1
|
Syed K. Ferredoxins: Functions, Evolution, Potential Applications, and Challenges of Subtype Classification. Curr Issues Mol Biol 2024; 46:9659-9673. [PMID: 39329926 PMCID: PMC11430716 DOI: 10.3390/cimb46090574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/27/2024] [Accepted: 08/31/2024] [Indexed: 09/28/2024] Open
Abstract
Ferredoxins are proteins found in all biological kingdoms and are involved in essential biological processes including photosynthesis, lipid metabolism, and biogeochemical cycles. Ferredoxins are classified into different groups based on the iron-sulfur (Fe-S) clusters that they contain. A new subtype classification and nomenclature system, based on the spacing between amino acids in the Fe-S binding motif, has been proposed in order to better understand ferredoxins' biological diversity and evolutionary linkage across different organisms. This new classification system has revealed an unparalleled diversity between ferredoxins and has helped identify evolutionarily linked ferredoxins between species. The current review provides the latest insights into ferredoxin functions and evolution, and the new subtype classification, outlining their potential biotechnological applications and the future challenges in streamlining the process.
Collapse
Affiliation(s)
- Khajamohiddin Syed
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture and Engineering, University of Zululand, KwaDlangezwa, Empangeni 3886, South Africa
| |
Collapse
|
2
|
Duwor S, Brites D, Mäser P. Phylogenetic Analysis of Pyruvate-Ferredoxin Oxidoreductase, a Redox Enzyme Involved in the Pharmacological Activation of Nitro-Based Prodrugs in Bacteria and Protozoa. BIOLOGY 2024; 13:178. [PMID: 38534448 DOI: 10.3390/biology13030178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024]
Abstract
The present frontrunners in the chemotherapy of infections caused by protozoa are nitro-based prodrugs that are selectively activated by PFOR-mediated redox reactions. This study seeks to analyze the distribution of PFOR in selected protozoa and bacteria by applying comparative genomics to test the hypothesis that PFOR in eukaryotes was acquired through horizontal gene transfer (HGT) from bacteria. Furthermore, to identify other putatively acquired genes, proteome-wide and gene enrichment analyses were used. A plausible explanation for the patchy occurrence of PFOR in protozoa is based on the hypothesis that bacteria are potential sources of genes that enhance the adaptation of protozoa in hostile environments. Comparative genomics of Entamoeba histolytica and the putative gene donor, Desulfovibrio vulgaris, identified eleven candidate genes for HGT involved in intermediary metabolism. If these results can be reproduced in other PFOR-possessing protozoa, it would provide more validated evidence to support the horizontal transfer of pfor from bacteria.
Collapse
Affiliation(s)
- Seth Duwor
- Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- Faculty of Science, University of Basel, 4001 Basel, Switzerland
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Daniela Brites
- Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- Faculty of Science, University of Basel, 4001 Basel, Switzerland
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- Faculty of Science, University of Basel, 4001 Basel, Switzerland
| |
Collapse
|
3
|
Carvalho-de-Araújo AD, Carvalho-Kelly LF, Meyer-Fernandes JR. Anaerobic energy metabolism in human microaerophile parasites. Exp Parasitol 2023; 247:108492. [PMID: 36841468 DOI: 10.1016/j.exppara.2023.108492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/30/2023] [Accepted: 02/20/2023] [Indexed: 02/27/2023]
Abstract
Mucosal-associated parasites, such as Giardia intestinalis, Entamoeba histolytica, and Trichomonas vaginalis, have significant clinical relevance. The pathologies associated with infection by these parasites are among those with the highest incidence of gastroenteritis (giardiasis and amoebiasis) and sexually transmitted infections (trichomoniasis). The treatment of these diseases is based on drugs that act on the anaerobic metabolism of these parasites, such as nitroimidazole and benzimidazole derivatives. One interesting feature of parasites is their ability to produce ATP under anaerobic conditions. Due to the absence of enzymes capable of producing ATP under anaerobic conditions in the vertebrate host, they have become interesting therapeutic targets. This review discusses anaerobic energy metabolism in mucosal-associated parasites, focusing on the anaerobic metabolism of pyruvate, the importance of these enzymes as therapeutic targets, and the importance of treating their infections.
Collapse
Affiliation(s)
- Ayra Diandra Carvalho-de-Araújo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bloco H, 2 andar, sala 13. Ilha do Fundão, Rio de Janeiro, 21941-902, Brazil; Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Ilha do Fundão, Rio de Janeiro, 21941-902, Brazil
| | - Luiz Fernando Carvalho-Kelly
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bloco H, 2 andar, sala 13. Ilha do Fundão, Rio de Janeiro, 21941-902, Brazil
| | - José Roberto Meyer-Fernandes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bloco H, 2 andar, sala 13. Ilha do Fundão, Rio de Janeiro, 21941-902, Brazil; Instituto Nacional de Ciência a Tecnologia em Biologia Estrutural e Bioimagem (INCTBEB), Cidade Universitária, Ilha do Fundão, 21941-902, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
4
|
Saghaug CS, Gamlem AL, Hauge KB, Vahokoski J, Klotz C, Aebischer T, Langeland N, Hanevik K. Genetic diversity in the metronidazole metabolism genes nitroreductases and pyruvate ferredoxin oxidoreductases in susceptible and refractory clinical samples of Giardia lamblia. Int J Parasitol Drugs Drug Resist 2022; 21:51-60. [PMID: 36682328 PMCID: PMC9871439 DOI: 10.1016/j.ijpddr.2022.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 11/30/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
The effectiveness of metronidazole against the tetraploid intestinal parasite Giardia lamblia is dependent on its activation/inactivation within the cytoplasm. There are several activating enzymes, including pyruvate ferredoxin reductase (PFOR) and nitroreductase (NR) 1 which metabolize metronidazole into toxic forms, while NR2 on the other hand inactivates it. Metronidazole treatment failures have been increasing rapidly over the last decade, indicating genetic resistance mechanisms. Analyzing genetic variation in the PFOR and NR genes in susceptible and refractory Giardia isolates may help identify potential markers of resistance. Full length PFOR1, PFOR2, NR1 and NR2 genes from clinical culturable isolates and non-cultured clinical Giardia assemblage B samples were cloned, sequenced and single nucleotide variants (SNVs) were analyzed to assess genetic diversity and alleles. A similar ratio of amino acid changing SNVs per gene length was found for the NRs; 4.2% for NR1 and 6.4% for NR2, while the PFOR1 and PFOR2 genes had less variability with a ratio of 1.1% and 1.6%, respectively. One of the samples from a refractory case had a nonsense mutation which caused a truncated NR1 gene in one out of six alleles. Further, we found three NR2 alleles with frameshift mutations, possibly causing a truncated protein in two susceptible isolates. One of these isolates was homozygous for the affected NR2 allele. Three nsSNVs with potential for affecting protein function were found in the ferredoxin domain of the PFOR2 gene. The considerable variation and discovery of mutations possibly causing dysfunctional NR proteins in clinical Giardia assemblage B isolates, reveal a potential for genetic link to metronidazole susceptibility and resistance.
Collapse
Affiliation(s)
- Christina S Saghaug
- Department of Clinical Science, University of Bergen, Bergen, Norway; Norwegian National Advisory Unit on Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Norway.
| | - Astrid L Gamlem
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Kirsti B Hauge
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Juha Vahokoski
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Christian Klotz
- Department of Infectious Diseases, Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| | - Toni Aebischer
- Department of Infectious Diseases, Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| | - Nina Langeland
- Department of Clinical Science, University of Bergen, Bergen, Norway; Norwegian National Advisory Unit on Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Kurt Hanevik
- Department of Clinical Science, University of Bergen, Bergen, Norway; Norwegian National Advisory Unit on Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
5
|
Malych R, Füssy Z, Ženíšková K, Arbon D, Hampl V, Hrdý I, Sutak R. The response of Naegleria gruberi to oxidative stress. Metallomics 2022; 14:6527579. [PMID: 35150262 DOI: 10.1093/mtomcs/mfac009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/06/2022] [Indexed: 11/14/2022]
Abstract
Aerobic organisms require oxygen for respiration but must simultaneously cope with oxidative damages inherently linked with this molecule. Unicellular amoeboflagellates of the genus Naegleria, containing both free-living species and opportunistic parasite, thrive in aerobic environments. However, they are also known to maintain typical features of anaerobic organisms. Here, we describe the mechanisms of oxidative damage mitigation in Naegleria gruberi and focus on the molecular characteristics of three noncanonical proteins interacting with oxygen and its derived reactive forms. We show that this protist expresses hemerythrin, protoglobin and an aerobic-type rubrerythrin, with spectral properties characteristic of the cofactors they bind. We provide evidence that protoglobin and hemerythrin interact with oxygen in vitro and confirm the mitochondrial localization of rubrerythrin by immunolabeling. Our proteomic analysis and immunoblotting following heavy metal treatment revealed upregulation of hemerythrin, while rotenone treatment resulted in an increase in rubrerythrin protein levels together with vast upregulation of alternative oxidase. Our study provided new insights into the mechanisms employed by N. gruberi to cope with different types of oxidative stress and allowed us to propose specific roles for three unique and understudied proteins: hemerythrin, protoglobin and rubrerythrin.
Collapse
Affiliation(s)
- Ronald Malych
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Zoltán Füssy
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Kateřina Ženíšková
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Dominik Arbon
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Vladimír Hampl
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Ivan Hrdý
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Robert Sutak
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| |
Collapse
|
6
|
Diversification of Ferredoxins across Living Organisms. Curr Issues Mol Biol 2021; 43:1374-1390. [PMID: 34698119 PMCID: PMC8928951 DOI: 10.3390/cimb43030098] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 12/17/2022] Open
Abstract
Ferredoxins, iron-sulfur (Fe-S) cluster proteins, play a key role in oxidoreduction reactions. To date, evolutionary analysis of these proteins across the domains of life have been confined to observing the abundance of Fe-S cluster types (2Fe-2S, 3Fe-4S, 4Fe-4S, 7Fe-8S (3Fe-4s and 4Fe-4S) and 2[4Fe-4S]) and the diversity of ferredoxins within these cluster types was not studied. To address this research gap, here we propose a subtype classification and nomenclature for ferredoxins based on the characteristic spacing between the cysteine amino acids of the Fe-S binding motif as a subtype signature to assess the diversity of ferredoxins across the living organisms. To test this hypothesis, comparative analysis of ferredoxins between bacterial groups, Alphaproteobacteria and Firmicutes and ferredoxins collected from species of different domains of life that are reported in the literature has been carried out. Ferredoxins were found to be highly diverse within their types. Large numbers of alphaproteobacterial species ferredoxin subtypes were found in Firmicutes species and the same ferredoxin subtypes across the species of Bacteria, Archaea, and Eukarya, suggesting shared common ancestral origin of ferredoxins between Archaea and Bacteria and lateral gene transfer of ferredoxins from prokaryotes (Archaea/Bacteria) to eukaryotes. This study opened new vistas for further analysis of diversity of ferredoxins in living organisms.
Collapse
|
7
|
Nitroreductase Activites in Giardia lamblia: ORF 17150 Encodes a Quinone Reductase with Nitroreductase Activity. Pathogens 2021; 10:pathogens10020129. [PMID: 33513906 PMCID: PMC7912051 DOI: 10.3390/pathogens10020129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/12/2021] [Accepted: 01/22/2021] [Indexed: 02/05/2023] Open
Abstract
The intestinal diplomonadid Giardia lamblia is a causative agent of persistent diarrhea. Current treatments are based on nitro drugs, especially metronidazole. Nitro compounds are activated by reduction, yielding toxic intermediates. The enzymatic systems responsible for this activation are not completely understood. By fractionating cell free crude extracts by size exclusion chromatography followed by mass spectrometry, enzymes with nitroreductase (NR) activities are identified. The protein encoded by ORF 17150 found in two pools with NR activities is overexpressed and characterized. In pools of fractions with main NR activities, previously-known NRs are identified, as well as a previously uncharacterized protein encoded by ORF 17150. Recombinant protein 17150 is a flavoprotein with NADPH-dependent quinone reductase and NR activities. Besides a set of previously identified NRs, we have identified a novel enzyme with NR activity.
