1
|
|
2
|
Ayash M, Abukhalaf M, Thieme D, Proksch C, Heilmann M, Schattat MH, Hoehenwarter W. LC-MS Based Draft Map of the Arabidopsis thaliana Nuclear Proteome and Protein Import in Pattern Triggered Immunity. FRONTIERS IN PLANT SCIENCE 2021; 12:744103. [PMID: 34858452 PMCID: PMC8630587 DOI: 10.3389/fpls.2021.744103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Despite its central role as the ark of genetic information and gene expression the plant nucleus is surprisingly understudied. We isolated nuclei from the Arabidopsis thaliana dark grown cell culture left untreated and treated with flg22 and nlp20, two elicitors of pattern triggered immunity (PTI) in plants, respectively. An liquid chromatography mass spectrometry (LC-MS) based discovery proteomics approach was used to measure the nuclear proteome fractions. An enrichment score based on the relative abundance of cytoplasmic, mitochondrial and Golgi markers in the nuclear protein fraction allowed us to curate the nuclear proteome producing high quality catalogs of around 3,000 nuclear proteins under untreated and both PTI conditions. The measurements also covered low abundant proteins including more than 100 transcription factors and transcriptional co-activators. We disclose a list of several hundred potentially dual targeted proteins including proteins not yet found before for further study. Protein import into the nucleus in plant immunity is known. Here we sought to gain a broader impression of this phenomenon employing our proteomics data and found 157 and 73 proteins to possibly be imported into the nucleus upon stimulus with flg22 and nlp20, respectively. Furthermore, the abundance of 93 proteins changed significantly in the nucleus following elicitation of immunity. These results suggest promiscuous ribosome assembly and a role of prohibitins and cytochrome C in the nucleus in PTI.
Collapse
Affiliation(s)
- Mohamed Ayash
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Mohammad Abukhalaf
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Domenika Thieme
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Carsten Proksch
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Mareike Heilmann
- Institute for Biochemistry and Biotechnology, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | | | - Wolfgang Hoehenwarter
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Halle, Germany
| |
Collapse
|
3
|
Mendoza-Martínez AE, Cano-Domínguez N, Aguirre J. Yap1 homologs mediate more than the redox regulation of the antioxidant response in filamentous fungi. Fungal Biol 2019; 124:253-262. [PMID: 32389287 DOI: 10.1016/j.funbio.2019.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 10/27/2022]
Abstract
The regulation of gene expression in response to increased levels of reactive oxygen species (ROS) is a ubiquitous response in aerobic organisms. However, different organisms use different strategies to perceive and respond to high ROS levels. Yeast Yap1 is a paradigmatic example of a specific mechanism used by eukaryotic cells to link ROS sensing and gene regulation. The activation of this transcription factor by H2O2 is mediated by peroxiredoxins, which are widespread enzymes that use cysteine thiols to sense ROS, as well as to catalyze the reduction of peroxides to water. In filamentous fungi, Yap1 homologs and peroxiredoxins also are major regulators of the antioxidant response. However, Yap1 homologs are involved in a wider array of processes by regulating genes involved in nutrient assimilation, secondary metabolism, virulence and development. Such novel functions illustrate the divergent roles of ROS and other oxidizing compounds as important regulatory signaling molecules.
Collapse
Affiliation(s)
- Ariann E Mendoza-Martínez
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, 04510 Ciudad de México, Mexico
| | - Nallely Cano-Domínguez
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, 04510 Ciudad de México, Mexico
| | - Jesús Aguirre
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, 04510 Ciudad de México, Mexico.
| |
Collapse
|
4
|
Yang Q, Zhang J, Hu J, Wang X, Lv B, Liang W. Involvement of BcYak1 in the Regulation of Vegetative Differentiation and Adaptation to Oxidative Stress of Botrytis cinerea. Front Microbiol 2018. [PMID: 29515556 PMCID: PMC5826331 DOI: 10.3389/fmicb.2018.00281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Yak1, a member of the dual-specificity tyrosine phosphorylation-regulated protein kinases, plays an important role in diverse cellular processes in fungi. However, to date, the role of BcYak1 in Botrytis cinerea, the causal agent of gray mold diseases in various plant species, remains uncharacterized. Our previous study identified one lysine acetylation site (Lys252) in BcYak1, which is the first report of such a site in Yak1. In this study, the function of BcYak1 and its lysine acetylation site were investigated using gene disruption and site-directed mutagenesis. The gene deletion mutant ΔBcYak1 not only exhibits much lower pathogenicity, conidiation and sclerotium formation, but was also much more sensitive to H2O2 and the ergosterol biosynthesis inhibitor (EBI) triadimefon. The Lys252 site-directed mutagenesis mutant strain ΔBcYak1-K252Q (mimicking the acetylation of the site), however, only showed lower sclerotium formation and higher sensitivity to H2O2. These results indicate that BcYAK1 is involved in the vegetative differentiation, adaptation to oxidative stress and triadimefon, and virulence of B. cinerea.
