1
|
Sun X, Wang Y, Yang X, Xiang X, Zou L, Liu X, Luo G, Han Q. Profilin Pfy1 is critical for cell wall integrity and virulence in Candida albicans. Microbiol Spectr 2025; 13:e0259324. [PMID: 39992147 PMCID: PMC11960436 DOI: 10.1128/spectrum.02593-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/24/2025] [Indexed: 02/25/2025] Open
Abstract
Profilin is a small actin-binding protein that plays an important role in actin polymerization. However, its functions in Candida albicans, the most prevalent fungal pathogen, remain unclear. Here, we report that profilin plays a crucial role in C. albicans morphogenesis and virulence. Deletion of profilin results in abnormal morphogenesis and impaired hyphal development. Furthermore, pfy1Δ/Δ is hypersensitive to cell wall stress and displays thicker cell wall than wild-type cells, indicative of a critical function of Pfy1 in cell wall integrity. In addition, our findings demonstrate that profilin is required for the virulence of C. albicans in a murine model of systemic infection. In conclusion, our work provides a promising target for developing antifungal drugs.IMPORTANCEOur research revealed Pfy1 is not only involved in hyphal development but also essential for pseudohyphal formation in response to DNA damage agents methyl methanesulfonate (MMS) and H2O2. The disruption of PFY1 resulted in striking morphological defects in both yeast and hyphal forms. Further investigation suggested that profilin plays a role in polarized growth of Candida albicans via binding with Act1, and contributes to cell wall remodeling. Both hyphal growth and cell wall integrity are the important virulence factors of C. albicans. Thus, pfy1Δ/Δ strains significantly reduced mortality rates in mice. These findings suggested that profilin could serve as a target for developing new antifungal drugs possibly for use in combination therapies with caspofungin, for treating invasive candidiasis.
Collapse
Affiliation(s)
- Xun Sun
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- The Third Clinical Medical College of the Three Gorges University, Gezhouba Central Hospital of Sinopharm, Yichang, Hubei, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Basic Medicine, China Three Gorges University, Yichang, Hubei, China
- Yichang Key Laboratory of Infection and Inflammation, School of Basic Medicine, China Three Gorges University, Yichang, China
| | - Yueqing Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Basic Medicine, China Three Gorges University, Yichang, Hubei, China
- Yichang Key Laboratory of Infection and Inflammation, School of Basic Medicine, China Three Gorges University, Yichang, China
| | - Xiaomin Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xi Xiang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Basic Medicine, China Three Gorges University, Yichang, Hubei, China
- Yichang Key Laboratory of Infection and Inflammation, School of Basic Medicine, China Three Gorges University, Yichang, China
| | - Lili Zou
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Basic Medicine, China Three Gorges University, Yichang, Hubei, China
- Yichang Key Laboratory of Infection and Inflammation, School of Basic Medicine, China Three Gorges University, Yichang, China
| | - Xiaowen Liu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Basic Medicine, China Three Gorges University, Yichang, Hubei, China
- Yichang Key Laboratory of Infection and Inflammation, School of Basic Medicine, China Three Gorges University, Yichang, China
| | - Gang Luo
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, School of Basic Medical Science, Guizhou Medical University, Guizhou, China
| | - Qi Han
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Watchaputi K, Jayasekara LACB, Ratanakhanokchai K, Soontorngun N. Inhibition of cell cycle-dependent hyphal and biofilm formation by a novel cytochalasin 19,20‑epoxycytochalasin Q in Candida albicans. Sci Rep 2023; 13:9724. [PMID: 37322086 PMCID: PMC10272203 DOI: 10.1038/s41598-023-36191-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023] Open
Abstract
Biofilm-mediated drug resistance is a key virulence factor of pathogenic microbes that cause a serious global health threat especially in immunocompromised individuals. Here, we investigated the antihyphal and antibiofilm activity of 19,20‑epoxycytochalasin Q (ECQ), a cytochalasin actin inhibitor isolated from medicinal mushroom Xylaria sp. BCC1067 against Candida albicans. Remarkably, 256 µg/ml of ECQ inhibited over 95% of C. albicans hyphal formation after 24 h-treatment. Combined ECQ and lipid-based biosurfactant effectively enhanced the antihyphal activity, lowering required ECQ concentrations. Hyphal fragmentation and reduction of biofilm biomass, shown by SEM and AFM visualization of ECQ-treated biofilms, were well corelated to the reduced metabolic activities of young and 24 h-preformed C. albicans biofilms. Induced intracellular accumulation of reactive oxygen species (ROS) also occurred in accompany with the leakage of shrunken cell membrane and defective cell wall at increasing ECQ concentrations. Transcriptomic analyses via RNA-sequencing revealed a massive change (> 1300 genes) in various biological pathways, following ECQ-treatment. Coordinated expression of genes, associated with cellular response to drugs, filamentous growth, cell adhesion, biofilm formation, cytoskeleton organization, cell division cycle, lipid and cell wall metabolisms was confirmed via qRT-PCR. Protein-protein association tool identified coupled expression between key regulators of cell division cyclin-dependent kinases (Cdc19/28) and a gamma-tubulin (Tub4). They coordinated ECQ-dependent hyphal specific gene targets of Ume6 and Tec1 during different phases of cell division. Thus, we first highlight the antihyphal and antibiofilm property of the novel antifungal agent ECQ against one of the most important life-threatening fungal pathogens by providing its key mechanistic detail in biofilm-related fungal infection.
Collapse
Affiliation(s)
- Kwanrutai Watchaputi
- Excellent Research Laboratory for Yeast Innovation, Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, 10150, Thailand
| | - L A Channa Bhathiya Jayasekara
- Excellent Research Laboratory for Yeast Innovation, Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, 10150, Thailand
| | - Khanok Ratanakhanokchai
- Excellent Center of Enzyme Technology and Microbial Utilization, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, 10150, Thailand
| | - Nitnipa Soontorngun
- Excellent Research Laboratory for Yeast Innovation, Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, 10150, Thailand.
| |
Collapse
|
3
|
Ent2 Governs Morphogenesis and Virulence in Part through Regulation of the Cdc42 Signaling Cascade in the Fungal Pathogen Candida albicans. mBio 2023; 14:e0343422. [PMID: 36809010 PMCID: PMC10128014 DOI: 10.1128/mbio.03434-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
The ability to transition between yeast and filamentous growth states is critical for virulence of the leading human fungal pathogen Candida albicans. Large-scale genetic screens have identified hundreds of genes required for this morphological switch, but the mechanisms by which many of these genes orchestrate this developmental transition remain largely elusive. In this study, we characterized the role of Ent2 in governing morphogenesis in C. albicans. We showed that Ent2 is required for filamentous growth under a wide range of inducing conditions and is also required for virulence in a mouse model of systemic candidiasis. We found that the epsin N-terminal homology (ENTH) domain of Ent2 enables morphogenesis and virulence and does so via a physical interaction with the Cdc42 GTPase-activating protein (GAP) Rga2 and regulation of its localization. Further analyses revealed that overexpression of the Cdc42 effector protein Cla4 can overcome the requirement for the ENTH-Rga2 physical interaction, indicating that Ent2 functions, at least in part, to enable proper activation of the Cdc42-Cla4 signaling pathway in the presence of a filament-inducing cue. Overall, this work characterizes the mechanism by which Ent2 regulates hyphal morphogenesis in C. albicans, unveils the importance of this factor in enabling virulence in an in vivo model of systemic candidiasis and adds to the growing understanding of the genetic control of a key virulence trait. IMPORTANCE Candida albicans is a leading human fungal pathogen that can cause life-threatening infections in immunocompromised individuals, with mortality rates of ~40%. The ability of this organism to grow in both yeast and filamentous forms is critical for the establishment of systemic infection. Genomic screens have identified many genes required for this morphological transition, yet our understanding of the mechanisms that regulate this key virulence trait remains incomplete. In this study, we characterized Ent2 as a core regulator of C. albicans morphogenesis. We show that Ent2 regulates hyphal morphogenesis through an interaction between its ENTH domain and the Cdc42 GAP, Rga2, which signals through the Cdc42-Cla4 signaling pathway. Finally, we show that the Ent2 protein, and specifically its ENTH domain, is required for virulence in a mouse model of systemic candidiasis. Overall, this work identifies Ent2 as a key regulator of filamentation and virulence in C. albicans.
Collapse
|
4
|
Guan Y, Wang D, Lin X, Li X, Lv C, Wang D, Zhang L. Unveiling a Novel Role of Cdc42 in Pyruvate Metabolism Pathway to Mediate Insecticidal Activity of Beauveria bassiana. J Fungi (Basel) 2022; 8:jof8040394. [PMID: 35448625 PMCID: PMC9031566 DOI: 10.3390/jof8040394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023] Open
Abstract
The small GTPase Cdc42 acts as a molecular switch essential for cell cycles and polar growth in model yeast, but has not been explored in Beaurveria bassiana, an insect-pathogenic fungus serving as a main source of fungal formulations against arthropod pests. Here, we show the indispensability of Cdc42 for fungal insecticidal activity. Deletion of cdc42 in B. bassiana resulted in a great loss of virulence to Galleria mellonella, a model insect, via normal cuticle infection as well as defects in conidial germination, radial growth, aerial conidiation, and conidial tolerance to heat and UVB irradiation. The deleted mutant’s hyphae formed fewer or more septa and produced unicellular blastospores with disturbed cell cycles under submerged-culture conditions. Transcriptomic analysis revealed differential expression of 746 genes and dysregulation of pyruvate metabolism and related pathways, which were validated by marked changes in intracellular pyruvate content, ATP content, related enzyme activities, and in extracellular beauvericin content and Pr1 protease activity vital for fungal virulence. These findings uncover a novel role for Cdc42 in the pathways of pyruvate metabolism and the pyruvate-involved tricarboxylic acid cycle (TCA cycle) and a linkage of the novel role with its indispensability for the biological control potential of B. bassiana against arthropod pests.
Collapse
Affiliation(s)
- Yi Guan
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China; (D.W.); (X.L.); (X.L.); (C.L.)
- Correspondence: (Y.G.); (L.Z.)
| | - Donghuang Wang
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China; (D.W.); (X.L.); (X.L.); (C.L.)
| | - Xiaofeng Lin
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China; (D.W.); (X.L.); (X.L.); (C.L.)
| | - Xin Li
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China; (D.W.); (X.L.); (X.L.); (C.L.)
| | - Chao Lv
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China; (D.W.); (X.L.); (X.L.); (C.L.)
| | - Dingyi Wang
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China;
| | - Longbin Zhang
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China; (D.W.); (X.L.); (X.L.); (C.L.)
