1
|
Krappmann S, Gabl E, Pazen T, Heizmann A, Pöggeler S, Krüger T, Kniemeyer O, Einsiedel J, Gmeiner P, Yu Y, Dyer PS, Baker SE, Nowrousian M. Identification of an a-factor-like pheromone secreted by the heterothallic ascomycete Aspergillus fumigatus. Curr Biol 2025:S0960-9822(25)00427-0. [PMID: 40262616 DOI: 10.1016/j.cub.2025.03.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/13/2025] [Accepted: 03/31/2025] [Indexed: 04/24/2025]
Abstract
Members of the fungal kingdom serve as models for numerous cellular processes, among them sexuality.1 In heterothallic ascomycetes, mating-type systems ensure that only compatible isolates fuse to enter the sexual phase.2,3,4,5,6 This includes reciprocal secretion and recognition of pheromones, commonly termed α-factor and a-factor, which are processed from peptide precursors.7,8,9,10 Identification of fungal mating pheromones and their cognate receptors has been achieved by homology searches11,12,13,14,15,16,17; however, this approach had failed to detect a-factor-like pheromones from Eurotiomycetes,5,18,19,20,21 a fungal group including medically and economically important species.22 Sexuality of the opportunistic pathogen Aspergillus fumigatus23,24,25 is genetically determined by a bipolar mating-type system encoding MAT1-1-1 and MAT1-2-1 regulators.16,26,27,28,29,30 By analyzing transcriptome data from strains overexpressing the corresponding MAT genes,31 we identified a candidate pheromone precursor gene B (ppgB) to encode the elusive Eurotiomycete a-factor pheromone. Its deduced peptide is 24 aa in length and features a canonical CaaX farnesylation motif. Further analyses provided supporting evidence that PpgB is a prototype for the a-factor-like pheromone of the aspergilli, including expression of ppgB in a MAT1-2-1-dependent manner, and that an A. fumigatus ppgBΔ deletion strain was unable to mate and form fruiting bodies with a compatible partner. Inspection of Aspergillus genomes from members of the section Fumigati revealed high conservation of PpgB sequence as well as of the α-factor-like PpgA, indicating that incompatibility factors other than solely pheromone discrimination are responsible for speciation. The identification of the A. fumigatusa-factor-like pheromone closes a substantial knowledge gap with respect to cellular recognition and sexual propagation of Eurotiomycete fungi.
Collapse
Affiliation(s)
- Sven Krappmann
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen and Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, 91054 Erlangen, Germany; FAU Profile Center Immunomedicine (I-MED), FAU Erlangen-Nürnberg, Freyeslebenstraße 1, 91058 Erlangen, Germany.
| | - Elisabeth Gabl
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen and Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, 91054 Erlangen, Germany
| | - Tobias Pazen
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen and Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, 91054 Erlangen, Germany
| | - Anna Heizmann
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen and Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, 91054 Erlangen, Germany
| | - Stefanie Pöggeler
- Department of Genetics of Eukaryotic Microorganisms, Institute of Microbiology and Genetics, Georg-August University (GAU) Göttingen, Grisebachstraße 8, 37077 Göttingen, Germany
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Adolf-Reichwein-Straße 23, 07745 Jena, Germany
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Adolf-Reichwein-Straße 23, 07745 Jena, Germany
| | - Jürgen Einsiedel
- Department of Chemistry and Pharmacy, Medicinal Chemistry, FAU Erlangen-Nürnberg, Nikolaus-Fiebinger-Straße 10, 91058 Erlangen, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, FAU Erlangen-Nürnberg, Nikolaus-Fiebinger-Straße 10, 91058 Erlangen, Germany
| | - Yidong Yu
- Institute of Medical Mycology, Teikyō University, 359 Otsuka, 192-0395 Hachioji-shi, Tokyo, Japan
| | - Paul S Dyer
- School of Life Sciences, University of Nottingham, B85 Laboratory Life Science Building, University Park, Nottingham NG7 2RD, UK
| | - Scott E Baker
- Pacific Northwest National Laboratory, Environmental Molecular Sciences Laboratory, 3335 Innovation Boulevard, Richland, WA 99354, USA; DOE Joint BioEnergy Institute, Emeryville, CA 94608, USA
| | - Minou Nowrousian
- Department of Molecular and Cellular Botany, Ruhr University Bochum (RUB), ND 7/130 Universitätsstraße 150, 44780 Bochum, Germany
| |
Collapse
|
2
|
Haque MA, Nath ND, Johnston TV, Haruna S, Ahn J, Ovissipour R, Ku S. Harnessing biotechnology for penicillin production: Opportunities and environmental considerations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174236. [PMID: 38942308 DOI: 10.1016/j.scitotenv.2024.174236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
Since the discovery of antibiotics, penicillin has remained the top choice in clinical medicine. With continuous advancements in biotechnology, penicillin production has become cost-effective and efficient. Genetic engineering techniques have been employed to enhance biosynthetic pathways, leading to the production of new penicillin derivatives with improved properties and increased efficacy against antibiotic-resistant pathogens. Advances in bioreactor design, media formulation, and process optimization have contributed to higher yields, reduced production costs, and increased penicillin accessibility. While biotechnological advances have clearly benefited the global production of this life-saving drug, they have also created challenges in terms of waste management. Production fermentation broths from industries contain residual antibiotics, by-products, and other contaminants that pose direct environmental threats, while increased global consumption intensifies the risk of antimicrobial resistance in both the environment and living organisms. The current geographical and spatial distribution of antibiotic and penicillin consumption dramatically reveals a worldwide threat. These challenges are being addressed through the development of novel waste management techniques. Efforts are aimed at both upstream and downstream processing of antibiotic and penicillin production to minimize costs and improve yield efficiency while lowering the overall environmental impact. Yield optimization using artificial intelligence (AI), along with biological and chemical treatment of waste, is also being explored to reduce adverse impacts. The implementation of strict regulatory frameworks and guidelines is also essential to ensure proper management and disposal of penicillin production waste. This review is novel because it explores the key remaining challenges in antibiotic development, the scope of machine learning tools such as Quantitative Structure-Activity Relationship (QSAR) in modern biotechnology-driven production, improved waste management for antibiotics, discovering alternative path to reducing antibiotic use in agriculture through alternative meat production, addressing current practices, and offering effective recommendations.
Collapse
Affiliation(s)
- Md Ariful Haque
- Department of Food Science and Technology, Texas A&M University, College Station, USA.
| | - Nirmalendu Deb Nath
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, USA.
| | - Tony Vaughn Johnston
- Fermentation Science Program, School of Agriculture, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, USA.
| | - Samuel Haruna
- Fermentation Science Program, School of Agriculture, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, USA.
| | - Jaehyun Ahn
- Department of Food Science and Technology, Texas A&M University, College Station, USA.
| | - Reza Ovissipour
- Department of Food Science and Technology, Texas A&M University, College Station, USA.
| | - Seockmo Ku
- Department of Food Science and Technology, Texas A&M University, College Station, USA.
| |
Collapse
|
3
|
Wilson AM, Coetzee MPA, Wingfield MJ, Wingfield BD. Needles in fungal haystacks: Discovery of a putative a-factor pheromone and a unique mating strategy in the Leotiomycetes. PLoS One 2023; 18:e0292619. [PMID: 37824487 PMCID: PMC10569646 DOI: 10.1371/journal.pone.0292619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
The Leotiomycetes is a hugely diverse group of fungi, accommodating a wide variety of important plant and animal pathogens, ericoid mycorrhizal fungi, as well as producers of antibiotics. Despite their importance, the genetics of these fungi remain relatively understudied, particularly as they don't include model taxa. For example, sexual reproduction and the genetic mechanisms that underly this process are poorly understood in the Leotiomycetes. We exploited publicly available genomic and transcriptomic resources to identify genes of the mating-type locus and pheromone response pathway in an effort to characterize the mating strategies and behaviors of 124 Leotiomycete species. Our analyses identified a putative a-factor mating pheromone in these species. This significant finding represents the first identification of this gene in Pezizomycotina species outside of the Sordariomycetes. A unique mating strategy was also discovered in Lachnellula species that appear to have lost the need for the primary MAT1-1-1 protein. Ancestral state reconstruction enabled the identification of numerous transitions between homothallism and heterothallism in the Leotiomycetes and suggests a heterothallic ancestor for this group. This comprehensive catalog of mating-related genes from such a large group of fungi provides a rich resource from which in-depth, functional studies can be conducted in these economically and ecologically important species.
Collapse
Affiliation(s)
- Andi M. Wilson
- Department of Biochemistry, Genetics & Microbiology, Forestry & Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Martin P. A. Coetzee
- Department of Biochemistry, Genetics & Microbiology, Forestry & Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Michael J. Wingfield
- Department of Biochemistry, Genetics & Microbiology, Forestry & Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Brenda D. Wingfield
- Department of Biochemistry, Genetics & Microbiology, Forestry & Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
4
|
Ramšak B, Kück U. The Penicillium chrysogenum tom1 Gene a Major Target of Transcription Factor MAT1-1-1 Encodes a Nuclear Protein Involved in Sporulation. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:937023. [PMID: 37746180 PMCID: PMC10512297 DOI: 10.3389/ffunb.2022.937023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/13/2022] [Indexed: 09/26/2023]
Abstract
Fungal mating-type loci (MAT) encode transcription factors (TFs) MAT1-1-1 and MAT1-2-1, which govern sexual reproduction as well as other developmental processes. In Penicillium chrysogenum, the major producer of the beta-lactam antibiotic penicillin, a recent chromatin immunoprecipitation followed by sequencing (ChIP-seq) analysis identified 254 genes as direct targets of MAT1-1-1, many of which encode thus far uncharacterized proteins. Here, we characterized one of the major targets of MAT1-1-1, the tom1 gene, which encodes a protein highly conserved within the group of Eurotiomycetes fungi. Using fluorescence microscopy, we demonstrated binding of MAT1-1-1 to the tom1 promoter by reporter gene analysis. Extensive electrophoretic mobility shift assays (EMSAs) further showed that the promoter sequence of tom1 is bound in vitro by both MAT1-1-1 and MAT1-2-1. This indicated an interaction between the two TFs, which was verified by yeast two-hybrid analysis. The sequence of tom1 carries a nuclear localization sequence, and indeed its nuclear localization was verified by fluorescence microscopy. The in vivo function of tom1 was investigated using tom1 deletion strains, as well as a complementing strain where the wild-type tom1 gene was reintroduced. We found a clear sporulation defect in the deletion strain, which became more evident when the fungi were grown at an elevated temperature of 31°C.
