Chlamydomonas reinhardtii but also for Nannochloropsis spp. and Phaeodactylum tricornutum. Advances in our understanding of enzymes and regulatory proteins of acyl lipid biosynthesis and turnover are described herein with a focus on carbon and energetic aspects. We also summarize how changes in environmental factors can impact lipid metabolism and describe present and potential industrial uses of algal lipids.
Collapse
Affiliation(s)
- Yonghua Li-Beisson
- Aix-Marseille Univ, CEA, CNRS, BIAM, UMR7265, CEA Cadarache, Saint-Paul-lez Durance F-13108, France.
| | - Jay J Thelen
- Department of Biochemistry, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, MO 65211, United States.
| | - Eric Fedosejevs
- Department of Biochemistry, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, MO 65211, United States.
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.
| |
Collapse
|
11
|
Mori N, Moriyama T, Sato N. Uncommon properties of lipid biosynthesis of isolated plastids in the unicellular red alga Cyanidioschyzon merolae. FEBS Open Bio 2018; 9:114-128. [PMID: 30652079 PMCID: PMC6325583 DOI: 10.1002/2211-5463.12551] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 12/22/2022] Open
Abstract
Red algae are a large group of photosynthetic eukaryotes that diverged from green algae over one billion years ago, and have various traits distinct from those of both green algae and land plants. Although most red algae are marine species (both unicellular and macrophytic), the Cyanidiales class of red algae includes unicellular species which live in hot springs, such as Cyanidioschyzon merolae, which is a model species for biochemical and molecular biological studies. Lipid metabolism in red algae has previously been studied in intact cells. Here, we present the results of radiolabeling and stable isotope labeling experiments in intact plastids isolated from the unicellular red alga C. merolae. We focused on two uncommon features: First, the galactose moiety of monogalactosyldiacylglycerol was efficiently labeled with bicarbonate, indicating that an unknown pathway for providing UDP-galactose exists within the plastid. Second, saturated fatty acids, namely, palmitic and stearic acids, were the sole products of fatty acid synthesis in the plastid, and they were efficiently exported. This finding suggests that the endoplasmic reticulum is the sole site of desaturation. We present a general principle of red algal lipid biosynthesis, namely, 'indigenous C18 fatty acids are neither desaturated nor directly utilized within the plastid'. We believe that this is valid in both C. merolae lacking polyunsaturated fatty acids and marine red algae with a high content of arachidonic and eicosapentaenoic acids.
Collapse
Affiliation(s)
- Natsumi Mori
- Department of Life Sciences Graduate School of Arts and Sciences The University of Tokyo Japan
| | - Takashi Moriyama
- Department of Life Sciences Graduate School of Arts and Sciences The University of Tokyo Japan
| | - Naoki Sato
- Department of Life Sciences Graduate School of Arts and Sciences The University of Tokyo Japan
| |
Collapse
|
12
|
Yang M, Meng Y, Chu Y, Fan Y, Cao X, Xue S, Chi Z. Triacylglycerol accumulates exclusively outside the chloroplast in short-term nitrogen-deprived Chlamydomonas reinhardtii. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1478-1487. [PMID: 30266428 DOI: 10.1016/j.bbalip.2018.09.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 08/25/2018] [Accepted: 09/23/2018] [Indexed: 01/13/2023]
Abstract
In microalgae, triacylglycerol (TAG) biosynthesis occurs by parallel pathways involving both the chloroplast and endoplasmic reticulum. A better understanding of contribution of each pathway to TAG assembly facilitates enhanced TAG production via rational genetic engineering of microalgae. Here, using a UPLC-MS(/MS) coupled with TLC-GC-based lipidomic platform, the early response of the major glycerolipids to nitrogen stress was analyzed at both the cellular and chloroplastidic levels in the model green alga Chlamydomonas reinhardtii. Subcellular lipidomic analysis demonstrated that TAG was accumulated exclusively outside the chloroplast, and remained unaltered inside the chloroplast after 4 h of nitrogen starvation. This study ascertained the existence of the glycolipid, digalactosyldiacylglycerol (DGDG), outside the chloroplast and the betaine lipid, diacylglycerol-N,N,N-trimethylhomoserine (DGTS), inside the chloroplast. The newly synthesized DGDG and DGTS prominently increased at the extra-chloroplastidic compartments and served as the major precursors for TAG biosynthesis. In particular, DGDG contributed to the extra-chloroplastidic TAG assembly in form of diacylglycerol (DAG) and DGTS in form of acyl groups. The chloroplastidic membrane lipid, monogalactosyldiacylglycerol (MGDG), was proposed to primarily offer DAG for TAG formation outside the chloroplast. This study provides valuable insights into the subcellular glycerolipidomics and unveils the acyl flux into the extra-chloroplastidic TAG in microalgae.