Collapse
|
8
|
König C, Meyer M, Lender C, Nehls S, Wallaschkowski T, Holm T, Matthies T, Lercher D, Matthiesen J, Fehling H, Roeder T, Reindl S, Rosenthal M, Metwally NG, Lotter H, Bruchhaus I. An Alcohol Dehydrogenase 3 (ADH3) from Entamoeba histolytica Is Involved in the Detoxification of Toxic Aldehydes. Microorganisms 2020; 8:microorganisms8101608. [PMID: 33086693 PMCID: PMC7594077 DOI: 10.3390/microorganisms8101608] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/23/2022] Open
Abstract
Recently, a putative alcohol dehydrogenase 3, termed EhADH3B of the Entamoeba histolytica isolate HM-1:IMSS was identified, which is expressed at higher levels in non-pathogenic than in pathogenic amoebae and whose overexpression reduces the virulence of pathogenic amoebae. In an in silico analysis performed in this study, we assigned EhADH3B to a four-member ADH3 family, with ehadh3b present as a duplicate (ehadh3ba/ehadh3bb). In long-term laboratory cultures a mutation was identified at position 496 of ehadh3ba, which codes for a stop codon, which was not the case for amoebae isolated from human stool samples. When using transfectants that overexpress or silence ehadh3bb, we found no or little effect on growth, size, erythrophagocytosis, motility, hemolytic or cysteine peptidase activity. Biochemical characterization of the recombinant EhADH3Bb revealed that this protein forms a dimer containing Ni2+ or Zn2+ as a co-factor and that the enzyme converts acetaldehyde and formaldehyde in the presence of NADPH. A catalytic activity based on alcohols as substrates was not detected. Based on the results, we postulate that EhADH3Bb can reduce free acetaldehyde released by hydrolysis from bifunctional acetaldehyde/alcohol dehydrogenase-bound thiohemiacetal and that it is involved in detoxification of toxic aldehydes produced by the host or the gut microbiota.
Collapse
Affiliation(s)
- Constantin König
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (C.K.); (M.M.); (C.L.); (S.N.); (T.W.); (T.H.); (T.M.); (D.L.); (J.M.); (H.F.); (S.R.); (M.R.); (N.G.M.); (H.L.)
| | - Martin Meyer
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (C.K.); (M.M.); (C.L.); (S.N.); (T.W.); (T.H.); (T.M.); (D.L.); (J.M.); (H.F.); (S.R.); (M.R.); (N.G.M.); (H.L.)
| | - Corinna Lender
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (C.K.); (M.M.); (C.L.); (S.N.); (T.W.); (T.H.); (T.M.); (D.L.); (J.M.); (H.F.); (S.R.); (M.R.); (N.G.M.); (H.L.)
| | - Sarah Nehls
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (C.K.); (M.M.); (C.L.); (S.N.); (T.W.); (T.H.); (T.M.); (D.L.); (J.M.); (H.F.); (S.R.); (M.R.); (N.G.M.); (H.L.)
| | - Tina Wallaschkowski
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (C.K.); (M.M.); (C.L.); (S.N.); (T.W.); (T.H.); (T.M.); (D.L.); (J.M.); (H.F.); (S.R.); (M.R.); (N.G.M.); (H.L.)
| | - Tobias Holm
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (C.K.); (M.M.); (C.L.); (S.N.); (T.W.); (T.H.); (T.M.); (D.L.); (J.M.); (H.F.); (S.R.); (M.R.); (N.G.M.); (H.L.)
| | - Thorben Matthies
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (C.K.); (M.M.); (C.L.); (S.N.); (T.W.); (T.H.); (T.M.); (D.L.); (J.M.); (H.F.); (S.R.); (M.R.); (N.G.M.); (H.L.)
| | - Dirk Lercher
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (C.K.); (M.M.); (C.L.); (S.N.); (T.W.); (T.H.); (T.M.); (D.L.); (J.M.); (H.F.); (S.R.); (M.R.); (N.G.M.); (H.L.)
| | - Jenny Matthiesen
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (C.K.); (M.M.); (C.L.); (S.N.); (T.W.); (T.H.); (T.M.); (D.L.); (J.M.); (H.F.); (S.R.); (M.R.); (N.G.M.); (H.L.)
| | - Helena Fehling
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (C.K.); (M.M.); (C.L.); (S.N.); (T.W.); (T.H.); (T.M.); (D.L.); (J.M.); (H.F.); (S.R.); (M.R.); (N.G.M.); (H.L.)
| | - Thomas Roeder
- Molecular Physiology Department, Zoological Institute, Christian-Albrechts University Kiel, 24118 Kiel, Germany;
| | - Sophia Reindl
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (C.K.); (M.M.); (C.L.); (S.N.); (T.W.); (T.H.); (T.M.); (D.L.); (J.M.); (H.F.); (S.R.); (M.R.); (N.G.M.); (H.L.)
| | - Maria Rosenthal
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (C.K.); (M.M.); (C.L.); (S.N.); (T.W.); (T.H.); (T.M.); (D.L.); (J.M.); (H.F.); (S.R.); (M.R.); (N.G.M.); (H.L.)
| | - Nahla Galal Metwally
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (C.K.); (M.M.); (C.L.); (S.N.); (T.W.); (T.H.); (T.M.); (D.L.); (J.M.); (H.F.); (S.R.); (M.R.); (N.G.M.); (H.L.)
| | - Hannelore Lotter
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (C.K.); (M.M.); (C.L.); (S.N.); (T.W.); (T.H.); (T.M.); (D.L.); (J.M.); (H.F.); (S.R.); (M.R.); (N.G.M.); (H.L.)
| | - Iris Bruchhaus
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (C.K.); (M.M.); (C.L.); (S.N.); (T.W.); (T.H.); (T.M.); (D.L.); (J.M.); (H.F.); (S.R.); (M.R.); (N.G.M.); (H.L.)
- Correspondence:
| |
Collapse
|
9
|
Flores-Solis D, Mendoza A, Rentería-González I, Casados-Vazquez LE, Trasviña-Arenas CH, Jiménez-Sandoval P, Benítez-Cardoza CG, Del Río-Portilla F, Brieba LG. Solution structure of the inhibitor of cysteine proteases 1 from Entamoeba histolytica reveals a possible auto regulatory mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140512. [PMID: 32731033 DOI: 10.1016/j.bbapap.2020.140512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/07/2020] [Accepted: 07/24/2020] [Indexed: 10/23/2022]
Abstract
The genome of Entamoeba histolytica encodes approximately 50 Cysteine Proteases (CPs) whose activity is regulated by two Inhibitors of Cysteine Proteases (ICPs), EhICP1 and EhICP2. The main difference between both EhICPs is the acquisition of a 17 N-terminal targeting signal in EhICP2 and three exposed cysteine residues in EhICP1. The three exposed cysteines in EhICP1 potentiate the formation of cross-linking species that drive heterogeneity. Here we solved the NMR structure of EhICP1 using a mutant protein without accessible cysteines. Our structural data shows that EhICP1 adopts an immunoglobulin fold composed of seven β-strands, and three solvent exposed loops that resemble the structures of EhICP2 and chagasin. EhICP1 and EhICP2 are able to inhibit the archetypical cysteine protease papain by intercalating their BC loops into the protease active site independently of the character of the residue (serine or threonine) responsible to interact with the active site of papain. EhICP1 and EhICP2 present signals of functional divergence as they clustered in different clades. Two of the three exposed cysteines in EhICP1 are located at the DE loop that intercalates into the CP substrate-binding cleft. We propose that the solvent exposed cysteines of EhICP1 play a role in regulating its inhibitory activity and that in oxidative conditions, the cysteines of EhICP1 react to form intra and intermolecular disulfide bonds that render an inactive inhibitor. EhICP2 is not subject to redox regulation, as this inhibitor does not contain a single cysteine residue. This proposed redox regulation may be related to the differential cellular localization between EhICP1 and EhICP2.
Collapse
Affiliation(s)
- David Flores-Solis
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Circuito exterior s/n, Coyoacán, Ciudad de Mexico 04510, Mexico
| | - Angeles Mendoza
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Circuito exterior s/n, Coyoacán, Ciudad de Mexico 04510, Mexico
| | - Itzel Rentería-González
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, km. 9.6 Libramiento Norte Carretera Irapuato-León, CP 36821 Irapuato, Guanajuato, Mexico
| | - Luz E Casados-Vazquez
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, km. 9.6 Libramiento Norte Carretera Irapuato-León, CP 36821 Irapuato, Guanajuato, Mexico
| | - Carlos H Trasviña-Arenas
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, km. 9.6 Libramiento Norte Carretera Irapuato-León, CP 36821 Irapuato, Guanajuato, Mexico
| | - Pedro Jiménez-Sandoval
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, km. 9.6 Libramiento Norte Carretera Irapuato-León, CP 36821 Irapuato, Guanajuato, Mexico
| | - Claudia G Benítez-Cardoza
- Laboratorio de Investigación Bioquímica, Programa Institucional en Biomedicina Molecular ENMyH-Instituto Politécnico Nacional, Guillermo Massieu Helguera No. 239, La Escalera Ticoman, 07320, D.F, Mexico
| | - Federico Del Río-Portilla
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Circuito exterior s/n, Coyoacán, Ciudad de Mexico 04510, Mexico.
| | - Luis G Brieba
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, km. 9.6 Libramiento Norte Carretera Irapuato-León, CP 36821 Irapuato, Guanajuato, Mexico.
| |
Collapse
|
10
|
Müller J, Vermathen M, Leitsch D, Vermathen P, Müller N. Metabolomic Profiling of Wildtype and Transgenic Giardia lamblia Strains by 1H HR-MAS NMR Spectroscopy. Metabolites 2020; 10:E53. [PMID: 32019059 PMCID: PMC7073884 DOI: 10.3390/metabo10020053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/21/2020] [Accepted: 01/28/2020] [Indexed: 12/24/2022] Open
Abstract
Giardia lamblia, a causative agent of persistent diarrhea in humans, domestic animals, and cattle, is usually treated with nitro compounds. Consequently, enzymes involved in anaerobic nitro reduction have been investigated in detail as potential targets. Their role within the normal metabolic context is, however, not understood. Using 1H high-resolution magic angle spinning (HR-MAS) NMR spectroscopy, we analyzed the metabolomes of G. lamblia trophozoites overexpressing three nitroreductases (NR1-NR3) and thioredoxin reductase (TrxR), most likely a scavenger of reactive oxygen species, as suggested by the results published in this study. We compared the patterns to convenient controls and to the situation in the nitro drug resistant strain C4 where NR1 is downregulated. We identified 27 metabolites in G. lamblia trophozoites. Excluding metabolites of high variability among different wildtype populations, only trophozoites overexpressing NR1 presented a distinct pattern of nine metabolites, in particular arginine catabolites, differing from the respective controls. This pattern matched a differential pattern between wildtype and strain C4. This suggests that NR1 interferes with arginine and thus energy metabolism. The exact metabolic function of NR1 (and the other nitroreductases) remains to be elucidated.