- Correspondence: (Y.G.); (L.Z.)
| |
Collapse
|
5
|
Kaur M, Kumari A, Singh R. The Indigenous Volatile Inhibitor 2-Methyl-2-butene Impacts Biofilm Formation and Interspecies Interaction of the Pathogenic Mucorale Rhizopus arrhizus. MICROBIAL ECOLOGY 2022; 83:506-512. [PMID: 34023922 DOI: 10.1007/s00248-021-01765-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
2-Methyl-2-butene has recently been reported to be a quorum-based volatile self-inhibitor of spore germination and growth in pathogenic Mucorale Rhizopus arrhizus. The present study aimed to elucidate if this compound can influence R. arrhizus biofilm formation and interspecies interaction. The compound was found to significantly decrease R. arrhizus biofilm formation (p < 0.001), with nearly 25% and 50% lesser biomass in the biofilms cultured with exposure to 4 and 32 µg/ml of 2-methyl-2-butene, respectively. The growth of pre-formed biofilms was also impacted, albeit to a lesser extent. Additionally, 2-methyl-2-butene was found to self-limit R. arrhizus growth during interspecies interaction with Staphylococcus aureus and was detected at a substantially greater concentration in the headspace of co-cultures (2338.75 µg/ml) compared with monocultures (69.52 µg/ml). Some of the C5 derivatives of this compound (3-methyl-1-butanol, 2-methyl-2-butanol, and 3-methyl-1-butyne) were also observed to partially mimic its action, such as inhibition of spore germination, but did not impact R. arrhizus biofilm formation. Finally, the treated R. arrhizus displayed changes in fungal morphology suggestive of cytoskeletal alterations, such as filopodia formation, blebs, increased longitudinal folds and/or corrugations, and finger-like and sheet-like surface protrusions, depending upon the concentration of the compound(s) and the planktonic or biofilm growth mode.
Collapse
Affiliation(s)
- Mahaldeep Kaur
- Department of Microbial Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Anjna Kumari
- Department of Microbial Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Rachna Singh
- Department of Microbial Biotechnology, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
6
|
Transcriptomic Analysis Reveals That Rho GTPases Regulate Trap Development and Lifestyle Transition of the Nematode-Trapping Fungus Arthrobotrys oligospora. Microbiol Spectr 2022; 10:e0175921. [PMID: 35019695 PMCID: PMC8754127 DOI: 10.1128/spectrum.01759-21] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Nematode-trapping (NT) fungi can form unique infection structures (traps) to capture and kill free-living nematodes and, thus, can play a potential role in the biocontrol of nematodes. Arthrobotrys oligospora is a representative species of NT fungi. Here, we performed a time course transcriptome sequencing (RNA-seq) analysis of transcriptomes to understand the global gene expression levels of A. oligospora during trap formation and predation. We identified 5,752 unique differentially expressed genes, among which the rac gene was significantly upregulated. Alternative splicing events occurred in 2,012 genes, including the rac and rho2 gene. Furthermore, we characterized three Rho GTPases (Rho2, Rac, and Cdc42) in A. oligospora using gene disruption and multiphenotypic analysis. Our analyses showed that AoRac and AoCdc42 play an important role in mycelium growth, lipid accumulation, DNA damage, sporulation, trap formation, pathogenicity, and stress response in A. oligospora. AoCdc42 and AoRac specifically interacted with components of the Nox complex, thus regulating the production of reactive oxygen species. Moreover, the transcript levels of several genes associated with protein kinase A, mitogen-activated protein kinase, and p21-activated kinase were also altered in the mutants, suggesting that Rho GTPases might function upstream from these kinases. This study highlights the important role of Rho GTPases in A. oligospora and provides insights into the regulatory mechanisms of signaling pathways in the trap morphogenesis and lifestyle transition of NT fungi. IMPORTANCE Nematode-trapping (NT) fungi are widely distributed in terrestrial and aquatic ecosystems. Their broad adaptability and flexible lifestyles make them ideal agents for controlling pathogenic nematodes. Arthrobotrys oligospora is a model species employed for understanding the interaction between fungi and nematodes. Here, we revealed that alternative splicing events play a crucial role in the trap development and lifestyle transition in A. oligospora. Furthermore, Rho GTPases exert differential effects on the growth, development, and pathogenicity of A. oligospora. In particular, AoRac is required for sporulation and trap morphogenesis. In addition, our analysis showed that Rho GTPases regulate the production of reactive oxygen species and function upstream from several kinases. Collectively, these results expand our understanding of gene expression and alternative splicing events in A. oligospora and the important roles of Rho GTPases in NT fungi, thereby providing a foundation for exploring their potential application in the biocontrol of pathogenic nematodes.
Collapse
|
7
|
Das S, Goswami AM, Saha T. An insight into the role of protein kinases as virulent factors, regulating pathogenic attributes in Candida albicans. Microb Pathog 2022; 164:105418. [DOI: 10.1016/j.micpath.2022.105418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 11/26/2022]
|
8
|
Chow EWL, Pang LM, Wang Y. From Jekyll to Hyde: The Yeast-Hyphal Transition of Candida albicans. Pathogens 2021; 10:pathogens10070859. [PMID: 34358008 PMCID: PMC8308684 DOI: 10.3390/pathogens10070859] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 12/22/2022] Open
Abstract
Candida albicans is a major fungal pathogen of humans, accounting for 15% of nosocomial infections with an estimated attributable mortality of 47%. C. albicans is usually a benign member of the human microbiome in healthy people. Under constant exposure to highly dynamic environmental cues in diverse host niches, C. albicans has successfully evolved to adapt to both commensal and pathogenic lifestyles. The ability of C. albicans to undergo a reversible morphological transition from yeast to filamentous forms is a well-established virulent trait. Over the past few decades, a significant amount of research has been carried out to understand the underlying regulatory mechanisms, signaling pathways, and transcription factors that govern the C. albicans yeast-to-hyphal transition. This review will summarize our current understanding of well-elucidated signal transduction pathways that activate C. albicans hyphal morphogenesis in response to various environmental cues and the cell cycle machinery involved in the subsequent regulation and maintenance of hyphal morphogenesis.
Collapse
Affiliation(s)
- Eve Wai Ling Chow
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore;
| | - Li Mei Pang
- National Dental Centre Singapore, National Dental Research Institute Singapore (NDRIS), 5 Second Hospital Ave, Singapore 168938, Singapore;
| | - Yue Wang
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore;
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
- Correspondence:
| |
Collapse
|
9
|
Kowalewski GP, Wildeman AS, Bogliolo S, Besold AN, Bassilana M, Culotta VC. Cdc42 regulates reactive oxygen species production in the pathogenic yeast Candida albicans. J Biol Chem 2021; 297:100917. [PMID: 34181946 PMCID: PMC8329510 DOI: 10.1016/j.jbc.2021.100917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 06/14/2021] [Accepted: 06/23/2021] [Indexed: 12/22/2022] Open
Abstract
Across eukaryotes, Rho GTPases such as Rac and Cdc42 play important roles in establishing cell polarity, which is a key feature of cell growth. In mammals and filamentous fungi, Rac targets large protein complexes containing NADPH oxidases (NOX) that produce reactive oxygen species (ROS). In comparison, Rho GTPases of unicellular eukaryotes were believed to signal cell polarity without ROS, and it was unclear whether Rho GTPases were required for ROS production in these organisms. We document here the first example of Rho GTPase-mediated post-transcriptional control of ROS in a unicellular microbe. Specifically, Cdc42 is required for ROS production by the NOX Fre8 of the opportunistic fungal pathogen Candida albicans. During morphogenesis to a hyphal form, a filamentous growth state, C. albicans FRE8 mRNA is induced, which leads to a burst in ROS. Fre8-ROS is also induced during morphogenesis when FRE8 is driven by an ectopic promoter; hence, Fre8 ROS production is in addition controlled at the post-transcriptional level. Using fluorescently tagged Fre8, we observe that the majority of the protein is associated with the vacuolar system. Interestingly, much of Fre8 in the vacuolar system appears inactive, and Fre8-induced ROS is only produced at sites near the hyphal tip, where Cdc42 is also localized during morphogenesis. We observe that Cdc42 is necessary to activate Fre8-mediated ROS production during morphogenesis. Cdc42 regulation of Fre8 occurs without the large NOX protein complexes typical of higher eukaryotes and therefore represents a novel form of ROS control by Rho GTPases.
Collapse
Affiliation(s)
- Griffin P Kowalewski
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Asia S Wildeman
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Stéphanie Bogliolo
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), Parc Valrose, Nice, France
| | - Angelique N Besold
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Martine Bassilana
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), Parc Valrose, Nice, France
| | - Valeria C Culotta
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA.
| |
Collapse
|
10
|
Smokvarska M, Jaillais Y, Martinière A. Function of membrane domains in rho-of-plant signaling. PLANT PHYSIOLOGY 2021; 185:663-681. [PMID: 33793925 PMCID: PMC8133555 DOI: 10.1093/plphys/kiaa082] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/25/2020] [Indexed: 05/18/2023]
Abstract
In a crowded environment, establishing interactions between different molecular partners can take a long time. Biological membranes have solved this issue, as they simultaneously are fluid and possess compartmentalized domains. This nanoscale organization of the membrane is often based on weak, local, and multivalent interactions between lipids and proteins. However, from local interactions at the nanoscale, different functional properties emerge at the higher scale, and these are critical to regulate and integrate cellular signaling. Rho of Plant (ROP) proteins are small guanosine triphosphate hydrolase enzymes (GTPases) involved in hormonal, biotic, and abiotic signaling, as well as fundamental cell biological properties such as polarity, vesicular trafficking, and cytoskeleton dynamics. Association with the membrane is essential for ROP function, as well as their precise targeting within micrometer-sized polar domains (i.e. microdomains) and nanometer-sized clusters (i.e. nanodomains). Here, we review our current knowledge about the formation and the maintenance of the ROP domains in membranes. Furthermore, we propose a model for ROP membrane targeting and discuss how the nanoscale organization of ROPs in membranes could determine signaling parameters like signal specificity, amplification, and integration.