Collapse
Affiliation(s)
| | - Ulrich Kück
- Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Fakultät für Biologie und Biotechnologie, Bochum, Germany
| |
Collapse
|
5
|
Identification of Effective and Nonpromiscuous Antidiabetic Drug Molecules from Penicillium Species. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7040547. [PMID: 35722152 PMCID: PMC9200499 DOI: 10.1155/2022/7040547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/08/2022] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus (DM) is a very common metabolic disorder/disease. The deterioration of β-cells by autoimmune system is the hallmark of this disease. Thioredoxin-Interacting Protein (TXNIP) is responsible for β-cells degradation by T-cells in the pancreas. This protein had been declared a good drug target for controlling DM. Lots of side effects have been reported as a result of long-time consumption of conventional antidiabetic drugs. The development of new and effective drugs with the minimal side effects needs time. TXNIP was selected as a target for Computer-Aided Drug Design. The antidiabetic fungal metabolite compounds were selected from the literature. The compounds were screened for their drug-likeness properties by DruLiTo and DataWarior tools. Twenty-two drug-like fungal compounds were subjected to Quantitative Structure-Activity Relationship (QSAR) analysis by using CheS-Mapper 2.0. The lowest (0.01) activity cliff was found for three compounds: Pinazaphilone A, Pinazaphilone B, and Chermesinone A. The highest value for apol (81.76) was shown by Asperphenamate, while Albonoursin and Sterenin L showed highest score (40.66) for bpol. The lowest value (0.46) for fractional molecular frame (FMF) was calculated for Pinazaphilone A and Pinazaphilone B. TPSA for Pinazaphilone A and Pinazaphilone B was 130.51 Å2.
was observed for all the twenty-two compounds. Molecular docking of fungal compounds with TXNIP was done by AutoDock Vina. The binding energy for complexes ranged between −9.2 and −4.6 kcal/mol. Four complexes, TXNIP-Pinazaphilone A, TXNIP-Pinazaphilone B, TXNIP-Asperphenamate, and TXNIP-Sterenin L, were selected for MD simulation to find out the best lead molecule. Only one complex, TXNIP-Pinazaphilone B, showed a stable conformation throughout the 80 ns run of MD simulation. Pinazaphilone B derived from the Penicillium species fungi was selected as the lead molecule for development of antidiabetic drug having the least side effects.
Collapse
|
6
|
Fierro F, Vaca I, Castillo NI, García-Rico RO, Chávez R. Penicillium chrysogenum, a Vintage Model with a Cutting-Edge Profile in Biotechnology. Microorganisms 2022; 10:573. [PMID: 35336148 PMCID: PMC8954384 DOI: 10.3390/microorganisms10030573] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/20/2022] Open
Abstract
The discovery of penicillin entailed a decisive breakthrough in medicine. No other medical advance has ever had the same impact in the clinical practise. The fungus Penicillium chrysogenum (reclassified as P. rubens) has been used for industrial production of penicillin ever since the forties of the past century; industrial biotechnology developed hand in hand with it, and currently P. chrysogenum is a thoroughly studied model for secondary metabolite production and regulation. In addition to its role as penicillin producer, recent synthetic biology advances have put P. chrysogenum on the path to become a cell factory for the production of metabolites with biotechnological interest. In this review, we tell the history of P. chrysogenum, from the discovery of penicillin and the first isolation of strains with high production capacity to the most recent research advances with the fungus. We will describe how classical strain improvement programs achieved the goal of increasing production and how the development of different molecular tools allowed further improvements. The discovery of the penicillin gene cluster, the origin of the penicillin genes, the regulation of penicillin production, and a compilation of other P. chrysogenum secondary metabolites will also be covered and updated in this work.
Collapse
Affiliation(s)
- Francisco Fierro
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Unidad Iztapalapa, Ciudad de México 09340, Mexico
| | - Inmaculada Vaca
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile;
| | - Nancy I. Castillo
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá 110231, Colombia;
| | - Ramón Ovidio García-Rico
- Grupo de Investigación GIMBIO, Departamento De Microbiología, Facultad de Ciencias Básicas, Universidad de Pamplona, Pamplona 543050, Colombia;
| | - Renato Chávez
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170020, Chile;
| |
Collapse
|
7
|
Melander RJ, Basak AK, Melander C. Natural products as inspiration for the development of bacterial antibiofilm agents. Nat Prod Rep 2020; 37:1454-1477. [PMID: 32608431 PMCID: PMC7677205 DOI: 10.1039/d0np00022a] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Natural products have historically been a rich source of diverse chemical matter with numerous biological activities, and have played an important role in drug discovery in many areas including infectious disease. Synthetic and medicinal chemistry have been, and continue to be, important tools to realize the potential of natural products as therapeutics and as chemical probes. The formation of biofilms by bacteria in an infection setting is a significant factor in the recalcitrance of many bacterial infections, conferring increased tolerance to many antibiotics and to the host immune response, and as yet there are no approved therapeutics for combatting biofilm-based bacterial infections. Small molecules that interfere with the ability of bacteria to form and maintain biofilms can overcome antibiotic tolerance conferred by the biofilm phenotype, and have the potential to form combination therapies with conventional antibiotics. Many natural products with anti-biofilm activity have been identified from plants, microbes, and marine life, including: elligic acid glycosides, hamamelitannin, carolacton, skyllamycins, promysalin, phenazines, bromoageliferin, flustramine C, meridianin D, and brominated furanones. Total synthesis and medicinal chemistry programs have facilitated structure confirmation, identification of critical structural motifs, better understanding of mechanistic pathways, and the development of more potent, more accessible, or more pharmacologically favorable derivatives of anti-biofilm natural products.
Collapse
Affiliation(s)
- Roberta J Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | | | | |
Collapse
|
8
|
Holzknecht J, Kühbacher A, Papp C, Farkas A, Váradi G, Marcos JF, Manzanares P, Tóth GK, Galgóczy L, Marx F. The Penicillium chrysogenum Q176 Antimicrobial Protein PAFC Effectively Inhibits the Growth of the Opportunistic Human Pathogen Candida albicans. J Fungi (Basel) 2020; 6:141. [PMID: 32824977 PMCID: PMC7557831 DOI: 10.3390/jof6030141] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/06/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
Small, cysteine-rich and cationic antimicrobial proteins (AMPs) from filamentous ascomycetes promise treatment alternatives to licensed antifungal drugs. In this study, we characterized the Penicillium chrysogenum Q176 antifungal protein C (PAFC), which is phylogenetically distinct to the other two Penicillium antifungal proteins, PAF and PAFB, that are expressed by this biotechnologically important ascomycete. PAFC is secreted into the culture broth and is co-expressed with PAF and PAFB in the exudates of surface cultures. This observation is in line with the suggested role of AMPs in the adaptive response of the host to endogenous and/or environmental stimuli. The in silico structural model predicted five β-strands stabilized by four intramolecular disulfide bonds in PAFC. The functional characterization of recombinant PAFC provided evidence for a promising new molecule in anti-Candida therapy. The thermotolerant PAFC killed planktonic cells and reduced the metabolic activity of sessile cells in pre-established biofilms of two Candidaalbicans strains, one of which was a fluconazole-resistant clinical isolate showing higher PAFC sensitivity than the fluconazole-sensitive strain. Candidacidal activity was linked to severe cell morphology changes, PAFC internalization, induction of intracellular reactive oxygen species and plasma membrane disintegration. The lack of hemolytic activity further corroborates the potential applicability of PAFC in clinical therapy.
Collapse
Affiliation(s)
- Jeanett Holzknecht
- Biocenter, Institute of Molecular Biology, Medical University of Innsbruck, Innrain 80–82, A-6020 Innsbruck, Austria; (J.H.); (A.K.)
| | - Alexander Kühbacher
- Biocenter, Institute of Molecular Biology, Medical University of Innsbruck, Innrain 80–82, A-6020 Innsbruck, Austria; (J.H.); (A.K.)
| | - Csaba Papp
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary;
| | - Attila Farkas
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62, H-6726 Szeged, Hungary;
| | - Györgyi Váradi
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary; (G.V.); (G.K.T.)
| | - Jose F. Marcos
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, E-46980 Valencia, Spain; (J.F.M.); (P.M.)
| | - Paloma Manzanares
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, E-46980 Valencia, Spain; (J.F.M.); (P.M.)
| | - Gábor K. Tóth
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary; (G.V.); (G.K.T.)
- MTA-SZTE Biomimetic Systems Research Group, University of Szeged, Dóm tér 8, H-6726 Szeged, Hungary
| | - László Galgóczy
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62, H-6726 Szeged, Hungary;
- Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Florentine Marx
- Biocenter, Institute of Molecular Biology, Medical University of Innsbruck, Innrain 80–82, A-6020 Innsbruck, Austria; (J.H.); (A.K.)
| |
Collapse
|
9
|
García-Estrada C, Martín JF, Cueto L, Barreiro C. Omics Approaches Applied to Penicillium chrysogenum and Penicillin Production: Revealing the Secrets of Improved Productivity. Genes (Basel) 2020; 11:E712. [PMID: 32604893 PMCID: PMC7348727 DOI: 10.3390/genes11060712] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/07/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022] Open
Abstract
Penicillin biosynthesis by Penicillium chrysogenum is one of the best-characterized biological processes from the genetic, molecular, biochemical, and subcellular points of view. Several omics studies have been carried out in this filamentous fungus during the last decade, which have contributed to gathering a deep knowledge about the molecular mechanisms underlying improved productivity in industrial strains. The information provided by these studies is extremely useful for enhancing the production of penicillin or other bioactive secondary metabolites by means of Biotechnology or Synthetic Biology.
Collapse
Affiliation(s)
- Carlos García-Estrada
- INBIOTEC (Instituto de Biotecnología de León). Avda. Real 1—Parque Científico de León, 24006 León, Spain; (L.C.); (C.B.)
- Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Juan F. Martín
- Área de Microbiología, Departamento de Biología Molecular, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071 León, Spain;
| | - Laura Cueto
- INBIOTEC (Instituto de Biotecnología de León). Avda. Real 1—Parque Científico de León, 24006 León, Spain; (L.C.); (C.B.)
| | - Carlos Barreiro
- INBIOTEC (Instituto de Biotecnología de León). Avda. Real 1—Parque Científico de León, 24006 León, Spain; (L.C.); (C.B.)
