1
|
Kim J, Park EA, Shin MY, Park SJ. Functional Differentiation of Cyclins and Cyclin-Dependent Kinases in Giardia lamblia. Microbiol Spectr 2023; 11:e0491922. [PMID: 36877015 PMCID: PMC10100927 DOI: 10.1128/spectrum.04919-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/05/2023] [Indexed: 03/07/2023] Open
Abstract
Cyclin-dependent kinases (CDKs) are serine/threonine kinases that control the eukaryotic cell cycle. Limited information is available on Giardia lamblia CDKs (GlCDKs), GlCDK1 and GlCDK2. After treatment with the CDK inhibitor flavopiridol-HCl (FH), division of Giardia trophozoites was transiently arrested at the G1/S phase and finally at the G2/M phase. The percentage of cells arrested during prophase or cytokinesis increased, whereas DNA synthesis was not affected by FH treatment. Morpholino-mediated depletion of GlCDK1 caused arrest at the G2/M phase, while GlCDK2 depletion resulted in an increase in the number of cells arrested at the G1/S phase and cells defective in mitosis and cytokinesis. Coimmunoprecipitation experiments with GlCDKs and the nine putative G. lamblia cyclins (Glcyclins) identified Glcyclins 3977/14488/17505 and 22394/6584 as cognate partners of GlCDK1 and GlCDK2, respectively. Morpholino-based knockdown of Glcyclin 3977 or 22394/6584 arrested cells in the G2/M phase or G1/S phase, respectively. Interestingly, GlCDK1- and Glcyclin 3977-depleted Giardia showed significant flagellar extension. Altogether, our results suggest that GlCDK1/Glcyclin 3977 plays an important role in the later stages of cell cycle control and in flagellar biogenesis. In contrast, GlCDK2 along with Glcyclin 22394 and 6584 functions from the early stages of the Giardia cell cycle. IMPORTANCE Giardia lamblia CDKs (GlCDKs) and their cognate cyclins have not yet been studied. In this study, the functional roles of GlCDK1 and GlCDK2 were distinguished using morpholino-mediated knockdown and coimmunoprecipitation. GlCDK1 with Glcyclin 3977 plays a role in flagellum formation as well as cell cycle control of G. lamblia, whereas GlCDK2 with Glcyclin 22394/6584 is involved in cell cycle control.
Collapse
Affiliation(s)
- Juri Kim
- Department of Tropical Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Eun-Ah Park
- Department of Tropical Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Mee Young Shin
- Department of Tropical Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Soon-Jung Park
- Department of Tropical Medicine, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
2
|
Morita A, Ochi S, Satoh H, Ujita S, Matsushita Y, Tada K, Toyoda M, Nishiyama Y, Mizuno K, Deguchi Y, Suzuki K, Tanaka Y, Ueda H, Inaba T, Hosoi Y, Aoki S. A Novel RNA Synthesis Inhibitor, STK160830, Has Negligible DNA-Intercalating Activity for Triggering A p53 Response, and Can Inhibit p53-Dependent Apoptosis. Life (Basel) 2021; 11:life11101087. [PMID: 34685458 PMCID: PMC8539076 DOI: 10.3390/life11101087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/04/2021] [Accepted: 10/10/2021] [Indexed: 11/16/2022] Open
Abstract
RNA synthesis inhibitors and protein synthesis inhibitors are useful for investigating whether biological events with unknown mechanisms require transcription or translation; however, the dependence of RNA synthesis has been difficult to verify because many RNA synthesis inhibitors cause adverse events that trigger a p53 response. In this study, we screened a library containing 9600 core compounds and obtained STK160830 that shows anti-apoptotic effects in irradiated wild-type-p53-bearing human T-cell leukemia MOLT-4 cells and murine thymocytes. In many of the p53-impaired cells and p53-knockdown cells tested, STK160830 did not show a remarkable anti-apoptotic effect, suggesting that the anti-apoptotic activity is p53-dependent. In the expression analysis of p53, p53-target gene products, and reference proteins by immunoblotting, STK160830 down-regulated the expression of many of the proteins examined, and the downregulation correlated strongly with its inhibitory effect on cell death. mRNA expression analyses by qPCR and nascent RNA capture kit revealed that STK160830 showed a decreased mRNA expression, which was similar to that induced by the RNA synthesis inhibitor actinomycin D but differed to some extent. Furthermore, unlike other RNA synthesis inhibitors such as actinomycin D, p53 accumulation by STK160830 alone was negligible, and a DNA melting-curve analysis showed very weak DNA-intercalating activity, indicating that STK160830 is a useful inhibitor for RNA synthesis without triggering p53-mediated damage responses.
Collapse
Affiliation(s)
- Akinori Morita
- Tokushima University, Tokushima 770-8503, Japan; (S.O.); (S.U.); (Y.M.); (K.T.); (M.T.); (Y.N.)
- Correspondence:
| | - Shintaro Ochi
- Tokushima University, Tokushima 770-8503, Japan; (S.O.); (S.U.); (Y.M.); (K.T.); (M.T.); (Y.N.)
| | - Hidetoshi Satoh
- Department of Medicinal and Life Science, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan; (H.S.); (K.M.); (S.A.)
| | - Shohei Ujita
- Tokushima University, Tokushima 770-8503, Japan; (S.O.); (S.U.); (Y.M.); (K.T.); (M.T.); (Y.N.)
| | - Yosuke Matsushita
- Tokushima University, Tokushima 770-8503, Japan; (S.O.); (S.U.); (Y.M.); (K.T.); (M.T.); (Y.N.)
- Nagasaki University, Nagasaki 852-8521, Japan; (Y.D.); (K.S.); (Y.T.); (H.U.)
| | - Kasumi Tada
- Tokushima University, Tokushima 770-8503, Japan; (S.O.); (S.U.); (Y.M.); (K.T.); (M.T.); (Y.N.)
| | - Mihiro Toyoda
- Tokushima University, Tokushima 770-8503, Japan; (S.O.); (S.U.); (Y.M.); (K.T.); (M.T.); (Y.N.)
| | - Yuichi Nishiyama
- Tokushima University, Tokushima 770-8503, Japan; (S.O.); (S.U.); (Y.M.); (K.T.); (M.T.); (Y.N.)
| | - Kosuke Mizuno
- Department of Medicinal and Life Science, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan; (H.S.); (K.M.); (S.A.)
| | - Yuichi Deguchi
- Nagasaki University, Nagasaki 852-8521, Japan; (Y.D.); (K.S.); (Y.T.); (H.U.)
| | - Keiji Suzuki
- Nagasaki University, Nagasaki 852-8521, Japan; (Y.D.); (K.S.); (Y.T.); (H.U.)
| | - Yoshimasa Tanaka
- Nagasaki University, Nagasaki 852-8521, Japan; (Y.D.); (K.S.); (Y.T.); (H.U.)
| | - Hiroshi Ueda
- Nagasaki University, Nagasaki 852-8521, Japan; (Y.D.); (K.S.); (Y.T.); (H.U.)
| | - Toshiya Inaba
- Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan;
| | - Yoshio Hosoi
- Department of Radiation Biology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan;
| | - Shin Aoki
- Department of Medicinal and Life Science, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan; (H.S.); (K.M.); (S.A.)
| |
Collapse
|
3
|
Wang N, Wu R, Tang D, Kang R. The BET family in immunity and disease. Signal Transduct Target Ther 2021; 6:23. [PMID: 33462181 PMCID: PMC7813845 DOI: 10.1038/s41392-020-00384-4] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/27/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
Innate immunity serves as the rapid and first-line defense against invading pathogens, and this process can be regulated at various levels, including epigenetic mechanisms. The bromodomain and extraterminal domain (BET) family of proteins consists of four conserved mammalian members (BRD2, BRD3, BRD4, and BRDT) that regulate the expression of many immunity-associated genes and pathways. In particular, in response to infection and sterile inflammation, abnormally expressed or dysfunctional BETs are involved in the activation of pattern recognition receptor (e.g., TLR, NLR, and CGAS) pathways, thereby linking chromatin machinery to innate immunity under disease or pathological conditions. Mechanistically, the BET family controls the transcription of a wide range of proinflammatory and immunoregulatory genes by recognizing acetylated histones (mainly H3 and H4) and recruiting transcription factors (e.g., RELA) and transcription elongation complex (e.g., P-TEFb) to the chromatin, thereby promoting the phosphorylation of RNA polymerase II and subsequent transcription initiation and elongation. This review covers the accumulating data about the roles of the BET family in innate immunity, and discusses the attractive prospect of manipulating the BET family as a new treatment for disease.
Collapse
Affiliation(s)
- Nian Wang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Runliu Wu
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
4
|
A high-throughput screen identifies that CDK7 activates glucose consumption in lung cancer cells. Nat Commun 2019; 10:5444. [PMID: 31784510 PMCID: PMC6884612 DOI: 10.1038/s41467-019-13334-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
Elevated glucose consumption is fundamental to cancer, but selectively targeting this pathway is challenging. We develop a high-throughput assay for measuring glucose consumption and use it to screen non-small-cell lung cancer cell lines against bioactive small molecules. We identify Milciclib that blocks glucose consumption in H460 and H1975, but not in HCC827 or A549 cells, by decreasing SLC2A1 (GLUT1) mRNA and protein levels and by inhibiting glucose transport. Milciclib blocks glucose consumption by targeting cyclin-dependent kinase 7 (CDK7) similar to other CDK7 inhibitors including THZ1 and LDC4297. Enhanced PIK3CA signaling leads to CDK7 phosphorylation, which promotes RNA Polymerase II phosphorylation and transcription. Milciclib, THZ1, and LDC4297 lead to a reduction in RNA Polymerase II phosphorylation on the SLC2A1 promoter. These data indicate that our high-throughput assay can identify compounds that regulate glucose consumption and that CDK7 is a key regulator of glucose consumption in cells with an activated PI3K pathway. Many cancer cells have increased glucose consumption compared to normal cells, a feature that can be exploited therapeutically. Here, the authors carry out a chemical screen and identify compounds that selectively blocks glucose metabolism in non-small-cell lung cancer cell lines.