Collapse
Affiliation(s)
- Miao Yang
- Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China.
| | - Yingying Meng
- Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yadong Chu
- Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Yan Fan
- Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xupeng Cao
- Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Song Xue
- Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Zhanyou Chi
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
13
|
Moriyama T, Toyoshima M, Saito M, Wada H, Sato N. Revisiting the Algal "Chloroplast Lipid Droplet": The Absence of an Entity That Is Unlikely to Exist. PLANT PHYSIOLOGY 2018; 176:1519-1530. [PMID: 29061905 PMCID: PMC5813570 DOI: 10.1104/pp.17.01512] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 05/03/2023]
Abstract
The precise localization of the lipid droplets and the metabolic pathways associated with oil production are crucial to the engineering of microalgae for biofuel production. Several studies have reported detecting lipid droplets within the chloroplast of the microalga Chlamydomonas reinhardtii, which accumulates considerable amounts of triacylglycerol and starch within the cell under nitrogen deprivation or high-light stress conditions. Starch undoubtedly accumulates within the chloroplast, but there have been debates on the localization of the lipid droplets, which are cytosolic organelles in other organisms. Although it is impossible to prove an absence, we tried to repeat experiments that previously indicated the presence of lipid droplets in chloroplasts. Here, we present microscopic results showing no evidence for the presence of lipid droplets within the chloroplast stroma, even though some lipid droplets existed in close association with the chloroplast or were largely engulfed by the chloroplasts. These lipid droplets are cytosolic structures, distinct from the plastoglobules present in the chloroplast stroma. These results not only contrast with the old ideas but also point out that what were previously thought to be chloroplast lipid droplets are likely to be embedded within chloroplast invaginations in association with the outer envelope of the chloroplast without intervention of the endoplasmic reticulum. These findings point to the intriguing possibility of a tight metabolic flow from the chloroplast to the lipid droplet through a close association rather than direct contact of both organelles.
Collapse
Affiliation(s)
- Takashi Moriyama
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
- CREST, Japan Science and Technology Agency, Tokyo 102-0076, Japan
| | - Masakazu Toyoshima
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
- CREST, Japan Science and Technology Agency, Tokyo 102-0076, Japan
| | - Masakazu Saito
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
- CREST, Japan Science and Technology Agency, Tokyo 102-0076, Japan
| | - Hajime Wada
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
- CREST, Japan Science and Technology Agency, Tokyo 102-0076, Japan
| | - Naoki Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
- CREST, Japan Science and Technology Agency, Tokyo 102-0076, Japan
| |
Collapse
|
14
|
Toyoshima M, Sato N. Optimization of triacylglycerol and starch production in Chlamydomonas debaryana NIES-2212 with regard to light intensity and CO2 concentration. MICROBIOLOGY-SGM 2018; 164:359-368. [PMID: 29458672 DOI: 10.1099/mic.0.000603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Triacylglycerol (TAG) and starch produced by micro-algae are potential sources of biofuel. Our previous studies showed that the unicellular green alga, Chlamydomonas debaryana NIES-2212, which is a rare species of Chlamydomonas that possesses phosphatidylcholine (PC), is a seed organism for the development of biofuel producers. This alga accumulates large amounts of TAG and starch under completely photo-autotrophic conditions during stationary phase without nutrient deprivation. The present study was performed to optimize the growth conditions of this alga with regard to light intensity and CO2 concentration to improve the efficiency of TAG and starch production. The growth rate of C. debaryana was greater at higher light intensity, although there was no significant difference in the final cell density of the culture. The highest contents of TAG and starch, approximately 200 fmol cell-1 and 600 pg cell-1, respectively, were achieved with a light intensity of 200 µmol m-2 s-1 bubbled with air containing 5.0 % CO2. These results suggest that optimization of light intensity and CO2 concentration can enhance the productivity of TAG and starch by C. debaryana NIES-2212.
Collapse
Affiliation(s)
- Masakazu Toyoshima
- Department of Life Sciences, Graduate School of Arts and Science, The University of Tokyo, Tokyo 153-8902, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Tokyo 102-0076, Japan.,Present address: Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Naoki Sato
- Department of Life Sciences, Graduate School of Arts and Science, The University of Tokyo, Tokyo 153-8902, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Tokyo 102-0076, Japan
| |
Collapse
|
15
|
Jüppner J, Mubeen U, Leisse A, Caldana C, Wiszniewski A, Steinhauser D, Giavalisco P. The target of rapamycin kinase affects biomass accumulation and cell cycle progression by altering carbon/nitrogen balance in synchronized Chlamydomonas reinhardtii cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:355-376. [PMID: 29172247 DOI: 10.1111/tpj.13787] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 10/31/2017] [Accepted: 11/15/2017] [Indexed: 05/19/2023]
Abstract
Several metabolic processes tightly regulate growth and biomass accumulation. A highly conserved protein complex containing the target of rapamycin (TOR) kinase is known to integrate intra- and extracellular stimuli controlling nutrient allocation and hence cellular growth. Although several functions of TOR have been described in various heterotrophic eukaryotes, our understanding lags far behind in photosynthetic organisms. In the present investigation, we used the model alga Chlamydomonas reinhardtii to conduct a time-resolved analysis of molecular and physiological features throughout the diurnal cycle after TOR inhibition. Detailed examination of the cell cycle phases revealed that growth is not only repressed by 50%, but also that significant, non-linear delays in the progression can be observed. By using metabolomics analysis, we elucidated that the growth repression was mainly driven by differential carbon partitioning between anabolic and catabolic processes. Accordingly, the time-resolved analysis illustrated that metabolic processes including amino acid-, starch- and triacylglycerol synthesis, as well RNA degradation, were redirected within minutes of TOR inhibition. Here especially the high accumulation of nitrogen-containing compounds indicated that an active TOR kinase controls the carbon to nitrogen balance of the cell, which is responsible for biomass accumulation, growth and cell cycle progression.