- Departamento de Biología Molecular, Universidad de León, Campus de Ponferrada, Avda. Astorga s/n, 24401 Ponferrada, Spain
| |
Collapse
|
10
|
Sensing and transduction of nutritional and chemical signals in filamentous fungi: Impact on cell development and secondary metabolites biosynthesis. Biotechnol Adv 2019; 37:107392. [PMID: 31034961 DOI: 10.1016/j.biotechadv.2019.04.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/22/2019] [Accepted: 04/25/2019] [Indexed: 11/23/2022]
Abstract
Filamentous fungi respond to hundreds of nutritional, chemical and environmental signals that affect expression of primary metabolism and biosynthesis of secondary metabolites. These signals are sensed at the membrane level by G protein coupled receptors (GPCRs). GPCRs contain usually seven transmembrane domains, an external amino terminal fragment that interacts with the ligand, and an internal carboxy terminal end interacting with the intracellular G protein. There is a great variety of GPCRs in filamentous fungi involved in sensing of sugars, amino acids, cellulose, cell-wall components, sex pheromones, oxylipins, calcium ions and other ligands. Mechanisms of signal transduction at the membrane level by GPCRs are discussed, including the internalization and compartmentalisation of these sensor proteins. We have identified and analysed the GPCRs in the genome of Penicillium chrysogenum and compared them with GPCRs of several other filamentous fungi. We have found 66 GPCRs classified into 14 classes, depending on the ligand recognized by these proteins, including most previously proposed classes of GPCRs. We have found 66 putative GPCRs, representatives of twelve of the fourteen previously proposed classes of GPCRs, depending on the ligand recognized by these proteins. A staggering fortytwo putative members of the new GPCR class XIV, the so-called Pth11 sensors of cellulosic material as reported for Neurospora crassa and some other fungi, were identified. Several GPCRs sensing sex pheromones, known in yeast and in several fungi, were also identified in P. chrysogenum, confirming the recent unravelling of the hidden sexual capacity of this species. Other sensing mechanisms do not involve GPCRs, including the two-component systems (HKRR), the HOG signalling system and the PalH mediated pH transduction sensor. GPCR sensor proteins transmit their signals by interacting with intracellular heterotrimeric G proteins, that are well known in several fungi, including P. chrysogenum. These G proteins are inactive in the GDP containing heterotrimeric state, and become active by nucleotide exchange, allowing the separation of the heterotrimeric protein in active Gα and Gβγ dimer subunits. The conversion of GTP in GDP is mediated by the endogenous GTPase activity of the G proteins. Downstream of the ligand interaction, the activated Gα protein and also the Gβ/Gγ dimer, transduce the signals through at least three different cascades: adenylate cyclase/cAMP, MAPK kinase, and phospholipase C mediated pathways.
Collapse
|
11
|
Huber A, Hajdu D, Bratschun-Khan D, Gáspári Z, Varbanov M, Philippot S, Fizil Á, Czajlik A, Kele Z, Sonderegger C, Galgóczy L, Bodor A, Marx F, Batta G. New Antimicrobial Potential and Structural Properties of PAFB: A Cationic, Cysteine-Rich Protein from Penicillium chrysogenum Q176. Sci Rep 2018; 8:1751. [PMID: 29379111 PMCID: PMC5788923 DOI: 10.1038/s41598-018-20002-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/11/2018] [Indexed: 01/08/2023] Open
Abstract
Small, cysteine-rich and cationic proteins with antimicrobial activity are produced by diverse organisms of all kingdoms and represent promising molecules for drug development. The ancestor of all industrial penicillin producing strains, the ascomycete Penicillium chryosgenum Q176, secretes the extensively studied antifungal protein PAF. However, the genome of this strain harbours at least two more genes that code for other small, cysteine-rich and cationic proteins with potential antifungal activity. In this study, we characterized the pafB gene product that shows high similarity to PgAFP from P. chrysogenum R42C. Although abundant and timely regulated pafB gene transcripts were detected, we could not identify PAFB in the culture broth of P. chrysogenum Q176. Therefore, we applied a P. chrysogenum-based expression system to produce sufficient amounts of recombinant PAFB to address unanswered questions concerning the structure and antimicrobial function. Nuclear magnetic resonance (NMR)-based analyses revealed a compact β-folded structure, comprising five β-strands connected by four solvent exposed and flexible loops and an "abcabc" disulphide bond pattern. We identified PAFB as an inhibitor of growth of human pathogenic moulds and yeasts. Furthermore, we document for the first time an anti-viral activity for two members of the small, cysteine-rich and cationic protein group from ascomycetes.
Collapse
Affiliation(s)
- Anna Huber
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Dorottya Hajdu
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary
| | - Doris Bratschun-Khan
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Zoltán Gáspári
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50A, 1083, Budapest, Hungary
| | - Mihayl Varbanov
- SRSMC, UMR 7565, Université de Lorraine - CNRS, Faculté de Pharmacie, 5 rue Albert Lebrun, BP 80402, 54001, Nancy, France
| | - Stéphanie Philippot
- SRSMC, UMR 7565, Université de Lorraine - CNRS, Faculté de Pharmacie, 5 rue Albert Lebrun, BP 80402, 54001, Nancy, France
| | - Ádám Fizil
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary
| | - András Czajlik
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary
| | - Zoltán Kele
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Dom Sq 8, 6720, Szeged, Hungary
| | - Christoph Sonderegger
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - László Galgóczy
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary
| | - Andrea Bodor
- Institute of Chemistry, Laboratory of Structural Chemistry and Biology, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary
| | - Florentine Marx
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria.
| | - Gyula Batta
- Department of Organic Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary.
| |
Collapse
|
12
|
Abstract
Approximately 20% of species in the fungal kingdom are only known to reproduce by asexual means despite the many supposed advantages of sexual reproduction. However, in recent years, sexual cycles have been induced in a series of emblematic "asexual" species. We describe how these discoveries were made, building on observations of evidence for sexual potential or "cryptic sexuality" from population genetic analyses; the presence, distribution, and functionality of mating-type genes; genome analyses revealing the presence of genes linked to sexuality; the functionality of sex-related genes; and formation of sex-related developmental structures. We then describe specific studies that led to the discovery of mating and sex in certain Candida, Aspergillus, Penicillium, and Trichoderma species and discuss the implications of sex including the beneficial exploitation of the sexual cycle. We next consider whether there might be any truly asexual fungal species. We suggest that, although rare, imperfect fungi may genuinely be present in nature and that certain human activities, combined with the genetic flexibility that is a hallmark of the fungal kingdom, might favor the evolution of asexuality under certain conditions. Finally, we argue that fungal species should not be thought of as simply asexual or sexual, but rather as being composed of isolates on a continuum of sexual fertility.
Collapse
MESH Headings
- Cell Cycle/genetics
- Evolution, Molecular
- Fungi/classification
- Fungi/genetics
- Genes, Fungal/genetics
- Genes, Mating Type, Fungal/genetics
- Genes, Mating Type, Fungal/physiology
- Genetics, Population
- Genome, Fungal
- Humans
- Recombination, Genetic
- Reproduction
- Reproduction, Asexual
- Sex
- Transcription Factors/genetics
Collapse
Affiliation(s)
- Paul S Dyer
- School of Life Sciences, University Park, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Ulrich Kück
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-University Bochum, 44780 Bochum, Germany
| |
Collapse
|
13
|
Terfehr D, Dahlmann TA, Kück U. Transcriptome analysis of the two unrelated fungal β-lactam producers Acremonium chrysogenum and Penicillium chrysogenum: Velvet-regulated genes are major targets during conventional strain improvement programs. BMC Genomics 2017; 18:272. [PMID: 28359302 PMCID: PMC5374653 DOI: 10.1186/s12864-017-3663-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/25/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Cephalosporins and penicillins are the most frequently used β-lactam antibiotics for the treatment of human infections worldwide. The main industrial producers of these antibiotics are Acremonium chrysogenum and Penicillium chrysogenum, two taxonomically unrelated fungi. Both were subjects of long-term strain development programs to reach economically relevant antibiotic titers. It is so far unknown, whether equivalent changes in gene expression lead to elevated antibiotic titers in production strains. RESULTS Using the sequence of PcbC, a key enzyme of β-lactam antibiotic biosynthesis, from eighteen different pro- and eukaryotic microorganisms, we have constructed a phylogenetic tree to demonstrate the distant relationship of both fungal producers. To address the question whether both fungi have undergone similar genetic adaptions, we have performed a comparative gene expression analysis of wild-type and production strains. We found that strain improvement is associated with the remodeling of the transcriptional landscape in both fungi. In P. chrysogenum, 748 genes showed differential expression, while 1572 genes from A. chrysogenum are differentially expressed in the industrial strain. Common in both fungi is the upregulation of genes belonging to primary and secondary metabolism, notably those involved in precursor supply for β-lactam production. Other genes not essential for β-lactam production are downregulated with a preference for those responsible for transport processes or biosynthesis of other secondary metabolites. Transcriptional regulation was shown to be an important parameter during strain improvement in different organisms. We therefore investigated deletion strains of the major transcriptional regulator velvet from both production strains. We identified 567 P. chrysogenum and 412 A. chrysogenum Velvet target genes. In both deletion strains, approximately 50% of all secondary metabolite cluster genes are differentially regulated, including β-lactam biosynthesis genes. Most importantly, 35-57% of Velvet target genes are among those that showed differential expression in both improved industrial strains. CONCLUSIONS The major finding of our comparative transcriptome analysis is that strain improvement programs in two unrelated fungal β-lactam antibiotic producers alter the expression of target genes of Velvet, a global regulator of secondary metabolism. From these results, we conclude that regulatory alterations are crucial contributing factors for improved β-lactam antibiotic titers during strain improvement in both fungi.
Collapse
Affiliation(s)
- Dominik Terfehr
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-University Bochum, Universitätsstr. 150, Bochum, 44780, Germany
| | - Tim A Dahlmann
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-University Bochum, Universitätsstr. 150, Bochum, 44780, Germany
| | - Ulrich Kück
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-University Bochum, Universitätsstr. 150, Bochum, 44780, Germany.
| |
Collapse
|
14
|
Ziemons S, Koutsantas K, Becker K, Dahlmann T, Kück U. Penicillin production in industrial strain Penicillium chrysogenum P2niaD18 is not dependent on the copy number of biosynthesis genes. BMC Biotechnol 2017; 17:16. [PMID: 28209150 PMCID: PMC5314624 DOI: 10.1186/s12896-017-0335-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 02/09/2017] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Multi-copy gene integration into microbial genomes is a conventional tool for obtaining improved gene expression. For Penicillium chrysogenum, the fungal producer of the beta-lactam antibiotic penicillin, many production strains carry multiple copies of the penicillin biosynthesis gene cluster. This discovery led to the generally accepted view that high penicillin titers are the result of multiple copies of penicillin genes. Here we investigated strain P2niaD18, a production line that carries only two copies of the penicillin gene cluster. RESULTS We performed pulsed-field gel electrophoresis (PFGE), quantitative qRT-PCR, and penicillin bioassays to investigate production, deletion and overexpression strains generated in the P. chrysogenum P2niaD18 background, in order to determine the copy number of the penicillin biosynthesis gene cluster, and study the expression of one penicillin biosynthesis gene, and the penicillin titer. Analysis of production and recombinant strain showed that the enhanced penicillin titer did not depend on the copy number of the penicillin gene cluster. Our assumption was strengthened by results with a penicillin null strain lacking pcbC encoding isopenicillin N synthase. Reintroduction of one or two copies of the cluster into the pcbC deletion strain restored transcriptional high expression of the pcbC gene, but recombinant strains showed no significantly different penicillin titer compared to parental strains. CONCLUSIONS Here we present a molecular genetic analysis of production and recombinant strains in the P2niaD18 background carrying different copy numbers of the penicillin biosynthesis gene cluster. Our analysis shows that the enhanced penicillin titer does not strictly depend on the copy number of the cluster. Based on these overall findings, we hypothesize that instead, complex regulatory mechanisms are prominently implicated in increased penicillin biosynthesis in production strains.