Collapse
|
5
|
Sathianathan A, Ravichandran P, Lippi JM, Cohen L, Messina A, Shaju S, Swede MJ, Ginsburg DS. The Eaf3/5/7 Subcomplex Stimulates NuA4 Interaction with Methylated Histone H3 Lys-36 and RNA Polymerase II. J Biol Chem 2016; 291:21195-21207. [PMID: 27535225 DOI: 10.1074/jbc.m116.718742] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Indexed: 11/06/2022] Open
Abstract
NuA4 is the only essential lysine acetyltransferase complex in Saccharomyces cerevisiae, where it has been shown to stimulate transcription initiation and elongation. Interaction with nucleosomes is stimulated by histone H3 Lys-4 and Lys-36 methylation, but the mechanism of this interaction is unknown. Eaf3, Eaf5, and Eaf7 form a subcomplex within NuA4 that may also function independently of the lysine acetyltransferase complex. The Eaf3/5/7 complex and the Rpd3C(S) histone deacetylase complex have both been shown to bind di- and trimethylated histone H3 Lys-36 stimulated by Eaf3. We investigated the role of the Eaf3/5/7 subcomplex in NuA4 binding to nucleosomes. Different phenotypes of eaf3/5/7Δ mutants support functions for the complex as both part of and independent of NuA4. Further evidence for Eaf3/5/7 within NuA4 came from mutations in the subcomplex leading to ∼40% reductions in H4 acetylation in bulk histones, probably caused by binding defects to both nucleosomes and RNA polymerase II. In vitro binding assays showed that Eaf3/5/7 specifically stimulates NuA4 binding to di- and trimethylated histone H3 Lys-36 and that this binding is important for NuA4 occupancy in transcribed ORFs. Consistent with the role of NuA4 in stimulating transcription elongation, loss of EAF5 or EAF7 resulted in a processivity defect. Overall, these results reveal the function of Eaf3/5/7 within NuA4 to be important for both NuA4 and RNA polymerase II binding.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marci J Swede
- Health Sciences Departments, LIU Post, Brookville, New York 11548
| | | |
Collapse
|
6
|
Cepeda-Humerez SA, Rieckh G, Tkačik G. Stochastic Proofreading Mechanism Alleviates Crosstalk in Transcriptional Regulation. PHYSICAL REVIEW LETTERS 2015; 115:248101. [PMID: 26705657 DOI: 10.1103/physrevlett.115.248101] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Indexed: 06/05/2023]
Abstract
Gene expression is controlled primarily by interactions between transcription factor proteins (TFs) and the regulatory DNA sequence, a process that can be captured well by thermodynamic models of regulation. These models, however, neglect regulatory crosstalk: the possibility that noncognate TFs could initiate transcription, with potentially disastrous effects for the cell. Here, we estimate the importance of crosstalk, suggest that its avoidance strongly constrains equilibrium models of TF binding, and propose an alternative nonequilibrium scheme that implements kinetic proofreading to suppress erroneous initiation. This proposal is consistent with the observed covalent modifications of the transcriptional apparatus and predicts increased noise in gene expression as a trade-off for improved specificity. Using information theory, we quantify this trade-off to find when optimal proofreading architectures are favored over their equilibrium counterparts. Such architectures exhibit significant super-Poisson noise at low expression in steady state.
Collapse
Affiliation(s)
- Sarah A Cepeda-Humerez
- Institute of Science and Technology Austria, Am Campus 1, A-3400 Klosterneuburg, Austria
| | - Georg Rieckh
- Institute of Science and Technology Austria, Am Campus 1, A-3400 Klosterneuburg, Austria
| | - Gašper Tkačik
- Institute of Science and Technology Austria, Am Campus 1, A-3400 Klosterneuburg, Austria
| |
Collapse
|
7
|
Liu RD, Wu J, Shao R, Xue YH. Mechanism and factors that control HIV-1 transcription and latency activation. J Zhejiang Univ Sci B 2015; 15:455-65. [PMID: 24793763 DOI: 10.1631/jzus.b1400059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
After reverse transcription, the HIV-1 proviral DNA is integrated into the host genome and thus subjected to transcription by the host RNA polymerase II (Pol II). With the identification and characterization of human P-TEFb in the late 1990 s as a specific host cofactor required for HIV-1 transcription, it is now believed that the elongation stage of Pol II transcription plays a particularly important role in regulating HIV-1 gene expression. HIV-1 uses a sophisticated scheme to recruit human P-TEFb and other cofactors to the viral long terminal repeat (LTR) to produce full-length HIV-1 transcripts. In this process, P-TEFb is regulated by the reversible association with various transcription factors/cofactors to form several multi-subunit complexes (e.g., 7SK snRNP, super elongation complexes (SECs), and the Brd4-P-TEFb complex) that collectively constitute a P-TEFb network for controlling cellular and HIV-1 transcription. Recent progresses in HIV-1 transcription were reviewed in the paper, with the emphasis on the mechanism and factors that control HIV-1 transcription and latency activation.
Collapse
Affiliation(s)
- Rong-diao Liu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | | | | | | |
Collapse
|
8
|
Hanes SD. Prolyl isomerases in gene transcription. Biochim Biophys Acta Gen Subj 2014; 1850:2017-34. [PMID: 25450176 DOI: 10.1016/j.bbagen.2014.10.028] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/20/2014] [Accepted: 10/23/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Peptidyl-prolyl isomerases (PPIases) are enzymes that assist in the folding of newly-synthesized proteins and regulate the stability, localization, and activity of mature proteins. They do so by catalyzing reversible (cis-trans) rotation about the peptide bond that precedes proline, inducing conformational changes in target proteins. SCOPE OF REVIEW This review will discuss how PPIases regulate gene transcription by controlling the activity of (1) DNA-binding transcription regulatory proteins, (2) RNA polymerase II, and (3) chromatin and histone modifying enzymes. MAJOR CONCLUSIONS Members of each family of PPIase (cyclophilins, FKBPs, and parvulins) regulate gene transcription at multiple levels. In all but a few cases, the exact mechanisms remain elusive. Structure studies, development of specific inhibitors, and new methodologies for studying cis/trans isomerization in vivo represent some of the challenges in this new frontier that merges two important fields. GENERAL SIGNIFICANCE Prolyl isomerases have been found to play key regulatory roles in all phases of the transcription process. Moreover, PPIases control upstream signaling pathways that regulate gene-specific transcription during development, hormone response and environmental stress. Although transcription is often rate-limiting in the production of enzymes and structural proteins, post-transcriptional modifications are also critical, and PPIases play key roles here as well (see other reviews in this issue). This article is part of a Special Issue entitled Proline-directed Foldases: Cell Signaling Catalysts and Drug Targets.
Collapse
Affiliation(s)
- Steven D Hanes
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E Adams St., Syracuse, NY 13210 USA.
| |
Collapse
|
9
|
Rosado-Lugo JD, Hampsey M. The Ssu72 phosphatase mediates the RNA polymerase II initiation-elongation transition. J Biol Chem 2014; 289:33916-26. [PMID: 25339178 DOI: 10.1074/jbc.m114.608695] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Transitions between the different stages of the RNAPII transcription cycle involve the recruitment and exchange of factors, including mRNA capping enzymes, elongation factors, splicing factors, 3'-end-processing complexes, and termination factors. These transitions are coordinated by the dynamic phosphorylation of the C-terminal domain (CTD) of the largest subunit of RNAPII (Rpb1). The CTD is composed of reiterated heptapeptide repeats (Y(1)S(2)P(3)T(4)S(5)P(6)S(7)) that undergo phosphorylation and dephosphorylation as RNAPII transitions through the transcription cycle. An essential phosphatase in this process is Ssu72, which exhibits catalytic specificity for Ser(P)(5) and Ser(P)(7). Ssu72 is unique in that it is specific for Ser(P)(5) in one orientation of the CTD and for Ser(P)(7) when bound in the opposite orientation. Moreover, Ssu72 interacts with components of the initiation machinery and affects start site selection yet is an integral component of the CPF 3'-end-processing complex. Here we provide a comprehensive view of the effects of Ssu72 with respect to its Ser(P)(5) phosphatase activity. We demonstrate that Ssu72 dephosphorylates Ser(P)(5) at the initiation-elongation transition. Furthermore, Ssu72 indirectly affects the levels of Ser(P)(2) during the elongation stage of transcription but does so independent of its catalytic activity.
Collapse
Affiliation(s)
- Jesús D Rosado-Lugo
- From the Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854
| | - Michael Hampsey
- From the Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854
| |
Collapse
|
10
|
Mangado A, Tronchoni J, Morales P, Novo M, Quirós M, Gonzalez R. An impaired ubiquitin ligase complex favors initial growth of auxotrophic yeast strains in synthetic grape must. Appl Microbiol Biotechnol 2014; 99:1273-86. [PMID: 25620600 DOI: 10.1007/s00253-014-6126-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/28/2014] [Accepted: 09/30/2014] [Indexed: 10/24/2022]
Abstract
We used experimental evolution in order to identify genes involved in the adaptation of Saccharomyces cerevisiae to the early stages of alcoholic fermentation. Evolution experiments were run for about 200 generations, in continuous culture conditions emulating the initial stages of wine fermentation. We performed whole-genome sequencing of four adapted strains from three independent evolution experiments. Mutations identified in these strains pointed to the Rsp5p-Bul1/2p ubiquitin ligase complex as the preferred evolutionary target under these experimental conditions. Rsp5p is a multifunctional enzyme able to ubiquitinate target proteins participating in different cellular processes, while Bul1p is an Rsp5p substrate adaptor specifically involved in the ubiquitin-dependent internalization of Gap1p and other plasma membrane permeases. While a loss-of-function mutation in BUL1 seems to be enough to confer a selective advantage under these assay conditions, this did not seem to be the case for RSP5 mutated strains, which required additional mutations, probably compensating for the detrimental effect of altered Rsp5p activity on essential cellular functions. The power of this experimental approach is illustrated by the identification of four independent mutants, each with a limited number of SNPs, affected within the same pathway. However, in order to obtain information relevant for a specific biotechnological process, caution must be taken in the choice of the background yeast genotype (as shown in this case for auxotrophies). In addition, the use of very stable continuous fermentation conditions might lead to the selection of a rather limited number of adaptive responses that would mask other possible targets for genetic improvement.