Collapse
Affiliation(s)
- Jessica Jüppner
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Umarah Mubeen
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Andrea Leisse
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Camila Caldana
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Brazilian Bioethanol Science and Technology Laboratory/CNPEM, Rua Giuseppe Máximo Scolfano 10000, 13083-970, Campinas, Brazil
| | - Andrew Wiszniewski
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Dirk Steinhauser
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Patrick Giavalisco
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| |
Collapse
|
16
|
Goh FQY, Jeyakani J, Cazenave-Gassiot A, Tipthara P, Yeo Z, Wenk M, Clarke ND. Core features of triacylglyceride production in Ettlia oleoabundans revealed by lipidomic and gene expression profiling under distinct induction conditions. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Lipid metabolism and potentials of biofuel and high added-value oil production in red algae. World J Microbiol Biotechnol 2017; 33:74. [DOI: 10.1007/s11274-017-2236-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/01/2017] [Indexed: 10/20/2022]
|
18
|
Isotopic Combinatomer Analysis Provides in Vivo Evidence of the Direct Epimerization of Monoglucosyl Diacylglycerol in Cyanobacteria. Biochemistry 2016; 55:5689-5701. [PMID: 27653026 DOI: 10.1021/acs.biochem.6b00769] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Galactolipids constitute the majority of photosynthetic membranes called thylakoid membranes in cyanobacteria and chloroplasts of land plants and algae. The galactolipids, although identical in headgroup structure, are synthesized by significantly different pathways in cyanobacteria and chloroplasts. In the cyanobacterial pathway, monoglucosyl diacylglycerol (GlcDG) is synthesized first and then converted to monogalactosyl diacylglycerol (MGDG). On the basis of circumstantial evidence, the mechanism of conversion was thought to be epimerization at C-4, but no direct evidence has yet been provided, because there is no in vitro enzymatic system of the putative membrane-bound reaction. Labeling studies with 14C and 13C suggested that the labels in the headgroup and the acyl groups were kept at a reasonably constant ratio before and after the conversion. We then provide in vivo evidence of the direct epimerization based on detailed isotopomer analysis of the conversion, named "combinatomer analysis". The different types of molecules formed by the combination of labeled or unlabeled parts (sn-1 acyl, sn-2 acyl, glycerol, and hexose) are called here "combinatomers". Combinatomer analysis of the experiments with pulse labeling with 13C and chase in Anabaena sp. PCC 7118 indicated that the composition of combinatomers in the precursor GlcDG was kept unchanged in the product MGDG. Production of combinatomers resulting from exchange of hexose was minimal. This provides solid evidence of the epimerization of the glucose moiety of GlcDG, as well as the direct desaturation of acyl groups at the sn-1 position.
Collapse
|
19
|
Sato N, Mori N, Hirashima T, Moriyama T. Diverse pathways of phosphatidylcholine biosynthesis in algae as estimated by labeling studies and genomic sequence analysis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:281-92. [PMID: 27133435 DOI: 10.1111/tpj.13199] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 04/07/2016] [Accepted: 04/15/2016] [Indexed: 05/03/2023]
Abstract
Phosphatidylcholine (PC) is an almost ubiquitous phospholipid in eukaryotic algae and plants but is not found in a few species, for example Chlamydomonas reinhardtii. We recently found that some species of the genus Chlamydomonas possess PC. In the universal pathway, PC is synthesized de novo by methylation of phosphatidylethanolamine (PE) or transfer of phosphocholine from cytidine diphosphate (CDP)-choline to diacylglycerol. Phosphocholine, the direct precursor to CDP-choline, is synthesized either by methylation of phosphoethanolamine or phosphorylation of choline. Here we analyzed the mechanism of PC biosynthesis in two species of Chlamydomonas (asymmetrica and sphaeroides) as well as in a red alga, Cyanidioschyzon merolae. Comparative genomic analysis of enzymes involved in PC biosynthesis indicated that C. merolae possesses only the PE methylation pathway. Radioactive tracer experiments using [(32) P]phosphate showed delayed labeling of PC with respect to PE, which was consistent with the PE methylation pathway. In Chlamydomonas asymmetrica, labeling of PC was detected from the early time of incubation with [(32) P]phosphate, suggesting the operation of phosphoethanolamine methylation pathway. Genomic analysis indeed detected the genes for the phosphoethanolamine methylation pathway. In contrast, the labeling of PC in C. sphaeroides was slow, suggesting that the PE methylation pathway was at work. These results as well as biochemical and computational results uncover an unexpected diversity of the mechanisms for PC biosynthesis in algae. Based on these results, we will discuss plausible mechanisms for the scattered distribution of the ability to biosynthesize PC in the genus Chlamydomonas.