Collapse
Affiliation(s)
- Sandra Ziemons
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, ND7/131, Universitätsstraße 150, 44780, Bochum, Germany
| | - Katerina Koutsantas
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, ND7/131, Universitätsstraße 150, 44780, Bochum, Germany
| | - Kordula Becker
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, ND7/131, Universitätsstraße 150, 44780, Bochum, Germany
| | - Tim Dahlmann
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, ND7/131, Universitätsstraße 150, 44780, Bochum, Germany
| | - Ulrich Kück
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, ND7/131, Universitätsstraße 150, 44780, Bochum, Germany.
| |
Collapse
|
15
|
Dahlmann TA, Böhm J, Becker K, Kück U. Sexual recombination as a tool for engineering industrial Penicillium chrysogenum strains. Curr Genet 2015; 61:679-83. [PMID: 25993917 DOI: 10.1007/s00294-015-0497-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 05/14/2015] [Indexed: 12/13/2022]
Abstract
The recent discovery and functional characterization of opposite mating-type loci in the industrial penicillin producer Penicillium chrysogenum demonstrated their regulatory role in sexual as well as asexual development. Subsequent experiments further showed that a sexual life cycle can be induced in P. chrysogenum that was for long believed to reproduce exclusively by asexual propagation. Finally, crossing of wild type and production strains resulted in the generation of recombinant ascospore isolates. We predict from these recent findings that recombinant progeny for industrial applications can be obtained by sexual crossings and discuss experimental difficulties that occur when parental strains with karyotype heterogeneity are used for mating.
Collapse
Affiliation(s)
- Tim A Dahlmann
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Julia Böhm
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Kordula Becker
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Ulrich Kück
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-University Bochum, 44780, Bochum, Germany.
| |
Collapse
|
16
|
Pintye A, Ropars J, Harvey N, Shin HD, Leyronas C, Nicot PC, Giraud T, Kiss L. Host phenology and geography as drivers of differentiation in generalist fungal mycoparasites. PLoS One 2015; 10:e0120703. [PMID: 25803832 PMCID: PMC4372539 DOI: 10.1371/journal.pone.0120703] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 01/25/2015] [Indexed: 11/19/2022] Open
Abstract
The question as to why parasites remain generalist or become specialist is a key unresolved question in evolutionary biology. Ampelomyces spp., intracellular mycoparasites of powdery mildew fungi, which are themselves plant pathogens, are a useful model for studies of this issue. Ampelomyces is used for the biological control of mildew. Differences in mycohost phenology promote temporal isolation between sympatric Ampelomyces mycoparasites. Apple powdery mildew (APM) causes spring epidemics, whereas other powdery mildew species on plants other than apple cause epidemics later in the season. This has resulted in genetic differentiation between APM and non-APM strains. It is unclear whether there is genetic differentiation between non-APM Ampelomyces lineages due to their specialization on different mycohosts. We used microsatellites to address this question and found no significant differentiation between non-APM Ampelomyces strains from different mycohosts or host plants, but strong differentiation between APM and non-APM strains. A geographical structure was revealed in both groups, with differences between European countries, demonstrating restricted dispersal at the continent scale and a high resolution for our markers. We found footprints of recombination in both groups, possibly more frequent in the APM cluster. Overall, Ampelomyces thus appears to be one of the rare genuine generalist pathogenic fungi able to parasitize multiple hosts in natural populations. It is therefore an excellent model for studying the evolution of pathogens towards a generalist rather than host-specific strategy, particularly in light of the tritrophic interaction between Ampelomyces mycoparasites, their powdery mildew fungal hosts and the mildew host plants.
Collapse
Affiliation(s)
- Alexandra Pintye
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences (MTA), Budapest, Hungary
| | - Jeanne Ropars
- CNRS (Centre National de la Recherche Scientifique), Ecologie, Systematique et Evolution (ESE), Orsay, France
- Univ Paris Sud, Ecology, Systematique et Evolution (ESE), Orsay, France
| | - Nick Harvey
- Genetic Marker Services, 7 Brighton, United Kingdom
| | - Hyeon-Dong Shin
- Division of Environmental Science and Ecological Engineering, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Christel Leyronas
- Institut National de la Recherche Agronomique (INRA), Unite de Recherche UR407, Unité de Pathologie Végétale, Domaine St. Maurice, Montfavet, France
| | - Philippe C. Nicot
- Institut National de la Recherche Agronomique (INRA), Unite de Recherche UR407, Unité de Pathologie Végétale, Domaine St. Maurice, Montfavet, France
| | - Tatiana Giraud
- CNRS (Centre National de la Recherche Scientifique), Ecologie, Systematique et Evolution (ESE), Orsay, France
- Univ Paris Sud, Ecology, Systematique et Evolution (ESE), Orsay, France
- * E-mail: (TG); (LK)
| | - Levente Kiss
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences (MTA), Budapest, Hungary
- * E-mail: (TG); (LK)
| |
Collapse
|
17
|
Böhm J, Dahlmann TA, Gümüşer H, Kück U. A MAT1-2 wild-type strain from Penicillium chrysogenum: functional mating-type locus characterization, genome sequencing and mating with an industrial penicillin-producing strain. Mol Microbiol 2015; 95:859-74. [PMID: 25521009 PMCID: PMC4357460 DOI: 10.1111/mmi.12909] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2014] [Indexed: 01/07/2023]
Abstract
In heterothallic ascomycetes, mating is controlled by two nonallelic idiomorphs that determine the 'sex' of the corresponding strains. We recently discovered mating-type loci and a sexual life cycle in the penicillin-producing fungus, Penicillium chrysogenum. All industrial penicillin production strains worldwide are derived from a MAT1-1 isolate. No MAT1-2 strain has been investigated in detail until now. Here, we provide the first functional analysis of a MAT1-2 locus from a wild-type strain. Similar to MAT1-1, the MAT1-2 locus has functions beyond sexual development. Unlike MAT1-1, the MAT1-2 locus affects germination and surface properties of conidiospores and controls light-dependent asexual sporulation. Mating of the MAT1-2 wild type with a MAT1-1 high penicillin producer generated sexual spores. We determined the genomic sequences of parental and progeny strains using next-generation sequencing and found evidence for genome-wide recombination. SNP calling showed that derived industrial strains had an uneven distribution of point mutations compared with the wild type. We found evidence for meiotic recombination in all chromosomes. Our results point to a strategy combining the use of mating-type genes, genetics, and next-generation sequencing to optimize conventional strain improvement methods.
Collapse
Affiliation(s)
- Julia Böhm
- Christian Doppler Laboratory for Fungal Biotechnology, Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität BochumUniversitätsstr. 150, D-44780, Bochum, Germany
| | - Tim A Dahlmann
- Christian Doppler Laboratory for Fungal Biotechnology, Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität BochumUniversitätsstr. 150, D-44780, Bochum, Germany
| | - Hendrik Gümüşer
- Christian Doppler Laboratory for Fungal Biotechnology, Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität BochumUniversitätsstr. 150, D-44780, Bochum, Germany
| | - Ulrich Kück
- Christian Doppler Laboratory for Fungal Biotechnology, Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität BochumUniversitätsstr. 150, D-44780, Bochum, Germany
| |
Collapse
|
18
|
Wolfers S, Kamerewerd J, Nowrousian M, Sigl C, Zadra I, Kürnsteiner H, Kück U, Bloemendal S. Microarray hybridization analysis of light-dependent gene expression in Penicillium chrysogenum identifies bZIP transcription factor PcAtfA. J Basic Microbiol 2015; 55:480-9. [PMID: 25557366 DOI: 10.1002/jobm.201400588] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 10/18/2014] [Indexed: 11/12/2022]
Abstract
The fungal velvet complex is a light-dependent master regulator of secondary metabolism and development in the major penicillin producer, Penicillium chrysogenum. However, the light-dependent mechanism is unclear. To identify velvet-dependent transcriptional regulators that show light-regulated expression, we performed microarray hybridizations with RNA isolated from P. chrysogenum ΔPcku70 cultures grown under 13 different long-term, light-dependent growth conditions. We compared these expression data to data from two velvet complex deletion mutants; one lacked a subunit of the velvet complex (ΔPcvelA), and the other lacked a velvet-associated protein (ΔPclaeA). We sought to identify genes that were up-regulated in light, but down-regulated in ΔPcvelA and ΔPclaeA. We identified 148 co-regulated genes that displayed this regulatory pattern. In silico analyses of the co-regulated genes identified six proteins with fungal-specific transcription factor domains. Among these, we selected the bZIP transcription factor, PcAtfA, for functional characterization in deletion and complementation strains. Our data clearly indicates that PcAtfA governs spore germination. This comparative analysis of different microarray hybridization data sets provided results that may be useful for identifying genes for future functional analyses.
Collapse
Affiliation(s)
- Simon Wolfers
- Christian Doppler Laboratory for Fungal Biotechnology, Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | | | | | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Complete Sequencing and Chromosome-Scale Genome Assembly of the Industrial Progenitor Strain P2niaD18 from the Penicillin Producer Penicillium chrysogenum. GENOME ANNOUNCEMENTS 2014; 2:2/4/e00577-14. [PMID: 25059858 PMCID: PMC4110216 DOI: 10.1128/genomea.00577-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Penicillium chrysogenum is the major industrial producer of the β-lactam antibiotic penicillin. Here, we report the complete genome sequence of the industrial progenitor strain P. chrysogenum P2niaD18 in a chromosome-scale genome assembly. P2niaD18 is distinguished from the recently sequenced P. chrysogenum Wisconsin 54-1255 strain by major chromosomal rearrangements leading to a modified chromosomal architecture.