Collapse
Affiliation(s)
- Joachim Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland;
| | - Martina Vermathen
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland;
| | - David Leitsch
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Kinderspitalgasse 15, A-1090 Vienna, Austria;
| | - Peter Vermathen
- Departments of BioMedical Research and Radiology, University and Inselspital Bern, sitem-insel AG Freiburgstr. 3, CH-3010 Bern, Switzerland;
| | - Norbert Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, CH-3012 Bern, Switzerland;
| |
Collapse
|
11
|
Lowerre KM, Espinosa A, Paz-Y-Miño-C G, Hemme C. Bioinformatics Structural and Phylogenetic Characterization of Entamoeba histolytica Alcohol Dehydrogenase 2 (EhADH2). ACTA ACUST UNITED AC 2019; 90:30-41. [PMID: 34103738 DOI: 10.1893/0005-3155-90.1.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
An amitochondriate parasite, Entamoeba histolytica, has a bifunctional ADHE enzyme (EhADH2) that contains separate acetaldehyde (ALDH) and alcohol (ADH) dehydrogenase activities. In a cluster of 25 bifunctional enzymes of single cell eukaryotes and bacteria, we present a phylogenetic analysis that suggests a lateral gene transfer event (prokaryotic ancestor to single-cell eukaryotic ancestor) and a complex structure that aligns with key homologs in the ADHE evolutionary history based on their similarity with bacterial alcohol dehydrogenases. We show that the ADHE in Entamoeba lineage diverged independently but shows significant similarities to the structure of ADHE in Fusobacterium, and a complex model that maps its ALDH and ADH domain well with bacteria such as Geobaccillus thermoglucosidasius. Our analyses likely support a lateral acquisition of an EhADH2-like ancestral gene from bacteria. Several evolutionary analyses software programs reveal that the enzyme structure is highly conserved, and maintains a similar function within a diverse set of pathogens, including Escherichia coli and Clostridium spp.
Collapse
Affiliation(s)
- Katie M Lowerre
- Department of Biology, Roger Williams University, Bristol, Rhode Island, USA
| | - Avelina Espinosa
- Department of Biology, Roger Williams University, Bristol, Rhode Island, USA
| | - Guillermo Paz-Y-Miño-C
- New England Center for the Public Understanding of Science, Roger Williams University, Bristol, Rhode Island, USA
| | - Christopher Hemme
- RI-INBRE Bioinformatics Core, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| |
Collapse
|
12
|
Zimorski V, Mentel M, Tielens AGM, Martin WF. Energy metabolism in anaerobic eukaryotes and Earth's late oxygenation. Free Radic Biol Med 2019; 140:279-294. [PMID: 30935869 PMCID: PMC6856725 DOI: 10.1016/j.freeradbiomed.2019.03.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 01/09/2023]
Abstract
Eukaryotes arose about 1.6 billion years ago, at a time when oxygen levels were still very low on Earth, both in the atmosphere and in the ocean. According to newer geochemical data, oxygen rose to approximately its present atmospheric levels very late in evolution, perhaps as late as the origin of land plants (only about 450 million years ago). It is therefore natural that many lineages of eukaryotes harbor, and use, enzymes for oxygen-independent energy metabolism. This paper provides a concise overview of anaerobic energy metabolism in eukaryotes with a focus on anaerobic energy metabolism in mitochondria. We also address the widespread assumption that oxygen improves the overall energetic state of a cell. While it is true that ATP yield from glucose or amino acids is increased in the presence of oxygen, it is also true that the synthesis of biomass costs thirteen times more energy per cell in the presence of oxygen than in anoxic conditions. This is because in the reaction of cellular biomass with O2, the equilibrium lies very far on the side of CO2. The absence of oxygen offers energetic benefits of the same magnitude as the presence of oxygen. Anaerobic and low oxygen environments are ancient. During evolution, some eukaryotes have specialized to life in permanently oxic environments (life on land), other eukaryotes have remained specialized to low oxygen habitats. We suggest that the Km of mitochondrial cytochrome c oxidase of 0.1-10 μM for O2, which corresponds to about 0.04%-4% (avg. 0.4%) of present atmospheric O2 levels, reflects environmental O2 concentrations that existed at the time that the eukaryotes arose.
Collapse
Affiliation(s)
- Verena Zimorski
- Institute of Molecular Evolution, Heinrich-Heine-University, 40225, Düsseldorf, Germany.
| | - Marek Mentel
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, 851 04, Bratislava, Slovakia.
| | - Aloysius G M Tielens
- Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Center Rotterdam, The Netherlands; Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - William F Martin
- Institute of Molecular Evolution, Heinrich-Heine-University, 40225, Düsseldorf, Germany.
| |
Collapse
|
13
|
Müller J, Müller N. Nitroreductases of bacterial origin in Giardia lamblia: Potential role in detoxification of xenobiotics. Microbiologyopen 2019; 8:e904. [PMID: 31343119 PMCID: PMC7938412 DOI: 10.1002/mbo3.904] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/19/2019] [Accepted: 06/19/2019] [Indexed: 11/05/2022] Open
Abstract
The anaerobic parasite Giardia lamblia, causative agent of persistent diarrhea, contains a family of nitroreductase genes most likely acquired by lateral transfer from anaerobic bacteria or archaebacteria. Two of these nitroreductases, containing a ferredoxin domain at their N-terminus, NR1, and NR2, have been characterized previously. Here, we present the characterization of a third member of this family, NR3. In functional assays, recombinant NR1 and NR3 reduced quinones like menadione and the antibiotic tetracycline, and-to much lesser extents-the nitro compound dinitrotoluene. Conversely, recombinant NR2 had no activity on tetracycline. Escherichia coli expressing NR3 were less susceptible to tetracycline, but more susceptible to the nitro compound metronidazole under semi-aerobic growth conditions. G. lamblia overexpressing NR1 and NR3, but not lines overexpressing NR2, are more susceptible to the nitro drug nitazoxanide. These findings suggest that NR3 is an active quinone reductase with a mode of action similar to NR1, but different from NR2. The biological function of this family of enzymes may reside in the use of xenobiotics as final electron acceptors. Thereby, these enzymes may provide at least two evolutionary advantages namely a higher potential to recycle NAD(P) as electron acceptors for the (fermentative) energy and intermediary metabolism, and the possibility to inactivate toxic xenobiotics produced by microorganisms living in concurrence inside the intestinal habitat.
Collapse
Affiliation(s)
- Joachim Müller
- Vetsuisse Faculty, Institute of Parasitology, University of Berne, Berne, Switzerland
| | - Norbert Müller
- Vetsuisse Faculty, Institute of Parasitology, University of Berne, Berne, Switzerland
| |
Collapse
|
14
|
Horizontal Gene Transfer as an Indispensable Driver for Evolution of Neocallimastigomycota into a Distinct Gut-Dwelling Fungal Lineage. Appl Environ Microbiol 2019; 85:AEM.00988-19. [PMID: 31126947 DOI: 10.1128/aem.00988-19] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/19/2019] [Indexed: 01/01/2023] Open
Abstract
Survival and growth of the anaerobic gut fungi (AGF; Neocallimastigomycota) in the herbivorous gut necessitate the possession of multiple abilities absent in other fungal lineages. We hypothesized that horizontal gene transfer (HGT) was instrumental in forging the evolution of AGF into a phylogenetically distinct gut-dwelling fungal lineage. The patterns of HGT were evaluated in the transcriptomes of 27 AGF strains, 22 of which were isolated and sequenced in this study, and 4 AGF genomes broadly covering the breadth of AGF diversity. We identified 277 distinct incidents of HGT in AGF transcriptomes, with subsequent gene duplication resulting in an HGT frequency of 2 to 3.5% in AGF genomes. The majority of HGT events were AGF specific (91.7%) and wide (70.8%), indicating their occurrence at early stages of AGF evolution. The acquired genes allowed AGF to expand their substrate utilization range, provided new venues for electron disposal, augmented their biosynthetic capabilities, and facilitated their adaptation to anaerobiosis. The majority of donors were anaerobic fermentative bacteria prevalent in the herbivorous gut. This study strongly indicates that HGT indispensably forged the evolution of AGF as a distinct fungal phylum and provides a unique example of the role of HGT in shaping the evolution of a high-rank taxonomic eukaryotic lineage.IMPORTANCE The anaerobic gut fungi (AGF) represent a distinct basal phylum lineage (Neocallimastigomycota) commonly encountered in the rumen and alimentary tracts of herbivores. Survival and growth of anaerobic gut fungi in these anaerobic, eutrophic, and prokaryote-dominated habitats necessitates the acquisition of several traits absent in other fungal lineages. We assess here the role of horizontal gene transfer as a relatively fast mechanism for trait acquisition by the Neocallimastigomycota postsequestration in the herbivorous gut. Analysis of 27 transcriptomes that represent the broad diversity of Neocallimastigomycota identified 277 distinct HGT events, with subsequent gene duplication resulting in an HGT frequency of 2 to 3.5% in AGF genomes. These HGT events have allowed AGF to survive in the herbivorous gut by expanding their substrate utilization range, augmenting their biosynthetic pathway, providing new routes for electron disposal by expanding fermentative capacities, and facilitating their adaptation to anaerobiosis. HGT in the AGF is also shown to be mainly a cross-kingdom affair, with the majority of donors belonging to the bacteria. This study represents a unique example of the role of HGT in shaping the evolution of a high-rank taxonomic eukaryotic lineage.
Collapse
|
15
|
Saghaug CS, Klotz C, Kallio JP, Brattbakk HR, Stokowy T, Aebischer T, Kursula I, Langeland N, Hanevik K. Genetic variation in metronidazole metabolism and oxidative stress pathways in clinical Giardia lamblia assemblage A and B isolates. Infect Drug Resist 2019; 12:1221-1235. [PMID: 31190910 PMCID: PMC6519707 DOI: 10.2147/idr.s177997] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/16/2019] [Indexed: 12/12/2022] Open
Abstract
Purpose: Treatment-refractory Giardia cases have increased rapidly within the last decade. No markers of resistance nor a standardized susceptibility test have been established yet, but several enzymes and their pathways have been associated with metronidazole (MTZ) resistant Giardia. Very limited data are available regarding genetic variation in these pathways. We aimed to investigate genetic variation in metabolic pathway genes proposed to be involved in MTZ resistance in recently acquired, cultured clinical isolates. Methods: Whole genome sequencing of 12 assemblage A2 and 8 assemblage B isolates was done, to decipher genomic variation in Giardia. Twenty-nine genes were identified in a literature search and investigated for their single nucleotide variants (SNVs) in the coding/non-coding regions of the genes, either as amino acid changing (non-synonymous SNVs) or non-changing SNVs (synonymous). Results: In Giardia assemblage B, several genes involved in MTZ activation or oxidative stress management were found to have higher numbers of non-synonymous SNVs (thioredoxin peroxidase, nitroreductase 1, ferredoxin 2, NADH oxidase, nitroreductase 2, alcohol dehydrogenase, ferredoxin 4 and ferredoxin 1) than the average variation. For Giardia assemblage A2, the highest genetic variability was found in the ferredoxin 2, ferredoxin 6 and in nicotinamide adenine dinucleotide phosphate (NADPH) oxidoreductase putative genes. SNVs found in the ferredoxins and nitroreductases were analyzed further by alignment and homology modeling. SNVs close to the iron-sulfur cluster binding sites in nitroreductase-1 and 2 and ferredoxin 2 and 4 could potentially affect protein function. Flavohemoprotein seems to be a variable-copy gene, due to higher, but variable coverage compared to other genes investigated. Conclusion: In clinical Giardia isolates, genetic variability is common in important genes in the MTZ metabolizing pathway and in the management of oxidative and nitrosative stress and includes high numbers of non-synonymous SNVs. Some of the identified amino acid changes could potentially affect the respective proteins important in the MTZ metabolism.