Collapse
Affiliation(s)
- Naoki Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
- JST, CREST, K's Gobancho, 7, Gobancho, Chiyoda-ku, Tokyo, 102-0076, Japan.
| | - Natsumi Mori
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
- JST, CREST, K's Gobancho, 7, Gobancho, Chiyoda-ku, Tokyo, 102-0076, Japan
| | - Takashi Hirashima
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
- JST, CREST, K's Gobancho, 7, Gobancho, Chiyoda-ku, Tokyo, 102-0076, Japan
| | - Takashi Moriyama
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
- JST, CREST, K's Gobancho, 7, Gobancho, Chiyoda-ku, Tokyo, 102-0076, Japan
| |
Collapse
|
20
|
Toyoshima M, Mori N, Moriyama T, Misumi O, Sato N. Analysis of triacylglycerol accumulation under nitrogen deprivation in the red alga Cyanidioschyzon merolae. MICROBIOLOGY-SGM 2016; 162:803-812. [PMID: 26925574 DOI: 10.1099/mic.0.000261] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Triacylglycerol (TAG) produced by microalgae is a potential source of biofuel. Although various metabolic pathways in TAG synthesis have been identified in land plants, the pathway of TAG synthesis in microalgae remains to be clarified. The unicellular rhodophyte Cyanidioschyzon merolae has unique properties as a producer of biofuel because of easy culture and feasibility of genetic engineering. Additionally, it is useful in the investigation of the pathway of TAG synthesis, because all of the nuclear, mitochondrial and plastid genomes have been completely sequenced. We found that this alga accumulated TAG under nitrogen deprivation. Curiously, the amount and composition of plastid membrane lipids did not change significantly, whereas the amount of endoplasmic reticulum (ER) lipids increased with considerable changes in fatty acid composition. The nitrogen deprivation did not decrease photosynthetic oxygen evolution per chlorophyll significantly, while phycobilisomes were degraded preferentially. These results suggest that the synthesis of fatty acids is maintained in the plastid, which is used for the synthesis of TAG in the ER. The accumulated TAG contained mainly 18 : 2(9,12) at the C-2 position, which could be derived from phosphatidylcholine, which also contains this acid at the C-2 position.
Collapse
Affiliation(s)
- Masakazu Toyoshima
- Department of Life Sciences, Graduate School of Arts and Science, The University of Tokyo,Tokyo,Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency,Tokyo,Japan
| | - Natsumi Mori
- Department of Life Sciences, Graduate School of Arts and Science, The University of Tokyo,Tokyo,Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency,Tokyo,Japan
| | - Takashi Moriyama
- Department of Life Sciences, Graduate School of Arts and Science, The University of Tokyo,Tokyo,Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency,Tokyo,Japan
| | - Osami Misumi
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency,Tokyo,Japan
- Department of Biological Science and Chemistry, Faculty of Science, Graduate School of Medicine, Yamaguchi University,Yamaguchi,Japan
| | - Naoki Sato
- Department of Life Sciences, Graduate School of Arts and Science, The University of Tokyo,Tokyo,Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency,Tokyo,Japan
| |
Collapse
|
21
|
Xu C, Andre C, Fan J, Shanklin J. Cellular Organization of Triacylglycerol Biosynthesis in Microalgae. Subcell Biochem 2016; 86:207-221. [PMID: 27023237 DOI: 10.1007/978-3-319-25979-6_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Eukaryotic cells are characterized by compartmentalization and specialization of metabolism within membrane-bound organelles. Nevertheless, many fundamental processes extend across multiple subcellular compartments. Here, we describe and assess the pathways and cellular organization of triacylglycerol biosynthesis in microalgae. In particular, we emphases the dynamic interplay among the endoplasmic reticulum, lipid droplets and chloroplasts in acyl remodeling and triacylglycerol accumulation under nitrogen starvation in the model alga Chlamydomonas reinhardtii.