Collapse
|
21
|
Houbraken J, de Vries RP, Samson RA. Modern taxonomy of biotechnologically important Aspergillus and Penicillium species. ADVANCES IN APPLIED MICROBIOLOGY 2014; 86:199-249. [PMID: 24377856 DOI: 10.1016/b978-0-12-800262-9.00004-4] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Taxonomy is a dynamic discipline and name changes of fungi with biotechnological, industrial, or medical importance are often difficult to understand for researchers in the applied field. Species belonging to the genera Aspergillus and Penicillium are commonly used or isolated, and inadequate taxonomy or uncertain nomenclature of these genera can therefore lead to tremendous confusion. Misidentification of strains used in biotechnology can be traced back to (1) recent changes in nomenclature, (2) new taxonomic insights, including description of new species, and/or (3) incorrect identifications. Changes in the recent published International Code of Nomenclature for Algae, Fungi and Plants will lead to numerous name changes of existing Aspergillus and Penicillium species and an overview of the current names of biotechnological important species is given. Furthermore, in (biotechnological) literature old and invalid names are still used, such as Aspergillus awamori, A. foetidus, A. kawachii, Talaromyces emersonii, Acremonium cellulolyticus, and Penicillium funiculosum. An overview of these and other species with their correct names is presented. Furthermore, the biotechnologically important species Talaromyces thermophilus is here combined in Thermomyces as Th. dupontii. The importance of Aspergillus, Penicillium, and related genera is also illustrated by the high number of undertaken genome sequencing projects. A number of these strains are incorrectly identified or atypical strains are selected for these projects. Recommendations for correct strain selection are given here. Phylogenetic analysis shows a close relationship between the genome-sequenced strains of Aspergillus, Penicillium, and Monascus. Talaromyces stipitatus and T. marneffei (syn. Penicillium marneffei) are closely related to Thermomyces lanuginosus and Th. dupontii (syn. Talaromyces thermophilus), and these species appear to be distantly related to Aspergillus and Penicillium. In the last part of this review, an overview of heterothallic reproduction in Aspergillus and Penicillium is given. The new insights in the taxonomy of Aspergillus, Penicillium, and related genera will help to interpret the results generated with comparative genomics studies or other studies dealing with evolution of, for example, enzymes, mating-type loci, virulence genes, and secondary metabolite biosynthetic gene clusters.
Collapse
Affiliation(s)
- Jos Houbraken
- CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands.
| | | | - Robert A Samson
- CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands
| |
Collapse
|
22
|
Bloemendal S, Löper D, Terfehr D, Kopke K, Kluge J, Teichert I, Kück U. Tools for advanced and targeted genetic manipulation of the β-lactam antibiotic producer Acremonium chrysogenum. J Biotechnol 2014; 169:51-62. [DOI: 10.1016/j.jbiotec.2013.10.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 10/22/2013] [Accepted: 10/25/2013] [Indexed: 11/30/2022]
|
23
|
Mating type genes and cryptic sexuality as tools for genetically manipulating industrial molds. Appl Microbiol Biotechnol 2013; 97:9609-20. [DOI: 10.1007/s00253-013-5268-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 09/12/2013] [Accepted: 09/14/2013] [Indexed: 01/11/2023]
|
24
|
Species-specific PCR to describe local-scale distributions of four cryptic species in the Penicillium chrysogenum complex. FUNGAL ECOL 2013; 6:419-429. [PMID: 24179477 PMCID: PMC3809933 DOI: 10.1016/j.funeco.2013.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 03/08/2013] [Accepted: 03/13/2013] [Indexed: 11/23/2022]
Abstract
Penicillium chrysogenum is a ubiquitous airborne fungus detected in every sampled region of the Earth. Owing to its role in Alexander Fleming's serendipitous discovery of Penicillin in 1928, the fungus has generated widespread scientific interest; however its natural history is not well understood. Research has demonstrated speciation within P. chrysogenum, describing the existence of four cryptic species. To discriminate the four species, we developed protocols for species-specific diagnostic PCR directly from fungal conidia. 430 Penicillium isolates were collected to apply our rapid diagnostic tool and explore the distribution of these fungi across the London Underground rail transport system revealing significant differences between Underground lines. Phylogenetic analysis of multiple type isolates confirms that the ‘Fleming species’ should be named Penicillium rubens and that divergence of the four ‘Chrysogenum complex’ fungi occurred about 0.75 million yr ago. Finally, the formal naming of two new species, Penicillium floreyi and Penicillium chainii, is performed. We develop species-specific diagnostic PCR tools for four cryptic species. We apply our diagnostic tools in the London Underground transport system. Varied distributions of Penicillium chrysogenum are demonstrated. Alexander Fleming's fungus is confirmed as Penicillium rubens. Two new species in the ‘Chrysogenum complex’ are named: P. floreyi and Penicillium chainii.
Collapse
|
25
|
Traeger S, Altegoer F, Freitag M, Gabaldon T, Kempken F, Kumar A, Marcet-Houben M, Pöggeler S, Stajich JE, Nowrousian M. The genome and development-dependent transcriptomes of Pyronema confluens: a window into fungal evolution. PLoS Genet 2013; 9:e1003820. [PMID: 24068976 PMCID: PMC3778014 DOI: 10.1371/journal.pgen.1003820] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 08/07/2013] [Indexed: 11/26/2022] Open
Abstract
Fungi are a large group of eukaryotes found in nearly all ecosystems. More than 250 fungal genomes have already been sequenced, greatly improving our understanding of fungal evolution, physiology, and development. However, for the Pezizomycetes, an early-diverging lineage of filamentous ascomycetes, there is so far only one genome available, namely that of the black truffle, Tuber melanosporum, a mycorrhizal species with unusual subterranean fruiting bodies. To help close the sequence gap among basal filamentous ascomycetes, and to allow conclusions about the evolution of fungal development, we sequenced the genome and assayed transcriptomes during development of Pyronema confluens, a saprobic Pezizomycete with a typical apothecium as fruiting body. With a size of 50 Mb and ∼13,400 protein-coding genes, the genome is more characteristic of higher filamentous ascomycetes than the large, repeat-rich truffle genome; however, some typical features are different in the P. confluens lineage, e.g. the genomic environment of the mating type genes that is conserved in higher filamentous ascomycetes, but only partly conserved in P. confluens. On the other hand, P. confluens has a full complement of fungal photoreceptors, and expression studies indicate that light perception might be similar to distantly related ascomycetes and, thus, represent a basic feature of filamentous ascomycetes. Analysis of spliced RNA-seq sequence reads allowed the detection of natural antisense transcripts for 281 genes. The P. confluens genome contains an unusually high number of predicted orphan genes, many of which are upregulated during sexual development, consistent with the idea of rapid evolution of sex-associated genes. Comparative transcriptomics identified the transcription factor gene pro44 that is upregulated during development in P. confluens and the Sordariomycete Sordaria macrospora. The P. confluens pro44 gene (PCON_06721) was used to complement the S. macrospora pro44 deletion mutant, showing functional conservation of this developmental regulator. Fungi are a morphologically and physiologically diverse group of organisms with huge impacts on nearly all ecosystems. In recent years, genomes of many fungal species have been sequenced and have greatly improved our understanding of fungal biology. Ascomycetes are the largest fungal group with the highest number of sequenced genomes; however, for the Pezizales, an early-diverging lineage of filamentous ascomycetes, only one genome has been sequence to date, namely that of the black truffle. While truffles are among the most valuable edible fungi, they have a specialized life style as plant symbionts producing belowground fruiting bodies; thus it is difficult to draw conclusions about basal ascomycetes from one truffle genome alone. Therefore, we have sequenced the genome and several transcriptomes of the basal ascomycete Pyronema confluens, which has a saprobic life style typical of many ascomycetes. Comparisons with other fungal genomes showed that P. confluens has two conserved mating type genes, but that the genomic environment of the mating type genes is different from that of higher ascomycetes. We also found that a high number of orphan genes, i.e. genes without homologs in other fungi, are upregulated during sexual development. This is consistent with rapid evolution of sex-associated genes.
Collapse
Affiliation(s)
- Stefanie Traeger
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Florian Altegoer
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Michael Freitag
- Center for Genome Research and Biocomputing, Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, United States of America
| | - Toni Gabaldon
- Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Frank Kempken
- Abteilung Botanische Genetik und Molekularbiologie, Botanisches Institut und Botanischer Garten, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Abhishek Kumar
- Abteilung Botanische Genetik und Molekularbiologie, Botanisches Institut und Botanischer Garten, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Marina Marcet-Houben
- Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Stefanie Pöggeler
- Institute of Microbiology and Genetics, Department of Genetics of Eukaryotic Microorganisms, Georg-August University, Göttingen, Germany
| | - Jason E. Stajich
- Department of Plant Pathology and Microbiology, University of California Riverside, Riverside, California, United States of America
| | - Minou Nowrousian
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
- * E-mail:
| |
Collapse
|
26
|
Kopke K, Hoff B, Bloemendal S, Katschorowski A, Kamerewerd J, Kück U. Members of the Penicillium chrysogenum velvet complex play functionally opposing roles in the regulation of penicillin biosynthesis and conidiation. EUKARYOTIC CELL 2013; 12:299-310. [PMID: 23264641 PMCID: PMC3571298 DOI: 10.1128/ec.00272-12] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 12/12/2012] [Indexed: 02/08/2023]
Abstract
A velvet multisubunit complex was recently detected in the filamentous fungus Penicillium chrysogenum, the major industrial producer of the β-lactam antibiotic penicillin. Core components of this complex are P. chrysogenum VelA (PcVelA) and PcLaeA, which regulate secondary metabolite production, hyphal morphology, conidiation, and pellet formation. Here we describe the characterization of PcVelB, PcVelC, and PcVosA as novel subunits of this velvet complex. Using yeast two-hybrid analysis and bimolecular fluorescence complementation (BiFC), we demonstrate that all velvet proteins are part of an interaction network. Functional analyses using single- and double-knockout strains clearly indicate that velvet subunits have opposing roles in the regulation of penicillin biosynthesis and light-dependent conidiation. PcVelC, together with PcVelA and PcLaeA, activates penicillin biosynthesis, while PcVelB represses this process. In contrast, PcVelB and PcVosA promote conidiation, while PcVelC has an inhibitory effect. Our genetic analyses further show that light-dependent spore formation depends not only on PcVelA but also on PcVelB and PcVosA. The results provided here contribute to our fundamental understanding of the function of velvet subunits as part of a regulatory network mediating signals responsible for morphology and secondary metabolism and will be instrumental in generating mutants with newly derived properties that are relevant to strain improvement programs.