Collapse
Affiliation(s)
- Ana Mangado
- Instituto de Ciencias de la Vid y del Vino, ICVV, (CSIC-Universidad de La Rioja-Gobierno de La Rioja), Madre de Dios 51, 26006, Logroño, La Rioja, Spain
| | | | | | | | | | | |
Collapse
|
11
|
Safronova OS, Nakahama KI, Morita I. Acute hypoxia affects P-TEFb through HDAC3 and HEXIM1-dependent mechanism to promote gene-specific transcriptional repression. Nucleic Acids Res 2014; 42:8954-69. [PMID: 25056306 PMCID: PMC4132729 DOI: 10.1093/nar/gku611] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Hypoxia is associated with a variety of physiological and pathological conditions and elicits specific transcriptional responses. The elongation competence of RNA Polymerase II is regulated by the positive transcription elongation factor b (P-TEFb)-dependent phosphorylation of Ser2 residues on its C-terminal domain. Here, we report that hypoxia inhibits transcription at the level of elongation. The mechanism involves enhanced formation of inactive complex of P-TEFb with its inhibitor HEXIM1 in an HDAC3-dependent manner. Microarray transcriptome profiling of hypoxia primary response genes identified ∼79% of these genes being HEXIM1-dependent. Hypoxic repression of P-TEFb was associated with reduced acetylation of its Cdk9 and Cyclin T1 subunits. Hypoxia caused nuclear translocation and co-localization of the Cdk9 and HDAC3/N-CoR repressor complex. We demonstrated that the described mechanism is involved in hypoxic repression of the monocyte chemoattractant protein-1 (MCP-1) gene. Thus, HEXIM1 and HDAC-dependent deacetylation of Cdk9 and Cyclin T1 in response to hypoxia signalling alters the P-TEFb functional equilibrium, resulting in repression of transcription.
Collapse
Affiliation(s)
- Olga S Safronova
- Department of Cellular Physiological Chemistry, Graduate School, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan Global Center of Excellence Program, International Research Center for Molecular Science in Tooth and Bone Diseases, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Ken-Ichi Nakahama
- Department of Cellular Physiological Chemistry, Graduate School, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Ikuo Morita
- Department of Cellular Physiological Chemistry, Graduate School, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan Global Center of Excellence Program, International Research Center for Molecular Science in Tooth and Bone Diseases, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| |
Collapse
|
12
|
Human Immunodeficiency Virus Type 1 Tat and Rev as Potential Targets for Drug Development. Antiviral Res 2014. [DOI: 10.1128/9781555815493.ch6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Karagiannis J. On the computational ability of the RNA polymerase II carboxy terminal domain. Commun Integr Biol 2014; 7:e28303. [PMID: 25371772 PMCID: PMC4217226 DOI: 10.4161/cib.28303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 02/20/2014] [Indexed: 11/19/2022] Open
Abstract
The RNA polymerase II carboxy terminal domain has long been known to play an important role in the control of eukaryotic transcription. This role is mediated, at least in part, through complex post-translational modifications that take place on specific residues within the heptad repeats of the domain. In this addendum, a speculative, but formal mathematical conceptualization of this biological phenomenon (in the form of a semi-Thue string rewriting system) is presented. Since the semi-Thue formalism is known to be Turing complete, this raises the possibility that the CTD – in association with the regulatory pathways controlling its post-translational modification – functions as a biological incarnation of a universal computing machine.
Collapse
|
14
|
Kaliszczak M, Patel H, Kroll SHB, Carroll L, Smith G, Delaney S, Heathcote DA, Bondke A, Fuchter MJ, Coombes RC, Barrett AGM, Ali S, Aboagye EO. Development of a cyclin-dependent kinase inhibitor devoid of ABC transporter-dependent drug resistance. Br J Cancer 2013; 109:2356-67. [PMID: 24071597 PMCID: PMC3817326 DOI: 10.1038/bjc.2013.584] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/30/2013] [Accepted: 09/04/2013] [Indexed: 01/15/2023] Open
Abstract
Background: Cyclin-dependent kinases (CDKs) control cell cycle progression, RNA transcription and apoptosis, making them attractive targets for anticancer drug development. Unfortunately, CDK inhibitors developed to date have demonstrated variable efficacy. Methods: We generated drug-resistant cells by continuous low-dose exposure to a model pyrazolo[1,5-a]pyrimidine CDK inhibitor and investigated potential structural alterations for optimal efficacy. Results: We identified induction of the ATP-binding cassette (ABC) transporters, ABCB1 and ABCG2, in resistant cells. Assessment of features involved in the ABC transporter substrate specificity from a compound library revealed high polar surface area (>100 Å2) as a key determinant of transporter interaction. We developed ICEC-0782 that preferentially inhibited CDK2, CDK7 and CDK9 in the nanomolar range. The compound inhibited phosphorylation of CDK substrates and downregulated the short-lived proteins, Mcl-1 and cyclin D1. ICEC-0782 induced G2/M arrest and apoptosis. The permeability and cytotoxicity of ICEC-0782 were unaffected by ABC transporter expression. Following daily oral dosing, the compound inhibited growth of human colon HCT-116 and human breast MCF7 tumour xenografts in vivo by 84% and 94%, respectively. Conclusion: We identified a promising pyrazolo[1,5-a]pyrimidine compound devoid of ABC transporter interaction, highly suitable for further preclinical and clinical evaluation for the treatment of cancer.
Collapse
Affiliation(s)
- M Kaliszczak
- Faculty of Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Hoffman K, Yoo H, Karagiannis J. Synthetically engineered rpb1 alleles altering RNA polymerase II carboxy terminal domain phosphorylation induce discrete morphogenetic defects in Schizosaccharomyces pombe. Commun Integr Biol 2013; 6:e23954. [PMID: 23710280 PMCID: PMC3656022 DOI: 10.4161/cib.23954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 02/08/2013] [Accepted: 02/11/2013] [Indexed: 12/03/2022] Open
Abstract
In this report the phenotypic effects of systematic site-directed mutations in the fission yeast RNA pol II carboxy terminal domain (CTD) are investigated. Remarkably, we find that alterations in CTD structure and/or phosphorylation result in distinct phenotypic changes related to morphogenetic control. A hypothesis based upon the concepts of “informational entropy” and “algorithmic transformation” is developed to explicate/rationalize these results.
Collapse
Affiliation(s)
- Kyle Hoffman
- Department of Biology; University of Western Ontario; London, ON Canada
| | | | | |
Collapse
|
16
|
Yap TA, Molife LR, Blagden SP, de Bono S. Targeting cell cycle kinases and kinesins in anticancer drug development. Expert Opin Drug Discov 2013; 2:539-60. [PMID: 23484760 DOI: 10.1517/17460441.2.4.539] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The cell cycle is regulated by kinases such as the cyclin-dependent kinases (CDKs) and non-CDKs, which include Aurora and polo-like kinases, as well as checkpoint proteins. Mitotic kinesins are involved in the establishment of the mitotic spindle formation and function, and also play a role in cell cycle control. The disruption of the cell cycle is a hallmark of malignancy. Genetic or epigenetic events result in the upregulation of these kinases and mitotic kinesins in a myriad of tumour types, suggesting that their inhibition could result in preferential targeting of malignant cells. Such findings make the development of these inhibitors a rational and attractive new area for cancer therapeutics. Although challenges of potency and non-specificity have hampered their progress through the clinic, several novel compounds are presently in various phases of clinical trial evaluation.
Collapse
Affiliation(s)
- Timothy A Yap
- Drug Development Unit, The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
| | | | | | | |
Collapse
|
17
|
Diaz-Moralli S, Tarrado-Castellarnau M, Miranda A, Cascante M. Targeting cell cycle regulation in cancer therapy. Pharmacol Ther 2013; 138:255-71. [PMID: 23356980 DOI: 10.1016/j.pharmthera.2013.01.011] [Citation(s) in RCA: 263] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 12/26/2012] [Indexed: 01/10/2023]
Abstract
Cell proliferation is an essential mechanism for growth, development and regeneration of eukaryotic organisms; however, it is also the cause of one of the most devastating diseases of our era: cancer. Given the relevance of the processes in which cell proliferation is involved, its regulation is of paramount importance for multicellular organisms. Cell division is orchestrated by a complex network of interactions between proteins, metabolism and microenvironment including several signaling pathways and mechanisms of control aiming to enable cell proliferation only in response to specific stimuli and under adequate conditions. Three main players have been identified in the coordinated variation of the many molecules that play a role in cell cycle: i) The cell cycle protein machinery including cyclin-dependent kinases (CDK)-cyclin complexes and related kinases, ii) The metabolic enzymes and related metabolites and iii) The reactive-oxygen species (ROS) and cellular redox status. The role of these key players and the interaction between oscillatory and non-oscillatory species have proved essential for driving the cell cycle. Moreover, cancer development has been associated to defects in all of them. Here, we provide an overview on the role of CDK-cyclin complexes, metabolic adaptations and oxidative stress in regulating progression through each cell cycle phase and transitions between them. Thus, new approaches for the design of innovative cancer therapies targeting crosstalk between cell cycle simultaneous events are proposed.
Collapse
Affiliation(s)
- Santiago Diaz-Moralli
- Faculty of Biology, Department of Biochemistry and Molecular Biology, Universitat de Barcelona, Barcelona, Spain
| | | | | | | |
Collapse
|
18
|
Evidence that two Pcl-like cyclins control Cdk9 activity during cell differentiation in Aspergillus nidulans asexual development. EUKARYOTIC CELL 2012; 12:23-36. [PMID: 23104571 DOI: 10.1128/ec.00181-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cyclin-dependent protein kinases (CDKs) are usually involved in cell cycle regulation. However, Cdk9 is an exception and promotes RNA synthesis through phosphorylation of the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II (RNAPII). The CTD is comprised of repeating heptapeptides, in which serine residues at positions 2, 5, and 7 are of crucial importance. Ser5 phosphorylation causes transcription initiation and promoter escape. However, RNAPII pauses 20 to 50 bp downstream from the transcription start site, until Cdk9 phosphorylates Ser2. This event relieves the checkpoint and promotes the processivity of elongation. Here we present evidence that in the filamentous fungus Aspergillus nidulans, a Cdk9 homologue, PtkA, serves specific functions in conidiophore development. It was previously shown that PtkA interacts with two cyclins, PclA and the T cyclin PchA. Using yeast two-hybrid screens, we identified a third cyclin, PclB, and a kinase, PipA(Bud32). Both proteins were expressed in hyphae and in conidiophores, but interaction between each protein and PtkA was restricted to the conidiophores. Deletion of pchA caused a severe growth defect, and deletion of pipA was lethal, suggesting basic functions in PtkA-dependent gene transcription. In contrast, deletion of pclB in combination with deletion of pclA essentially caused a block in spore formation. We present evidence that the phosphorylation status of the CTD of RNA polymerase II in the conidiophore changes upon deletion of pclA or pclB. Our results suggest that tissue-specific modulation of Cdk9 activity by PclA and PclB is required for proper differentiation.