Collapse
Affiliation(s)
- Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA.
| | - Carl Andre
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Jilian Fan
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| |
Collapse
|
22
|
Toyoshima M, Sato N. High-Level Accumulation of Triacylglycerol and Starch in Photoautotrophically Grown Chlamydomonas debaryana NIES-2212. PLANT & CELL PHYSIOLOGY 2015; 56:2447-2456. [PMID: 26542110 DOI: 10.1093/pcp/pcv163] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/23/2015] [Indexed: 06/05/2023]
Abstract
Microalgae have the potential to produce triacylglycerol (TAG) and starch, which provide alternative sources of biofuel. A problem in using Chlamydomonas reinhardtii as a model for TAG production has been that this alga lacks phosphatidylcholine (PC), which is thought to be important for TAG synthesis in plants. We found that C. debaryana is one of the rare species of Chlamydomonas having PC. Here we show that this strain, grown under complete photoautotrophic conditions, accumulated TAG and starch up to 20 and 250 pg per cell, respectively, during the stationary phase without nutrient deprivation. Addition of nutrients in this state did not cause loss of TAG, which was found in dilution with fresh medium. The photosynthetically produced TAG contained a high level of monounsaturated fatty acids, which is a preferred property as a material for biodiesel. The oil bodies were present in the cytoplasm, either between the cytoplasmic membrane and the chloroplast or between the chloroplast and the nucleus, whereas the starch granules were present within the chloroplast. Oil bodies were also deposited as a broad layer in the peripheral space of the cytoplasm outside the chloroplast, and might be easily released from the cells by genetic, chemical or mechanical manipulation. These results suggest that C. debaryana is a promising seed organism for developing a good biofuel producer.
Collapse
Affiliation(s)
- Masakazu Toyoshima
- Department of Life Sciences, Graduate School of Arts and Science, The University of Tokyo, and Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Tokyo, Japan
| | - Naoki Sato
- Department of Life Sciences, Graduate School of Arts and Science, The University of Tokyo, and Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Tokyo, Japan
| |
Collapse
|
23
|
Iwai M, Hori K, Sasaki-Sekimoto Y, Shimojima M, Ohta H. Manipulation of oil synthesis in Nannochloropsis strain NIES-2145 with a phosphorus starvation-inducible promoter from Chlamydomonas reinhardtii. Front Microbiol 2015; 6:912. [PMID: 26441858 PMCID: PMC4561341 DOI: 10.3389/fmicb.2015.00912] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/19/2015] [Indexed: 01/04/2023] Open
Abstract
Microalgae accumulate triacylglycerols (TAGs) under conditions of nutrient stress. Phosphorus (P) starvation induces the accumulation of TAGs, and the cells under P starvation maintain growth through photosynthesis. We recently reported that P starvation–dependent overexpression of type-2 diacylglycerol acyl-CoA acyltransferase (CrDGTT4) from Chlamydomonas reinhardtii using a sulfoquinovosyldiacylglycerol synthase 2 (SQD2) promoter, which has increased activity during P starvation, enhances TAG accumulation in C. reinhardtii cells. As a result, the content of C18:1 fatty acid, a preferred substrate of CrDGTT4, is increased in TAGs. Here we isolated genes encoding SQD2 from strain NIES-2145 of the eustigmatophyte Nannochloropsis and showed that their expression, like that in C. reinhardtii, was up-regulated during P starvation. To enhance oil accumulation under P starvation, we transformed pCrSQD2-CrDGTT4 into Nannochloropsis strain NIES-2145. The transformants had a fatty acid composition that was more similar to that of C. reinhardtii, which resulted in enhanced TAG accumulation and higher 18:1(9) content. The results indicated that the P starvation–inducible promoter of C. reinhardtii was able to drive expression of the CrDGTT4 gene in Nannochloropsis strain NIES-2145 under P starvation. We conclude that the heterologous CrSQD2 promoter is effective in manipulating TAG synthesis in Nannochloropsis during P starvation.
Collapse
Affiliation(s)
- Masako Iwai
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology Yokohama, Japan ; JST CREST Tokyo, Japan
| | - Koichi Hori
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology Yokohama, Japan ; JST CREST Tokyo, Japan
| | | | - Mie Shimojima
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology Yokohama, Japan
| | - Hiroyuki Ohta
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology Yokohama, Japan ; JST CREST Tokyo, Japan ; Earth-Life Science Institute, Tokyo Institute of Technology Tokyo, Japan
| |
Collapse
|
24
|
Shtaida N, Khozin-Goldberg I, Boussiba S. The role of pyruvate hub enzymes in supplying carbon precursors for fatty acid synthesis in photosynthetic microalgae. PHOTOSYNTHESIS RESEARCH 2015; 125:407-22. [PMID: 25846135 DOI: 10.1007/s11120-015-0136-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/27/2015] [Indexed: 05/15/2023]
Abstract
Photosynthetic microalgae are currently the focus of basic and applied research due to an ever-growing interest in renewable energy resources. This review discusses the role of carbon-unit supply for the production of acetyl-CoA, a direct precursor of fatty acid biosynthesis and the primary building block of the growing acyl chains for the purpose of triacylglycerol (TAG) production in photosynthetic microalgae under stressful conditions. It underscores the importance of intraplastidic acetyl-CoA generation for storage lipid accumulation. The main focus is placed on two enzymatic steps linking the central carbon metabolism and fatty acid synthesis, namely the reactions catalyzed by the plastidic isoform of pyruvate kinase and the chloroplastic pyruvate dehydrogenase complex. Alternative routes for plastidic acetyl-CoA synthesis are also reviewed. A separate section is devoted to recent advances in functional genomics studies related to fatty acid and TAG biosynthesis.