Collapse
Affiliation(s)
- Katarina Kopke
- Christian Doppler Laboratory for Fungal Biotechnology, Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Sexual reproduction and mating-type-mediated strain development in the penicillin-producing fungus Penicillium chrysogenum. Proc Natl Acad Sci U S A 2013; 110:1476-81. [PMID: 23307807 DOI: 10.1073/pnas.1217943110] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Penicillium chrysogenum is a filamentous fungus of major medical and historical importance, being the original and present-day industrial source of the antibiotic penicillin. The species has been considered asexual for more than 100 y, and despite concerted efforts, it has not been possible to induce sexual reproduction, which has prevented sexual crosses being used for strain improvement. However, using knowledge of mating-type (MAT) gene organization, we now describe conditions under which a sexual cycle can be induced leading to production of meiotic ascospores. Evidence of recombination was obtained using both molecular and phenotypic markers. The identified heterothallic sexual cycle was used for strain development purposes, generating offspring with novel combinations of traits relevant to penicillin production. Furthermore, the MAT1-1-1 mating-type gene, known primarily for a role in governing sexual identity, was also found to control transcription of a wide range of genes with biotechnological relevance including those regulating penicillin production, hyphal morphology, and conidial formation. These discoveries of a sexual cycle and MAT gene function are likely to be of broad relevance for manipulation of other asexual fungi of economic importance.
Collapse
|
28
|
New penicillin-producing Penicillium species and an overview of section Chrysogena. Persoonia - Molecular Phylogeny and Evolution of Fungi 2012; 29:78-100. [PMID: 23606767 PMCID: PMC3589797 DOI: 10.3767/003158512x660571] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 11/06/2012] [Indexed: 11/25/2022]
Abstract
Species classified in Penicillium sect. Chrysogena are primary soil-borne and the most well-known members are P. chrysogenum and P. nalgiovense. Penicillium chrysogenum has received much attention because of its role in the production on penicillin and as a contaminant of indoor environments and various food and feedstuffs. Another biotechnologically important species is P. nalgiovense, which is used as a fungal starter culture for the production of fermented meat products. Previous taxonomic studies often had conflicting species circumscriptions. Here, we present a multigene analysis, combined with phenotypic characters and extrolite data, demonstrating that sect. Chrysogena consists of 18 species. Six of these are newly described here (P. allii-sativi, P. desertorum, P. goetzii, P. halotolerans, P. tardochrysogenum, P. vanluykii) and P. lanoscoeruleum was found to be an older name for P. aethiopicum. Each species produces a unique extrolite profile. The species share phenotypic characters, such as good growth on CYA supplemented with 5 % NaCl, ter- or quarterverticillate branched conidiophores and short, ampulliform phialides (< 9 μm). Conidial colours, production of ascomata and ascospores, shape and ornamentation of conidia and growth rates on other agar media are valuable for species identification. Eight species (P. allii-sativi, P. chrysogenum, P. dipodomyis, P. flavigenum, P. nalgiovense, P. rubens, P. tardochrysogenum and P. vanluykii) produce penicillin in culture.
Collapse
|
29
|
Ropars J, Dupont J, Fontanillas E, Rodríguez de la Vega RC, Malagnac F, Coton M, Giraud T, López-Villavicencio M. Sex in cheese: evidence for sexuality in the fungus Penicillium roqueforti. PLoS One 2012. [PMID: 23185400 PMCID: PMC3504111 DOI: 10.1371/journal.pone.0049665] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although most eukaryotes reproduce sexually at some moment of their life cycle, as much as a fifth of fungal species were thought to reproduce exclusively asexually. Nevertheless, recent studies have revealed the occurrence of sex in some of these supposedly asexual species. For industrially relevant fungi, for which inoculums are produced by clonal-subcultures since decades, the potentiality for sex is of great interest for strain improvement strategies. Here, we investigated the sexual capability of the fungus Penicillium roqueforti, used as starter for blue cheese production. We present indirect evidence suggesting that recombination could be occurring in this species. The screening of a large sample of strains isolated from diverse substrates throughout the world revealed the existence of individuals of both mating types, even in the very same cheese. The MAT genes, involved in fungal sexual compatibility, appeared to evolve under purifying selection, suggesting that they are still functional. The examination of the recently sequenced genome of the FM 164 cheese strain enabled the identification of the most important genes known to be involved in meiosis, which were found to be highly conserved. Linkage disequilibria were not significant among three of the six marker pairs and 11 out of the 16 possible allelic combinations were found in the dataset. Finally, the detection of signatures of repeat induced point mutations (RIP) in repeated sequences and transposable elements reinforces the conclusion that P. roqueforti underwent more or less recent sex events. In this species of high industrial importance, the induction of a sexual cycle would open the possibility of generating new genotypes that would be extremely useful to diversify cheese products.
Collapse
Affiliation(s)
- Jeanne Ropars
- Department Systématique et Evolution, Origine, Structure, Evolution de la Biodiversité, UMR 7205 CNRS-MNHN, Muséum National d'Histoire Naturelle, Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Presence and functionality of mating type genes in the supposedly asexual filamentous fungus Aspergillus oryzae. Appl Environ Microbiol 2012; 78:2819-29. [PMID: 22327593 DOI: 10.1128/aem.07034-11] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The potential for sexual reproduction in Aspergillus oryzae was assessed by investigating the presence and functionality of MAT genes. Previous genome studies had identified a MAT1-1 gene in the reference strain RIB40. We now report the existence of a complementary MAT1-2 gene and the sequencing of an idiomorphic region from A. oryzae strain AO6. This allowed the development of a PCR diagnostic assay, which detected isolates of the MAT1-1 and MAT1-2 genotypes among 180 strains assayed, including industrial tane-koji isolates. Strains used for sake and miso production showed a near-1:1 ratio of the MAT1-1 and MAT1-2 mating types, whereas strains used for soy sauce production showed a significant bias toward the MAT1-2 mating type. MAT1-1 and MAT1-2 isogenic strains were then created by genetic manipulation of the resident idiomorph, and gene expression was compared by DNA microarray and quantitative real-time PCR (qRT-PCR) methodologies under conditions in which MAT genes were expressed. Thirty-three genes were found to be upregulated more than 10-fold in either the MAT1-1 host strain or the MAT1-2 gene replacement strain relative to each other, showing that both the MAT1-1 and MAT1-2 genes functionally regulate gene expression in A. oryzae in a mating type-dependent manner, the first such report for a supposedly asexual fungus. MAT1-1 expression specifically upregulated an α-pheromone precursor gene, but the functions of most of the genes affected were unknown. The results are consistent with a heterothallic breeding system in A. oryzae, and prospects for the discovery of a sexual cycle are discussed.
Collapse
|
31
|
Saleh D, Xu P, Shen Y, Li C, Adreit H, Milazzo J, Ravigné V, Bazin E, Nottéghem JL, Fournier E, Tharreau D. Sex at the origin: an Asian population of the rice blast fungus Magnaporthe oryzae reproduces sexually. Mol Ecol 2012; 21:1330-44. [PMID: 22313491 DOI: 10.1111/j.1365-294x.2012.05469.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Sexual reproduction may be cryptic or facultative in fungi and therefore difficult to detect. Magnaporthe oryzae, which causes blast, the most damaging fungal disease of rice, is thought to originate from southeast Asia. It reproduces asexually in all rice-growing regions. Sexual reproduction has been suspected in limited areas of southeast Asia, but has never been demonstrated in contemporary populations. We characterized several M. oryzae populations worldwide both biologically and genetically, to identify candidate populations for sexual reproduction. The sexual cycle of M. oryzae requires two strains of opposite mating types, at least one of which is female-fertile, to come into contact. In one Chinese population, the two mating types were found to be present at similar frequencies and almost all strains were female-fertile. Compatible strains from this population completed the sexual cycle in vitro and produced viable progenies. Genotypic richness and linkage disequilibrium data also supported the existence of sexual reproduction in this population. We resampled this population the following year, and the data obtained confirmed the presence of all the biological and genetic characteristics of sexual reproduction. In particular, a considerable genetic reshuffling of alleles was observed between the 2 years. Computer simulations confirmed that the observed genetic characteristics were unlikely to have arisen in the absence of recombination. We therefore concluded that a contemporary population of M. oryzae, pathogenic on rice, reproduces sexually in natura in southeast Asia. Our findings provide evidence for the loss of sexual reproduction by a fungal plant pathogen outside its centre of origin.
Collapse
Affiliation(s)
- Dounia Saleh
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR BGPI, Montpellier, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
A fungal sexual revolution: Aspergillus and Penicillium show the way. Curr Opin Microbiol 2011; 14:649-54. [DOI: 10.1016/j.mib.2011.10.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 09/29/2011] [Accepted: 10/03/2011] [Indexed: 01/09/2023]
|
33
|
Henk DA, Eagle CE, Brown K, Van Den Berg MA, Dyer PS, Peterson SW, Fisher MC. Speciation despite globally overlapping distributions in Penicillium chrysogenum: the population genetics of Alexander Fleming's lucky fungus. Mol Ecol 2011; 20:4288-301. [PMID: 21951491 DOI: 10.1111/j.1365-294x.2011.05244.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Eighty years ago, Alexander Fleming described the antibiotic effects of a fungus that had contaminated his bacterial culture, kick starting the antimicrobial revolution. The fungus was later ascribed to a putatively globally distributed asexual species, Penicillium chrysogenum. Recently, the species has been shown to be genetically diverse, and possess mating-type genes. Here, phylogenetic and population genetic analyses show that this apparently ubiquitous fungus is actually composed of at least two genetically distinct species with only slight differences detected in physiology. We found each species in air and dust samples collected in and around St Mary's Hospital where Fleming worked. Genotyping of 30 markers across the genome showed that preserved fungal material from Fleming's laboratory was nearly identical to derived strains currently in culture collections and in the same distinct species as a wild progenitor strain of current penicillin producing industrial strains rather than the type species P. chrysogenum. Global samples of the two most common species were found to possess mating-type genes in a near 1:1 ratio, and show evidence of recombination with little geographic population subdivision evident. However, no hybridization was detected between the species despite an estimated time of divergence of less than 1MYA. Growth studies showed significant interspecific inhibition by P. chrysogenum of the other common species, suggesting that competition may facilitate species maintenance despite globally overlapping distributions. Results highlight under-recognized diversity even among the best-known fungal groups and the potential for speciation despite overlapping distribution.