Collapse
Affiliation(s)
- Marija Smokvarska
- BPMP, CNRS, INRAE, Univ Montpellier, Montpellier SupAgro, 34060 Montpellier, France
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, CNRS, INRAE, Université de Lyon, ENS de Lyon, UCB Lyon 1, F-69342 Lyon, France
| | - Alexandre Martinière
- BPMP, CNRS, INRAE, Univ Montpellier, Montpellier SupAgro, 34060 Montpellier, France
- Author for communication:
| |
Collapse
|
11
|
Rsr1 Palmitoylation and GTPase Activity Status Differentially Coordinate Nuclear, Septin, and Vacuole Dynamics in Candida albicans. mBio 2020; 11:mBio.01666-20. [PMID: 33051364 PMCID: PMC7554666 DOI: 10.1128/mbio.01666-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Directional growth and tissue invasion by hyphae of the pathogenic fungus, Candida albicans, are disrupted by deletion of the small GTPase, Rsr1, which localizes Cdc42 and its kinase, Cla4, to the site of polarized growth. We investigated additional abnormalities observed in rsr1Δ hyphae, including vacuole development, cytoplasm inheritance, mitochondrial morphology, septin ring organization, nuclear division and migration, and branching frequency, which together demonstrate a fundamental role for Rsr1 in cellular organization. Rsr1 contains a C-terminal CCAAX box, which putatively undergoes both reversible palmitoylation and farnesylation for entry into the secretory pathway. We expressed variants of Rsr1 with mutated C244 or C245, or which lacked GTPase activity (Rsr1K16N and Rsr1G12V), in the rsr1Δ background and compared the resulting phenotypes with those of mutants lacking Bud5 (Rsr1 GEF), Bud2 (Rsr1 GAP), or Cla4. Bud5 was required only for cell size and bud site selection in yeast, suggesting there are alternative activators for Rsr1 in hyphae. Septin ring and vacuole dynamics were restored by expression of unpalmitoylated Rsr1C244S, which localized to endomembranes, but not by cytoplasmic Rsr1C245A or GTP/GDP-locked Rsr1, suggesting Rsr1 functions at intracellular membranes in addition to the plasma membrane. Rsr1K16N or cytoplasmic Rsr1C245A restored normal nuclear division but not septin ring or vacuole dynamics. Rsr1-GDP therefore plays a specific role in suppressing START, which can be signaled from the cytosol. Via differential palmitoylation and activity states, Rsr1 operates at diverse cell sites to orchestrate proper nuclear division and inheritance during constitutive polarized growth. As cla4Δ phenocopied rsr1Δ, it is likely these functions involve Cdc42-Cla4 activity.IMPORTANCE Understanding how single eukaryotic cells self-organize to replicate and migrate is relevant to health and disease. In the fungal pathogen, Candida albicans, the small GTPase, Rsr1, guides the directional growth of hyphae that invade human tissue during life-threatening infections. Rsr1 is a Ras-like GTPase and a homolog of the conserved Rap1 subfamily, which directs migration in mammalian cells. Research into how this single GTPase delivers complex intracellular patterning is challenging established views of GTPase regulation, trafficking, and interaction. Here, we show that Rsr1 directly and indirectly coordinates the spatial and temporal development of key intracellular macrostructures, including septum formation and closure, vacuole dynamics, and nuclear division and segregation, as well as whole-cell morphology by determining branching patterns. Furthermore, we categorize these functions by differential Rsr1 localization and activity state and provide evidence to support the emerging view that the cytosolic pool of Ras-like GTPases is functionally active.
Collapse
|
12
|
Silva PM, Puerner C, Seminara A, Bassilana M, Arkowitz RA. Secretory Vesicle Clustering in Fungal Filamentous Cells Does Not Require Directional Growth. Cell Rep 2020; 28:2231-2245.e5. [PMID: 31433995 DOI: 10.1016/j.celrep.2019.07.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 04/22/2019] [Accepted: 07/18/2019] [Indexed: 11/27/2022] Open
Abstract
During symmetry breaking, the highly conserved Rho GTPase Cdc42 becomes stabilized at a defined site via an amplification process. However, little is known about how a new polarity site is established in an already asymmetric cell-a critical process in a changing environment. The human fungal pathogen Candida albicans switches from budding to filamentous growth in response to external cues, a transition controlled by Cdc42. Here, we have used optogenetic manipulation of cell polarity to reset growth in asymmetric filamentous C. albicans cells. We show that increasing the level of active Cdc42 on the plasma membrane results in disruption of the exocyst subunit Sec3 localization and a striking de novo clustering of secretory vesicles. This new cluster of secretory vesicles is highly dynamic, moving by hops and jumps, until a new growth site is established. Our results reveal that secretory vesicle clustering can occur in the absence of directional growth.
Collapse
Affiliation(s)
- Patrícia M Silva
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), Parc Valrose, Nice, France
| | - Charles Puerner
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), Parc Valrose, Nice, France
| | - Agnese Seminara
- Université Côte d'Azur, CNRS, Institute Physics of Nice (INPHYNI), Ave. J. Vallot, Nice, France
| | - Martine Bassilana
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), Parc Valrose, Nice, France
| | - Robert A Arkowitz
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), Parc Valrose, Nice, France.
| |
Collapse
|
13
|
Souza ACO, Al Abdallah Q, DeJarnette K, Martin-Vicente A, Nywening AV, DeJarnette C, Sansevere EA, Ge W, Palmer GE, Fortwendel JR. Differential requirements of protein geranylgeranylation for the virulence of human pathogenic fungi. Virulence 2020; 10:511-526. [PMID: 31131706 PMCID: PMC6550545 DOI: 10.1080/21505594.2019.1620063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Protein prenylation is a crucial post-translational modification largely mediated by two heterodimeric enzyme complexes, farnesyltransferase and geranylgeranyltransferase type-I (GGTase-I), each composed of a shared α-subunit and a unique β-subunit. GGTase-I enzymes are validated drug targets that contribute to virulence in Cryptococcus neoformans and to the yeast-to-hyphal transition in Candida albicans. Therefore, we sought to investigate the importance of the α-subunit, RamB, and the β-subunit, Cdc43, of the A. fumigatus GGTase-I complex to hyphal growth and virulence. Deletion of cdc43 resulted in impaired hyphal morphogenesis and thermo-sensitivity, which was exacerbated during growth in rich media. The Δcdc43 mutant also displayed hypersensitivity to cell wall stress agents and to cell wall synthesis inhibitors, suggesting alterations of cell wall biosynthesis or stress signaling. In support of this, analyses of cell wall content revealed decreased amounts of β-glucan in the Δcdc43 strain. Despite strong in vitro phenotypes, the Δcdc43 mutant was fully virulent in two models of murine invasive aspergillosis, similar to the control strain. We further found that a strain expressing the α-subunit gene, ramB, from a tetracycline-inducible promoter was inviable under non-inducing in vitro growth conditions and was virtually avirulent in both mouse models. Lastly, virulence studies using C. albicans strains with tetracycline-repressible RAM2 or CDC43 expression revealed reduced pathogenicity associated with downregulation of either gene in a murine model of disseminated infection. Together, these findings indicate a differential requirement for protein geranylgeranylation for fungal virulence, and further inform the selection of specific prenyltransferases as promising antifungal drug targets for each pathogen.
Collapse
Affiliation(s)
- Ana Camila Oliveira Souza
- a Department of Clinical Pharmacy and Translational Science , College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Qusai Al Abdallah
- a Department of Clinical Pharmacy and Translational Science , College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Kaci DeJarnette
- a Department of Clinical Pharmacy and Translational Science , College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Adela Martin-Vicente
- a Department of Clinical Pharmacy and Translational Science , College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Ashley V Nywening
- b Department of Molecular Immunology and Biochemistry , College of Graduate Health Sciences, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Christian DeJarnette
- b Department of Molecular Immunology and Biochemistry , College of Graduate Health Sciences, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Emily A Sansevere
- a Department of Clinical Pharmacy and Translational Science , College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Wenbo Ge
- a Department of Clinical Pharmacy and Translational Science , College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Glen E Palmer
- a Department of Clinical Pharmacy and Translational Science , College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| | - Jarrod R Fortwendel
- a Department of Clinical Pharmacy and Translational Science , College of Pharmacy, University of Tennessee Health Science Center , Memphis , TN , USA
| |
Collapse
|
14
|
The Role of Secretory Pathways in Candida albicans Pathogenesis. J Fungi (Basel) 2020; 6:jof6010026. [PMID: 32102426 PMCID: PMC7151058 DOI: 10.3390/jof6010026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/17/2022] Open
Abstract
Candida albicans is a fungus that is a commensal organism and a member of the normal human microbiota. It has the ability to transition into an opportunistic invasive pathogen. Attributes that support pathogenesis include secretion of virulence-associated proteins, hyphal formation, and biofilm formation. These processes are supported by secretion, as defined in the broad context of membrane trafficking. In this review, we examine the role of secretory pathways in Candida virulence, with a focus on the model opportunistic fungal pathogen, Candida albicans.
Collapse
|
15
|
Establishment of tetracycline-regulated bimolecular fluorescence complementation assay to detect protein-protein interactions in Candida albicans. Sci Rep 2020; 10:2936. [PMID: 32076074 PMCID: PMC7031294 DOI: 10.1038/s41598-020-59891-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/03/2020] [Indexed: 01/05/2023] Open
Abstract
To visualize protein-protein interactions in Candida albicans with the bimolecular fluorescence complementation (BiFC) approach, we created a Tet-on system with the plasmids pWTN1 and pWTN2. Both plasmids bear a hygromycin B-resistant marker (CaHygB) that is compatible with the original Tet-on plasmid pNIM1, which carries a nourseothricin-resistant marker (CaSAT1). By using GFPmut2 and mCherry as reporters, we found that the two complementary Tet-on plasmids act synergistically in C. albicans with doxycycline in a dose-dependent manner and that expression of the fusion proteins, CaCdc11-GFPmut2 and mCherry-CaCdc10, derived from this system, is septum targeted. Furthermore, to allow detection of protein-protein interactions with the reassembly of a split fluorescent protein, we incorporated mCherry into our system. We generated pWTN1-RN and pNIM1-RC, which express the N-terminus (amino acids 1–159) and C-terminus (amino acids 160–237) of mCherry, respectively. To verify BiFC with mCherry, we created the pWTN1-CDC42-RN (or pWTN1-RN-CDC42) and pNIM1-RC-RDI1 plasmids. C. albicans cells containing these plasmids treated with doxycycline co-expressed the N- and C-terminal fragments of mCherry either N-terminally or C-terminally fused with CaCdc42 and CaRdi1, respectively, and the CaCdc42-CaRdi1 interaction reconstituted a functional form of mCherry. The establishment of this Tet-on-based BiFC system in C. albicans should facilitate the exploration of protein-protein interactions under a variety of conditions.
Collapse
|
16
|
Alqahtani FM, Arivett BA, Taylor ZE, Handy ST, Farone AL, Farone MB. Chemogenomic profiling to understand the antifungal action of a bioactive aurone compound. PLoS One 2019; 14:e0226068. [PMID: 31825988 PMCID: PMC6905557 DOI: 10.1371/journal.pone.0226068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/18/2019] [Indexed: 12/15/2022] Open
Abstract
Every year, more than 250,000 invasive candidiasis infections are reported with 50,000 deaths worldwide. The limited number of antifungal agents necessitates the need for alternative antifungals with potential novel targets. The 2-benzylidenebenzofuran-3-(2H)-ones have become an attractive scaffold for antifungal drug design. This study aimed to determine the antifungal activity of a synthetic aurone compound and characterize its mode of action. Using the broth microdilution method, aurone SH1009 exhibited inhibition against C. albicans, including resistant isolates, as well as C. glabrata, and C. tropicalis with IC50 values of 4-29 μM. Cytotoxicity assays using human THP-1, HepG2, and A549 human cell lines showed selective toxicity toward fungal cells. The mode of action for SH1009 was characterized using chemical-genetic interaction via haploinsufficiency (HIP) and homozygous (HOP) profiling of a uniquely barcoded Saccharomyces cerevisiae mutant collection. Approximately 5300 mutants were competitively treated with SH1009 followed by DNA extraction, amplification of unique barcodes, and quantification of each mutant using multiplexed next-generation sequencing. Barcode post-sequencing analysis revealed 238 sensitive and resistant mutants that significantly (FDR P values ≤ 0.05) responded to aurone SH1009. The enrichment analysis of KEGG pathways and gene ontology demonstrated the cell cycle pathway as the most significantly enriched pathway along with DNA replication, cell division, actin cytoskeleton organization, and endocytosis. Phenotypic studies of these significantly enriched responses were validated in C. albicans. Flow cytometric analysis of SH1009-treated C. albicans revealed a significant accumulation of cells in G1 phase, indicating cell cycle arrest. Fluorescence microscopy detected abnormally interrupted actin dynamics, resulting in enlarged, unbudded cells. RT-qPCR confirmed the effects of SH1009 in differentially expressed cell cycle, actin polymerization, and signal transduction genes. These findings indicate the target of SH1009 as a cell cycle-dependent organization of the actin cytoskeleton, suggesting a novel mode of action of the aurone compound as an antifungal inhibitor.