Collapse
Affiliation(s)
- Nastassia Shtaida
- Microalgal Biotechnology Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, J. Blaustein Institutes of Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990, Midreshet Ben-Gurion, Israel
| | | | | |
Collapse
|
25
|
Hung CH, Endo K, Kobayashi K, Nakamura Y, Wada H. Characterization of Chlamydomonas reinhardtii phosphatidylglycerophosphate synthase in Synechocystis sp. PCC 6803. Front Microbiol 2015; 6:842. [PMID: 26379630 PMCID: PMC4547039 DOI: 10.3389/fmicb.2015.00842] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/31/2015] [Indexed: 12/22/2022] Open
Abstract
Phosphatidylglycerol (PG) is an indispensable phospholipid class with photosynthetic function in plants and cyanobacteria. However, its biosynthesis in eukaryotic green microalgae is poorly studied. Here, we report the isolation and characterization of two homologs (CrPGP1 and CrPGP2) of phosphatidylglycerophosphate synthase (PGPS), the rate-limiting enzyme in PG biosynthesis, in Chlamydomonas reinhardtii. Heterologous complementation of Synechocystis sp. PCC 6803 pgsA mutant by CrPGP1 and CrPGP2 rescued the PG-dependent growth phenotype, but the PG level and its fatty acid composition were not fully rescued in the complemented strains. As well, oxygen evolution activity was not fully recovered, although electron transport activity of photosystem II was restored to the wild-type level. Gene expression study of CrPGP1 and CrPGP2 in nutrient-starved C. reinhardtii showed differential response to phosphorus and nitrogen deficiency. Taken together, these results highlight the distinct and overlapping function of PGPS in cyanobacteria and eukaryotic algae.
Collapse
Affiliation(s)
- Chun-Hsien Hung
- Institute of Plant and Microbial Biology, Academia Sinica Taipei, Taiwan
| | - Kaichiro Endo
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo Tokyo, Japan
| | - Koichi Kobayashi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo Tokyo, Japan
| | - Yuki Nakamura
- Institute of Plant and Microbial Biology, Academia Sinica Taipei, Taiwan ; PRESTO, Japan Science and Technology Agency Saitama, Japan
| | - Hajime Wada
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo Tokyo, Japan ; CREST, Japan Science and Technology Agency Saitama, Japan
| |
Collapse
|
26
|
Kajikawa M, Sawaragi Y, Shinkawa H, Yamano T, Ando A, Kato M, Hirono M, Sato N, Fukuzawa H. Algal dual-specificity tyrosine phosphorylation-regulated kinase, triacylglycerol accumulation regulator1, regulates accumulation of triacylglycerol in nitrogen or sulfur deficiency. PLANT PHYSIOLOGY 2015; 168:752-64. [PMID: 25922058 PMCID: PMC4453788 DOI: 10.1104/pp.15.00319] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 04/24/2015] [Indexed: 05/17/2023]
Abstract
Although microalgae accumulate triacylglycerol (TAG) and starch in response to nutrient-deficient conditions, the regulatory mechanisms are poorly understood. We report here the identification and characterization of a kinase, triacylglycerol accumulation regulator1 (TAR1), that is a member of the yeast (Saccharomyces cerevisiae) Yet another kinase1 (Yak1) subfamily in the dual-specificity tyrosine phosphorylation-regulated kinase family in a green alga (Chlamydomonas reinhardtii). The kinase domain of TAR1 showed auto- and transphosphorylation activities. A TAR1-defective mutant, tar1-1, accumulated TAG to levels 0.5- and 0.1-fold of those of a wild-type strain in sulfur (S)- and nitrogen (N)-deficient conditions, respectively. In N-deficient conditions, tar1-1 showed more pronounced arrest of cell division than the wild type, had increased cell size and cell dry weight, and maintained chlorophyll and photosynthetic activity, which were not observed in S-deficient conditions. In N-deficient conditions, global changes in expression levels of N deficiency-responsive genes in N assimilation and tetrapyrrole metabolism were noted between tar1-1 and wild-type cells. These results indicated that TAR1 is a regulator of TAG accumulation in S- and N-deficient conditions, and it functions in cell growth and repression of photosynthesis in conditions of N deficiency.