Collapse
Affiliation(s)
- D A Henk
- Department of Infectious Disease Epidemiology, Imperial College Faculty of Medicine, St Mary's Campus, Norfolk Place, London W2 1PG, UK.
| | | | | | | | | | | | | |
Collapse
|
34
|
Henk DA, Fisher MC. Genetic diversity, recombination, and divergence in animal associated Penicillium dipodomyis. PLoS One 2011; 6:e22883. [PMID: 21850241 PMCID: PMC3151277 DOI: 10.1371/journal.pone.0022883] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 07/06/2011] [Indexed: 11/19/2022] Open
Abstract
Penicillium dipodomyis is thought to be an exclusively asexual fungus associated with Kangaroo Rats, Dipodomys species, and is unique among Penicillium species in growing at 37°C but producing no known toxins. Lack of recombination within P. dipodomyis would result in limited adaptive flexibility but possibly enhance local adaptation and host selection via maintenance of favourable genotypes. Here, analysis of DNA sequence data from five protein-coding genes shows that recombination occurs within P. dipodomyis on a small spatial scale. Furthermore, detection of mating-type alleles supports outcrossing and a sexual cycle in P. dipodomyis. P. dipodomyis was a weaker competitor in in vitro assays with other Penicillium species found in association with Kanagaroo rats. Bayesian species level analysis suggests that the P. dipodomyis lineage diverged from closely related species also found in cheek pouches of Kangaroo Rats and their stored seeds about 11 million years ago, a similar divergence time as Dipodomys from its sister rodent taxa.
Collapse
Affiliation(s)
- Daniel A Henk
- Department of Infectious Disease Epidemiology, Imperial College, London, United Kingdom.
| | | |
Collapse
|
35
|
Kamerewerd J, Zadra I, Kürnsteiner H, Kück U. PcchiB1, encoding a class V chitinase, is affected by PcVelA and PcLaeA, and is responsible for cell wall integrity in Penicillium chrysogenum. MICROBIOLOGY-SGM 2011; 157:3036-3048. [PMID: 21816879 DOI: 10.1099/mic.0.051896-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Penicillin production in Penicillium chrysogenum is controlled by PcVelA and PcLaeA, two components of the regulatory velvet-like complex. Comparative microarray analysis with mutants lacking PcVelA or PcLaeA revealed a set of 62 common genes affected by the loss of both components. A downregulated gene in both knockout strains is PcchiB1, potentially encoding a class V chitinase. Under nutrient-depleted conditions, transcript levels of PcchiB1 are strongly upregulated, and the gene product contributes to more than 50 % of extracellular chitinase activity. Functional characterization by generating PcchiB1-disruption strains revealed that PcChiB1 is responsible for cell wall integrity and pellet formation in P. chrysogenum. Further, fluorescence microscopy with a DsRed-labelled chitinase suggests a cell wall association of the protein. An unexpected phenotype occurred when knockout strains were grown on media containing N-acetylglucosamine as the sole C and N source, where, in contrast to the recipient, a penicillin producer strain, the mutants and an ancestral strain show distinct mycelial growth. We discuss the relevance of this class V chitinase for morphology in an industrially important fungus.
Collapse
Affiliation(s)
- Jens Kamerewerd
- Christian Doppler Laboratory for 'Fungal Biotechnology', Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Ivo Zadra
- Anti Infectives Microbiology, Sandoz GmbH, Biochemiestraße 10, 6250 Kundl, Austria
| | - Hubert Kürnsteiner
- Anti Infectives Microbiology, Sandoz GmbH, Biochemiestraße 10, 6250 Kundl, Austria
| | - Ulrich Kück
- Christian Doppler Laboratory for 'Fungal Biotechnology', Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| |
Collapse
|
36
|
Impact of the Penicillium chrysogenum genome on industrial production of metabolites. Appl Microbiol Biotechnol 2011; 92:45-53. [PMID: 21805169 DOI: 10.1007/s00253-011-3476-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Revised: 06/27/2011] [Accepted: 07/13/2011] [Indexed: 01/12/2023]
Abstract
The genome sequence of Penicillium chrysogenum has initiated a range of fundamental studies, deciphering the genetic secrets of the industrial penicillin producer. More than 60 years of classical strain improvement has resulted in major but delicate rebalancing of the intracellular metabolism leading to the impressive penicillin titres of the current production strains. Several leads for further improvement are being followed up, including the use of P. chrysogenum as a cell factory for other products than β-lactam antibiotics.
Collapse
|
37
|
Pöggeler S, O’Gorman CM, Hoff B, Kück U. Molecular organization of the mating-type loci in the homothallic Ascomycete Eupenicillium crustaceum. Fungal Biol 2011; 115:615-24. [DOI: 10.1016/j.funbio.2011.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 02/25/2011] [Accepted: 03/03/2011] [Indexed: 10/18/2022]
|
38
|
Sigl C, Haas H, Specht T, Pfaller K, Kürnsteiner H, Zadra I. Among developmental regulators, StuA but not BrlA is essential for penicillin V production in Penicillium chrysogenum. Appl Environ Microbiol 2011; 77:972-82. [PMID: 21148688 PMCID: PMC3028705 DOI: 10.1128/aem.01557-10] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 12/02/2010] [Indexed: 11/20/2022] Open
Abstract
In filamentous fungi, secondary metabolism is often linked with developmental processes such as conidiation. In this study we analyzed the link between secondary metabolism and conidiation in the main industrial producer of the β-lactam antibiotic penicillin, the ascomycete Penicillium chrysogenum. Therefore, we generated mutants defective in two central regulators of conidiation, the transcription factors BrlA and StuA. Inactivation of either brlA or stuA blocked conidiation and altered hyphal morphology during growth on solid media, as shown by light and scanning electron microscopy, but did not affect biomass production during liquid-submerged growth. Genome-wide transcriptional profiling identified a complex StuA- and BrlA-dependent regulatory network, including genes previously shown to be involved in development and secondary metabolism. Remarkably, inactivation of stuA, but not brlA, drastically downregulated expression of the penicillin biosynthetic gene cluster during solid and liquid-submerged growth. In agreement, penicillin V production was wild-type-like in brlA-deficient strains but 99% decreased in stuA-deficient strains during liquid-submerged growth, as shown by high-performance liquid chromatography (HPLC) analysis. Thus, among identified regulators of penicillin V production StuA has the most severe influence. Overexpression of stuA increased the transcript levels of brlA and abaA (another developmental regulator) and derepressed conidiation during liquid-submerged growth but did not affect penicillin V productivity. Taken together, these data demonstrate an intimate but not exclusive link between regulation of development and secondary metabolism in P. chrysogenum.
Collapse
Affiliation(s)
- Claudia Sigl
- Anti Infectives Microbiology, Sandoz GmbH, Biochemiestrasse 10, 6250 Kundl, Austria, Christian Doppler Laboratory for Fungal Biotechnology, Biocenter, Division of Molecular Biology, Innsbruck Medical University, Fritz-Pregl-Strasse 3, 6020 Innsbruck, Austria, Division of Histology and Embryology, Department of Anatomy, Histology and Embryology, Innsbruck Medical University, Müllerstrasse 59, 6020 Innsbruck, Austria
| | - Hubertus Haas
- Anti Infectives Microbiology, Sandoz GmbH, Biochemiestrasse 10, 6250 Kundl, Austria, Christian Doppler Laboratory for Fungal Biotechnology, Biocenter, Division of Molecular Biology, Innsbruck Medical University, Fritz-Pregl-Strasse 3, 6020 Innsbruck, Austria, Division of Histology and Embryology, Department of Anatomy, Histology and Embryology, Innsbruck Medical University, Müllerstrasse 59, 6020 Innsbruck, Austria
| | - Thomas Specht
- Anti Infectives Microbiology, Sandoz GmbH, Biochemiestrasse 10, 6250 Kundl, Austria, Christian Doppler Laboratory for Fungal Biotechnology, Biocenter, Division of Molecular Biology, Innsbruck Medical University, Fritz-Pregl-Strasse 3, 6020 Innsbruck, Austria, Division of Histology and Embryology, Department of Anatomy, Histology and Embryology, Innsbruck Medical University, Müllerstrasse 59, 6020 Innsbruck, Austria
| | - Kristian Pfaller
- Anti Infectives Microbiology, Sandoz GmbH, Biochemiestrasse 10, 6250 Kundl, Austria, Christian Doppler Laboratory for Fungal Biotechnology, Biocenter, Division of Molecular Biology, Innsbruck Medical University, Fritz-Pregl-Strasse 3, 6020 Innsbruck, Austria, Division of Histology and Embryology, Department of Anatomy, Histology and Embryology, Innsbruck Medical University, Müllerstrasse 59, 6020 Innsbruck, Austria
| | - Hubert Kürnsteiner
- Anti Infectives Microbiology, Sandoz GmbH, Biochemiestrasse 10, 6250 Kundl, Austria, Christian Doppler Laboratory for Fungal Biotechnology, Biocenter, Division of Molecular Biology, Innsbruck Medical University, Fritz-Pregl-Strasse 3, 6020 Innsbruck, Austria, Division of Histology and Embryology, Department of Anatomy, Histology and Embryology, Innsbruck Medical University, Müllerstrasse 59, 6020 Innsbruck, Austria
| | - Ivo Zadra
- Anti Infectives Microbiology, Sandoz GmbH, Biochemiestrasse 10, 6250 Kundl, Austria, Christian Doppler Laboratory for Fungal Biotechnology, Biocenter, Division of Molecular Biology, Innsbruck Medical University, Fritz-Pregl-Strasse 3, 6020 Innsbruck, Austria, Division of Histology and Embryology, Department of Anatomy, Histology and Embryology, Innsbruck Medical University, Müllerstrasse 59, 6020 Innsbruck, Austria
| |
Collapse
|
39
|
Taxonomic studies of the Penicillium glabrum complex and the description of a new species P. subericola. FUNGAL DIVERS 2011. [DOI: 10.1007/s13225-011-0090-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
Martin SH, Wingfield BD, Wingfield MJ, Steenkamp ET. Causes and consequences of variability in peptide mating pheromones of ascomycete fungi. Mol Biol Evol 2011; 28:1987-2003. [PMID: 21252281 DOI: 10.1093/molbev/msr022] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The reproductive genes of fungi, like those of many other organisms, are thought to diversify rapidly. This phenomenon could be associated with the formation of reproductive barriers and speciation. Ascomycetes produce two classes of mating type-specific peptide pheromones. These are required for recognition between the mating types of heterothallic species. Little is known regarding the diversity or the extent of species specificity in pheromone peptides among these fungi. We compared the putative protein-coding DNA sequences of the 2 pheromone classes from 70 species of Ascomycetes. The data set included previously described pheromones and putative pheromones identified from genomic sequences. In addition, pheromone genes from 12 Fusarium species in the Gibberella fujikuroi complex were amplified and sequenced. Pheromones were largely conserved among species in this complex and, therefore, cannot alone account for the reproductive barriers observed between these species. In contrast, pheromone peptides were highly diverse among many other Ascomycetes, with evidence for both positive diversifying selection and relaxed selective constraint. Repeats of the α-factor-like pheromone, which occur in tandem arrays of variable copy number, were found to be conserved through purifying selection and not concerted evolution. This implies that sequence specificity may be important for pheromone reception and that interspecific differences may indeed be associated with functional divergence. Our findings also suggest that frequent duplication and loss causes the tandem repeats to experience "birth-and-death" evolution, which could in fact facilitate interspecific divergence of pheromone peptide sequences.