Collapse
|
19
|
Devaiah BN, Singer DS. Cross-talk among RNA polymerase II kinases modulates C-terminal domain phosphorylation. J Biol Chem 2012; 287:38755-66. [PMID: 23027873 DOI: 10.1074/jbc.m112.412015] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The RNA polymerase II (Pol II) C-terminal domain (CTD) serves as a docking site for numerous proteins, bridging various nuclear processes to transcription. The recruitment of these proteins is mediated by CTD phospho-epitopes generated during transcription. The mechanisms regulating the kinases that establish these phosphorylation patterns on the CTD are not known. We report that three CTD kinases, CDK7, CDK9, and BRD4, engage in cross-talk, modulating their subsequent CTD phosphorylation. BRD4 phosphorylates PTEFb/CDK9 at either Thr-29 or Thr-186, depending on its relative abundance, which represses or activates CDK9 CTD kinase activity, respectively. Conversely, CDK9 phosphorylates BRD4 enhancing its CTD kinase activity. The CTD Ser-5 kinase CDK7 also interacts with and phosphorylates BRD4, potently inhibiting BRD4 kinase activity. Additionally, the three kinases regulate each other indirectly through the general transcription factor TAF7. An inhibitor of CDK9 and CDK7 CTD kinase activities, TAF7 also binds to BRD4 and inhibits its kinase activity. Each of these kinases phosphorylates TAF7, affecting its subsequent ability to inhibit the other two. Thus, a complex regulatory network governs Pol II CTD kinases.
Collapse
Affiliation(s)
- Ballachanda N Devaiah
- Experimental Immunology Branch, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
20
|
Zhang M, Wang XJ, Chen X, Bowman ME, Luo Y, Noel JP, Ellington AD, Etzkorn FA, Zhang Y. Structural and kinetic analysis of prolyl-isomerization/phosphorylation cross-talk in the CTD code. ACS Chem Biol 2012; 7:1462-70. [PMID: 22670809 DOI: 10.1021/cb3000887] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The C-terminal domain (CTD) of eukaryotic RNA polymerase II is an essential regulator for RNA polymerase II-mediated transcription. It is composed of multiple repeats of a consensus sequence Tyr(1)Ser(2)Pro(3)Thr(4)Ser(5)Pro(6)Ser(7). CTD regulation of transcription is mediated by both phosphorylation of the serines and prolyl isomerization of the two prolines. Interestingly, the phosphorylation sites are typically close to prolines, and thus the conformation of the adjacent proline could impact the specificity of the corresponding kinases and phosphatases. Experimental evidence of cross-talk between these two regulatory mechanisms has been elusive. Pin1 is a highly conserved phosphorylation-specific peptidyl-prolyl isomerase (PPIase) that recognizes the phospho-Ser/Thr (pSer/Thr)-Pro motif with CTD as one of its primary substrates in vivo. In the present study, we provide structural snapshots and kinetic evidence that support the concept of cross-talk between prolyl isomerization and phosphorylation. We determined the structures of Pin1 bound with two substrate isosteres that mimic peptides containing pSer/Thr-Pro motifs in cis or trans conformations. The results unequivocally demonstrate the utility of both cis- and trans-locked alkene isosteres as close geometric mimics of peptides bound to a protein target. Building on this result, we identified a specific case in which Pin1 differentially affects the rate of dephosphorylation catalyzed by two phosphatases (Scp1 and Ssu72) that target the same serine residue in the CTD heptad repeat but have different preferences for the isomerization state of the adjacent proline residue. These data exemplify for the first time how modulation of proline isomerization can kinetically impact signal transduction in transcription regulation.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Department
of Chemistry and
Biochemistry, University of Texas at Austin, 1 University Station A5300, Austin, Texas 78712, United States
| | - Xiaodong J. Wang
- Department of Chemistry, Virginia Tech, MC 0212, Blacksburg, Virginia 24061,
United States
| | - Xi Chen
- Department
of Chemistry and
Biochemistry, University of Texas at Austin, 1 University Station A5300, Austin, Texas 78712, United States
| | - Marianne E. Bowman
- Jack Skirball Chemical Biology
and Protein Laboratory, The Salk Institute, 10010 N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Yonghua Luo
- Department
of Chemistry and
Biochemistry, University of Texas at Austin, 1 University Station A5300, Austin, Texas 78712, United States
| | - Joseph P. Noel
- Jack Skirball Chemical Biology
and Protein Laboratory, The Salk Institute, 10010 N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Andrew D. Ellington
- Department
of Chemistry and
Biochemistry, University of Texas at Austin, 1 University Station A5300, Austin, Texas 78712, United States
| | - Felicia A. Etzkorn
- Department of Chemistry, Virginia Tech, MC 0212, Blacksburg, Virginia 24061,
United States
| | - Yan Zhang
- Department
of Chemistry and
Biochemistry, University of Texas at Austin, 1 University Station A5300, Austin, Texas 78712, United States
| |
Collapse
|
21
|
Karagiannis J. Decoding the informational properties of the RNA polymerase II Carboxy Terminal Domain. BMC Res Notes 2012; 5:241. [PMID: 22591782 PMCID: PMC3490803 DOI: 10.1186/1756-0500-5-241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 04/30/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The largest sub-unit of RNA polymerase II, Rpb1p, has long been known to be subject to post-translational modifications that influence various aspects of pre-mRNA processing. However, the portion of the Rpb1p molecule subject to these modifications - the carboxy-terminal domain or CTD - remains the subject of much fascination. Intriguingly, the CTD possesses a unique repetitive structure consisting of multiple repeats of the heptapeptide sequence, Y(1)S(2)P(3)T(4)S(5)P(6)S(7). While these repeats are critical for viability, they are not required for basal transcriptional activity in vitro. This suggests that - even though the CTD is not catalytically essential - it must perform other critical functions in eukaryotes. PRESENTATION OF THE HYPOTHESIS By formally applying the long-standing mathematical principles of information theory, I explore the hypothesis that complex post-translational modifications of the CTD represent a means for the dynamic "programming" of Rpb1p and thus for the discrete modulation of the expression of specific gene subsets in eukaryotes. TESTING THE HYPOTHESIS Empirical means for testing the informational capacity and regulatory potential of the CTD - based on simple genetic analysis in yeast model systems - are put forward and discussed. IMPLICATIONS OF THE HYPOTHESIS These ideas imply that the controlled manipulation of CTD effectors could be used to "program" the CTD and thus to manipulate biological processes in eukaryotes in a definable manner.
Collapse
Affiliation(s)
- Jim Karagiannis
- Department of Biology, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
22
|
BRD4 is an atypical kinase that phosphorylates serine2 of the RNA polymerase II carboxy-terminal domain. Proc Natl Acad Sci U S A 2012; 109:6927-32. [PMID: 22509028 DOI: 10.1073/pnas.1120422109] [Citation(s) in RCA: 294] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The bromodomain protein, BRD4, has been identified recently as a therapeutic target in acute myeloid leukemia, multiple myeloma, Burkitt's lymphoma, NUT midline carcinoma, colon cancer, and inflammatory disease; its loss is a prognostic signature for metastatic breast cancer. BRD4 also contributes to regulation of both cell cycle and transcription of oncogenes, HIV, and human papilloma virus (HPV). Despite its role in a broad range of biological processes, the precise molecular mechanism of BRD4 function remains unknown. We report that BRD4 is an atypical kinase that binds to the carboxyl-terminal domain (CTD) of RNA polymerase II and directly phosphorylates its serine 2 (Ser2) sites both in vitro and in vivo under conditions where other CTD kinases are inactive. Phosphorylation of the CTD Ser2 is inhibited in vivo by a BRD4 inhibitor that blocks its binding to chromatin. Our finding that BRD4 is an RNA polymerase II CTD Ser2 kinase implicates it as a regulator of eukaryotic transcription.
Collapse
|
23
|
Saberianfar R, Cunningham-Dunlop S, Karagiannis J. Global gene expression analysis of fission yeast mutants impaired in Ser-2 phosphorylation of the RNA pol II carboxy terminal domain. PLoS One 2011; 6:e24694. [PMID: 21931816 PMCID: PMC3171476 DOI: 10.1371/journal.pone.0024694] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 08/15/2011] [Indexed: 12/29/2022] Open
Abstract
In Schizosaccharomyces pombe the nuclear-localized Lsk1p-Lsc1p cyclin dependent kinase complex promotes Ser-2 phosphorylation of the heptad repeats found within the RNA pol II carboxy terminal domain (CTD). Here, we first provide evidence supporting the existence of a third previously uncharacterized Ser-2 CTD kinase subunit, Lsg1p. As expected for a component of the complex, Lsg1p localizes to the nucleus, promotes Ser-2 phosphorylation of the CTD, and physically interacts with both Lsk1p and Lsc1p in vivo. Interestingly, we also demonstrate that lsg1Δ mutants – just like lsk1Δ and lsc1Δ strains – are compromised in their ability to faithfully and reliably complete cytokinesis. Next, to address whether kinase mediated alterations in CTD phosphorylation might selectively alter the expression of genes with roles in cytokinesis and/or the cytoskeleton, global gene expression profiles were analyzed. Mutants impaired in Ser-2 phosphorylation display little change with respect to the level of transcription of most genes. However, genes affecting cytokinesis – including the actin interacting protein gene, aip1 – as well as genes with roles in meiosis, are included in a small subset that are differentially regulated. Significantly, genetic analysis of lsk1Δ aip1Δ double mutants is consistent with Lsk1p and Aip1p acting in a linear pathway with respect to the regulation of cytokinesis.