Collapse
Affiliation(s)
- Masataka Kajikawa
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan (Ma.K., Y.S., H.S., T.Y., H.F.);Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan (A.A., Mi.K.);Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan (M.H.); andGraduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan (N.S.)
| | - Yuri Sawaragi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan (Ma.K., Y.S., H.S., T.Y., H.F.);Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan (A.A., Mi.K.);Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan (M.H.); andGraduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan (N.S.)
| | - Haruka Shinkawa
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan (Ma.K., Y.S., H.S., T.Y., H.F.);Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan (A.A., Mi.K.);Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan (M.H.); andGraduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan (N.S.)
| | - Takashi Yamano
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan (Ma.K., Y.S., H.S., T.Y., H.F.);Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan (A.A., Mi.K.);Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan (M.H.); andGraduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan (N.S.)
| | - Akira Ando
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan (Ma.K., Y.S., H.S., T.Y., H.F.);Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan (A.A., Mi.K.);Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan (M.H.); andGraduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan (N.S.)
| | - Misako Kato
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan (Ma.K., Y.S., H.S., T.Y., H.F.);Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan (A.A., Mi.K.);Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan (M.H.); andGraduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan (N.S.)
| | - Masafumi Hirono
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan (Ma.K., Y.S., H.S., T.Y., H.F.);Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan (A.A., Mi.K.);Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan (M.H.); andGraduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan (N.S.)
| | - Naoki Sato
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan (Ma.K., Y.S., H.S., T.Y., H.F.);Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan (A.A., Mi.K.);Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan (M.H.); andGraduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan (N.S.)
| | - Hideya Fukuzawa
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan (Ma.K., Y.S., H.S., T.Y., H.F.);Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 112-8610, Japan (A.A., Mi.K.);Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan (M.H.); andGraduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan (N.S.)
| |
Collapse
|
27
|
Li-Beisson Y, Beisson F, Riekhof W. Metabolism of acyl-lipids in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:504-522. [PMID: 25660108 DOI: 10.1111/tpj.12787] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 01/24/2015] [Accepted: 02/02/2015] [Indexed: 05/03/2023]
Abstract
Microalgae are emerging platforms for production of a suite of compounds targeting several markets, including food, nutraceuticals, green chemicals, and biofuels. Many of these products, such as biodiesel or polyunsaturated fatty acids (PUFAs), derive from lipid metabolism. A general picture of lipid metabolism in microalgae has been deduced from well characterized pathways of fungi and land plants, but recent advances in molecular and genetic analyses of microalgae have uncovered unique features, pointing out the necessity to study lipid metabolism in microalgae themselves. In the past 10 years, in addition to its traditional role as a model for photosynthetic and flagellar motility processes, Chlamydomonas reinhardtii has emerged as a model organism to study lipid metabolism in green microalgae. Here, after summarizing data on total fatty acid composition, distribution of acyl-lipid classes, and major acyl-lipid molecular species found in C. reinhardtii, we review the current knowledge on the known or putative steps for fatty acid synthesis, glycerolipid desaturation and assembly, membrane lipid turnover, and oil remobilization. A list of characterized or putative enzymes for the major steps of acyl-lipid metabolism in C. reinhardtii is included, and subcellular localizations and phenotypes of associated mutants are discussed. Biogenesis and composition of Chlamydomonas lipid droplets and the potential importance of lipolytic processes in increasing cellular oil content are also highlighted.
Collapse
Affiliation(s)
- Yonghua Li-Beisson
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institut de Biologie Environnementale et Biotechnologie, CEA Cadarache, 13108, Saint-Paul-lez-Durance, France
- Centre National de la Recherche Scientifique (CNRS), 13108, Saint-Paul-lez-Durance, France
- Aix-Marseille Université, UMR 7265, 13284, Marseille, France
| | - Fred Beisson
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institut de Biologie Environnementale et Biotechnologie, CEA Cadarache, 13108, Saint-Paul-lez-Durance, France
- Centre National de la Recherche Scientifique (CNRS), 13108, Saint-Paul-lez-Durance, France
- Aix-Marseille Université, UMR 7265, 13284, Marseille, France
| | - Wayne Riekhof
- School of Biological Sciences and Center for Biological Chemistry, University of Nebraska - Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
28
|
Shtaida N, Khozin-Goldberg I, Solovchenko A, Chekanov K, Didi-Cohen S, Leu S, Cohen Z, Boussiba S. Downregulation of a putative plastid PDC E1α subunit impairs photosynthetic activity and triacylglycerol accumulation in nitrogen-starved photoautotrophic Chlamydomonas reinhardtii. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:6563-76. [PMID: 25210079 PMCID: PMC4246187 DOI: 10.1093/jxb/eru374] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The chloroplast pyruvate dehydrogenase complex (cpPDC) catalyses the oxidative decarboxylation of pyruvate forming acetyl-CoA, an immediate primer for the initial reactions of de novo fatty acid (FA) synthesis. Little is known about the source of acetyl-CoA in the chloroplasts of photosynthetic microalgae, which are capable of producing high amounts of the storage lipid triacylglycerol (TAG) under conditions of nutrient stresses. We generated Chlamydomonas reinhardtii CC-1618 mutants with decreased expression of the PDC2_E1α gene, encoding the putative chloroplast pyruvate dehydrogenase subunit E1α, using artificial microRNA. A comparative study on the effects of PDC2_E1α silencing on FAs and TAG production in C. reinhardtii, grown photoautotrophically and mixotrophically, with and without a nitrogen source in the nutrient medium, was carried out. Reduced expression of PDC2 _E1α led to a severely hampered photoautotrophic growth phenotype with drastic impairment in TAG accumulation under nitrogen deprivation. In the presence of acetate, downregulation of PDC2_E1α exerted little to no effect on TAG production and photosynthetic activity. In contrast, under photoautotrophic conditions, especially in the absence of a nitrogen source, a dramatic decline in photosynthetic oxygen evolution and photosystem II quantum yield against a background of the apparent over-reduction of the photosynthetic electron chain was recorded. Our results suggest an essential role of cpPDC in the supply of carbon precursors for de novo FA synthesis in microalgae under conditions of photoautotrophy. A shortage of this supply is detrimental to the nitrogen-starvation-induced synthesis of storage TAG, an important carbon and energy sink in stressed Chlamydomonas cells, thereby impairing the acclimation ability of the microalga.