Collapse
Affiliation(s)
- Christina S Saghaug
- Department of Clinical Science, University of Bergen, Bergen, Hordaland, Norway.,Norwegian National Advisory Unit on Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Hordaland, Norway
| | - Christian Klotz
- Department of Infectious Diseases, Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| | - Juha P Kallio
- Department of Biomedicine, University of Bergen, Bergen, Hordaland, Norway
| | - Hans-Richard Brattbakk
- Department of Clinical Science, University of Bergen, Bergen, Hordaland, Norway.,Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Hordaland, Norway
| | - Tomasz Stokowy
- Department of Clinical Science, University of Bergen, Bergen, Hordaland, Norway.,Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Hordaland, Norway
| | - Toni Aebischer
- Department of Infectious Diseases, Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| | - Inari Kursula
- Department of Biomedicine, University of Bergen, Bergen, Hordaland, Norway.,Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Nina Langeland
- Department of Clinical Science, University of Bergen, Bergen, Hordaland, Norway.,Norwegian National Advisory Unit on Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Hordaland, Norway.,Department of Medicine, Haraldsplass Deaconess Hospital, Bergen, Hordaland, Norway
| | - Kurt Hanevik
- Department of Clinical Science, University of Bergen, Bergen, Hordaland, Norway.,Norwegian National Advisory Unit on Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Hordaland, Norway
| |
Collapse
|
16
|
Trasviña-Arenas CH, David SS, Delaye L, Azuara-Liceaga E, Brieba LG. Evolution of Base Excision Repair in Entamoeba histolytica is shaped by gene loss, gene duplication, and lateral gene transfer. DNA Repair (Amst) 2019; 76:76-88. [DOI: 10.1016/j.dnarep.2019.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 01/14/2019] [Accepted: 02/19/2019] [Indexed: 12/22/2022]
|
17
|
Leitsch D, Williams CF, Hrdý I. Redox Pathways as Drug Targets in Microaerophilic Parasites. Trends Parasitol 2018; 34:576-589. [PMID: 29807758 DOI: 10.1016/j.pt.2018.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/27/2018] [Accepted: 04/28/2018] [Indexed: 01/06/2023]
Abstract
The microaerophilic parasites Entamoeba histolytica, Trichomonas vaginalis, and Giardia lamblia jointly cause hundreds of millions of infections in humans every year. Other microaerophilic parasites such as Tritrichomonas foetus and Spironucleus spp. pose a relevant health problem in veterinary medicine. Unfortunately, vaccines against these pathogens are unavailable, but their microaerophilic lifestyle opens opportunities for specifically developed chemotherapeutics. In particular, their high sensitivity towards oxygen can be exploited by targeting redox enzymes. This review focusses on the redox pathways of microaerophilic parasites and on drugs, either already in use or currently in the state of development, which target these pathways.
Collapse
Affiliation(s)
- David Leitsch
- Institute for Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Austria.
| | - Catrin F Williams
- School of Engineering, Cardiff University, Cardiff, Wales, United Kingdom
| | - Ivan Hrdý
- Department of Parasitology, Charles University, Faculty of Science, Prague, Czech Republic
| |
Collapse
|
18
|
|
19
|
Nguyen DMN, Schut GJ, Zadvornyy OA, Tokmina-Lukaszewska M, Poudel S, Lipscomb GL, Adams LA, Dinsmore JT, Nixon WJ, Boyd ES, Bothner B, Peters JW, Adams MWW. Two functionally distinct NADP +-dependent ferredoxin oxidoreductases maintain the primary redox balance of Pyrococcus furiosus. J Biol Chem 2017; 292:14603-14616. [PMID: 28705933 DOI: 10.1074/jbc.m117.794172] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/10/2017] [Indexed: 01/08/2023] Open
Abstract
Electron bifurcation has recently gained acceptance as the third mechanism of energy conservation in which energy is conserved through the coupling of exergonic and endergonic reactions. A structure-based mechanism of bifurcation has been elucidated recently for the flavin-based enzyme NADH-dependent ferredoxin NADP+ oxidoreductase I (NfnI) from the hyperthermophillic archaeon Pyrococcus furiosus. NfnI is thought to be involved in maintaining the cellular redox balance, producing NADPH for biosynthesis by recycling the two other primary redox carriers, NADH and ferredoxin. The P. furiosus genome encodes an NfnI paralog termed NfnII, and the two are differentially expressed, depending on the growth conditions. In this study, we show that deletion of the genes encoding either NfnI or NfnII affects the cellular concentrations of NAD(P)H and particularly NADPH. This results in a moderate to severe growth phenotype in deletion mutants, demonstrating a key role for each enzyme in maintaining redox homeostasis. Despite their similarity in primary sequence and cofactor content, crystallographic, kinetic, and mass spectrometry analyses reveal that there are fundamental structural differences between the two enzymes, and NfnII does not catalyze the NfnI bifurcating reaction. Instead, it exhibits non-bifurcating ferredoxin NADP oxidoreductase-type activity. NfnII is therefore proposed to be a bifunctional enzyme and also to catalyze a bifurcating reaction, although its third substrate, in addition to ferredoxin and NADP(H), is as yet unknown.
Collapse
Affiliation(s)
- Diep M N Nguyen
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Gerrit J Schut
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Oleg A Zadvornyy
- the Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, and
| | | | - Saroj Poudel
- Microbiology and Immunology, Montana State University, Bozeman, Montana 59717
| | - Gina L Lipscomb
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Leslie A Adams
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Jessica T Dinsmore
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - William J Nixon
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Eric S Boyd
- Microbiology and Immunology, Montana State University, Bozeman, Montana 59717
| | | | - John W Peters
- the Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, and
| | - Michael W W Adams
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602,
| |
Collapse
|
20
|
Effects of (1 E,4 E)-2-Methyl-1,5-bis(4-nitrophenyl)penta-1,4-dien-3-one on Trypanosoma cruzi and Its Combinational Effect with Benznidazole, Ketoconazole, or Fluconazole. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7254193. [PMID: 28620619 PMCID: PMC5460392 DOI: 10.1155/2017/7254193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/25/2016] [Accepted: 01/10/2017] [Indexed: 01/09/2023]
Abstract
This study reports the activity induced by (1E,4E)-2-methyl-1,5-bis(4-nitrophenyl)penta-1,4-dien-3-one (A3K2A3) against Trypanosoma cruzi. This compound showed trypanocidal activity against the multiplicative epimastigote and amastigote forms of this protozoan, with IC50 values of 1.99 ± 0.17 and 1.20 ± 0.16 μM, respectively, and EC50 value of 15.57 ± 0.34 μM against trypomastigotes. The combination of A3K2A3 with benznidazole or ketoconazole demonstrated strong synergism, increasing effectiveness against trypomastigotes or epimastigotes of T. cruzi. In addition, the drug combination of A3K2A3 with benznidazole or ketoconazole on LLCMK2 cells demonstrated an antagonist effect, which resulted in greater protection of the cells from drug damage. The combination of the compound with fluconazole was not effective. Transmission and scanning electron micrographs showed changes on parasites, mainly in the cytoplasmatic membrane, nucleus, mitochondrion, and Golgi complex, and a large increase in the number of autophagosome-like structures and lipid-storage bodies, accompanied by volume reduction and rounding of the parasite. A3K2A3 might be a promising compound against T. cruzi.
Collapse
|
21
|
Ansell BRE, Baker L, Emery SJ, McConville MJ, Svärd SG, Gasser RB, Jex AR. Transcriptomics Indicates Active and Passive Metronidazole Resistance Mechanisms in Three Seminal Giardia Lines. Front Microbiol 2017; 8:398. [PMID: 28367140 PMCID: PMC5355454 DOI: 10.3389/fmicb.2017.00398] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/27/2017] [Indexed: 12/13/2022] Open
Abstract
Giardia duodenalis is an intestinal parasite that causes 200-300 million episodes of diarrhoea annually. Metronidazole (Mtz) is a front-line anti-giardial, but treatment failure is common and clinical resistance has been demonstrated. Mtz is thought to be activated within the parasite by oxidoreductase enzymes, and to kill by causing oxidative damage. In G. duodenalis, Mtz resistance involves active and passive mechanisms. Relatively low activity of iron-sulfur binding proteins, namely pyruvate:ferredoxin oxidoreductase (PFOR), ferredoxins, and nitroreductase-1, enable resistant cells to passively avoid Mtz activation. Additionally, low expression of oxygen-detoxification enzymes can allow passive (non-enzymatic) Mtz detoxification via futile redox cycling. In contrast, active resistance mechanisms include complete enzymatic detoxification of the pro-drug by nitroreductase-2 and enhanced repair of oxidized biomolecules via thioredoxin-dependent antioxidant enzymes. Molecular resistance mechanisms may be largely founded on reversible transcriptional changes, as some resistant lines revert to drug sensitivity during drug-free culture in vitro, or passage through the life cycle. To comprehensively characterize these changes, we undertook strand-specific RNA sequencing of three laboratory-derived Mtz-resistant lines, 106-2ID10, 713-M3, and WB-M3, and compared transcription relative to their susceptible parents. Common up-regulated genes encoded variant-specific surface proteins (VSPs), a high cysteine membrane protein, calcium and zinc channels, a Mad-2 cell cycle regulator and a putative fatty acid α-oxidase. Down-regulated genes included nitroreductase-1, putative chromate and quinone reductases, and numerous genes that act proximal to PFOR. Transcriptional changes in 106-2ID10 diverged from those in 713-r and WB-r (r ≤ 0.2), which were more similar to each other (r = 0.47). In 106-2ID10, a nonsense mutation in nitroreductase-1 transcripts could enhance passive resistance whereas increased transcription of nitroreductase-2, and a MATE transmembrane pump system, suggest active drug detoxification and efflux, respectively. By contrast, transcriptional changes in 713-M3 and WB-M3 indicated a higher oxidative stress load, attributed to Mtz- and oxygen-derived radicals, respectively. Quantitative comparisons of orthologous gene transcription between Mtz-resistant G. duodenalis and Trichomonas vaginalis, a closely related parasite, revealed changes in transcripts encoding peroxidases, heat shock proteins, and FMN-binding oxidoreductases, as prominent correlates of resistance. This work provides deep insight into Mtz-resistant G. duodenalis, and illuminates resistance-associated features across parasitic species.
Collapse
Affiliation(s)
- Brendan R. E. Ansell
- Faculty of Veterinary and Agricultural Sciences, The University of MelbourneMelbourne, VIC, Australia
| | - Louise Baker
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical ResearchMelbourne, VIC, Australia
| | - Samantha J. Emery
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical ResearchMelbourne, VIC, Australia
| | - Malcolm J. McConville
- Bio21 Molecular Science and Biotechnology Institute, The University of MelbourneMelbourne, VIC, Australia
| | - Staffan G. Svärd
- Department of Cell and Molecular Biology, Uppsala UniversityUppsala, Sweden
| | - Robin B. Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of MelbourneMelbourne, VIC, Australia
| | - Aaron R. Jex
- Faculty of Veterinary and Agricultural Sciences, The University of MelbourneMelbourne, VIC, Australia
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical ResearchMelbourne, VIC, Australia
| |
Collapse
|
22
|
Abstract
The outcome of an Entamoeba histolytica infection is variable and the contribution of genetic diversity within E. histolytica to human disease is not fully understood. The information provided by the whole genome sequence of the E. histolytica reference laboratory strain (HM-1:IMSS) and thirteen additional laboratory strains have been made publically available. In this review theories on the source of the unexpected level of structural diversity found in E. histolytica will be discussed.
Collapse
Affiliation(s)
- Carol A Gilchrist
- Department of Medicine, School of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
23
|
Divergent Transcriptional Responses to Physiological and Xenobiotic Stress in Giardia duodenalis. Antimicrob Agents Chemother 2016; 60:6034-45. [PMID: 27458219 DOI: 10.1128/aac.00977-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/19/2016] [Indexed: 12/22/2022] Open
Abstract
Understanding how parasites respond to stress can help to identify essential biological processes. Giardia duodenalis is a parasitic protist that infects the human gastrointestinal tract and causes 200 to 300 million cases of diarrhea annually. Metronidazole, a major antigiardial drug, is thought to cause oxidative damage within the infective trophozoite form. However, treatment efficacy is suboptimal, due partly to metronidazole-resistant infections. To elucidate conserved and stress-specific responses, we calibrated sublethal metronidazole, hydrogen peroxide, and thermal stresses to exert approximately equal pressure on trophozoite growth and compared transcriptional responses after 24 h of exposure. We identified 252 genes that were differentially transcribed in response to all three stressors, including glycolytic and DNA repair enzymes, a mitogen-activated protein (MAP) kinase, high-cysteine membrane proteins, flavin adenine dinucleotide (FAD) synthetase, and histone modification enzymes. Transcriptional responses appeared to diverge according to physiological or xenobiotic stress. Downregulation of the antioxidant system and α-giardins was observed only under metronidazole-induced stress, whereas upregulation of GARP-like transcription factors and their subordinate genes was observed in response to hydrogen peroxide and thermal stressors. Limited evidence was found in support of stress-specific response elements upstream of differentially transcribed genes; however, antisense derepression and differential regulation of RNA interference machinery suggest multiple epigenetic mechanisms of transcriptional control.