Collapse
Affiliation(s)
- Reza Saberianfar
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | | | - Jim Karagiannis
- Department of Biology, University of Western Ontario, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
24
|
Functional characterization of a new member of the Cdk9 family in Aspergillus nidulans. EUKARYOTIC CELL 2010; 9:1901-12. [PMID: 20952582 DOI: 10.1128/ec.00384-09] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cdk9-like kinases in complex with T-type cyclins are essential components of the eukaryotic transcription elongation machinery. The full spectrum of Cdk9/cyclin T targets, as well as the specific consequences of phosphorylations, is still largely undefined. We identify and characterize here a Cdk9 kinase (PtkA) in the filamentous ascomycete Aspergillus nidulans. Deletion of ptkA had a lethal effect in later stages of vegetative growth and completely impeded asexual development. Overexpression of ptkA affected directionality of polarized growth and the initiation of new branching sites. A green fluorescent protein-tagged PtkA version localized inside the nucleus during interphase, supporting a role of PtkA in transcription elongation, as observed in other organisms. We also identified a putative cyclin T homolog, PchA, in the A. nidulans genome and confirmed its interaction with PtkA in vivo. Surprisingly, the Pcl-like cyclin PclA, previously described to be involved in asexual development, was also found to interact with PtkA, indicating a possible role of PtkA in linking transcriptional activity with development and/or morphogenesis in A. nidulans. This is the first report of a Cdk9 kinase interacting with a Pcl-like cyclin, revealing interesting new aspects about the involvement of this Cdk-subfamily in differential gene expression.
Collapse
|
25
|
Human T-lymphotropic virus type 1 Tax protein complexes with P-TEFb and competes for Brd4 and 7SK snRNP/HEXIM1 binding. J Virol 2010; 84:12801-9. [PMID: 20926576 DOI: 10.1128/jvi.00943-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Positive transcription elongation factor b (P-TEFb) plays an important role in stimulating RNA polymerase II elongation for viral and cellular gene expression. P-TEFb is found in cells in either an active, low-molecular-weight (LMW) form or an inactive, high-molecular-weight (HMW) form. We report here that human T-lymphotropic virus type 1 (HTLV-1) Tax interacts with the cyclin T1 subunit of P-TEFb, forming a distinct Tax/P-TEFb LMW complex. We demonstrate that Tax can play a role in regulating the amount of HMW complex present in the cell by decreasing the binding of 7SK snRNP/HEXIM1 to P-TEFb. This is seen both in vitro using purified Tax protein and in vivo in cells transduced with Tax expression constructs. Further, we find that a peptide of cyclin T1 spanning the Tax binding domain inhibits the ability of Tax to disrupt HMW P-TEFb complexes. These results suggest that the direct interaction of Tax with cyclin T1 can dissociate P-TEFb from the P-TEFb/7SK snRNP/HEXIM1 complex for activation of the viral long terminal repeat (LTR). We also show that Tax competes with Brd4 for P-TEFb binding. Chromatin immunoprecipitation (ChIP) assays demonstrated that Brd4 and P-TEFb are associated with the basal HTLV-1 LTR, while Tax and P-TEFb are associated with the activated template. Furthermore, the knockdown of Brd4 by small interfering RNA (siRNA) activates the HTLV-1 LTR promoter, which results in an increase in viral expression and production. Our studies have identified Tax as a regulator of P-TEFb that is capable of affecting the balance between its association with the large inactive complex and the small active complex.
Collapse
|
26
|
Röther S, Burkert C, Brünger KM, Mayer A, Kieser A, Strässer K. Nucleocytoplasmic shuttling of the La motif-containing protein Sro9 might link its nuclear and cytoplasmic functions. RNA (NEW YORK, N.Y.) 2010; 16:1393-1401. [PMID: 20494970 PMCID: PMC2885688 DOI: 10.1261/rna.2089110] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 04/01/2010] [Indexed: 05/29/2023]
Abstract
Diverse steps in gene expression are tightly coupled. Curiously, the La-motif-containing protein Sro9 has been shown to play a role in transcription and translation. Here, we show that Sro9 interacts with nuclear and cytoplasmic protein complexes involved in gene expression. In addition, Sro9 shuttles between nucleus and cytoplasm and is exported from the nucleus in an mRNA export-dependent manner. Importantly, Sro9 is recruited to transcribed genes. However, whole genome expression analysis shows that loss of Sro9 function does not greatly change the level of specific transcripts indicating that Sro9 does not markedly affect their synthesis and/or stability. Taken together, Sro9 might bind to the mRNP already during transcription and accompany the mature mRNP to the cytoplasm where it modulates translation of the mRNA.
Collapse
Affiliation(s)
- Susanne Röther
- Department of Biochemistry, Ludwig-Maximilians-University Munich, Gene Center and Center for Integrated Protein Science Munich, 81377 Munich, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Multiple functions of Ldb1 required for beta-globin activation during erythroid differentiation. Blood 2010; 116:2356-64. [PMID: 20570862 DOI: 10.1182/blood-2010-03-272252] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Ldb1 and erythroid partners SCL, GATA-1, and LMO2 form a complex that is required to establish spatial proximity between the β-globin locus control region and gene and for transcription activation during erythroid differentiation. Here we show that Ldb1 controls gene expression at multiple levels. Ldb1 stabilizes its erythroid complex partners on β-globin chromatin, even though it is not one of the DNA-binding components. In addition, Ldb1 is necessary for enrichment of key transcriptional components in the locus, including P-TEFb, which phosphorylates Ser2 of the RNA polymerase C-terminal domain for efficient elongation. Furthermore, reduction of Ldb1 results in the inability of the locus to migrate away from the nuclear periphery, which is necessary to achieve robust transcription of β-globin in nuclear transcription factories. Ldb1 contributes these critical functions at both embryonic and adult stages of globin gene expression. These results implicate Ldb1 as a factor that facilitates nuclear relocation for transcription activation.
Collapse
|
28
|
Coudreuse D, van Bakel H, Dewez M, Soutourina J, Parnell T, Vandenhaute J, Cairns B, Werner M, Hermand D. A Gene-Specific Requirement of RNA Polymerase II CTD Phosphorylation for Sexual Differentiation in S. pombe. Curr Biol 2010; 20:1053-64. [DOI: 10.1016/j.cub.2010.04.054] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2010] [Revised: 04/23/2010] [Accepted: 04/27/2010] [Indexed: 10/19/2022]
|
29
|
Chia DJ, Young JJ, Mertens AR, Rotwein P. Distinct alterations in chromatin organization of the two IGF-I promoters precede growth hormone-induced activation of IGF-I gene transcription. Mol Endocrinol 2010; 24:779-89. [PMID: 20160126 DOI: 10.1210/me.2009-0430] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Many of the physiological actions of GH are mediated by IGF-I, a secreted 70-residue peptide whose gene expression is induced by GH in the liver and other tissues via mechanisms that remain incompletely characterized but depend on the transcription factor Stat5b. Here we investigate the chromatin landscape of the IGF-I gene in the liver of pituitary-deficient young adult male rats and assess the impact of a single systemic GH injection. Despite minimal ongoing transcription in the absence of GH, both IGF-I promoters appear to reside in open chromatin environments, at least as inferred from relatively high levels of acetylation of core histones H3 and H4 when compared with adjacent intergenic DNA and from enhanced trimethylation of histone H3 at lysine 4. This landscape of open chromatin may reflect maturation of the liver. Surprisingly, in the absence of hormone, IGF-I promoter 1 appears poised to be activated, as evidenced by the presence of the transcriptional coactivator p300 and recruitment of RNA polymerase (Pol) II into a preinitiation complex. By contrast, chromatin surrounding IGF-I promoter 2 is devoid of both p300 and RNA Pol II. Systemic GH treatment causes an approximately 15-fold increase in transcription from each IGF-I promoter within 60 min of hormone administration, leading to a sustained accumulation of IGF-I mRNA. The coordinated induction of both IGF-I promoters by GH is accompanied by hyperacetylation of histones H3 and H4 in promoter-associated chromatin, a decline in monomethylation at lysine 4 of histone H3, and recruitment of RNA Pol II to IGF-I promoter 2. We conclude that GH actions induce rapid and dramatic changes in hepatic chromatin at the IGF-I locus and activate IGF-I gene transcription in the liver by distinct promoter-specific mechanisms: at promoter 1, GH causes RNA Pol II to be released from a previously recruited paused preinitiation complex, whereas at promoter 2, hormone treatment facilitates recruitment and then activation of RNA Pol II to initiate transcription.
Collapse
Affiliation(s)
- Dennis J Chia
- Department of Pediatrics, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | |
Collapse
|
30
|
Prichard MN. Function of human cytomegalovirus UL97 kinase in viral infection and its inhibition by maribavir. Rev Med Virol 2009; 19:215-29. [PMID: 19434630 DOI: 10.1002/rmv.615] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The serine/threonine kinase expressed by human cytomegalovirus from gene UL97 phosphorylates the antiviral drug ganciclovir, but its biological function is the phosphorylation of its natural viral and cellular protein substrates which affect viral replication at many levels. The UL97 kinase null phenotype is therefore complex, as is the mechanism of action of maribavir, a highly specific inhibitor of its enzymatic activity. Studies that utilise the drug corroborate results from genetic approaches and together have elucidated many functions of the UL97 kinase that are critical for viral replication. The kinase phosphorylates eukaryotic elongation factor 1delta, the carboxyl terminal domain of the large subunit of RNA polymerase II, the retinoblastoma tumour suppressor and lamins A and C. Each of these is also phosphorylated and regulated by cdc2/cyclin-dependent kinase 1, suggesting that the viral kinase may perform a similar function. These and other activities of the UL97 kinase appear to stimulate the cell cycle to support viral DNA synthesis, enhance the expression of viral genes, promote virion morphogenesis and facilitate the egress of mature capsids from the nucleus. In the absence of UL97 kinase activity, viral DNA synthesis is inefficient and structural proteins are sequestered in nuclear aggresomes, reducing the efficiency of virion morphogenesis. Mature capsids that do form fail to egress the nucleus as the nuclear lamina are not dispersed by the kinase. The critical functions performed by the UL97 kinase illustrate its importance in viral replication and confirm that the kinase is a target for the development of antiviral therapies.