Collapse
Affiliation(s)
- Fatmah M. Alqahtani
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, United States of America
| | - Brock A. Arivett
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, United States of America
| | - Zachary E. Taylor
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee, United States of America
| | - Scott T. Handy
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee, United States of America
| | - Anthony L. Farone
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, United States of America
| | - Mary B. Farone
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, United States of America
| |
Collapse
|
17
|
Chen T, Wagner AS, Tams RN, Eyer JE, Kauffman SJ, Gann ER, Fernandez EJ, Reynolds TB. Lrg1 Regulates β (1,3)-Glucan Masking in Candida albicans through the Cek1 MAP Kinase Pathway. mBio 2019; 10:e01767-19. [PMID: 31530671 PMCID: PMC6751057 DOI: 10.1128/mbio.01767-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/15/2019] [Indexed: 12/28/2022] Open
Abstract
Candida albicans is among the most prevalent opportunistic human fungal pathogens. The ability to mask the immunogenic polysaccharide β (1,3)-glucan from immune detection via a layer of mannosylated proteins is a key virulence factor of C. albicans We previously reported that hyperactivation of the Cek1 mitogen-activated protein (MAP) kinase pathway promotes β (1,3)-glucan exposure. In this communication, we report a novel upstream regulator of Cek1 activation and characterize the impact of Cek1 activity on fungal virulence. Lrg1 encodes a GTPase-activating protein (GAP) that has been suggested to inhibit the GTPase Rho1. We found that disruption of LRG1 causes Cek1 hyperactivation and β (1,3)-glucan unmasking. However, when GTPase activation was measured for a panel of GTPases, the lrg1ΔΔ mutant exhibited increased activation of Cdc42 and Ras1 but not Rho1 or Rac1. Unmasking and Cek1 activation in the lrg1ΔΔ mutant can be blocked by inhibition of the Ste11 MAP kinase kinase kinase (MAPKKK), indicating that the lrg1ΔΔ mutant acts through the canonical Cek1 MAP kinase cascade. In order to determine how Cek1 hyperactivation specifically impacts virulence, a doxycycline-repressible hyperactive STE11ΔN467 allele was expressed in C. albicans In the absence of doxycycline, this allele overexpressed STE11ΔN467 , which induced production of proinflammatory tumor necrosis factor alpha (TNF-α) from murine macrophages. This in vitro phenotype correlates with decreased colonization and virulence in a mouse model of systemic infection. The mechanism by which Ste11ΔN467 causes unmasking was explored with RNA sequencing (RNA-Seq) analysis. Overexpression of Ste11ΔN467 caused upregulation of the Cph1 transcription factor and of a group of cell wall-modifying proteins which are predicted to impact cell wall architecture.IMPORTANCECandida albicans is an important source of systemic infections in humans. The ability to mask the immunogenic cell wall polymer β (1,3)-glucan from host immune surveillance contributes to fungal virulence. We previously reported that the hyperactivation of the Cek1 MAP kinase cascade promotes cell wall unmasking, thus increasing strain immunogenicity. In this study, we identified a novel regulator of the Cek1 pathway called Lrg1. Lrg1 is a predicted GTPase-activating protein (GAP) that represses Cek1 activity by downregulating the GTPase Cdc42 and its downstream MAPKKK, Ste11. Upregulation of Cek1 activity diminished fungal virulence in the mouse model of infection, and this correlates with increased cytokine responses from macrophages. We also analyzed the transcriptional profile determined during β (1,3)-glucan exposure driven by Cek1 hyperactivation. Our report provides a model where Cek1 hyperactivation causes β (1,3)-glucan exposure by upregulation of cell wall proteins and leads to more robust immune detection in vivo, promoting more effective clearance.
Collapse
Affiliation(s)
- Tian Chen
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee, USA
| | - Andrew S Wagner
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee, USA
| | - Robert N Tams
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee, USA
| | - James E Eyer
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee, USA
| | - Sarah J Kauffman
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee, USA
| | - Eric R Gann
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee, USA
| | - Elias J Fernandez
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee, USA
| | - Todd B Reynolds
- Department of Microbiology, The University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
18
|
Nozaki S, Furuya K, Niki H. The Ras1-Cdc42 pathway is involved in hyphal development of Schizosaccharomyces japonicus. FEMS Yeast Res 2019; 18:4939477. [PMID: 29566183 DOI: 10.1093/femsyr/foy031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 03/14/2018] [Indexed: 01/23/2023] Open
Abstract
Dimorphic yeasts transform into filamentous cells or hyphae in response to environmental cues. The mechanisms for the hyphal transition of dimorphic yeasts have mainly been studied in Candida albicans, an opportunistic human fungal pathogen. The Ras1-MAPK pathway is a major signal transduction pathway for hyphal transition in C. albicans. Recently, the non-pathogenic dimorphic yeast Schizosaccharomyces japonicus has also been used for genetic analyses of hyphal induction. We confirmed that Ras1-MAPK and other MAPK pathways exist in Sz. japonicus. To examine how hyphal transition is induced by environmental stress-triggered signal transduction, we studied the hyphal transition of deletion mutants of MAPK pathways in Sz. japonicus. We found that the MAPK pathways are not involved in hyphal induction, although the mating response is dependent on these pathways. However, only Ras1 deletion caused a severe defect in hyphal development via both DNA damage and environmental stressors. In fact, genes on the Cdc42 branch of the Ras1 (Ras1-Cdc42) pathway, efc25Sj, scd1Sj and scd2Sj, are required for hyphal development. Cell morphology analysis indicated that the apical growth of hyphal cells was inhibited in Ras1-Cdc42-pathway deletion mutants. Thus, the control of cell polarity by the Ras1-Cdc42 pathway is crucial for hyphal development.
Collapse
Affiliation(s)
- Shingo Nozaki
- Microbial Genetics Laboratory, Genetic Strains Research Center, National institute of Genetics, 1111, Yata, Mishima, Shizuoka 411-8540, Japan
| | - Kanji Furuya
- Radiation Biology Center, Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hironori Niki
- Microbial Genetics Laboratory, Genetic Strains Research Center, National institute of Genetics, 1111, Yata, Mishima, Shizuoka 411-8540, Japan.,Department of Genetics, the Graduate University for Advanced Studies (SOKENDAI), 1111, Yata, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
19
|
Regulation of Candida albicans Hyphal Morphogenesis by Endogenous Signals. J Fungi (Basel) 2019; 5:jof5010021. [PMID: 30823468 PMCID: PMC6463138 DOI: 10.3390/jof5010021] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 12/15/2022] Open
Abstract
Candida albicans is a human commensal fungus that is able to assume several morphologies, including yeast, hyphal, and pseudohyphal. Under a range of conditions, C. albicans performs a regulated switch to the filamentous morphology, characterized by the emergence of a germ tube from the yeast cell, followed by a mold-like growth of branching hyphae. This transition from yeast to hyphal growth has attracted particular attention, as it has been linked to the virulence of C. albicans as an opportunistic human pathogen. Signal transduction pathways that mediate the induction of the hyphal transcription program upon the imposition of external stimuli have been extensively investigated. However, the hyphal morphogenesis transcription program can also be induced by internal cellular signals, such as inhibition of cell cycle progression, and conversely, the inhibition of hyphal extension can repress hyphal-specific gene expression, suggesting that endogenous cellular signals are able to modulate hyphal gene expression as well. Here we review recent developments in the regulation of the hyphal morphogenesis of C. albicans, with emphasis on endogenous morphogenetic signals.
Collapse
|
20
|
Chen T, Jackson JW, Tams RN, Davis SE, Sparer TE, Reynolds TB. Exposure of Candida albicans β (1,3)-glucan is promoted by activation of the Cek1 pathway. PLoS Genet 2019; 15:e1007892. [PMID: 30703081 PMCID: PMC6372213 DOI: 10.1371/journal.pgen.1007892] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 02/12/2019] [Accepted: 12/12/2018] [Indexed: 01/08/2023] Open
Abstract
Candida albicans is among the most common causes of human fungal infections and is an important source of mortality. C. albicans is able to diminish its detection by innate immune cells through masking of β (1,3)-glucan in the inner cell wall with an outer layer of heavily glycosylated mannoproteins (mannan). However, mutations or drugs that disrupt the cell wall can lead to exposure of β (1,3)-glucan (unmasking) and enhanced detection by innate immune cells through receptors like Dectin-1, the C-type signaling lectin. Previously, our lab showed that the pathway for synthesizing the phospholipid phosphatidylserine (PS) plays a role in β (1,3)-glucan masking. The homozygous PS synthase knockout mutant, cho1Δ/Δ, exhibits increased exposure of β (1,3)-glucan. Several Mitogen Activated Protein Kinase (MAPK) pathways and their upstream Rho-type small GTPases are important for regulating cell wall biogenesis and remodeling. In the cho1Δ/Δ mutant, both the Cek1 and Mkc1 MAPKs are constitutively activated, and they act downstream of the small GTPases Cdc42 and Rho1, respectively. In addition, Cdc42 activity is up-regulated in cho1Δ/Δ. Thus, it was hypothesized that activation of Cdc42 or Rho1 and their downstream kinases cause unmasking. Disruption of MKC1 does not decrease unmasking in cho1Δ/Δ, and hyperactivation of Rho1 in wild-type cells increases unmasking and activation of both Cek1 and Mkc1. Moreover, independent hyperactivation of the MAP kinase kinase kinase Ste11 in wild-type cells leads to Cek1 activation and increased β (1,3)-glucan exposure. Thus, upregulation of the Cek1 MAPK pathway causes unmasking, and may be responsible for unmasking in cho1Δ/Δ. Candida albicans causes fungal infections in the oral cavities and bloodstreams of patients with weakened immune function, such as AIDS or cancer patients. The immune system detects fungal infections, in part, by detecting the antigenic cell wall polysaccharide β (1,3)-glucan. The ability to mask β (1,3)-glucan from immune detection is a virulence factor of C. albicans and a range of fungal pathogens. If synthesis of the phospholipid phosphatidylserine is disrupted in C. albicans (cho1Δ/Δ mutation), then cho1Δ/Δ exhibits significantly increased exposure of β (1,3)-glucan to immune detection compared to wild-type. Intracellular signaling cascades that regulate cell wall synthesis are upregulated in the cho1Δ/Δ mutant. It was hypothesized that upregulation of these pathways might be responsible for unmasking in this mutant. Genetic approaches were used to activate these pathways independently of the cho1Δ/Δ mutation. It was discovered that activation of one pathway, Cdc42-Cek1, leads to β (1,3)-glucan exposure. Thus, this pathway can cause β(1,3)-glucan exposure, and its upregulation may be the cause of unmasking in the cho1Δ/Δ mutant.