Collapse
|
24
|
Horizontal Gene Transfers from Bacteria to Entamoeba Complex: A Strategy for Dating Events along Species Divergence. J Parasitol Res 2016; 2016:3241027. [PMID: 27239333 PMCID: PMC4863120 DOI: 10.1155/2016/3241027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 04/03/2016] [Indexed: 01/08/2023] Open
Abstract
Horizontal gene transfer has proved to be relevant in eukaryotic evolution, as it has been found more often than expected and related to adaptation to certain niches. A relatively large list of laterally transferred genes has been proposed and evaluated for the parasite Entamoeba histolytica. The goals of this work were to elucidate the importance of lateral gene transfer along the evolutionary history of some members of the genus Entamoeba, through identifying donor groups and estimating the divergence time of some of these events. In order to estimate the divergence time of some of the horizontal gene transfer events, the dating of some Entamoeba species was necessary, following an indirect dating strategy based on the fossil record of plausible hosts. The divergence between E. histolytica and E. nuttallii probably occurred 5.93 million years ago (Mya); this lineage diverged from E. dispar 9.97 Mya, while the ancestor of the latter separated from E. invadens 68.18 Mya. We estimated times for 22 transferences; the most recent occurred 31.45 Mya and the oldest 253.59 Mya. Indeed, the acquisition of genes through lateral transfer may have triggered a period of adaptive radiation, thus playing a major role in the evolution of the Entamoeba genus.
Collapse
|
25
|
Jeelani G, Nozaki T. Entamoeba thiol-based redox metabolism: A potential target for drug development. Mol Biochem Parasitol 2016; 206:39-45. [PMID: 26775086 DOI: 10.1016/j.molbiopara.2016.01.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/08/2016] [Accepted: 01/09/2016] [Indexed: 02/06/2023]
Abstract
Amebiasis is an intestinal infection widespread throughout the world caused by the human pathogen Entamoeba histolytica. Metronidazole has been a drug of choice against amebiasis for decades despite its low efficacy against asymptomatic cyst carriers and emergence of resistance in other protozoa with similar anaerobic metabolism. Therefore, identification and characterization of specific targets is urgently needed to design new therapeutics for improved treatment against amebiasis. Toward this goal, thiol-dependent redox metabolism is of particular interest. The thiol-dependent redox metabolism in E. histolytica consists of proteins including peroxiredoxin, rubrerythrin, Fe-superoxide dismutase, flavodiiron proteins, NADPH: flavin oxidoreductase, and amino acids including l-cysteine, S-methyl-l-cysteine, and thioprolines (thiazolidine-4-carboxylic acids). E. histolytica completely lacks glutathione and its metabolism, and l-cysteine is the major intracellular low molecular mass thiol. Moreover, this parasite possesses a functional thioredoxin system consisting of thioredoxin and thioredoxin reductase, which is a ubiquitous oxidoreductase system with antioxidant and redox regulatory roles. In this review, we summarize and highlight the thiol-based redox metabolism and its control mechanisms in E. histolytica, in particular, the features of the system unique to E. histolytica, and its potential use for drug development against amebiasis.
Collapse
Affiliation(s)
- Ghulam Jeelani
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Tomoyoshi Nozaki
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
26
|
Ansell BRE, McConville MJ, Baker L, Korhonen PK, Young ND, Hall RS, Rojas CAA, Svärd SG, Gasser RB, Jex AR. Time-Dependent Transcriptional Changes in Axenic Giardia duodenalis Trophozoites. PLoS Negl Trop Dis 2015; 9:e0004261. [PMID: 26636323 PMCID: PMC4670223 DOI: 10.1371/journal.pntd.0004261] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/03/2015] [Indexed: 12/27/2022] Open
Abstract
Giardia duodenalis is the most common gastrointestinal protozoan parasite of humans and a significant contributor to the global burden of both diarrheal disease and post-infectious chronic disorders. Although G. duodenalis can be cultured axenically, significant gaps exist in our understanding of the molecular biology and metabolism of this pathogen. The present study employed RNA sequencing to characterize the mRNA transcriptome of G. duodenalis trophozoites in axenic culture, at log (48 h of growth), stationary (60 h), and declining (96 h) growth phases. Using ~400-times coverage of the transcriptome, we identified 754 differentially transcribed genes (DTGs), mainly representing two large DTG groups: 438 that were down-regulated in the declining phase relative to log and stationary phases, and 281 that were up-regulated. Differential transcription of prominent antioxidant and glycolytic enzymes implicated oxygen tension as a key factor influencing the transcriptional program of axenic trophozoites. Systematic bioinformatic characterization of numerous DTGs encoding hypothetical proteins of unknown function was achieved using structural homology searching. This powerful approach greatly informed the differential transcription analysis and revealed putative novel antioxidant-coding genes, and the presence of a near-complete two-component-like signaling system that may link cytosolic redox or metabolite sensing to the observed transcriptional changes. Motif searching applied to promoter regions of the two large DTG groups identified different putative transcription factor-binding motifs that may underpin global transcriptional regulation. This study provides new insights into the drivers and potential mediators of transcriptional variation in axenic G. duodenalis and provides context for static transcriptional studies.
Collapse
Affiliation(s)
- Brendan R. E. Ansell
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Malcolm J. McConville
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Louise Baker
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Pasi K. Korhonen
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Neil D. Young
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Ross S. Hall
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Cristian A. A. Rojas
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Staffan G. Svärd
- Department of Cell & Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Robin B. Gasser
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Aaron R. Jex
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
27
|
Reyna-Fabián ME, Zermeño V, Ximénez C, Flores J, Romero MF, Diaz D, Argueta J, Moran P, Valadez A, Cerritos R. Analysis of the Bacterial Diversity in Liver Abscess: Differences Between Pyogenic and Amebic Abscesses. Am J Trop Med Hyg 2015; 94:147-55. [PMID: 26572872 DOI: 10.4269/ajtmh.15-0458] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/19/2015] [Indexed: 11/07/2022] Open
Abstract
Several recent studies have demonstrated that virulence in Entamoeba histolytica is triggered in the presence of both pathogenic and nonpathogenic bacteria species using in vitro and in vivo experimental animal models. In this study, we examined samples aspirated from abscess material obtained from patients who were clinically diagnosed with amebic liver abscess (ALA) or pyogenic liver abscess (PLA). To determine the diversity of bacterial species in the abscesses, we performed partial 16S rRNA gene sequencing. In addition, the E. histolytica and Entamoeba dispar species were genotyped using tRNA-linked short tandem repeats as specific molecular markers. The association between clinical data and bacterial and parasite genotypes were examined through a correspondence analysis. The results showed the presence of numerous bacterial groups. These taxonomic groups constitute common members of the gut microbiota, although all of the detected bacterial species have a close phylogenetic relationship with bacterial pathogens. Furthermore, some patients clinically diagnosed with PLA and ALA were coinfected with E. dispar or E. histolytica, which suggests that the virulence of these parasites increased in the presence of bacteria. However, no specific bacterial groups were associated with this effect. Together, our results suggest a nonspecific mechanism of virulence modulation by bacteria in Entamoeba.
Collapse
Affiliation(s)
- Miriam E Reyna-Fabián
- Departamento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México City, México; Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), México City, México
| | - Valeria Zermeño
- Departamento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México City, México; Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), México City, México
| | - Cecilia Ximénez
- Departamento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México City, México; Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), México City, México
| | - Janin Flores
- Departamento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México City, México; Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), México City, México
| | - Miguel F Romero
- Departamento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México City, México; Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), México City, México
| | - Daniel Diaz
- Departamento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México City, México; Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), México City, México
| | - Jesús Argueta
- Departamento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México City, México; Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), México City, México
| | - Patricia Moran
- Departamento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México City, México; Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), México City, México
| | - Alicia Valadez
- Departamento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México City, México; Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), México City, México
| | - René Cerritos
- Departamento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México City, México; Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), México City, México
| |
Collapse
|
28
|
Ansell BRE, McConville MJ, Ma'ayeh SY, Dagley MJ, Gasser RB, Svärd SG, Jex AR. Drug resistance in Giardia duodenalis. Biotechnol Adv 2015; 33:888-901. [PMID: 25922317 DOI: 10.1016/j.biotechadv.2015.04.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/21/2015] [Accepted: 04/21/2015] [Indexed: 02/07/2023]
Abstract
Giardia duodenalis is a microaerophilic parasite of the human gastrointestinal tract and a major contributor to diarrheal and post-infectious chronic gastrointestinal disease world-wide. Treatment of G. duodenalis infection currently relies on a small number of drug classes. Nitroheterocyclics, in particular metronidazole, have represented the front line treatment for the last 40 years. Nitroheterocyclic-resistant G. duodenalis have been isolated from patients and created in vitro, prompting considerable research into the biomolecular mechanisms of resistance. These compounds are redox-active and are believed to damage proteins and DNA after being activated by oxidoreductase enzymes in metabolically active cells. In this review, we explore the molecular phenotypes of nitroheterocyclic-resistant G. duodenalis described to date in the context of the protist's unusual glycolytic and antioxidant systems. We propose that resistance mechanisms are likely to extend well beyond currently described resistance-associated enzymes (i.e., pyruvate ferredoxin oxidoreductases and nitroreductases), to include NAD(P)H- and flavin-generating pathways, and possibly redox-sensitive epigenetic regulation. Mechanisms that allow G. duodenalis to tolerate oxidative stress may lead to resistance against both oxygen and nitroheterocyclics, with implications for clinical control. The present review highlights the potential for systems biology tools and advanced bioinformatics to further investigate the multifaceted mechanisms of nitroheterocyclic resistance in this important pathogen.
Collapse
Affiliation(s)
- Brendan R E Ansell
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Cnr Park Dr and Flemington Rd, Parkville, VIC 3010, Australia.
| | - Malcolm J McConville
- Bio21 Institute, University of Melbourne, 30 Flemington Rd, Parkville, VIC 3010, Australia
| | - Showgy Y Ma'ayeh
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Box 596, SE-751 24 Uppsala, Sweden
| | - Michael J Dagley
- Bio21 Institute, University of Melbourne, 30 Flemington Rd, Parkville, VIC 3010, Australia
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Cnr Park Dr and Flemington Rd, Parkville, VIC 3010, Australia
| | - Staffan G Svärd
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Box 596, SE-751 24 Uppsala, Sweden
| | - Aaron R Jex
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Cnr Park Dr and Flemington Rd, Parkville, VIC 3010, Australia
| |
Collapse
|
29
|
Comparative characterisation of two nitroreductases from Giardia lamblia as potential activators of nitro compounds. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2015; 5:37-43. [PMID: 27099829 PMCID: PMC4813764 DOI: 10.1016/j.ijpddr.2015.03.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/12/2015] [Accepted: 03/16/2015] [Indexed: 11/23/2022]
Abstract
G. lamblia has two nitroreductases with substrate specificities not only for nitro compounds, but also for quinones. GlNR1 rather activates nitro drugs by forming toxic intermediates, GlNR2 rather inactivates them.