Collapse
Affiliation(s)
- Mark N Prichard
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham, Alabama 35233, USA.
| |
Collapse
|
31
|
Phosphorylation of the transcription elongation factor Spt5 by yeast Bur1 kinase stimulates recruitment of the PAF complex. Mol Cell Biol 2009; 29:4852-63. [PMID: 19581288 DOI: 10.1128/mcb.00609-09] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Saccharomyces cerevisiae kinase Bur1 is involved in coupling transcription elongation to chromatin modification, but not all important Bur1 targets in the elongation complex are known. Using a chemical genetics strategy wherein Bur1 kinase was engineered to be regulated by a specific inhibitor, we found that Bur1 phosphorylates the Spt5 C-terminal repeat domain (CTD) both in vivo and in isolated elongation complexes in vitro. Deletion of the Spt5 CTD or mutation of the Spt5 serines targeted by Bur1 reduces recruitment of the PAF complex, which functions to recruit factors involved in chromatin modification and mRNA maturation to elongating polymerase II (Pol II). Deletion of the Spt5 CTD showed the same defect in PAF recruitment as rapid inhibition of Bur1 kinase activity, and this Spt5 mutation led to a decrease in histone H3K4 trimethylation. Brief inhibition of Bur1 kinase activity in vivo also led to a significant decrease in phosphorylation of the Pol II CTD at Ser-2, showing that Bur1 also contributes to Pol II Ser-2 phosphorylation. Genetic results suggest that Bur1 is essential for growth because it targets multiple factors that play distinct roles in transcription.
Collapse
|
32
|
Recruitment of cdk9 to the immediate-early viral transcriptosomes during human cytomegalovirus infection requires efficient binding to cyclin T1, a threshold level of IE2 86, and active transcription. J Virol 2009; 83:5904-17. [PMID: 19297489 DOI: 10.1128/jvi.02651-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Human cytomegalovirus (HCMV) infection results in the formation of nuclear viral transcriptosomes, which are sites dedicated to viral immediate-early (IE) transcription. At IE times of the infection, viral and cellular factors, including several components of transcription such as cyclin-dependent kinase 9 (cdk9), localize at these sites. To determine the mechanism and requirements of specific recruitment of cdk9 to the viral transcriptosomes, infection in the presence of inhibitor drugs and infection of cell lines expressing exogenous mutant cdk9 were performed. We found that cdk9 localization to the viral transcriptosomes requires de novo protein synthesis. In addition, active transcription is required for recruitment and maintenance of cdk9 at the viral transcriptosomes. In cells infected with a recombinant IE2 HCMV (IE2 86 DeltaSX virus) in which IE2 gene expression is greatly reduced, cdk9 localization at the transcriptosome is delayed and corresponds to the kinetics of accumulation of the IE2 protein at these sites. Infection in the presence of the cdk9 inhibitors Flavopiridol and DRB (5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole) allowed cdk9 localization to the viral transcriptosomes. A kinase-inactive cdk9 (D167N) expressed during the infection also localizes to the viral transcriptosomes, indicating that kinase activity of cdk9 is not a requirement for its localization to the sites of IE transcription. Exogenous expression of additional cdk9 mutants indicates that binding of Brd4 to the cdk9 complex is not required but that efficient binding to cyclin T1 is essential.
Collapse
|
33
|
Natalizio BJ, Robson-Dixon ND, Garcia-Blanco MA. The Carboxyl-terminal Domain of RNA Polymerase II Is Not Sufficient to Enhance the Efficiency of Pre-mRNA Capping or Splicing in the Context of a Different Polymerase. J Biol Chem 2009; 284:8692-702. [PMID: 19176527 DOI: 10.1074/jbc.m806919200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic messenger RNA precursors (pre-mRNAs) synthesized by RNA polymerase II (RNAP II) are processed co-transcriptionally. The carboxyl-terminal domain (CTD) of the largest subunit of RNA polymerase II is thought to mediate the coupling of transcription with pre-mRNA processing by coordinating the recruitment of processing factors during synthesis of nascent transcripts. Previous studies have demonstrated that the phosphorylated CTD is required for efficient co-transcriptional processing. In the study presented here we investigated whether the CTD is sufficient to coordinate transcription with pre-mRNA capping and splicing in the context of two other DNA-dependent RNA polymerases, mammalian RNAP III and bacteriophage T7 RNAP. Our results indicate that the CTD fused to the largest subunit of RNAP III (POLR3A) is not sufficient to enhance co-transcriptional pre-mRNA splicing or capping in vivo. Additionally, we analyzed a T7 RNAP-CTD fusion protein and examined its ability to enhance pre-mRNA splicing and capping of both constitutively and alternatively spliced substrates. We observed that the CTD in the context of T7 RNAP was not sufficient to enhance pre-mRNA splicing or capping either in vitro or in vivo. We propose that the efficient coupling of transcription to pre-mRNA processing requires not only the phosphorylated CTD but also other RNAP II specific subunits or associated factors.
Collapse
Affiliation(s)
- Barbara J Natalizio
- Department of Molecular Genetics and Microbiology, Center for RNA Biology, and Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
34
|
Functional Evolution of Cyclin-Dependent Kinases. Mol Biotechnol 2009; 42:14-29. [DOI: 10.1007/s12033-008-9126-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 11/01/2008] [Indexed: 10/21/2022]
|
35
|
Direct interactions between the Paf1 complex and a cleavage and polyadenylation factor are revealed by dissociation of Paf1 from RNA polymerase II. EUKARYOTIC CELL 2008; 7:1158-67. [PMID: 18469135 DOI: 10.1128/ec.00434-07] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The Paf1 complex (Paf1, Ctr9, Cdc73, Rtf1, and Leo1) is normally associated with RNA polymerase II (Pol II) throughout the transcription cycle. However, the loss of either Rtf1 or Cdc73 results in the detachment of the Paf1 complex from Pol II and the chromatin form of actively transcribed genes. Using functionally tagged forms of the Paf1 complex factors, we have determined that, except for the more loosely associated Rtf1, the remaining components stay stably associated with one another in an RNase-resistant complex after dissociation from Pol II and chromatin. The loss of Paf1, Ctr9, or to a lesser extent Cdc73 or Rtf1 results in reduced levels of serine 2 phosphorylation of the Pol II C-terminal domain and in increased read through of the MAK21 polyadenylation site. We found that the cleavage and polyadenylation factor Cft1 requires the Pol II-associated form of the Paf1 complex for full levels of interaction with the serine 5-phosphorylated form of Pol II. When the Paf1 complex is dissociated from Pol II, a direct interaction between Cft1 and the Paf1 complex can be detected. These results are consistent with the Paf1 complex providing a point of contact for recruitment of 3'-end processing factors at an early point in the transcription cycle. The lack of this connection helps to explain the defects in 3'-end formation observed in the absence of Paf1.
Collapse
|
36
|
Eckert DT, Zhang P, Collier JJ, O'Doherty RM, Scott DK. Detailed molecular analysis of the induction of the L-PK gene by glucose. Biochem Biophys Res Commun 2008; 372:131-6. [PMID: 18468514 DOI: 10.1016/j.bbrc.2008.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 05/01/2008] [Indexed: 01/22/2023]
Abstract
Glucose has powerful effects on gene expression and participates in the fasted-to-fed transition of the liver. However, the molecular mechanism of glucose-regulated gene expression has not been completely described. In the present study, we performed a detailed analysis of the molecular events of the insulin-independent glucose response of the liver-type pyruvate kinase (L-PK) gene. L-PK mRNA was increased by glucose at the transcriptional level as determined by real-time RT-PCR, mRNA stability measurements, and nuclear run-on assays. LY294002 and LY303511 inhibited the glucose response of the L-PK gene at the transcriptional level. Histones H3 and H4 associated with the L-PK gene promoter were hyperacetylated and HNF4alpha was constitutively bound in low and high glucose. Treatment with 20mM glucose increased recruitment of ChREBP, additional HNF4alpha, and RNA polymerase II. Glucose-stimulated the phosphorylation of the C-terminal domain of RNA polymerase II, with increased Ser5 phosphorylation near the transcription start site and increased Ser2 phosphorylation near the termination signal. LY294002 and LY303511 blocked the recruitment of RNA polymerase II to the L-PK gene, reducing the rate of transcription. The results of these studies demonstrate fundamental details of the molecular mechanism of glucose activated gene expression.
Collapse
Affiliation(s)
- David T Eckert
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | | | | | | | | |
Collapse
|
37
|
Wdr82 is a C-terminal domain-binding protein that recruits the Setd1A Histone H3-Lys4 methyltransferase complex to transcription start sites of transcribed human genes. Mol Cell Biol 2007; 28:609-18. [PMID: 17998332 DOI: 10.1128/mcb.01356-07] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Histone H3-Lys4 trimethylation is associated with the transcription start site of transcribed genes, but the molecular mechanisms that control this distribution in mammals are unclear. The human Setd1A histone H3-Lys4 methyltransferase complex was found to physically associate with the RNA polymerase II large subunit. The Wdr82 component of the Setd1A complex interacts with the RNA recognition motif of Setd1A and additionally binds to the Ser5-phosphorylated C-terminal domain of RNA polymerase II, which is involved in initiation of transcription, but does not bind to an unphosphorylated or Ser2-phosphorylated C-terminal domain. Chromatin immunoprecipitation analysis revealed that Setd1A is localized near the transcription start site of expressed genes. Small interfering RNA-mediated depletion of Wdr82 leads to decreased Setd1A expression and occupancy at transcription start sites and reduced histone H3-Lys4 trimethylation at these sites. However, neither RNA polymerase II (RNAP II) occupancy nor target gene expression levels are altered following Wdr82 depletion. Hence, Wdr82 is required for the targeting of Setd1A-mediated histone H3-Lys4 trimethylation near transcription start sites via tethering to RNA polymerase II, an event that is a consequence of transcription initiation. These results suggest a model for how the mammalian RNAP II machinery is linked with histone H3-Lys4 histone methyltransferase complexes at transcriptionally active genes.