Collapse
Affiliation(s)
- Tian Chen
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States of America
| | - Joseph W. Jackson
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States of America
| | - Robert N. Tams
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States of America
| | - Sarah E. Davis
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States of America
| | - Timothy E. Sparer
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States of America
| | - Todd B. Reynolds
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States of America
- * E-mail:
| |
Collapse
|
21
|
Minz-Dub A, Sharon A. The Botrytis cinerea PAK kinase BcCla4 mediates morphogenesis, growth and cell cycle regulating processes downstream of BcRac. Mol Microbiol 2017; 104:487-498. [PMID: 28164413 DOI: 10.1111/mmi.13642] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2017] [Indexed: 12/24/2022]
Abstract
Rac proteins are involved in a variety of cellular processes. Effector proteins that interact with active Rac convey the GTPase-generated signal to downstream developmental cascades and processes. Here we report on the analysis of the main effector and signal cascade downstream of BcRac, the Rac homolog of the grey mold fungus Botrytis cinerea. Several lines of evidence highlighted the p21-activated kinase Cla4 as an important effector of Rac in fungi. Analysis of Δbccla4 strains revealed that the BcCla4 protein was sufficient to mediate all of the examined BcRac-driven processes, including hyphal growth and morphogenesis, conidia production and pathogenicity. In addition, the Δbccla4 strains had altered nuclei content, a phenomenon that was previously observed in Δbcrac isolates, thus connecting the BcRac/BcCla4 module with cell cycle control. Further analyses revealed that BcRac/BcCla4 control mitotic entry through changes in phosphorylation status of the cyclin dependent kinase BcCdk1. The complete cascade includes the kinase BcWee1, which is downstream of BcCla4 and upstream of BcCdk1. These results provide a mechanistic insight on the connection of cell cycle, morphogenesis and pathogenicity in fungi, and position BcCla4 as the most essential effector and central regulator of all of these processes downstream of BcRac.
Collapse
Affiliation(s)
- Anna Minz-Dub
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel
| | - Amir Sharon
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
22
|
Noble SM, Gianetti BA, Witchley JN. Candida albicans cell-type switching and functional plasticity in the mammalian host. Nat Rev Microbiol 2016; 15:96-108. [PMID: 27867199 DOI: 10.1038/nrmicro.2016.157] [Citation(s) in RCA: 349] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Candida albicans is a ubiquitous commensal of the mammalian microbiome and the most prevalent fungal pathogen of humans. A cell-type transition between yeast and hyphal morphologies in C. albicans was thought to underlie much of the variation in virulence observed in different host tissues. However, novel yeast-like cell morphotypes, including opaque(a/α), grey and gastrointestinally induced transition (GUT) cell types, were recently reported that exhibit marked differences in vitro and in animal models of commensalism and disease. In this Review, we explore the characteristics of the classic cell types - yeast, hyphae, pseudohyphae and chlamydospores - as well as the newly identified yeast-like morphotypes. We highlight emerging knowledge about the associations of these different morphotypes with different host niches and virulence potential, as well as the environmental cues and signalling pathways that are involved in the morphological transitions.
Collapse
Affiliation(s)
- Suzanne M Noble
- Department of Microbiology and Immunology, University of California San Francisco (UCSF) School of Medicine.,Infectious Diseases Division, Department of Medicine, University of California San Francisco (UCSF) School of Medicine, San Francisco, California 94143, USA
| | - Brittany A Gianetti
- Department of Microbiology and Immunology, University of California San Francisco (UCSF) School of Medicine
| | - Jessica N Witchley
- Department of Microbiology and Immunology, University of California San Francisco (UCSF) School of Medicine
| |
Collapse
|
23
|
Saputo S, Norman KL, Murante T, Horton BN, Diaz JDLC, DiDone L, Colquhoun J, Schroeder JW, Simmons LA, Kumar A, Krysan DJ. Complex Haploinsufficiency-Based Genetic Analysis of the NDR/Lats Kinase Cbk1 Provides Insight into Its Multiple Functions in Candida albicans. Genetics 2016; 203:1217-33. [PMID: 27206715 PMCID: PMC4937472 DOI: 10.1534/genetics.116.188029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/11/2016] [Indexed: 01/11/2023] Open
Abstract
Although the analysis of genetic interactions and networks is a powerful approach to understanding biology, it has not been applied widely to the pathogenic yeast Candida albicans Here, we describe the use of both screening and directed genetic interaction studies based on complex haploinsufficiency to probe the function of the R: egulation of A: ce2 and M: orphogenesis (RAM) pathway in C. albicans A library of 5200 Tn7-mutagenized derivatives of a parental strain heterozygous at CBK1, the key kinase in the RAM pathway, was screened for alterations in serum-induced filamentation. Following confirmation of phenotypes and identification of insertion sites by sequencing, a set of 36 unique double heterozygous strains showing complex haploinsufficiency was obtained. In addition to a large set of genes regulated by the RAM transcription factor Ace2, genes related to cell wall biosynthesis, cell cycle, polarity, oxidative stress, and nitrogen utilization were identified. Follow-up analysis led to the first demonstration that the RAM pathway is required for oxidative stress tolerance in a manner related to the two-component-regulated kinase Chk1 and revealed a potential direct connection between the RAM pathway and the essential Mps1 spindle pole-related kinase. In addition, genetic interactions with CDC42-related genes MSB1, a putative scaffold protein, and RGD3, a putative Rho GTPase-activating protein (GAP) were identified. We also provide evidence that Rgd3 is a GAP for Cdc42 and show that its localization and phosphorylation are dependent on Cbk1.
Collapse
Affiliation(s)
- Sarah Saputo
- Department of Microbiology/Immunology University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Kaitlyn L Norman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Thomas Murante
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Brooke N Horton
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Jacinto De La Cruz Diaz
- Department of Microbiology/Immunology University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Louis DiDone
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Jennifer Colquhoun
- Department of Microbiology/Immunology University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Jeremy W Schroeder
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Lyle A Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Anuj Kumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Damian J Krysan
- Department of Microbiology/Immunology University of Rochester School of Medicine and Dentistry, Rochester, New York 14642 Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| |
Collapse
|
24
|
Arkowitz RA, Bassilana M. Regulation of hyphal morphogenesis by Ras and Rho small GTPases. FUNGAL BIOL REV 2015. [DOI: 10.1016/j.fbr.2015.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
The actin-related protein Sac1 is required for morphogenesis and cell wall integrity in Candida albicans. Fungal Genet Biol 2015; 81:261-70. [PMID: 25575432 DOI: 10.1016/j.fgb.2014.12.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/22/2014] [Accepted: 12/27/2014] [Indexed: 01/10/2023]
Abstract
Candida albicans is a common pathogenic fungus and has aroused widespread attention recently. Actin cytoskeleton, an important player in polarized growth, protein secretion and organization of cell shape, displays irreplaceable role in hyphal development and cell integrity. In this study, we demonstrated a homologue of Saccharomyces cerevisiae Sac1, in C. albicans. It is a potential PIP phosphatase with Sac domain which is related to actin organization, hyphal development, biofilm formation and cell wall integrity. Deletion of SAC1 did not lead to insitiol-auxotroph phenotype in C. albicans, but this gene rescued the growth defect of S. cerevisiae sac1Δ in the insitiol-free medium. Hyphal induction further revealed the deficiency of sac1Δ/Δ in hyphal development and biofilm formation. Fluorescence observation and real time PCR (RT-PCR) analysis suggested both actin and the hyphal cell wall protein Hwp1 were overexpressed and mislocated in this mutant. Furthermore, cell wall integrity (CWI) was largely affected by deletion of SAC1, due to the hypersensitivity to cell wall stress, changed content and distribution of chitin in the mutant. As a result, the virulence of sac1Δ/Δ was seriously attenuated. Taken together, this study provides evidence that Sac1, as a potential PIP phosphatase, is essential for actin organization, hyphal development, CWI and pathogenicity in C. albicans.
Collapse
|
26
|
Tian H, Zhou L, Guo W, Wang X. Small GTPase Rac1 and its interaction partner Cla4 regulate polarized growth and pathogenicity in Verticillium dahliae. Fungal Genet Biol 2014; 74:21-31. [PMID: 25475370 DOI: 10.1016/j.fgb.2014.11.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 11/20/2014] [Accepted: 11/25/2014] [Indexed: 12/21/2022]
Abstract
Rac1 is a small GTPase coordinating diverse cellular functions such as cell polarity, vesicular trafficking, the cell cycle and transcriptional dynamics in many organisms. In this study, we investigate the biological functions of VdRac1, a Rac1 homolog in the soil-borne, wilt-causing fungus Verticillium dahliae. The VdRac1 gene was deleted in a V. dahliae virulence strain Vd8 isolated from a local cotton cultivar. ΔVdrac1 mutants display drastic reduction in colony expansion and form compact, convoluted colonies, show hyper-branching, loss of polarity and ability to penetrate, leading to severely reduced virulence. The p21-activated kinase Cla4 (named as VdCla4 in V. dahliae) null mutants ΔVdcla4 share identical phenotypes with ΔVdrac1. Yeast two-hybrid studies prove that VdCla4 is an effector of VdRac1. Localizations of actin and reactive oxygen species (ROS) in ΔVdrac1 and ΔVdcla4 compared with the corresponding wild-type strain reveal that VdRac1 and VdCla4 play a primary role in polarized hyphal growth via organization of ROS and play only a minor role in the organization of actin. The Vdrac1 and Vdcla4 null mutants are defective in conidiation and trace elements can partially compensate for the defect. Our data demonstrate that VdRac1 regulates polarized growth and pathogenicity by interacting with its effector VdCla4 in V. dahliae.
Collapse
Affiliation(s)
- Hui Tian
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lei Zhou
- The State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wangzhen Guo
- The State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xinyu Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
27
|
Herrero-de-Dios C, Alonso-Monge R, Pla J. The lack of upstream elements of the Cek1 and Hog1 mediated pathways leads to a synthetic lethal phenotype upon osmotic stress in Candida albicans. Fungal Genet Biol 2014; 69:31-42. [PMID: 24905535 DOI: 10.1016/j.fgb.2014.05.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 05/19/2014] [Accepted: 05/25/2014] [Indexed: 11/27/2022]
Abstract
Different signal transduction pathways mediated by MAP kinases have been described in Candida albicans. These pathways sense different stimuli and, therefore, elaborate specific responses. Hog1 was identified as the MAPK that is primarily involved in stress response and virulence, while Cek1 was more specific to cell wall biogenesis, mating and biofilm formation. In the present work, mutants defective in both pathways have been characterized under osmotic stress. Both routes are required for a full response against high osmotic challenge, since mutants defective in both pathways displayed aberrant morphology, cell polarity defects and abnormal chitin deposition, which correlate with loss of viability and appearance of apoptotic markers. These alterations occurred in spite of proper Hog1 and Cek1 phosphorylation and increased intra-cellular glycerol accumulation. The relevance of both routes in virulence is shown as ssk1 msb2 sho1 opy2 mutants are avirulent in a mouse systemic model of infection and display reduced virulence in the Galleria mellonella model.