Collapse
Affiliation(s)
- Nastassia Shtaida
- Microalgal Biotechnology Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel
| | - Inna Khozin-Goldberg
- Microalgal Biotechnology Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel
| | - Alexei Solovchenko
- Department of Bioengineering, Faculty of Biology, Moscow State University, 119234, GSP-1 Moscow, Russia
| | - Konstantin Chekanov
- Department of Bioengineering, Faculty of Biology, Moscow State University, 119234, GSP-1 Moscow, Russia
| | - Shoshana Didi-Cohen
- Microalgal Biotechnology Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel
| | - Stefan Leu
- Microalgal Biotechnology Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel
| | - Zvi Cohen
- Microalgal Biotechnology Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel
| | - Sammy Boussiba
- Microalgal Biotechnology Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel
| |
Collapse
|
29
|
Cellular Dynamics Drives the Emergence of Supracellular Structure in the Cyanobacterium, Phormidium sp. KS. Life (Basel) 2014; 4:819-36. [PMID: 25460162 PMCID: PMC4284469 DOI: 10.3390/life4040819] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 11/12/2014] [Accepted: 11/19/2014] [Indexed: 11/23/2022] Open
Abstract
Motile filamentous cyanobacteria, such as Oscillatoria, Phormidium and Arthrospira, are ubiquitous in terrestrial and aquatic environments. As noted by Nägeli in 1860, many of them form complex three-dimensional or two-dimensional structures, such as biofilm, weed-like thalli, bundles of filaments and spirals, which we call supracellular structures. In all of these structures, individual filaments incessantly move back and forth. The structures are, therefore, macroscopic, dynamic structures that are continuously changing their microscopic arrangement of filaments. In the present study, we analyzed quantitatively the movement of individual filaments of Phormidium sp. KS grown on agar plates. Junctional pores, which have been proposed to drive cell movement by mucilage/slime secretion, were found to align on both sides of each septum. The velocity of movement was highest just after the reversal of direction and, then, attenuated exponentially to a final value before the next reversal of direction. This kinetics is compatible with the “slime gun” model. A higher agar concentration restricts the movement more severely and, thus, resulted in more spiral formation. The spiral is a robust form compatible with non-homogeneous movements of different parts of a long filament. We propose a model of spiral formation based on the microscopic movement of filaments.
Collapse
|
30
|
Sakurai K, Mori N, Sato N. Detection and characterization of phosphatidylcholine in various strains of the genus Chlamydomonas (Volvocales, Chlorophyceae). JOURNAL OF PLANT RESEARCH 2014; 127:641-650. [PMID: 24947506 DOI: 10.1007/s10265-014-0644-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 04/26/2014] [Indexed: 06/03/2023]
Abstract
The laboratory strains of Chlamydomonas reinhardtii have been reported to contain no phosphatidylcholine (PC), which is considered to be replaced by another zwitterionic lipid, diacylglyceryl-N,N,N-trimethylhomoserine (DGTS). According to the recently published classification, the strains belonged to the subgroup Reinhardtinia. Screening for PC in 13 selected strains of Chlamydomonas in the NIES Algal Collection, which are different in habitats and belong to different phylogenetic subgroups in the genus, revealed the presence of PC in four strains: a strain in the subgroup Polytominia, and three strains in Reinhardtinia. PC was not detected in three other strains of Reinhardtinia analyzed. The presence/absence of PC was not related to the phylogenetic relationship based on 18S rRNA. DGTS was detected in all the strains analyzed. The rare isomer of linolenic acid, 18:3(5,9,12), which has been found in the DGTS of C. reinhardtii, was found in the PC of the two strains and in the DGTS of the five strains. The occurrence of this fatty acid seems limited to a branch of Reinhardtinia. Acquisition and loss of PC in various strains of Chlamydomonas are discussed from the viewpoint of evolution of PC biosynthetic pathway.
Collapse
Affiliation(s)
- Kenta Sakurai
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902, Japan
| | | | | |
Collapse
|