Giardia lamblia is a protozoan parasite that causes giardiasis, a diarrhoeal disease affecting humans and various animal species. Nitro drugs such as the nitroimidazole metronidazole and the nitrothiazolide nitazoxanide are used for treatment of giardiasis. Nitroreductases such as GlNR1 and GlNR2 may play a role in activation or inactivation of these drugs. The aim of this work is to characterise these two enyzmes using functional assays. For respective analyses recombinant analogues from GlNR1 and GlNR2 were produced in Escherichia coli. E. coli expressing GlNR1 and GlNR2 alone or together were grown in the presence of nitro compounds. Furthermore, pull-down assays were performed using HA-tagged GlNR1 and GlNR2 as baits. As expected, E. coli expressing GlNR1 were more susceptible to metronidazole under aerobic and semi-aerobic and to nitazoxanide under semi-aerobic growth conditions whereas E. coli expressing GlNR2 were susceptible to neither drug. Interestingly, expression of both nitroreductases gave the same results as expression of GlNR2 alone. In functional assays, both nitroreductases had their strongest activities on the quinone menadione (vitamin K3) and FAD, but reduction of nitro compounds including the nitro drugs metronidazole and nitazoxanide was clearly detected. Full reduction of 7-nitrocoumarin to 7-aminocoumarin was preferentially achieved with GlNR2. Pull-down assays revealed that GlNR1 and GlNR2 interacted in vivo forming a multienzyme complex. These findings suggest that both nitroreductases are multifunctional. Their main biological role may reside in the reduction of vitamin K analogues and FAD. Activation by GlNR1 or inactivation by GlNR2 of nitro drugs may be the consequence of a secondary enzymatic activity either yielding (GlNR1) or eliminating (GlNR2) toxic intermediates after reduction of these compounds.
Collapse
|
30
|
Genome mining offers a new starting point for parasitology research. Parasitol Res 2015; 114:399-409. [PMID: 25563615 DOI: 10.1007/s00436-014-4299-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 12/23/2014] [Indexed: 12/11/2022]
Abstract
Parasites including helminthes, protozoa, and medical arthropod vectors are a major cause of global infectious diseases, affecting one-sixth of the world's population, which are responsible for enormous levels of morbidity and mortality important and remain impediments to economic development especially in tropical countries. Prevalent drug resistance, lack of highly effective and practical vaccines, as well as specific and sensitive diagnostic markers are proving to be challenging problems in parasitic disease control in most parts of the world. The impressive progress recently made in genome-wide analysis of parasites of medical importance, including trematodes of Clonorchis sinensis, Opisthorchis viverrini, Schistosoma haematobium, S. japonicum, and S. mansoni; nematodes of Brugia malayi, Loa loa, Necator americanus, Trichinella spiralis, and Trichuris suis; cestodes of Echinococcus granulosus, E. multilocularis, and Taenia solium; protozoa of Babesia bovis, B. microti, Cryptosporidium hominis, Eimeria falciformis, E. histolytica, Giardia intestinalis, Leishmania braziliensis, L. donovani, L. major, Plasmodium falciparum, P. vivax, Trichomonas vaginalis, Trypanosoma brucei and T. cruzi; and medical arthropod vectors of Aedes aegypti, Anopheles darlingi, A. sinensis, and Culex quinquefasciatus, have been systematically covered in this review for a comprehensive understanding of the genetic information contained in nuclear, mitochondrial, kinetoplast, plastid, or endosymbiotic bacterial genomes of parasites, further valuable insight into parasite-host interactions and development of promising novel drug and vaccine candidates and preferable diagnostic tools, thereby underpinning the prevention and control of parasitic diseases.
Collapse
|
31
|
Grant JR, Katz LA. Phylogenomic study indicates widespread lateral gene transfer in Entamoeba and suggests a past intimate relationship with parabasalids. Genome Biol Evol 2014; 6:2350-60. [PMID: 25146649 PMCID: PMC4217692 DOI: 10.1093/gbe/evu179] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2014] [Indexed: 12/13/2022] Open
Abstract
Lateral gene transfer (LGT) has impacted the evolutionary history of eukaryotes, though to a lesser extent than in bacteria and archaea. Detecting LGT and distinguishing it from single gene tree artifacts is difficult, particularly when considering very ancient events (i.e., over hundreds of millions of years). Here, we use two independent lines of evidence--a taxon-rich phylogenetic approach and an assessment of the patterns of gene presence/absence--to evaluate the extent of LGT in the parasitic amoebozoan genus Entamoeba. Previous work has suggested that a number of genes in the genome of Entamoeba spp. were acquired by LGT. Our approach, using an automated phylogenomic pipeline to build taxon-rich gene trees, suggests that LGT is more extensive than previously thought. Our analyses reveal that genes have frequently entered the Entamoeba genome via nonvertical events, including at least 116 genes acquired directly from bacteria or archaea, plus an additional 22 genes in which Entamoeba plus one other eukaryote are nested among bacteria and/or archaea. These genes may make good candidates for novel therapeutics, as drugs targeting these genes are less likely to impact the human host. Although we recognize the challenges of inferring intradomain transfers given systematic errors in gene trees, we find 109 genes supporting LGT from a eukaryote to Entamoeba spp., and 178 genes unique to Entamoeba spp. and one other eukaryotic taxon (i.e., presence/absence data). Inspection of these intradomain LGTs provide evidence of a common sister relationship between genes of Entamoeba (Amoebozoa) and parabasalids (Excavata). We speculate that this indicates a past close relationship (e.g., symbiosis) between ancestors of these extant lineages.
Collapse
Affiliation(s)
- Jessica R Grant
- Department of Biological Sciences, Smith College, Northampton, MA
| | - Laura A Katz
- Department of Biological Sciences, Smith College, Northampton, MA Program in Organismic and Evolutionary Biology, University of Massachusetts
| |
Collapse
|
32
|
Abstract
The development of rigorous molecular taxonomy pioneered by Carl Woese has freed evolution science to explore numerous cellular activities that lead to genome change in evolution. These activities include symbiogenesis, inter- and intracellular horizontal DNA transfer, incorporation of DNA from infectious agents, and natural genetic engineering, especially the activity of mobile elements. This article reviews documented examples of all these processes and proposes experiments to extend our understanding of cell-mediated genome change.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology; University of Chicago; Chicago, IL USA
| |
Collapse
|
33
|
Xu F, Jerlström-Hultqvist J, Einarsson E, Ástvaldsson Á, Svärd SG, Andersson JO. The genome of Spironucleus salmonicida highlights a fish pathogen adapted to fluctuating environments. PLoS Genet 2014; 10:e1004053. [PMID: 24516394 PMCID: PMC3916229 DOI: 10.1371/journal.pgen.1004053] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 11/08/2013] [Indexed: 11/18/2022] Open
Abstract
Spironucleus salmonicida causes systemic infections in salmonid fish. It belongs to the group diplomonads, binucleated heterotrophic flagellates adapted to micro-aerobic environments. Recently we identified energy-producing hydrogenosomes in S. salmonicida. Here we present a genome analysis of the fish parasite with a focus on the comparison to the more studied diplomonad Giardia intestinalis. We annotated 8067 protein coding genes in the ∼12.9 Mbp S. salmonicida genome. Unlike G. intestinalis, promoter-like motifs were found upstream of genes which are correlated with gene expression, suggesting a more elaborate transcriptional regulation. S. salmonicida can utilise more carbohydrates as energy sources, has an extended amino acid and sulfur metabolism, and more enzymes involved in scavenging of reactive oxygen species compared to G. intestinalis. Both genomes have large families of cysteine-rich membrane proteins. A cluster analysis indicated large divergence of these families in the two diplomonads. Nevertheless, one of S. salmonicida cysteine-rich proteins was localised to the plasma membrane similar to G. intestinalis variant-surface proteins. We identified S. salmonicida homologs to cyst wall proteins and showed that one of these is functional when expressed in Giardia. This suggests that the fish parasite is transmitted as a cyst between hosts. The extended metabolic repertoire and more extensive gene regulation compared to G. intestinalis suggest that the fish parasite is more adapted to cope with environmental fluctuations. Our genome analyses indicate that S. salmonicida is a well-adapted pathogen that can colonize different sites in the host. Studies of model organisms are very powerful. However, to appreciate the enormous diversity of genetic and cell biological processes we need to extend the number of available model organisms. For example, there are very few model organisms for diverse microbial eukaryotes, a group of organisms which indeed represents the vast majority of the eukaryotic diversity. To this end, we have developed a system to do genetic modification on the Atlantic salmon pathogen Spironucleus salmonicida. Using this system we could show that the organism is capable of producing hydrogen within specialised compartments. Here we present the genome sequence of S. salmonicida together with a thorough annotation. We compare the results with the closest available model organism, the human intestinal parasite Giardia intestinalis. The fish parasite has a more elaborate system for regulation of gene expression, as well as a larger metabolic capacity. This indicates that S. salmonicida is a well-adapted pathogen that can deal with fluctuating environments, an important trait to be able to establish systemic infections in the host. The development of S. salmonicida into a model system will benefit the studies of fish infections, as well as cell biological processes.
Collapse
Affiliation(s)
- Feifei Xu
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, BMC, Uppsala, Sweden
| | - Jon Jerlström-Hultqvist
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, BMC, Uppsala, Sweden
| | - Elin Einarsson
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, BMC, Uppsala, Sweden
| | - Ásgeir Ástvaldsson
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, BMC, Uppsala, Sweden
| | - Staffan G. Svärd
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, BMC, Uppsala, Sweden
| | - Jan O. Andersson
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, BMC, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
34
|
Giardia intestinalis incorporates heme into cytosolic cytochrome b₅. EUKARYOTIC CELL 2013; 13:231-9. [PMID: 24297440 DOI: 10.1128/ec.00200-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The anaerobic intestinal pathogen Giardia intestinalis does not possess enzymes for heme synthesis, and it also lacks the typical set of hemoproteins that are involved in mitochondrial respiration and cellular oxygen stress management. Nevertheless, G. intestinalis may require heme for the function of particular hemoproteins, such as cytochrome b5 (cytb5). We have analyzed the sequences of eukaryotic cytb5 proteins and identified three distinct cytb5 groups: group I, which consists of C-tail membrane-anchored cytb5 proteins; group II, which includes soluble cytb5 proteins; and group III, which comprises the fungal cytb5 proteins. The majority of eukaryotes possess both group I and II cytb5 proteins, whereas three Giardia paralogs belong to group II. We have identified a fourth Giardia cytb5 paralog (gCYTb5-IV) that is rather divergent and possesses an unusual 134-residue N-terminal extension. Recombinant Giardia cytb5 proteins, including gCYTb5-IV, were expressed in Escherichia coli and exhibited characteristic UV-visible spectra that corresponded to heme-loaded cytb5 proteins. The expression of the recombinant gCYTb5-IV in G. intestinalis resulted in the increased import of extracellular heme and its incorporation into the protein, whereas this effect was not observed when gCYTb5-IV containing a mutated heme-binding site was expressed. The electrons for Giardia cytb5 proteins may be provided by the NADPH-dependent Tah18-like oxidoreductase GiOR-1. Therefore, GiOR-1 and cytb5 may constitute a novel redox system in G. intestinalis. To our knowledge, G. intestinalis is the first anaerobic eukaryote in which the presence of heme has been directly demonstrated.