Collapse
Affiliation(s)
- Carmen Herrero-de-Dios
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom(1)
| | - Rebeca Alonso-Monge
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain.
| | - Jesús Pla
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain
| |
Collapse
|
28
|
Jiang SS, Yin YP, Song ZY, Zhou GL, Wang ZK. RacA and Cdc42 regulate polarized growth and microsclerotium formation in the dimorphic fungus Nomuraea rileyi. Res Microbiol 2014; 165:233-42. [PMID: 24657749 DOI: 10.1016/j.resmic.2014.03.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 03/08/2014] [Indexed: 11/30/2022]
Abstract
Small GTPases, RacA and Cdc42, act as molecular switches in fungi, regulating cell signaling, cytoskeletal organization, polar growth and reactive oxygen species (ROS) generation, the latter by influencing the activity of the NADPH oxidase complex. In this study, the racA and cdc42 genes from Nomuraea rileyi were cloned and shown to encode 218 and 184 amino acid proteins, respectively. To determine the functions of racA and cdc42, gene-silencing mutants (racARM, cdc42RM and racA&cdc42RM, respectively) were generated using RNA silencing technology. In racARM and cdc42RM, the conidial and microsclerotium (MS) yields, ROS production and virulence were reduced, the hyphal extension rate was decreased and the dimorphic switch was delayed. On the other hand, the double-silencing mutants showed growth retardation and virtually no conidia, MS or ROS production. The transcription levels of the noxA and noxR genes that regulate ROS generation were reduced in the three RNAi-silenced strains. Interestingly, when compared with the controls, racARM exhibited thicker hyphae and bigger conidia; moreover, the MS produced by racARM were bigger than those of the control and smaller than those of cdc42RM. Thus RacA and Cdc42 appear to share some essential functions in N. rileyi, including hyphal growth, conidiation, MS formation, ROS generation and virulence. Yet RacA appears to play a more pivotal role in the polar growth of N. rileyi.
Collapse
Affiliation(s)
- Sha-sha Jiang
- Chongqing Engineering Research Center for Fungal Insecticides, School of Life Science, Chongqing University, Chongqing 400030, China.
| | - You-ping Yin
- Chongqing Engineering Research Center for Fungal Insecticides, School of Life Science, Chongqing University, Chongqing 400030, China.
| | - Zhang-yong Song
- Chongqing Engineering Research Center for Fungal Insecticides, School of Life Science, Chongqing University, Chongqing 400030, China.
| | - Gui-lin Zhou
- Chongqing Engineering Research Center for Fungal Insecticides, School of Life Science, Chongqing University, Chongqing 400030, China.
| | - Zhong-kang Wang
- Chongqing Engineering Research Center for Fungal Insecticides, School of Life Science, Chongqing University, Chongqing 400030, China.
| |
Collapse
|
29
|
Small-GTPase-associated signaling by the guanine nucleotide exchange factors CpDock180 and CpCdc24, the GTPase effector CpSte20, and the scaffold protein CpBem1 in Claviceps purpurea. EUKARYOTIC CELL 2014; 13:470-82. [PMID: 24489041 DOI: 10.1128/ec.00332-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Monomeric GTPases of the Rho subfamily are important mediators of polar growth and NADPH (Nox) signaling in a variety of organisms. These pathways influence the ability of Claviceps purpurea to infect host plants. GTPase regulators contribute to the nucleotide loading cycle that is essential for proper functionality of the GTPases. Scaffold proteins gather GTPase complexes to facilitate proper function. The guanine nucleotide exchange factors (GEFs) CpCdc24 and CpDock180 activate GTPase signaling by triggering nucleotide exchange of the GTPases. Here we show that CpCdc24 harbors nucleotide exchange activity for both Rac and Cdc42 homologues. The GEFs partly share the cellular distribution of the GTPases and interact with the putative upstream GTPase CpRas1. Interaction studies show the formation of higher-order protein complexes, mediated by the scaffold protein CpBem1. Besides the GTPases and GEFs, these complexes also contain the GTPase effectors CpSte20 and CpCla4, as well as the regulatory protein CpNoxR. Functional characterizations suggest a role of CpCdc24 mainly in polarity, whereas CpDock180 is involved in stress tolerance mechanisms. These findings indicate the dynamic formation of small GTPase complexes and improve the model for GTPase-associated signaling in C. purpurea.
Collapse
|
30
|
Brand AC, Morrison E, Milne S, Gonia S, Gale CA, Gow NAR. Cdc42 GTPase dynamics control directional growth responses. Proc Natl Acad Sci U S A 2014; 111:811-6. [PMID: 24385582 PMCID: PMC3896204 DOI: 10.1073/pnas.1307264111] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Polarized cells reorient their direction of growth in response to environmental cues. In the fungus Candida albicans, the Rho-family small GTPase, Cdc42, is essential for polarized hyphal growth and Ca(2+) influx is required for the tropic responses of hyphae to environmental cues, but the regulatory link between these systems is unclear. In this study, the interaction between Ca(2+) influx and Cdc42 polarity-complex dynamics was investigated using hyphal galvanotropic and thigmotropic responses as reporter systems. During polarity establishment in an applied electric field, cathodal emergence of hyphae was lost when either of the two Cdc42 apical recycling pathways was disrupted by deletion of Rdi1, a guanine nucleotide dissociation inhibitor, or Bnr1, a formin, but was completely restored by extracellular Ca(2+). Loss of the Cdc42 GTPase activating proteins, Rga2 and Bem3, also abolished cathodal polarization, but this was not rescued by Ca(2+). Expression of GTP-locked Cdc42 reversed the polarity of hypha emergence from cathodal to anodal, an effect augmented by Ca(2+). The cathodal directional cue therefore requires Cdc42 GTP hydrolysis. Ca(2+) influx amplifies Cdc42-mediated directional growth signals, in part by augmenting Cdc42 apical trafficking. The Ca(2+)-binding EF-hand motif in Cdc24, the Cdc42 activator, was essential for growth in yeast cells but not in established hyphae. The Cdc24 EF-hand motif is therefore essential for polarity establishment but not for polarity maintenance.
Collapse
Affiliation(s)
- Alexandra C. Brand
- School of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | - Emma Morrison
- School of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | - Stephen Milne
- College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom; and
| | - Sara Gonia
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455
| | - Cheryl A. Gale
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455
| | - Neil A. R. Gow
- School of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| |
Collapse
|
31
|
Weinhandl K, Winkler M, Glieder A, Camattari A. Carbon source dependent promoters in yeasts. Microb Cell Fact 2014; 13:5. [PMID: 24401081 PMCID: PMC3897899 DOI: 10.1186/1475-2859-13-5] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 12/16/2013] [Indexed: 11/22/2022] Open
Abstract
Budding yeasts are important expression hosts for the production of recombinant proteins. The choice of the right promoter is a crucial point for efficient gene expression, as most regulations take place at the transcriptional level. A wide and constantly increasing range of inducible, derepressed and constitutive promoters have been applied for gene expression in yeasts in the past; their different behaviours were a reflection of the different needs of individual processes. Within this review we summarize the majority of the large available set of carbon source dependent promoters for protein expression in yeasts, either induced or derepressed by the particular carbon source provided. We examined the most common derepressed promoters for Saccharomyces cerevisiae and other yeasts, and described carbon source inducible promoters and promoters induced by non-sugar carbon sources. A special focus is given to promoters that are activated as soon as glucose is depleted, since such promoters can be very effective and offer an uncomplicated and scalable cultivation procedure.
Collapse
Affiliation(s)
| | | | | | - Andrea Camattari
- Institute of Molecular Biotechnology, Technical University Graz, Graz, Austria.
| |
Collapse
|
32
|
Ballou ER, Kozubowski L, Nichols CB, Alspaugh JA. Ras1 acts through duplicated Cdc42 and Rac proteins to regulate morphogenesis and pathogenesis in the human fungal pathogen Cryptococcus neoformans. PLoS Genet 2013; 9:e1003687. [PMID: 23950731 PMCID: PMC3738472 DOI: 10.1371/journal.pgen.1003687] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 06/17/2013] [Indexed: 02/07/2023] Open
Abstract
Proliferation and morphogenesis in eukaryotic cells depend on the concerted activity of Rho-type GTPases, including Ras, Cdc42, and Rac. The sexually dimorphic fungus Cryptococcus neoformans, which encodes paralogous, non-essential copies of all three, provides a unique model in which to examine the interactions of these conserved proteins. Previously, we demonstrated that RAS1 mediates C. neoformans virulence by acting as a central regulator of both thermotolerance and mating. We report here that ras1Δ mutants accumulate defects in polarized growth, cytokinesis, and cell cycle progression. We demonstrate that the ras1Δ defects in thermotolerance and mating can be largely explained by the compromised activity of four downstream Rho-GTPases: the Cdc42 paralogs, Cdc42 and Cdc420; and the Rac paralogs, Rac1 and Rac2. Further, we demonstrate that the separate GTPase classes play distinct Ras-dependent roles in C. neoformans morphogenesis and pathogenesis. Cdc42 paralogs primarily control septin localization and cytokinesis, while Rac paralogs play a primary role in polarized cell growth. Together, these duplicate, related signaling proteins provide a robust system to allow microbial proliferation in the presence of host-derived cell stresses.
Collapse
Affiliation(s)
- Elizabeth Ripley Ballou
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
- Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Lukasz Kozubowski
- Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Connie B. Nichols
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - J. Andrew Alspaugh
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
- Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| |
Collapse
|
33
|
Rsr1 focuses Cdc42 activity at hyphal tips and promotes maintenance of hyphal development in Candida albicans. EUKARYOTIC CELL 2012; 12:482-95. [PMID: 23223038 DOI: 10.1128/ec.00294-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The extremely elongated morphology of fungal hyphae is dependent on the cell's ability to assemble and maintain polarized growth machinery over multiple cell cycles. The different morphologies of the fungus Candida albicans make it an excellent model organism in which to study the spatiotemporal requirements for constitutive polarized growth and the generation of different cell shapes. In C. albicans, deletion of the landmark protein Rsr1 causes defects in morphogenesis that are not predicted from study of the orthologous protein in the related yeast Saccharomyces cerevisiae, thus suggesting that Rsr1 has expanded functions during polarized growth in C. albicans. Here, we show that Rsr1 activity localizes to hyphal tips by the differential localization of the Rsr1 GTPase-activating protein (GAP), Bud2, and guanine nucleotide exchange factor (GEF), Bud5. In addition, we find that Rsr1 is needed to maintain the focused localization of hyphal polarity structures and proteins, including Bem1, a marker of the active GTP-bound form of the Rho GTPase, Cdc42. Further, our results indicate that tip-localized Cdc42 clusters are associated with the cell's ability to express a hyphal transcriptional program and that the ability to generate a focused Cdc42 cluster in early hyphae (germ tubes) is needed to maintain hyphal morphogenesis over time. We propose that in C. albicans, Rsr1 "fine-tunes" the distribution of Cdc42 activity and that self-organizing (Rsr1-independent) mechanisms of polarized growth are not sufficient to generate narrow cell shapes or to provide feedback to the transcriptional program during hyphal morphogenesis.
Collapse
|
34
|
Abstract
The human commensal fungus Candida albicans can cause not only superficial infections, but also life-threatening disease in immunocompromised individuals. C. albicans can grow in several morphological forms. The ability to switch between different phenotypic forms has been thought to contribute to its virulence. The yeast-filamentous growth transition and white-opaque switching represent two typical morphological switching systems, which have been intensively studied in C. albicans. The interplay between environmental factors and genes determines the morphology of C. albicans. This review focuses on the regulation of phenotypic changes in this pathogenic organism by external environmental cues and internal genes.