Collapse
Affiliation(s)
- Qianqian Yang
- The Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Jianan Zhang
- The Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Jicheng Hu
- The Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Xue Wang
- The Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Binna Lv
- The Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Wenxing Liang
- The Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
5
|
Mendoza-Martínez AE, Lara-Rojas F, Sánchez O, Aguirre J. NapA Mediates a Redox Regulation of the Antioxidant Response, Carbon Utilization and Development in Aspergillus nidulans. Front Microbiol 2017; 8:516. [PMID: 28424666 PMCID: PMC5371717 DOI: 10.3389/fmicb.2017.00516] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/13/2017] [Indexed: 01/27/2023] Open
Abstract
The redox-regulated transcription factors (TFs) of the bZIP AP1 family, such as yeast Yap1 and fission yeast Pap1, are activated by peroxiredoxin proteins (Prxs) to regulate the antioxidant response. Previously, Aspergillus nidulans mutants lacking the Yap1 ortholog NapA have been characterized as sensitive to H2O2 and menadione. Here we study NapA roles in relation to TFs SrrA and AtfA, also involved in oxidant detoxification, showing that these TFs play different roles in oxidative stress resistance, catalase gene regulation and development, during A. nidulans life cycle. We also uncover novel NapA roles in repression of sexual development, normal conidiation, conidial mRNA accumulation, and carbon utilization. The phenotypic characterization of ΔgpxA, ΔtpxA, and ΔtpxB single, double and triple peroxiredoxin mutants in wild type or ΔnapA backgrounds shows that none of these Prxs is required for NapA function in H2O2 and menadione resistance. However, these Prxs participate in a minor NapA-independent H2O2 resistance pathway and NapA and TpxA appear to regulate conidiation along the same route. Using transcriptomic analysis we show that during conidial development NapA-dependent gene expression pattern is different from canonical oxidative stress patterns. In the course of conidiation, NapA is required for regulation of at least 214 genes, including ethanol utilization genes alcR, alcA and aldA, and large sets of genes encoding proteins involved in transcriptional regulation, drug detoxification, carbohydrate utilization and secondary metabolism, comprising multiple oxidoreductases, membrane transporters and hydrolases. In agreement with this, ΔnapA mutants fail to grow or grow very poorly in ethanol, arabinose or fructose as sole carbon sources. Moreover, we show that NapA nuclear localization is induced not only by oxidative stress but also by growth in ethanol and by carbon starvation. Together with our previous work, these results show that SakA-AtfA, SrrA and NapA oxidative stress-sensing pathways regulate essential aspects of spore physiology (i.e., cell cycle arrest, dormancy, drug production and detoxification, and carbohydrate utilization).
Collapse
Affiliation(s)
- Ariann E Mendoza-Martínez
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de MéxicoCoyoacán, Mexico
| | - Fernando Lara-Rojas
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de MéxicoCoyoacán, Mexico
| | - Olivia Sánchez
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de MéxicoCoyoacán, Mexico
| | - Jesús Aguirre
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de MéxicoCoyoacán, Mexico
| |
Collapse
|
6
|
Di Ventura B, Kuhlman B. Go in! Go out! Inducible control of nuclear localization. Curr Opin Chem Biol 2016; 34:62-71. [PMID: 27372352 DOI: 10.1016/j.cbpa.2016.06.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 12/19/2022]
Abstract
Cells have evolved a variety of mechanisms to regulate the enormous complexity of processes taking place inside them. One mechanism consists in tightly controlling the localization of macromolecules, keeping them away from their place of action until needed. Since a large fraction of the cellular response to external stimuli is mediated by gene expression, it is not surprising that transcriptional regulators are often subject to stimulus-induced nuclear import or export. Here we review recent methods in chemical biology and optogenetics for controlling the nuclear localization of proteins of interest inside living cells. These methods allow researchers to regulate protein activity with exquisite spatiotemporal control, and open up new possibilities for studying the roles of proteins in a broad array of cellular processes and biological functions.