Collapse
|
38
|
Inhibition of the cyclin-dependent kinases at the beginning of human cytomegalovirus infection specifically alters the levels and localization of the RNA polymerase II carboxyl-terminal domain kinases cdk9 and cdk7 at the viral transcriptosome. J Virol 2007; 82:394-407. [PMID: 17942543 DOI: 10.1128/jvi.01681-07] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We previously reported that defined components of the host transcription machinery are recruited to human cytomegalovirus immediate-early (IE) transcription sites, including cdk9 and cdk7 (S. Tamrakar, A. J. Kapasi, and D. H. Spector, J. Virol. 79:15477-15493, 2005). In this report, we further document the complexity of this site, referred to as the transcriptosome, through identification of additional resident proteins, including viral UL69 and cellular cyclin T1, Brd4, histone deacetylase 1 (HDAC1), and HDAC2. To examine the role of cyclin-dependent kinases (cdks) in the establishment of this site, we used roscovitine, a specific inhibitor of cdk1, cdk2, cdk7, and cdk9, that alters processing of viral IE transcripts and inhibits expression of viral early genes. In the presence of roscovitine, IE2, cyclin T1, Brd4, HDAC1, and HDAC2 accumulate at the transcriptosome. However, accumulation of cdk9 and cdk7 was specifically inhibited. Roscovitine treatment also resulted in decreased levels of cdk9 and cdk7 RNA. There was a corresponding reduction in cdk9 protein but only a modest decrease in cdk7 protein. However, overexpression of cdk9 does not compensate for the effects of roscovitine on cdk9 localization or viral gene expression. Delaying the addition of roscovitine until 8 h postinfection prevented all of the observed effects of the cdk inhibitor. These data suggest that IE2 and multiple cellular factors needed for viral RNA synthesis accumulate within the first 8 h at the viral transcriptosome and that functional cdk activity is required for the specific recruitment of cdk7 and cdk9 during this time interval.
Collapse
|
39
|
Cho WK, Zhou M, Jang MK, Huang K, Jeong SJ, Ozato K, Brady JN. Modulation of the Brd4/P-TEFb interaction by the human T-lymphotropic virus type 1 tax protein. J Virol 2007; 81:11179-86. [PMID: 17686863 PMCID: PMC2045532 DOI: 10.1128/jvi.00408-07] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Positive transcription elongation factor (P-TEFb), which is composed of CDK9 and cyclin T1, plays an important role in cellular and viral gene expression. Our lab has recently demonstrated that P-TEFb is required for Tax transactivation of the viral long terminal repeat (LTR). P-TEFb is found in two major complexes: the inactive form, which is associated with inhibitory subunits 7SK snRNA and HEXIM1, and the active form, which is associated with, at least in part, Brd4. In this study, we analyzed the effect of Brd4 on human T-lymphotropic virus type 1 (HTLV-1) transcription. Overexpression of Brd4 repressed Tax transactivation of the HTLV-1 LTR in a dose-dependent manner. In vitro binding studies suggest that Tax and Brd4 compete for binding to P-TEFb through direct interaction with cyclin T1. Tax interacts with cyclin T1 amino acids 426 to 533, which overlaps the region responsible for Brd4 binding. In vivo, overexpression of Tax decreased the amount of 7SK snRNA associated with P-TEFb and stimulates serine 2 phosphorylation of the RNA polymerase II carboxyl-terminal domain, suggesting that Tax regulates the functionality of P-TEFb. Our results suggest the possibility that Tax may compete and functionally substitute for Brd4 in P-TEFb regulation.
Collapse
Affiliation(s)
- Won-Kyung Cho
- Virus Tumor Biology Section, Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 41 Medlars Dr., Bldg. 41, Rm. B201, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Affiliation(s)
- Michael Hampsey
- Department of Biochemistry, Division of Nucleic Acid Enzymology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
41
|
Sharma M, George AA, Singh BN, Sahoo NC, Rao KVS. Regulation of Transcript Elongation through Cooperative and Ordered Recruitment of Cofactors. J Biol Chem 2007; 282:20887-96. [PMID: 17535807 DOI: 10.1074/jbc.m701420200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We studied the regulation of murine CD80, a gene whose basal transcriptional status was characterized by the presence of a stalled RNA polymerase II complex on the promoter-proximal region. Stimulus-induced activation of productive elongation involved a complex interplay of regulated events that included a synergy between ordered cofactor recruitment. This cascade of recruitments was initiated through the engagement of transcription factor NF-kappaB, leading to the temporal association of histone acetyltransferases and the consequent selective acetylation of a transcription start site downstream nucleosome. This in turn culminated into the nucleosomal association of Brd4-associated P-TEFb, a protein complex containing kinase specific for serine 2 of Rbp 1, the largest subunit of the carboxyl-terminal domain of RNA polymerase II. The consequent phosphorylation of serine 2 residues in CTD by CDK9 in the P-TEFb complex then facilitated escape of polymerase II into the productive elongation phase. Thus, the cooperative mechanisms that integrate between independent pathways characterize regulation of the elongation step of transcription, thereby providing another level at which specificity of gene regulation can be achieved.
Collapse
Affiliation(s)
- Manish Sharma
- Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | | | | |
Collapse
|
42
|
Karagiannis J, Balasubramanian MK. A cyclin-dependent kinase that promotes cytokinesis through modulating phosphorylation of the carboxy terminal domain of the RNA Pol II Rpb1p sub-unit. PLoS One 2007; 2:e433. [PMID: 17502918 PMCID: PMC1855991 DOI: 10.1371/journal.pone.0000433] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Accepted: 04/16/2007] [Indexed: 11/19/2022] Open
Abstract
In Schizosaccharomyces pombe, the nuclear-localized kinase, Lsk1p, promotes cytokinesis by positively regulating the Septation Initiation Network (SIN). Although a member of the cyclin-dependent kinase (CDK) family, neither a cyclin partner nor a physiological target has been identified. In this report we identify a cyclin, Lsc1p, that physically interacts and co-localizes with Lsk1p. Furthermore, lsk1Δ, lsc1Δ, as well as kinase-dead lsk1-K306R mutants, display highly similar cytokinesis defects. Lsk1p is related to CDKs that phosphorylate the carboxy-terminal domain (CTD) of the largest sub-unit of RNA polymerase II (Rpb1p). Interestingly, we find that Lsk1p and Lsc1p are required for phosphorylation of Ser-2 residues found in the heptad repeats of the CTD. To determine if Rpb1p could be a physiological target, we replaced the native rpb1 gene with a synthetic gene encoding a Rpb1p protein in which Ser-2 was substituted with the non-phosphorylatable amino-acid alanine in all heptads. Cells carrying this allele were similar to lsk1Δ mutants: They were viable, displayed genetic interactions with the SIN, and were unable to complete cytokinesis upon perturbation of the cell division machinery. We conclude that Ser-2 phosphorylation of the CTD heptads plays a novel physiological role in the regulation of cytokinesis.
Collapse
Affiliation(s)
- Jim Karagiannis
- cLaboratory of Cell Division, Temasek Life Sciences Laboratory, Singapore, Singapore.
| | | |
Collapse
|
43
|
Kanin EI, Kipp RT, Kung C, Slattery M, Viale A, Hahn S, Shokat KM, Ansari AZ. Chemical inhibition of the TFIIH-associated kinase Cdk7/Kin28 does not impair global mRNA synthesis. Proc Natl Acad Sci U S A 2007; 104:5812-7. [PMID: 17392431 PMCID: PMC1851574 DOI: 10.1073/pnas.0611505104] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The process of gene transcription requires the recruitment of a hypophosphorylated form of RNA polymerase II (Pol II) to a gene promoter. The TFIIH-associated kinase Cdk7/Kin28 hyperphosphorylates the promoter-bound polymerase; this event is thought to play a crucial role in transcription initiation and promoter clearance. Studies using temperature-sensitive mutants of Kin28 have provided the most compelling evidence for an essential role of its kinase activity in global mRNA synthesis. In contrast, using a small molecule inhibitor that specifically inhibits Kin28 in vivo, we find that the kinase activity is not essential for global transcription. Unlike the temperature-sensitive alleles, the small-molecule inhibitor does not perturb protein-protein interactions nor does it provoke the disassociation of TFIIH from gene promoters. These results lead us to conclude that other functions of TFIIH, rather than the kinase activity, are critical for global gene transcription.
Collapse
Affiliation(s)
| | | | - Charles Kung
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143
| | | | - Agnes Viale
- Memorial Sloan–Kettering Cancer Center, New York, NY 10021; and
| | - Steven Hahn
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Kevan M. Shokat
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143
| | - Aseem Z. Ansari
- *Department of Biochemistry and
- Genome Center of Wisconsin, University of Wisconsin, Madison, WI 53706
- **To whom correspondence should be addressed at:
Department of Biochemistry and The Genome Center of Wisconsin, University of Wisconsin, 433 Babcock Drive, Madison, WI 53706. E-mail:
| |
Collapse
|
44
|
Reyes-Reyes M, Hampsey M. Role for the Ssu72 C-terminal domain phosphatase in RNA polymerase II transcription elongation. Mol Cell Biol 2007; 27:926-36. [PMID: 17101794 PMCID: PMC1800697 DOI: 10.1128/mcb.01361-06] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 08/18/2006] [Accepted: 11/01/2006] [Indexed: 12/31/2022] Open
Abstract
The RNA polymerase II (RNAP II) transcription cycle is accompanied by changes in the phosphorylation status of the C-terminal domain (CTD), a reiterated heptapeptide sequence (Y(1)S(2)P(3)T(4)S(5)P(6)S(7)) present at the C terminus of the largest RNAP II subunit. One of the enzymes involved in this process is Ssu72, a CTD phosphatase with specificity for serine-5-P. Here we report that the ssu72-2-encoded Ssu72-R129A protein is catalytically impaired in vitro and that the ssu72-2 mutant accumulates the serine-5-P form of RNAP II in vivo. An in vitro transcription system derived from the ssu72-2 mutant exhibits impaired elongation efficiency. Mutations in RPB1 and RPB2, the genes encoding the two largest subunits of RNAP II, were identified as suppressors of ssu72-2. The rpb1-1001 suppressor encodes an R1281A replacement, whereas rpb2-1001 encodes an R983G replacement. This information led us to identify the previously defined rpb2-4 and rpb2-10 alleles, which encode catalytically slow forms of RNAP II, as additional suppressors of ssu72-2. Furthermore, deletion of SPT4, which encodes a subunit of the Spt4-Spt5 early elongation complex, also suppresses ssu72-2, whereas the spt5-242 allele is suppressed by rpb2-1001. These results define Ssu72 as a transcription elongation factor. We propose a model in which Ssu72 catalyzes serine-5-P dephosphorylation subsequent to addition of the 7-methylguanosine cap on pre-mRNA in a manner that facilitates the RNAP II transition into the elongation stage of the transcription cycle.