Collapse
|
35
|
Yue J, Sun G, Hu X, Huang J. The scale and evolutionary significance of horizontal gene transfer in the choanoflagellate Monosiga brevicollis. BMC Genomics 2013; 14:729. [PMID: 24156600 PMCID: PMC4046809 DOI: 10.1186/1471-2164-14-729] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 10/17/2013] [Indexed: 12/29/2022] Open
Abstract
Background It is generally agreed that horizontal gene transfer (HGT) is common in phagotrophic protists. However, the overall scale of HGT and the cumulative impact of acquired genes on the evolution of these organisms remain largely unknown. Results Choanoflagellates are phagotrophs and the closest living relatives of animals. In this study, we performed phylogenomic analyses to investigate the scale of HGT and the evolutionary importance of horizontally acquired genes in the choanoflagellate Monosiga brevicollis. Our analyses identified 405 genes that are likely derived from algae and prokaryotes, accounting for approximately 4.4% of the Monosiga nuclear genome. Many of the horizontally acquired genes identified in Monosiga were probably acquired from food sources, rather than by endosymbiotic gene transfer (EGT) from obsolete endosymbionts or plastids. Of 193 genes identified in our analyses with functional information, 84 (43.5%) are involved in carbohydrate or amino acid metabolism, and 45 (23.3%) are transporters and/or involved in response to oxidative, osmotic, antibiotic, or heavy metal stresses. Some identified genes may also participate in biosynthesis of important metabolites such as vitamins C and K12, porphyrins and phospholipids. Conclusions Our results suggest that HGT is frequent in Monosiga brevicollis and might have contributed substantially to its adaptation and evolution. This finding also highlights the importance of HGT in the genome and organismal evolution of phagotrophic eukaryotes. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-14-729) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Jinling Huang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
36
|
Wijayawardena BK, Minchella DJ, DeWoody JA. Hosts, parasites, and horizontal gene transfer. Trends Parasitol 2013; 29:329-38. [DOI: 10.1016/j.pt.2013.05.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/03/2013] [Accepted: 05/06/2013] [Indexed: 12/16/2022]
|
37
|
Müller J, Schildknecht P, Müller N. Metabolism of nitro drugs metronidazole and nitazoxanide in Giardia lamblia: characterization of a novel nitroreductase (GlNR2). J Antimicrob Chemother 2013; 68:1781-9. [PMID: 23580565 DOI: 10.1093/jac/dkt106] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES The protozoan parasite Giardia lamblia causes giardiasis, a persistent diarrhoea. Nitro drugs such as the nitroimidazole metronidazole and the nitrothiazolide nitazoxanide are used for the treatment of giardiasis. Nitroreductases may play a role in activating these drugs. G. lamblia contains two nitroreductases, GlNR1 and GlNR2. The aim of this work was to elucidate the role of GlNR2. METHODS Expression of GlNR2 was analysed by reverse transcription PCR. Recombinant GlNR2 was overexpressed in G. lamblia and drug susceptibility was analysed. Recombinant GlNR2 was subjected to functional assays. Escherichia coli expressing full-length or truncated GlNR1 and GlNR2 were grown in the presence of nitro compounds. Using E. coli reporter strains for nitric oxide and DNA damage responses, we analysed whether GlNR1 and GlNR2 elicited the respective responses in the presence, or absence, of the drugs. RESULTS G. lamblia trophozoites overexpressing GlNR2 were less susceptible to both nitro drugs as compared with control trophozoites. GlNR2 was a functional nitroreductase when expressed in E. coli. E. coli expressing GlNR1 was more susceptible to metronidazole under aerobic and semi-aerobic and to nitazoxanide under semi-aerobic growth conditions. E. coli expressing GlNR2 was not susceptible to either drug. In reporter strains, GlNR1, but not GlNR2, elicited nitric oxide and DNA repair responses, even in the absence of nitro drugs. CONCLUSIONS These findings suggest that GlNR2 is an active nitroreductase with a mode of action different from that of GlNR1. Thus, susceptibility to nitro drugs may depend not only on activation, but also on inactivation of the drugs by specific nitroreductases.
Collapse
Affiliation(s)
- Joachim Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Berne, Länggass-Strasse 122, CH-3012 Berne, Switzerland
| | | | | |
Collapse
|
38
|
Targeting the substrate preference of a type I nitroreductase to develop antitrypanosomal quinone-based prodrugs. Antimicrob Agents Chemother 2012; 56:5821-30. [PMID: 22948871 DOI: 10.1128/aac.01227-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitroheterocyclic prodrugs are used to treat infections caused by Trypanosoma cruzi and Trypanosoma brucei. A key component in selectivity involves a specific activation step mediated by a protein homologous with type I nitroreductases, enzymes found predominantly in prokaryotes. Using data from determinations based on flavin cofactor, oxygen-insensitive activity, substrate range, and inhibition profiles, we demonstrate that NTRs from T. cruzi and T. brucei display many characteristics of their bacterial counterparts. Intriguingly, both enzymes preferentially use NADH and quinones as the electron donor and acceptor, respectively, suggesting that they may function as NADH:ubiquinone oxidoreductases in the parasite mitochondrion. We exploited this preference to determine the trypanocidal activity of a library of aziridinyl benzoquinones against bloodstream-form T. brucei. Biochemical screens using recombinant NTR demonstrated that several quinones were effective substrates for the parasite enzyme, having K(cat)/K(m) values 2 orders of magnitude greater than those of nifurtimox and benznidazole. In tests against T. brucei, antiparasitic activity mirrored the biochemical data, with the most potent compounds generally being preferred enzyme substrates. Trypanocidal activity was shown to be NTR dependent, as parasites with elevated levels of this enzyme were hypersensitive to the aziridinyl agent. By unraveling the biochemical characteristics exhibited by the trypanosomal NTRs, we have shown that quinone-based compounds represent a class of trypanocidal compound.
Collapse
|
39
|
Abstract
In this review, the current status of genomic and proteomic research on Giardia is examined in terms of evolutionary biology, phylogenetic relationships and taxonomy. The review also describes how characterising genetic variation in Giardia from numerous hosts and endemic areas has provided a better understanding of life cycle patterns, transmission and the epidemiology of Giardia infections in humans, domestic animals and wildlife. Some progress has been made in relating genomic information to the phenotype of Giardia, and as a consequence, new information has been obtained on aspects of developmental biology and the host-parasite relationship. However, deficiencies remain in our understanding of pathogenesis and host specificity, highlighting the limitations of currently available genomic datasets.
Collapse
|
40
|
Müller M, Mentel M, van Hellemond JJ, Henze K, Woehle C, Gould SB, Yu RY, van der Giezen M, Tielens AGM, Martin WF. Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol Mol Biol Rev 2012; 76:444-95. [PMID: 22688819 PMCID: PMC3372258 DOI: 10.1128/mmbr.05024-11] [Citation(s) in RCA: 517] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Major insights into the phylogenetic distribution, biochemistry, and evolutionary significance of organelles involved in ATP synthesis (energy metabolism) in eukaryotes that thrive in anaerobic environments for all or part of their life cycles have accrued in recent years. All known eukaryotic groups possess an organelle of mitochondrial origin, mapping the origin of mitochondria to the eukaryotic common ancestor, and genome sequence data are rapidly accumulating for eukaryotes that possess anaerobic mitochondria, hydrogenosomes, or mitosomes. Here we review the available biochemical data on the enzymes and pathways that eukaryotes use in anaerobic energy metabolism and summarize the metabolic end products that they generate in their anaerobic habitats, focusing on the biochemical roles that their mitochondria play in anaerobic ATP synthesis. We present metabolic maps of compartmentalized energy metabolism for 16 well-studied species. There are currently no enzymes of core anaerobic energy metabolism that are specific to any of the six eukaryotic supergroup lineages; genes present in one supergroup are also found in at least one other supergroup. The gene distribution across lineages thus reflects the presence of anaerobic energy metabolism in the eukaryote common ancestor and differential loss during the specialization of some lineages to oxic niches, just as oxphos capabilities have been differentially lost in specialization to anoxic niches and the parasitic life-style. Some facultative anaerobes have retained both aerobic and anaerobic pathways. Diversified eukaryotic lineages have retained the same enzymes of anaerobic ATP synthesis, in line with geochemical data indicating low environmental oxygen levels while eukaryotes arose and diversified.
Collapse
Affiliation(s)
| | - Marek Mentel
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Jaap J. van Hellemond
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Katrin Henze
- Institute of Molecular Evolution, University of Düsseldorf, Düsseldorf, Germany
| | - Christian Woehle
- Institute of Molecular Evolution, University of Düsseldorf, Düsseldorf, Germany
| | - Sven B. Gould
- Institute of Molecular Evolution, University of Düsseldorf, Düsseldorf, Germany
| | - Re-Young Yu
- Institute of Molecular Evolution, University of Düsseldorf, Düsseldorf, Germany
| | - Mark van der Giezen
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Aloysius G. M. Tielens
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - William F. Martin
- Institute of Molecular Evolution, University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
41
|
Testa F, Mastronicola D, Cabelli DE, Bordi E, Pucillo LP, Sarti P, Saraiva LM, Giuffrè A, Teixeira M. The superoxide reductase from the early diverging eukaryote Giardia intestinalis. Free Radic Biol Med 2011; 51:1567-74. [PMID: 21839165 DOI: 10.1016/j.freeradbiomed.2011.07.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 06/02/2011] [Accepted: 07/20/2011] [Indexed: 12/13/2022]
Abstract
Unlike superoxide dismutases (SODs), superoxide reductases (SORs) eliminate superoxide anion (O(2)(•-)) not through its dismutation, but via reduction to hydrogen peroxide (H(2)O(2)) in the presence of an electron donor. The microaerobic protist Giardia intestinalis, responsible for a common intestinal disease in humans, though lacking SOD and other canonical reactive oxygen species-detoxifying systems, is among the very few eukaryotes encoding a SOR yet identified. In this study, the recombinant SOR from Giardia (SOR(Gi)) was purified and characterized by pulse radiolysis and stopped-flow spectrophotometry. The protein, isolated in the reduced state, after oxidation by superoxide or hexachloroiridate(IV), yields a resting species (T(final)) with Fe(3+) ligated to glutamate or hydroxide depending on pH (apparent pK(a)=8.7). Although showing negligible SOD activity, reduced SOR(Gi) reacts with O(2)(•-) with a pH-independent second-order rate constant k(1)=1.0×10(9) M(-1) s(-1) and yields the ferric-(hydro)peroxo intermediate T(1); this in turn rapidly decays to the T(final) state with pH-dependent rates, without populating other detectable intermediates. Immunoblotting assays show that SOR(Gi) is expressed in the disease-causing trophozoite of Giardia. We propose that the superoxide-scavenging activity of SOR in Giardia may promote the survival of this air-sensitive parasite in the fairly aerobic proximal human small intestine during infection.
Collapse
Affiliation(s)
- Fabrizio Testa
- Department of Biochemical Sciences, CNR Institute of Molecular Biology and Pathology, Sapienza Università di Roma, I-00185 Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Denoeud F, Roussel M, Noel B, Wawrzyniak I, Da Silva C, Diogon M, Viscogliosi E, Brochier-Armanet C, Couloux A, Poulain J, Segurens B, Anthouard V, Texier C, Blot N, Poirier P, Ng GC, Tan KSW, Artiguenave F, Jaillon O, Aury JM, Delbac F, Wincker P, Vivarès CP, El Alaoui H. Genome sequence of the stramenopile Blastocystis, a human anaerobic parasite. Genome Biol 2011; 12:R29. [PMID: 21439036 PMCID: PMC3129679 DOI: 10.1186/gb-2011-12-3-r29] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 01/04/2011] [Accepted: 03/25/2011] [Indexed: 01/28/2023] Open
Abstract
Background Blastocystis is a highly prevalent anaerobic eukaryotic parasite of humans and animals that is associated with various gastrointestinal and extraintestinal disorders. Epidemiological studies have identified different subtypes but no one subtype has been definitively correlated with disease. Results Here we report the 18.8 Mb genome sequence of a Blastocystis subtype 7 isolate, which is the smallest stramenopile genome sequenced to date. The genome is highly compact and contains intriguing rearrangements. Comparisons with other available stramenopile genomes (plant pathogenic oomycete and diatom genomes) revealed effector proteins potentially involved in the adaptation to the intestinal environment, which were likely acquired via horizontal gene transfer. Moreover, Blastocystis living in anaerobic conditions harbors mitochondria-like organelles. An incomplete oxidative phosphorylation chain, a partial Krebs cycle, amino acid and fatty acid metabolisms and an iron-sulfur cluster assembly are all predicted to occur in these organelles. Predicted secretory proteins possess putative activities that may alter host physiology, such as proteases, protease-inhibitors, immunophilins and glycosyltransferases. This parasite also possesses the enzymatic machinery to tolerate oxidative bursts resulting from its own metabolism or induced by the host immune system. Conclusions This study provides insights into the genome architecture of this unusual stramenopile. It also proposes candidate genes with which to study the physiopathology of this parasite and thus may lead to further investigations into Blastocystis-host interactions.