Collapse
Affiliation(s)
- Guanghua Huang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences Beijing, China.
| |
Collapse
|
35
|
Pham CD, Yu Z, Ben Lovely C, Agarwal C, Myers DA, Paul JA, Cooper M, Barati M, Perlin MH. Haplo-insufficiency for different genes differentially reduces pathogenicity and virulence in a fungal phytopathogen. Fungal Genet Biol 2012; 49:21-9. [DOI: 10.1016/j.fgb.2011.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 11/16/2011] [Accepted: 11/17/2011] [Indexed: 11/26/2022]
|
36
|
|
37
|
Shapiro RS, Robbins N, Cowen LE. Regulatory circuitry governing fungal development, drug resistance, and disease. Microbiol Mol Biol Rev 2011; 75:213-67. [PMID: 21646428 PMCID: PMC3122626 DOI: 10.1128/mmbr.00045-10] [Citation(s) in RCA: 409] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Pathogenic fungi have become a leading cause of human mortality due to the increasing frequency of fungal infections in immunocompromised populations and the limited armamentarium of clinically useful antifungal drugs. Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus are the leading causes of opportunistic fungal infections. In these diverse pathogenic fungi, complex signal transduction cascades are critical for sensing environmental changes and mediating appropriate cellular responses. For C. albicans, several environmental cues regulate a morphogenetic switch from yeast to filamentous growth, a reversible transition important for virulence. Many of the signaling cascades regulating morphogenesis are also required for cells to adapt and survive the cellular stresses imposed by antifungal drugs. Many of these signaling networks are conserved in C. neoformans and A. fumigatus, which undergo distinct morphogenetic programs during specific phases of their life cycles. Furthermore, the key mechanisms of fungal drug resistance, including alterations of the drug target, overexpression of drug efflux transporters, and alteration of cellular stress responses, are conserved between these species. This review focuses on the circuitry regulating fungal morphogenesis and drug resistance and the impact of these pathways on virulence. Although the three human-pathogenic fungi highlighted in this review are those most frequently encountered in the clinic, they represent a minute fraction of fungal diversity. Exploration of the conservation and divergence of core signal transduction pathways across C. albicans, C. neoformans, and A. fumigatus provides a foundation for the study of a broader diversity of pathogenic fungi and a platform for the development of new therapeutic strategies for fungal disease.
Collapse
Affiliation(s)
| | | | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
38
|
The small GTPase RacA mediates intracellular reactive oxygen species production, polarized growth, and virulence in the human fungal pathogen Aspergillus fumigatus. EUKARYOTIC CELL 2010; 10:174-86. [PMID: 21183690 DOI: 10.1128/ec.00288-10] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Aspergillus fumigatus is the predominant mold pathogen in immunocompromised patients. In this study, we present the first characterization of the small GTPase RacA in A. fumigatus. To gain insight into the function of racA in the growth and pathogenesis of A. fumigatus, we constructed a strain that lacks a functional racA gene. The ΔracA strain showed significant morphological defects, including a reduced growth rate and abnormal conidiogenesis on glucose minimal medium. In the ΔracA strain, apical dominance in the leading hyphae is lost and, instead, multiple axes of polarity emerge. Intriguingly, superoxide production at the hyphal tips was reduced by 25% in the ΔracA strain. Treatment of wild-type hyphae with diphenylene iodonium, an inhibitor of NADPH oxidase, resulted in phenotypes similar to that of the ΔracA strain. These data suggest that ΔracA strain phenotypes may be due to a reduction or alteration in the production of reactive oxygen species. Most surprisingly, despite these developmental and growth abnormalities, the ΔracA strain retained at least wild-type virulence in both an insect model and two immunologically distinct murine models of invasive pulmonary aspergillosis. These results demonstrate that in vitro growth phenotypes do not always correlate with in vivo virulence and raise intriguing questions about the role of RacA in Aspergillus virulence.
Collapse
|
39
|
The Candida albicans Rgd1 is a RhoGAP protein involved in the control of filamentous growth. Fungal Genet Biol 2010; 47:1001-11. [DOI: 10.1016/j.fgb.2010.07.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 07/02/2010] [Accepted: 07/12/2010] [Indexed: 01/01/2023]
|
40
|
Vauchelles R, Stalder D, Botton T, Arkowitz RA, Bassilana M. Rac1 dynamics in the human opportunistic fungal pathogen Candida albicans. PLoS One 2010; 5:e15400. [PMID: 21060846 PMCID: PMC2965673 DOI: 10.1371/journal.pone.0015400] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 09/08/2010] [Indexed: 02/07/2023] Open
Abstract
The small Rho G-protein Rac1 is highly conserved from fungi to humans, with approximately 65% overall sequence identity in Candida albicans. As observed with human Rac1, we show that C. albicans Rac1 can accumulate in the nucleus, and fluorescence recovery after photobleaching (FRAP) together with fluorescence loss in photobleaching (FLIP) studies indicate that this Rho G-protein undergoes nucleo-cytoplasmic shuttling. Analyses of different chimeras revealed that nuclear accumulation of C. albicans Rac1 requires the NLS-motifs at its carboxyl-terminus, which are blocked by prenylation of the adjacent cysteine residue. Furthermore, we show that C. albicans Rac1 dynamics, both at the plasma membrane and in the nucleus, are dependent on its activation state and in particular that the inactive form accumulates faster in the nucleus. Heterologous expression of human Rac1 in C. albicans also results in nuclear accumulation, yet accumulation is more rapid than that of C. albicans Rac1. Taken together our results indicate that Rac1 nuclear accumulation is an inherent property of this G-protein and suggest that the requirements for its nucleo-cytoplasmic shuttling are conserved from fungi to humans.
Collapse
Affiliation(s)
- Romain Vauchelles
- Institute of Developmental Biology and Cancer, Centre National de la Recherche Scientifique UMR 6543, Université de Nice, Faculté des Sciences-Parc Valrose, Nice, France
| | - Danièle Stalder
- Institute of Developmental Biology and Cancer, Centre National de la Recherche Scientifique UMR 6543, Université de Nice, Faculté des Sciences-Parc Valrose, Nice, France
| | - Thomas Botton
- Institute of Developmental Biology and Cancer, Centre National de la Recherche Scientifique UMR 6543, Université de Nice, Faculté des Sciences-Parc Valrose, Nice, France
| | - Robert A. Arkowitz
- Institute of Developmental Biology and Cancer, Centre National de la Recherche Scientifique UMR 6543, Université de Nice, Faculté des Sciences-Parc Valrose, Nice, France
| | - Martine Bassilana
- Institute of Developmental Biology and Cancer, Centre National de la Recherche Scientifique UMR 6543, Université de Nice, Faculté des Sciences-Parc Valrose, Nice, France
- * E-mail:
| |
Collapse
|
41
|
Lettner T, Zeidler U, Gimona M, Hauser M, Breitenbach M, Bito A. Candida albicans AGE3, the ortholog of the S. cerevisiae ARF-GAP-encoding gene GCS1, is required for hyphal growth and drug resistance. PLoS One 2010; 5:e11993. [PMID: 20700541 PMCID: PMC2916835 DOI: 10.1371/journal.pone.0011993] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 07/12/2010] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Hyphal growth and multidrug resistance of C. albicans are important features for virulence and antifungal therapy of this pathogenic fungus. METHODOLOGY/PRINCIPAL FINDINGS Here we show by phenotypic complementation analysis that the C. albicans gene AGE3 is the functional ortholog of the yeast ARF-GAP-encoding gene GCS1. The finding that the gene is required for efficient endocytosis points to an important functional role of Age3p in endosomal compartments. Most C. albicans age3Delta mutant cells which grew as cell clusters under yeast growth conditions showed defects in filamentation under different hyphal growth conditions and were almost completely disabled for invasive filamentous growth. Under hyphal growth conditions only a fraction of age3Delta cells shows a wild-type-like polarization pattern of the actin cytoskeleton and lipid rafts. Moreover, age3Delta cells were highly susceptible to several unrelated toxic compounds including antifungal azole drugs. Irrespective of the AGE3 genotype, C-terminal fusions of GFP to the drug efflux pumps Cdr1p and Mdr1p were predominantly localized in the plasma membrane. Moreover, the plasma membranes of wild-type and age3Delta mutant cells contained similar amounts of Cdr1p, Cdr2p and Mdr1p. CONCLUSIONS/SIGNIFICANCE The results indicate that the defect in sustaining filament elongation is probably caused by the failure of age3Delta cells to polarize the actin cytoskeleton and possibly of inefficient endocytosis. The high susceptibility of age3Delta cells to azoles is not caused by inefficient transport of efflux pumps to the cell membrane. A possible role of a vacuolar defect of age3Delta cells in drug susceptibility is proposed and discussed. In conclusion, our study shows that the ARF-GAP Age3p is required for hyphal growth which is an important virulence factor of C. albicans and essential for detoxification of azole drugs which are routinely used for antifungal therapy. Thus, it represents a promising antifungal drug target.
Collapse
Affiliation(s)
- Thomas Lettner
- Department of Cell Biology, University of Salzburg, Salzburg, Austria
| | - Ute Zeidler
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Mario Gimona
- Department of Cell Biology, University of Salzburg, Salzburg, Austria
| | - Michael Hauser
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | | | - Arnold Bito
- Department of Cell Biology, University of Salzburg, Salzburg, Austria
| |
Collapse
|
42
|
Candida albicans Ume6, a filament-specific transcriptional regulator, directs hyphal growth via a pathway involving Hgc1 cyclin-related protein. EUKARYOTIC CELL 2010; 9:1320-8. [PMID: 20656912 DOI: 10.1128/ec.00046-10] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The ability of Candida albicans, the most common human fungal pathogen, to transition from yeast to hyphae is essential for pathogenicity. While a variety of transcription factors important for filamentation have been identified and characterized, links between transcriptional regulators of C. albicans morphogenesis and molecular mechanisms that drive hyphal growth are not well defined. We have previously observed that constitutive expression of UME6, which encodes a filament-specific transcriptional regulator, is sufficient to direct hyphal growth in the absence of filament-inducing conditions. Here we show that HGC1, encoding a cyclin-related protein necessary for hyphal growth under filament-inducing conditions, is specifically important for agar invasion, hyphal extension, and formation of true septa in response to constitutive UME6 expression under non-filament-inducing conditions. HGC1-dependent inactivation of Rga2, a Cdc42 GTPase activating protein (GAP), also appears to be important for these processes. In response to filament-inducing conditions, HGC1 is induced prior to UME6 although UME6 controls the level and duration of HGC1 expression, which are likely to be important for hyphal extension. Interestingly, an epistasis analysis suggests that UME6 and HGC1 play distinct roles during early filament formation. These findings establish a link between a key regulator of filamentation and a downstream mechanism important for hyphal formation. In addition, this study demonstrates that a strain expressing constitutive high levels of UME6 provides a powerful strategy to specifically dissect downstream mechanisms important for hyphal development in the absence of complex filament-inducing conditions.