Collapse
Affiliation(s)
- Simon H Martin
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, South Africa
| | | | | | | |
Collapse
|
41
|
Houbraken J, Frisvad JC, Samson RA. Sex in Penicillium series Roqueforti. IMA Fungus 2010; 1:171-80. [PMID: 22679577 PMCID: PMC3348777 DOI: 10.5598/imafungus.2010.01.02.10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 11/19/2010] [Indexed: 11/26/2022] Open
Abstract
Various fungi were isolated during the course of a survey in a cold-store of apples in the Netherlands. One of these fungi belongs to the genus Penicillium and produces cleistothecia at 9 and 15 °C. A detailed study using a combination of phenotypic characters, sequences and extrolite patterns showed that these isolates belong to a new species within the series Roqueforti. The formation of cleistothecia at low temperatures and the inability to produce roquefortine C, together with a unique phylogenetic placement, make these isolates a novel entity in the Roqueforti series. The name Penicillium psychrosexualis sp. nov. (CBS 128137T) is proposed here for these isolates.
Collapse
Affiliation(s)
- Jos Houbraken
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, NL-3584 CT Utrecht, the Netherlands
| | | | | |
Collapse
|
42
|
Billiard S, López-Villavicencio M, Devier B, Hood ME, Fairhead C, Giraud T. Having sex, yes, but with whom? Inferences from fungi on the evolution of anisogamy and mating types. Biol Rev Camb Philos Soc 2010; 86:421-42. [PMID: 21489122 DOI: 10.1111/j.1469-185x.2010.00153.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The advantage of sex has been among the most debated issues in biology. Surprisingly, the question of why sexual reproduction generally requires the combination of distinct gamete classes, such as small and large gametes, or gametes with different mating types, has been much less investigated. Why do systems with alternative gamete classes (i.e. systems with either anisogamy or mating types or both) appear even though they restrict the probability of finding a compatible mating partner? Why does the number of gamete classes vary from zero to thousands, with most often only two classes? We review here the hypotheses proposed to explain the origin, maintenance, number, and loss of gamete classes. We argue that fungi represent highly suitable models to help resolve issues related to the evolution of distinct gamete classes, because the number of mating types vary from zero to thousands across taxa, anisogamy is present or not, and because there are frequent transitions between these conditions. We review the nature and number of gamete classes in fungi, and we attempt to draw inferences from these data on the evolutionary forces responsible for their appearance, loss or maintenance, and number.
Collapse
Affiliation(s)
- Sylvain Billiard
- Université Lille Nord de France, USTL, GEPV, CNRS, FRE 3268, Villeneuve d'Ascq, France.
| | | | | | | | | | | |
Collapse
|
43
|
Two components of a velvet-like complex control hyphal morphogenesis, conidiophore development, and penicillin biosynthesis in Penicillium chrysogenum. EUKARYOTIC CELL 2010; 9:1236-50. [PMID: 20543063 DOI: 10.1128/ec.00077-10] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Penicillium chrysogenum is the industrial producer of the antibiotic penicillin, whose biosynthetic regulation is barely understood. Here, we provide a functional analysis of two major homologues of the velvet complex in P. chrysogenum, which we have named P. chrysogenum velA (PcvelA) and PclaeA. Data from array analysis using a DeltaPcvelA deletion strain indicate a significant role of PcVelA on the expression of biosynthesis and developmental genes, including PclaeA. Northern hybridization and high-performance liquid chromatography quantifications of penicillin titers clearly show that both PcVelA and PcLaeA play a major role in penicillin biosynthesis in a producer strain that underwent several rounds of UV mutagenesis during a strain improvement program. Both regulators are further involved in different developmental processes. While PcvelA deletion leads to light-independent conidial formation, dichotomous branching of hyphae, and pellet formation in shaking cultures, a DeltaPclaeA strain shows a severe impairment in conidiophore formation under both light and dark conditions. Bimolecular fluorescence complementation assays provide evidence for a velvet-like complex in P. chrysogenum, with structurally conserved components that have distinct developmental roles, illustrating the functional plasticity of these regulators in genera other than Aspergillus.
Collapse
|
44
|
Application of the Saccharomyces cerevisiae FLP/FRT recombination system in filamentous fungi for marker recycling and construction of knockout strains devoid of heterologous genes. Appl Environ Microbiol 2010; 76:4664-74. [PMID: 20472720 DOI: 10.1128/aem.00670-10] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To overcome the limited availability of antibiotic resistance markers in filamentous fungi, we adapted the FLP/FRT recombination system from the yeast Saccharomyces cerevisiae for marker recycling. We tested this system in the penicillin producer Penicillium chrysogenum using different experimental approaches. In a two-step application, we first integrated ectopically a nourseothricin resistance cassette flanked by the FRT sequences in direct repeat orientation (FRT-nat1 cassette) into a P. chrysogenum recipient. In the second step, the gene for the native yeast FLP recombinase, and in parallel, a codon-optimized P. chrysogenum flp (Pcflp) recombinase gene, were transferred into the P. chrysogenum strain carrying the FRT-nat1 cassette. The corresponding transformants were analyzed by PCR, growth tests, and sequencing to verify successful recombination events. Our analysis of several single- and multicopy transformants showed that only when the codon-optimized recombinase was present could a fully functional recombination system be generated in P. chrysogenum. As a proof of application of this system, we constructed a DeltaPcku70 knockout strain devoid of any heterologous genes. To further improve the FLP/FRT system, we produced a flipper cassette carrying the FRT sites as well as the Pcflp gene together with a resistance marker. This cassette allows the controlled expression of the recombinase gene for one-step marker excision. Moreover, the applicability of the optimized FLP/FRT recombination system in other fungi was further demonstrated by marker recycling in the ascomycete Sordaria macrospora. Here, we discuss the application of the optimized FLP/FRT recombination system as a molecular tool for the genetic manipulation of filamentous fungi.
Collapse
|
45
|
López-Villavicencio M, Aguileta G, Giraud T, de Vienne DM, Lacoste S, Couloux A, Dupont J. Sex in Penicillium: combined phylogenetic and experimental approaches. Fungal Genet Biol 2010; 47:693-706. [PMID: 20460164 DOI: 10.1016/j.fgb.2010.05.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 04/16/2010] [Accepted: 05/06/2010] [Indexed: 12/28/2022]
Abstract
We studied the mode of reproduction and its evolution in the fungal subgenus Penicillium Biverticillium using phylogenetic and experimental approaches. We sequenced mating type (MAT) genes and nuclear DNA fragments in sexual and putatively asexual species. Examination of the concordance between individual trees supported the recognition of the morphological species. MAT genes were detected in two putatively asexual species and were found to evolve mostly under purifying selection, although high substitution rates were detected at some sites in some clades. The first steps of sexual reproduction could be induced under controlled conditions in one of the two species, although no mature cleistothecia were produced. Altogether, these findings suggest that the asexual Penicillium species may have lost sex only very recently and/or that the MAT genes are involved in other functions. An ancestral state reconstruction analysis indicated several events of putative sex loss in the genus. Alternatively, it is possible that the supposedly asexual Penicillium species may have retained a cryptic sexual stage.
Collapse
Affiliation(s)
- M López-Villavicencio
- Origine, Structure, Evolution de la Diversité, UMR 7205 CNRS-MNHN, Muséum national d'histoire naturelle, CP39, 57 rue Cuvier, 75231 Paris Cedex 05, France.
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Human fungal pathogens are associated with diseases ranging from dandruff and skin colonization to invasive bloodstream infections. The major human pathogens belong to the Candida, Aspergillus, and Cryptococcus clades, and infections have high and increasing morbidity and mortality. Many human fungal pathogens were originally assumed to be asexual. However, recent advances in genome sequencing, which revealed that many species have retained the genes required for the sexual machinery, have dramatically influenced our understanding of the biology of these organisms. Predictions of a rare or cryptic sexual cycle have been supported experimentally for some species. Here, I examine the evidence that human pathogens reproduce sexually. The evolution of the mating-type locus in ascomycetes (including Candida and Aspergillus species) and basidiomycetes (Malassezia and Cryptococcus) is discussed. I provide an overview of how sex is suppressed in different species and discuss the potential associations with pathogenesis.
Collapse
|
47
|
|
48
|
Janus D, Hoff B, Kück U. Evidence for Dicer-dependent RNA interference in the industrial penicillin producer Penicillium chrysogenum. MICROBIOLOGY-SGM 2009; 155:3946-3956. [PMID: 19797363 DOI: 10.1099/mic.0.032763-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
RNA interference (RNAi) is a sequence-specific post-transcriptional gene silencing system that downregulates target gene expression. Here, we provide several lines of evidence for RNA silencing in the industrial beta-lactam antibiotic producer Penicillium chrysogenum using the DsRed reporter gene under the control of the constitutive trpC promoter or the inducible xylP promoter. The functional RNAi system was verified by detection of siRNAs that hybridized exclusively with gene-specific (32)P-labelled RNA probes. Moreover, when RNAi was used to silence the endogenous PcbrlA morphogene that controls conidiophore development, a dramatic reduction in the formation of conidiospores was observed in 47 % of the corresponding transformants. Evidence that RNAi in P. chrysogenum is dependent on a Dicer peptide was provided with a strain lacking Pcdcl2. In the DeltaPcdcl2 background, silencing of the PcbrlA gene was tested. None of the transformants analysed showed a developmental defect. The applicability of the RNAi system in P. chrysogenum was finally demonstrated by silencing the Pcku70 gene to increase homologous recombination frequency. This led to the generation of single and double knockout mutants.
Collapse
Affiliation(s)
- Danielle Janus
- Christian Doppler Laboratory for 'Fungal Biotechnology', Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität, Universitätsstr. 150, 44780 Bochum, Germany
| | - Birgit Hoff
- Christian Doppler Laboratory for 'Fungal Biotechnology', Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität, Universitätsstr. 150, 44780 Bochum, Germany
| | - Ulrich Kück
- Christian Doppler Laboratory for 'Fungal Biotechnology', Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität, Universitätsstr. 150, 44780 Bochum, Germany
| |
Collapse
|
49
|
Hoff B, Kamerewerd J, Sigl C, Zadra I, Kück U. Homologous recombination in the antibiotic producer Penicillium chrysogenum: strain ΔPcku70 shows up-regulation of genes from the HOG pathway. Appl Microbiol Biotechnol 2009; 85:1081-94. [DOI: 10.1007/s00253-009-2168-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 07/24/2009] [Accepted: 07/25/2009] [Indexed: 11/29/2022]
|
50
|
|