Collapse
Affiliation(s)
- France Denoeud
- Genoscope (CEA) and CNRS UMR 8030, Université d'Evry, 2 rue Gaston Crémieux, 91057 Evry, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Mower JP, Stefanović S, Hao W, Gummow JS, Jain K, Ahmed D, Palmer JD. Horizontal acquisition of multiple mitochondrial genes from a parasitic plant followed by gene conversion with host mitochondrial genes. BMC Biol 2010; 8:150. [PMID: 21176201 PMCID: PMC3022774 DOI: 10.1186/1741-7007-8-150] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 12/22/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Horizontal gene transfer (HGT) is relatively common in plant mitochondrial genomes but the mechanisms, extent and consequences of transfer remain largely unknown. Previous results indicate that parasitic plants are often involved as either transfer donors or recipients, suggesting that direct contact between parasite and host facilitates genetic transfer among plants. RESULTS In order to uncover the mechanistic details of plant-to-plant HGT, the extent and evolutionary fate of transfer was investigated between two groups: the parasitic genus Cuscuta and a small clade of Plantago species. A broad polymerase chain reaction (PCR) survey of mitochondrial genes revealed that at least three genes (atp1, atp6 and matR) were recently transferred from Cuscuta to Plantago. Quantitative PCR assays show that these three genes have a mitochondrial location in the one species line of Plantago examined. Patterns of sequence evolution suggest that these foreign genes degraded into pseudogenes shortly after transfer and reverse transcription (RT)-PCR analyses demonstrate that none are detectably transcribed. Three cases of gene conversion were detected between native and foreign copies of the atp1 gene. The identical phylogenetic distribution of the three foreign genes within Plantago and the retention of cytidines at ancestral positions of RNA editing indicate that these genes were probably acquired via a single, DNA-mediated transfer event. However, samplings of multiple individuals from two of the three species in the recipient Plantago clade revealed complex and perplexing phylogenetic discrepancies and patterns of sequence divergence for all three of the foreign genes. CONCLUSIONS This study reports the best evidence to date that multiple mitochondrial genes can be transferred via a single HGT event and that transfer occurred via a strictly DNA-level intermediate. The discovery of gene conversion between co-resident foreign and native mitochondrial copies suggests that transferred genes may be evolutionarily important in generating mitochondrial genetic diversity. Finally, the complex relationships within each lineage of transferred genes imply a surprisingly complicated history of these genes in Plantago subsequent to their acquisition via HGT and this history probably involves some combination of additional transfers (including intracellular transfer), gene duplication, differential loss and mutation-rate variation. Unravelling this history will probably require sequencing multiple mitochondrial and nuclear genomes from Plantago. See Commentary: http://www.biomedcentral.com/1741-7007/8/147.
Collapse
Affiliation(s)
- Jeffrey P Mower
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana 47403, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - Saša Stefanović
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana 47403, USA
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Weilong Hao
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana 47403, USA
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, M5G 1L5, Canada
| | - Julie S Gummow
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana 47403, USA
| | - Kanika Jain
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - Dana Ahmed
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - Jeffrey D Palmer
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana 47403, USA
| |
Collapse
|
44
|
Ginger ML, Fritz-Laylin LK, Fulton C, Cande WZ, Dawson SC. Intermediary metabolism in protists: a sequence-based view of facultative anaerobic metabolism in evolutionarily diverse eukaryotes. Protist 2010; 161:642-71. [PMID: 21036663 PMCID: PMC3021972 DOI: 10.1016/j.protis.2010.09.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Protists account for the bulk of eukaryotic diversity. Through studies of gene and especially genome sequences the molecular basis for this diversity can be determined. Evident from genome sequencing are examples of versatile metabolism that go far beyond the canonical pathways described for eukaryotes in textbooks. In the last 2-3 years, genome sequencing and transcript profiling has unveiled several examples of heterotrophic and phototrophic protists that are unexpectedly well-equipped for ATP production using a facultative anaerobic metabolism, including some protists that can (Chlamydomonas reinhardtii) or are predicted (Naegleria gruberi, Acanthamoeba castellanii, Amoebidium parasiticum) to produce H(2) in their metabolism. It is possible that some enzymes of anaerobic metabolism were acquired and distributed among eukaryotes by lateral transfer, but it is also likely that the common ancestor of eukaryotes already had far more metabolic versatility than was widely thought a few years ago. The discussion of core energy metabolism in unicellular eukaryotes is the subject of this review. Since genomic sequencing has so far only touched the surface of protist diversity, it is anticipated that sequences of additional protists may reveal an even wider range of metabolic capabilities, while simultaneously enriching our understanding of the early evolution of eukaryotes.
Collapse
Affiliation(s)
- Michael L Ginger
- School of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YQ, UK.
| | | | | | | | | |
Collapse
|
45
|
Upcroft JA, Krauer KG, Upcroft P. Chromosome sequence maps of the Giardia lamblia assemblage A isolate WB. Trends Parasitol 2010; 26:484-91. [PMID: 20739222 DOI: 10.1016/j.pt.2010.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Revised: 07/07/2010] [Accepted: 07/08/2010] [Indexed: 12/11/2022]
Abstract
Two genotypes, assemblages A and B, of the pathogenic gut protozoan parasite Giardia lamblia infect humans. Symptoms of infection range from asymptomatic to chronic diarrhea. Giardia chromosomes have long been characterized but not until the publication of the first Giardia genome sequence was chromosome mapping work, commenced nearly two decades ago, completed. Initial mapping studies identified and ordered Not I chromosome segments (summating to 1.8 Mb) of the estimated 2 Mb chromosome 3. The resulting map was confirmed with the release of the Giardia genome sequence and this revitalized mapping. The result is that 93% of the WB isolate genome sequence has now been assigned to one of five major chromosomes, and community access to these data has been made available through GiardiaDB, the database for Giardia genomes.
Collapse
|
46
|
Abstract
The trypanocidal agents nifurtimox and benznidazole both function as prodrugs and must undergo enzyme-mediated activation, a reaction catalyzed by type I nitroreductase (NTR). In the search for new parasitic therapies, we have utilized this finding to investigate whether aziridinyl nitrobenzamide derivatives have activity against bloodstream-form Trypanosoma brucei and Trypanosoma cruzi amastigotes, parasite stages that replicate in the mammalian host. For T. cruzi drug screening, we generated trypanosomes that expressed the luciferase reporter gene and optimized a mammalian infection model in a 96-well plate format. A subset of compounds having a 5-(aziridin-1-yl)-2,4-dinitrobenzyl structure was shown to be metabolized by purified T. brucei NTR and when screened against both parasite life cycle stages displayed significant growth-inhibitory properties: the most potent compounds generated 50% inhibitory concentrations of <1 μM. The trypanocidal activity was shown to be NTR specific, since parasites overexpressing this enzyme were hypersensitive to the aziridinyl dinitrobenzyl agents. We conclude that members of the aziridinyl nitrobenzamide class of nitroheterocycles provide new lead structures that have the potential to treat trypanosomal infections.
Collapse
|
47
|
Detwiler JT, Criscione CD. An infectious topic in reticulate evolution: introgression and hybridization in animal parasites. Genes (Basel) 2010; 1:102-23. [PMID: 24710013 PMCID: PMC3960858 DOI: 10.3390/genes1010102] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 06/07/2010] [Accepted: 06/07/2010] [Indexed: 02/08/2023] Open
Abstract
Little attention has been given to the role that introgression and hybridization have played in the evolution of parasites. Most studies are host-centric and ask if the hybrid of a free-living species is more or less susceptible to parasite infection. Here we focus on what is known about how introgression and hybridization have influenced the evolution of protozoan and helminth parasites of animals. There are reports of genome or gene introgression from distantly related taxa into apicomplexans and filarial nematodes. Most common are genetic based reports of potential hybridization among congeneric taxa, but in several cases, more work is needed to definitively conclude current hybridization. In the medically important Trypanosoma it is clear that some clonal lineages are the product of past hybridization events. Similarly, strong evidence exists for current hybridization in human helminths such as Schistosoma and Ascaris. There remain topics that warrant further examination such as the potential hybrid origin of polyploid platyhelminths. Furthermore, little work has investigated the phenotype or fitness, and even less the epidemiological significance of hybrid parasites.
Collapse
Affiliation(s)
- Jillian T Detwiler
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843, USA.
| | - Charles D Criscione
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843, USA.
| |
Collapse
|
48
|
Mitra S, Cui J, Robbins PW, Samuelson J. A deeply divergent phosphoglucomutase (PGM) of Giardia lamblia has both PGM and phosphomannomutase activities. Glycobiology 2010; 20:1233-40. [PMID: 20507884 DOI: 10.1093/glycob/cwq081] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Giardia lamblia, which is an important parasitic cause of diarrhea, uses activated forms of glucose to make glycogen and activated forms of mannose to make glycophosphosphoinositol anchors. A necessary step for glucose activation is isomerization of glucose-6-phosphate to glucose-1-phosphate by a phosphoglucomutase (PGM). Similarly, a phosphomannomutase (PMM) converts mannose-6-phosphate to mannose-1-phosphate. While whole genome sequences of Giardia predict two PGM candidates, no PMM candidate is present. The hypothesis tested here is that at least one of the two Giardia PGM candidates has both PGM and PMM activity, as has been described for bacterial PGM orthologs. Nondenaturing gels showed that Giardia has two proteins with PGM activity, one of which also has PMM activity. Phylogenetic analyses showed that one of the two Giardia PGM candidates (Gl-PGM1) shares recent common ancestry with other eukaryotic PGMs, while the other Giardia PGM candidate (Gl-PGM2) is deeply divergent. Both Gl-PGM1 and Gl-PGM2 rescue a Saccharomyces cerevisiae pgm1Delta/pgm2Delta double deletion strain, while only Gl-PGM2 rescues a temperature-sensitive PMM mutant of S. cerevisiae (sec53-ts). Recombinant Gl-PGM1 has PGM activity only, whereas Gl-PGM2 has both PGM and PMM activities. We conclude that Gl-PGM1 behaves as a conventional eukaryotic PGM, while Gl-PGM2 is a novel eukaryotic PGM that also has PMM activity.
Collapse
Affiliation(s)
- Sanghamitra Mitra
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, MA 02118, USA
| | | | | | | |
Collapse
|
49
|
Moliner C, Fournier PE, Raoult D. Genome analysis of microorganisms living in amoebae reveals a melting pot of evolution. FEMS Microbiol Rev 2010. [DOI: 10.1111/j.1574-6976.2009.00209.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
50
|
Biller L, Schmidt H, Krause E, Gelhaus C, Matthiesen J, Handal G, Lotter H, Janssen O, Tannich E, Bruchhaus I. Comparison of two genetically related Entamoeba histolytica cell lines derived from the same isolate with different pathogenic properties. Proteomics 2009; 9:4107-20. [PMID: 19688750 DOI: 10.1002/pmic.200900022] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Entamoeba histolytica is known for its extraordinary capacity to destroy human tissues, leading to invasive diseases such as ulcerative colitis or extra-intestinal abscesses. In order to identify the virulence factors of this parasite phenotypes and proteomes of two recently identified genetically related cell lines (A and B), derived from the laboratory E. histolytica isolate HM-1:IMSS, were compared. Both cell lines are indistinguishable on the basis of highly polymorphic tandem repeat DNA sequences. However, cell line A is incapable to induce liver abscesses in experimentally infected rodents, whereas cell line B provokes considerable abscesses. Phenotypic analyses revealed increased hemolytic activity, lower growth rate, smaller cell size, reduced cysteine peptidase activity and lower resistance to nitric oxide stress for cell line A. In contrast, no differences between the two cell lines were found for cytopathic activity, erythrophagocytosis, digestion of erythrocytes or resistance to complement, hydrogen peroxide and superoxide radical anions. Proteomic comparison by 2-D DIGE followed by MS, identified a total of 21 proteins with higher abundance in cell line A and ten proteins with higher abundance in cell line B. Remarkably, three differentially up-regulated antioxidants were exclusively found in the pathogenic cell line B. Notably, only for two differentially regulated proteins, namely a Fe-hydrogenase and a C2 domain protein, a similar type was found at the level of transcription. Summarized, a defined set of different proteins could be identified between cell lines A and B. These molecules may have an important role in amoeba pathogenicity.
Collapse
Affiliation(s)
- Laura Biller
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|