Collapse
Affiliation(s)
- Mariela Reyes-Reyes
- Department of Biochemistry, Robert Wood Johnson Medical School, 683 Hoes Lane West, Piscataway, NJ 08854, USA
| | | |
Collapse
|
45
|
Abstract
The C-terminal repeat domain (CTD), an unusual extension appended to the C terminus of the largest subunit of RNA polymerase II, serves as a flexible binding scaffold for numerous nuclear factors; which factors bind is determined by the phosphorylation patterns on the CTD repeats. Changes in phosphorylation patterns, as polymerase transcribes a gene, are thought to orchestrate the association of different sets of factors with the transcriptase and strongly influence functional organization of the nucleus. In this review we appraise what is known, and what is not known, about patterns of phosphorylation on the CTD of RNA polymerases II at the beginning, the middle, and the end of genes; the proposal that doubly phosphorylated repeats are present on elongating polymerase is explored. We discuss briefly proteins known to associate with the phosphorylated CTD at the beginning and ends of genes; we explore in more detail proteins that are recruited to the body of genes, the diversity of their functions, and the potential consequences of tethering these functions to elongating RNA polymerase II. We also discuss accumulating structural information on phosphoCTD-binding proteins and how it illustrates the variety of binding domains and interaction modes, emphasizing the structural flexibility of the CTD. We end with a number of open questions that highlight the extent of what remains to be learned about the phosphorylation and functions of the CTD.
Collapse
Affiliation(s)
- Hemali P Phatnani
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
46
|
Saunders A, Core LJ, Lis JT. Breaking barriers to transcription elongation. Nat Rev Mol Cell Biol 2006; 7:557-67. [PMID: 16936696 DOI: 10.1038/nrm1981] [Citation(s) in RCA: 387] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Abbie Saunders
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
47
|
Abstract
In eukaryotes, the core promoter serves as a platform for the assembly of transcription preinitiation complex (PIC) that includes TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH, and RNA polymerase II (pol II), which function collectively to specify the transcription start site. PIC formation usually begins with TFIID binding to the TATA box, initiator, and/or downstream promoter element (DPE) found in most core promoters, followed by the entry of other general transcription factors (GTFs) and pol II through either a sequential assembly or a preassembled pol II holoenzyme pathway. Formation of this promoter-bound complex is sufficient for a basal level of transcription. However, for activator-dependent (or regulated) transcription, general cofactors are often required to transmit regulatory signals between gene-specific activators and the general transcription machinery. Three classes of general cofactors, including TBP-associated factors (TAFs), Mediator, and upstream stimulatory activity (USA)-derived positive cofactors (PC1/PARP-1, PC2, PC3/DNA topoisomerase I, and PC4) and negative cofactor 1 (NC1/HMGB1), normally function independently or in combination to fine-tune the promoter activity in a gene-specific or cell-type-specific manner. In addition, other cofactors, such as TAF1, BTAF1, and negative cofactor 2 (NC2), can also modulate TBP or TFIID binding to the core promoter. In general, these cofactors are capable of repressing basal transcription when activators are absent and stimulating transcription in the presence of activators. Here we review the roles of these cofactors and GTFs, as well as TBP-related factors (TRFs), TAF-containing complexes (TFTC, SAGA, SLIK/SALSA, STAGA, and PRC1) and TAF variants, in pol II-mediated transcription, with emphasis on the events occurring after the chromatin has been remodeled but prior to the formation of the first phosphodiester bond.
Collapse
Affiliation(s)
- Mary C Thomas
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4935, USA
| | | |
Collapse
|
48
|
Chu Y, Sutton A, Sternglanz R, Prelich G. The BUR1 cyclin-dependent protein kinase is required for the normal pattern of histone methylation by SET2. Mol Cell Biol 2006; 26:3029-38. [PMID: 16581778 PMCID: PMC1446943 DOI: 10.1128/mcb.26.8.3029-3038.2006] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BUR1 and BUR2 encode the catalytic and regulatory subunits of a cyclin-dependent protein kinase complex that is essential for normal growth and has a general role in transcription elongation. To gain insight into its specific role in vivo, we identified mutations that reverse the severe growth defect of bur1Delta cells. This selection identified mutations in SET2, which encodes a histone methylase that targets lysine 36 of histone H3 and, like BUR1, has a poorly characterized role during transcription elongation. This genetic relationship indicates that SET2 activity is required for the growth defect observed in bur1Delta strains. This SET2-dependent growth inhibition occurs via methylation of histone H3 on lysine 36, since a methylation-defective allele of SET2 or a histone H3 K36R mutation also suppressed bur1Delta. We have explored the relationship between BUR1 and SET2 at the biochemical level and find that histone H3 is monomethylated, dimethylated, and trimethylated on lysine 36 in wild-type cells, but trimethylation is significantly reduced in bur1 and bur2 mutant strains. A similar methylation pattern is observed in RNA polymerase II C-terminal domain truncation mutants and in an spt16 mutant strain. Chromatin immunoprecipitation assays reveal that the transcription-dependent increase in trimethylated K36 over open reading frames is significantly reduced in bur2Delta strains. These results establish links between a regulatory protein kinase and histone methylation and lead to a model in which the Bur1-Bur2 complex counteracts an inhibitory effect of Set2-dependent histone methylation.
Collapse
Affiliation(s)
- Yaya Chu
- Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
49
|
Abstract
Cyclin-dependent kinases (cdks) are critical regulators of cell cycle progression and RNA transcription. A variety of genetic and epigenetic events cause universal overactivity of the cell cycle cdks in human cancer, and their inhibition can lead to both cell cycle arrest and apoptosis. However, built-in redundancy may limit the effects of highly selective cdk inhibition. Cdk4/6 inhibition has been shown to induce potent G1 arrest in vitro and tumor regression in vivo; cdk2/1 inhibition has the most potent effects during the S and G2 phases and induces E2F transcription factor-dependent cell death. Modulation of cdk2 and cdk1 activities also affects survival checkpoint responses after exposure to DNA-damaging and microtubule-stabilizing agents. The transcriptional cdks phosphorylate the carboxy-terminal domain of RNA polymerase II, facilitating efficient transcriptional initiation and elongation. Inhibition of these cdks primarily affects the accumulation of transcripts with short half-lives, including those encoding antiapoptosis family members, cell cycle regulators, as well as p53 and nuclear factor-kappa B-responsive gene targets. These effects may account for apoptosis induced by cdk9 inhibitors, especially in malignant hematopoietic cells, and may also potentiate cytotoxicity mediated by disruption of a variety of pathways in many transformed cell types. Current work is focusing on overcoming pharmacokinetic barriers that hindered development of flavopiridol, a pan-cdk inhibitor, as well as assessing novel classes of compounds potently targeting groups of cell cycle cdks (cdk4/6 or cdk2/1) with variable effects on the transcriptional cdks 7 and 9. These efforts will establish whether the strategy of cdk inhibition is able to produce therapeutic benefit in the majority of human tumors.
Collapse
Affiliation(s)
- Geoffrey I Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| |
Collapse
|
50
|
Tamrakar S, Kapasi AJ, Spector DH. Human cytomegalovirus infection induces specific hyperphosphorylation of the carboxyl-terminal domain of the large subunit of RNA polymerase II that is associated with changes in the abundance, activity, and localization of cdk9 and cdk7. J Virol 2006; 79:15477-93. [PMID: 16306619 PMCID: PMC1316045 DOI: 10.1128/jvi.79.24.15477-15493.2005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus infection in the presence of the cyclin-dependent kinase (cdk) inhibitor roscovitine leads to changes in differential splicing and the polyadenylation of immediate early IE1/IE2 and UL37 transcripts (V. Sanchez, A. K. McElroy, J. Yen, S. Tamrakar, C. L. Clark, R. A. Schwartz, and D. H. Spector, J. Virol. 78:11219-11232, 2004). To determine if this was associated with specific phosphorylation of the C-terminal domain (CTD) of the RNA polymerase II (RNAP II) large subunit by cdk7/cyclin H and cdk9/cyclin T1, we examined the expression and localization of these kinases and the various phosphorylated forms of RNAP II. Infection resulted in increased RNAP II CTD phosphorylated on serines 2 and 5 and increased levels of activity of cdk7 and cdk9. At early times, cdk9 localizes with input viral DNA, and aggregates of cdk9 and cdk7 and a subset of Ser2-phosphorylated RNAP II colocalize with IE1/IE2 proteins adjacent to promyelocytic leukemia protein oncogenic domains. Later, cdk9 and Ser2-phosphorylated RNAP II form a nuclear punctate pattern; cdk7 resides in replication centers, and Ser5-phosphorylated RNAP II clusters at the peripheries of replication centers. Roscovitine treatment leads to decreased levels of hyperphosphorylated RNAP II (RNAP IIo) in infected cells and of hypophosphorylated RNAP II in mock-infected and infected cells. The RNAP IIo decrease does not occur if roscovitine is added 8 h postinfection, as was previously observed for processing of IE transcripts. These results suggest that accurate IE gene expression requires specific phosphorylation of the RNAP II CTD early in infection.
Collapse
Affiliation(s)
- Sama Tamrakar
- Cellular and Molecular Medicine East, Room 2059, Mail Code 0712, 9500 Gilman Drive, University of California, San Diego, La Jolla, California 92093-0712, USA
| | | | | |
Collapse
|