Collapse
|
43
|
Hwang JU, Wu G, Yan A, Lee YJ, Grierson CS, Yang Z. Pollen-tube tip growth requires a balance of lateral propagation and global inhibition of Rho-family GTPase activity. J Cell Sci 2010; 123:340-50. [PMID: 20053639 DOI: 10.1242/jcs.039180] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Rapid tip growth allows for efficient development of highly elongated cells (e.g. neuronal axons, fungal hyphae and pollen tubes) and requires an elaborate spatiotemporal regulation of the growing region. Here, we use the pollen tube as a model to investigate the mechanism regulating the growing region. ROPs (Rho-related GTPases from plants) are essential for pollen tip growth and display oscillatory activity changes in the apical plasma membrane (PM). By manipulating the ROP activity level, we showed that the PM distribution of ROP activity as an apical cap determines the tip growth region and that efficient tip growth requires an optimum level of the apical ROP1 activity. Excessive ROP activation induced the enlargement of the tip growth region, causing growth depolarization and reduced tube elongation. Time-lapse analysis suggests that the apical ROP1 cap is generated by lateral propagation of a localized ROP activity. Subcellular localization and gain- and loss-of-function analyses suggest that RhoGDI- and RhoGAP-mediated global inhibition limits the lateral propagation of apical ROP1 activity. We propose that the balance between the lateral propagation and the global inhibition maintains an optimal apical ROP1 cap and generates the apical ROP1 activity oscillation required for efficient pollen-tube elongation.
Collapse
Affiliation(s)
- Jae-Ung Hwang
- Department of Botany and Plant Sciences and Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California-Riverside, Riverside, CA 92521, USA
| | | | | | | | | | | |
Collapse
|
44
|
Ghalehnoo ZR, Rashki A, Najimi M, Dominguez A. The role of diclofenac sodium in the dimorphic transition in Candida albicans. Microb Pathog 2009; 48:110-5. [PMID: 20026399 DOI: 10.1016/j.micpath.2009.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 12/07/2009] [Accepted: 12/10/2009] [Indexed: 11/17/2022]
Abstract
Diclofenac sodium is a non-steroidal anti-inflammatory drug that inhibits filamentation in Candida albicans. Here we examined the effect of diclofenac sodium on hypha formation in C. albicans. The C. albicans cells were treated with various concentrations of diclofenac sodium (50, 100, 200 and 500microg/ml) and incubated at 37 degrees C for 2h. The characteristics of hypha formation were then assessed microscopically in both liquid and solid media. The results indicated that the effect of diclofenac sodium was dependent on the concentration of this compound, and preincubation with 500microg/ml diclofenac sodium completely inhibited hypha formation in both liquid and solid media. RT-qPCR analysis of RNA extracted from C. albicans indicated that the levels of expression of agglutinin-like sequence 3 (ALS3), RAS1, EFG1 mRNA, which are regulated by the cAMP-EFG1 pathway in C. albicans and three hypha-specific genes (ALS1, ECE1 and HWP1), were decreased in diclofenac sodium treated cells compared to the levels in controls. Our results also demonstrated that diclofenac sodium possesses potent anti yeast-hypha transition activity in vitro and it could be useful in combined therapy with conventional antifungal agents in the management of treatment of Candida albicans infections.
Collapse
Affiliation(s)
- Zahra Rashki Ghalehnoo
- Departamento de Microbiología y Genética/Instituto de Microbiología Bioquímica, Universidad de Salamanca/CSIC, 37007 Salamanca, Spain
| | | | | | | |
Collapse
|
45
|
Ballou ER, Nichols CB, Miglia KJ, Kozubowski L, Alspaugh JA. Two CDC42 paralogues modulate Cryptococcus neoformans thermotolerance and morphogenesis under host physiological conditions. Mol Microbiol 2009; 75:763-80. [PMID: 20025659 DOI: 10.1111/j.1365-2958.2009.07019.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The precise regulation of morphogenesis is a key mechanism by which cells respond to a variety of stresses, including those encountered by microbial pathogens in the host. The polarity protein Cdc42 regulates cellular morphogenesis throughout eukaryotes, and we explore the role of Cdc42 proteins in the host survival of the human fungal pathogen Cryptococcus neoformans. Uniquely, C. neoformans has two functional Cdc42 paralogues, Cdc42 and Cdc420. Here we investigate the contribution of each paralogue to resistance to host stress. In contrast to non-pathogenic model organisms, C. neoformans Cdc42 proteins are not required for viability under non-stress conditions but are required for resistance to high temperature. The paralogues play differential roles in actin and septin organization and act downstream of C. neoformans Ras1 to regulate its morphogenesis sub-pathway, but not its effects on mating. Cdc42, and not Cdc420, is upregulated in response to temperature stress and is required for virulence in a murine model of cryptococcosis. The C. neoformans Cdc42 proteins likely perform complementary functions with other Rho-like GTPases to control cell polarity, septin organization and hyphal transitions that allow survival in the environment and in the host.
Collapse
Affiliation(s)
- Elizabeth R Ballou
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
46
|
Almeida A, Cunha C, Carmona J, Sampaio-Marques B, Carvalho A, Malavazi I, Steensma H, Johnson D, Leão C, Logarinho E, Goldman G, Castro A, Ludovico P, Rodrigues F. Cdc42p controls yeast-cell shape and virulence of Paracoccidioides brasiliensis. Fungal Genet Biol 2009; 46:919-26. [DOI: 10.1016/j.fgb.2009.08.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 07/31/2009] [Accepted: 08/04/2009] [Indexed: 01/25/2023]
|
47
|
|
48
|
Msb2 signaling mucin controls activation of Cek1 mitogen-activated protein kinase in Candida albicans. EUKARYOTIC CELL 2009; 8:1235-49. [PMID: 19542310 DOI: 10.1128/ec.00081-09] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have characterized the role that the Msb2 protein plays in the fungal pathogen Candida albicans by the use of mutants defective in the putative upstream components of the HOG pathway. Msb2, in cooperation with Sho1, controls the activation of the Cek1 mitogen-activated protein kinase under conditions that damage the cell wall, thus defining Msb2 as a signaling element of this pathway in the fungus. msb2 mutants display altered sensitivity to Congo red, caspofungin, zymolyase, or tunicamycin, indicating that this protein is involved in cell wall biogenesis. Msb2 (as well as Sho1 and Hst7) is involved in the transmission of the signal toward Cek1 mediated by the Cdc42 GTPase, as revealed by the use of activated alleles (Cdc42(G12V)) of this protein. msb2 mutants have a stronger defective invasion phenotype than sho1 mutants when tested on certain solid media that use mannitol or sucrose as a carbon source or under hypoxia. Interestingly, Msb2 contributes to growth under conditions of high osmolarity when both branches of the HOG pathway are altered, as triple ssk1 msb2 sho1 mutants (but not any single or double mutant) are osmosensitive. However, this phenomenon is independent of the presence of Hog1, as Hog1 phosphorylation, Hog1 translocation to the nucleus, and glycerol accumulation are not affected in this mutant following an osmotic shock. These results reveal essential functions in morphogenesis, invasion, cell wall biogenesis, and growth under conditions of high osmolarity for Msb2 in C. albicans and suggest the divergence and specialization of this signaling pathway in filamentous fungi.
Collapse
|
49
|
Hwang JU, Vernoud V, Szumlanski A, Nielsen E, Yang Z. A tip-localized RhoGAP controls cell polarity by globally inhibiting Rho GTPase at the cell apex. Curr Biol 2009; 18:1907-16. [PMID: 19108776 DOI: 10.1016/j.cub.2008.11.057] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2008] [Revised: 11/18/2008] [Accepted: 11/19/2008] [Indexed: 11/15/2022]
Abstract
BACKGROUND Highly elongated eukaryotic cells (e.g., neuronal axons, fungal hyphae, and pollen tubes) are generated through continuous apically restricted growth (tip growth), which universally requires tip-localized Rho GTPases. We used the oscillating pollen tube as a model system to determine the function and regulation of Rho GTPases in tip growth. Our previous work showed that the spatiotemporal dynamics of the apical cap of the activated Rho-like GTPase from Plant 1 (ROP1) are critical for tip growth in pollen tubes. However, the underlying mechanism for the generation and maintenance of this dynamic apical cap is poorly understood. RESULTS A screen for mutations that enhance ROP1-overexpression-induced depolarization of pollen-tube growth identified REN1 (ROP1 enhancer 1) in Arabidopsis, whose null mutations turn elongated pollen tubes into bulbous cells. REN1 encodes a novel Rho GTPase-activating protein (RhoGAP) required for restricting the ROP1 activity to the pollen-tube tip. REN1 was localized to exocytic vesicles accumulated in the pollen-tube apex, as well as to the apical plasma membrane at the site of ROP1 activation. The apical localization of REN1 and its function in controlling growth polarity was compromised by disruption of ROP1-dependent F-actin and vesicular trafficking, which indicates that REN1 targeting and function is regulated by ROP1 downstream signaling. CONCLUSIONS Our findings suggest that the REN1 RhoGAP controls a negative-feedback-based global inhibition of ROP1. This function provides a critical self-organizing mechanism, by which ROP signaling is spatially limited to the growth site and temporally oscillates during continuous tip growth. Similar spatiotemporal control of Rho GTPase signaling may also play an important role in cell-polarity control in other systems, including tip growth in fungi and cell movement in animals.
Collapse
Affiliation(s)
- Jae-Ung Hwang
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California-Riverside, Riverside, CA 92521, USA
| | | | | | | | | |
Collapse
|
50
|
Depletion of the cullin Cdc53p induces morphogenetic changes in Candida albicans. EUKARYOTIC CELL 2009; 8:756-67. [PMID: 19270112 DOI: 10.1128/ec.00332-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Candida albicans is an important opportunistic human fungal pathogen that can cause both mucosal and systemic infections in immunocompromised patients. Critical for the virulence of C. albicans is its ability to undergo a morphological transition from yeast to hyphal growth mode. Proper induction of filamentation is dependent on the ubiquitination pathway, which targets proteins for proteasome-mediated protein degradation or activates them for signaling events. In the present study, we evaluated the role of ubiquitination in C. albicans by impairing the function of the major ubiquitin-ligase complex SCF. This was done by depleting its backbone, the cullin Cdc53p (orf19.1674), using a tetracycline downregulatable promoter system. Cdc53p-depleted cells displayed an invasive phenotype and constitutive filamentation under conditions favoring yeast growth mode, both on solid and in liquid media. In addition, these cells exhibited an early onset of cell death, as judged from propidium iodide staining, suggesting that CDC53 is an essential gene in C. albicans. To identify Cdc53p-dependent pathways in C. albicans, a genome-wide expression analysis was carried out that revealed a total of 425 differentially expressed genes (fold change, >or=2; P <or= 0.05) with 192 up- and 233 downregulated genes in the CDC53-repressed mutant compared to the control strain. GO term analysis identified biological processes significantly affected by Cdc53p depletion, including amino acid starvation response, with 14 genes being targets of the transcriptional regulator Gcn4p, and reductive iron transport. These results indicate that Cdc53p enables C. albicans to adequately respond to environmental signals.
Collapse
|