Collapse
Affiliation(s)
- Barbara Di Ventura
- Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Heidelberg, Germany.
| | - Brian Kuhlman
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
7
|
Functional Analysis and Characterization of Differential Coexpression Networks. Sci Rep 2015; 5:13295. [PMID: 26282208 PMCID: PMC4539605 DOI: 10.1038/srep13295] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 07/27/2015] [Indexed: 01/10/2023] Open
Abstract
Differential coexpression analysis is emerging as a complement to conventional differential gene expression analysis. The identified differential coexpression links can be assembled into a differential coexpression network (DCEN) in response to environmental stresses or genetic changes. Differential coexpression analyses have been successfully used to identify condition-specific modules; however, the structural properties and biological significance of general DCENs have not been well investigated. Here, we analyzed two independent Saccharomyces cerevisiae DCENs constructed from large-scale time-course gene expression profiles in response to different situations. Topological analyses show that DCENs are tree-like networks possessing scale-free characteristics, but not small-world. Functional analyses indicate that differentially coexpressed gene pairs in DCEN tend to link different biological processes, achieving complementary or synergistic effects. Furthermore, the gene pairs lacking common transcription factors are sensitive to perturbation and hence lead to differential coexpression. Based on these observations, we integrated transcriptional regulatory information into DCEN and identified transcription factors that might cause differential coexpression by gain or loss of activation in response to different situations. Collectively, our results not only uncover the unique structural characteristics of DCEN but also provide new insights into interpretation of DCEN to reveal its biological significance and infer the underlying gene regulatory dynamics.
Collapse
|
8
|
Relationship between ethanol and oxidative stress in laboratory and brewing yeast strains. J Biosci Bioeng 2013; 116:697-705. [DOI: 10.1016/j.jbiosc.2013.05.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 05/13/2013] [Accepted: 05/31/2013] [Indexed: 11/22/2022]
|
9
|
Ciesielska K, Li B, Groeneboer S, Van Bogaert I, Lin YC, Soetaert W, Van de Peer Y, Devreese B. SILAC-Based Proteome Analysis of Starmerella bombicola Sophorolipid Production. J Proteome Res 2013; 12:4376-92. [DOI: 10.1021/pr400392a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Katarzyna Ciesielska
- Laboratory
for Protein Biochemistry and Biomolecular Engineering, Department
of Biochemistry and Microbiology, Ghent University, K.L. Ledeganckstraat
35, 9000 Ghent, Belgium
| | - Bing Li
- VIB
Department of Plant Systems Biology and Department of Plant Biotechnology
and Bioinformatics, Ghent University, Technologiepark 927 B-9052, 9000 Ghent, Belgium
| | - Sara Groeneboer
- Laboratory
for Protein Biochemistry and Biomolecular Engineering, Department
of Biochemistry and Microbiology, Ghent University, K.L. Ledeganckstraat
35, 9000 Ghent, Belgium
| | - Inge Van Bogaert
- Laboratory
of Industrial Biotechnology and Biocatalysis, Ghent University, Coupure
Links 653, 9000 Ghent, Belgium
| | | | - Wim Soetaert
- Laboratory
of Industrial Biotechnology and Biocatalysis, Ghent University, Coupure
Links 653, 9000 Ghent, Belgium
| | - Yves Van de Peer
- VIB
Department of Plant Systems Biology and Department of Plant Biotechnology
and Bioinformatics, Ghent University, Technologiepark 927 B-9052, 9000 Ghent, Belgium
| | - Bart Devreese
- Laboratory
for Protein Biochemistry and Biomolecular Engineering, Department
of Biochemistry and Microbiology, Ghent University, K.L. Ledeganckstraat
35, 9000 Ghent, Belgium
| |
Collapse
|
10
|
Inferring the effective TOR-dependent network: a computational study in yeast. BMC SYSTEMS BIOLOGY 2013; 7:84. [PMID: 24005029 PMCID: PMC4016608 DOI: 10.1186/1752-0509-7-84] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 08/28/2013] [Indexed: 11/25/2022]
Abstract
Background Calorie restriction (CR) is one of the most conserved non-genetic interventions that extends healthspan in evolutionarily distant species, ranging from yeast to mammals. The target of rapamycin (TOR) has been shown to play a key role in mediating healthspan extension in response to CR by integrating different signals that monitor nutrient-availability and orchestrating various components of cellular machinery in response. Both genetic and pharmacological interventions that inhibit the TOR pathway exhibit a similar phenotype, which is not further amplified by CR. Results In this paper, we present the first comprehensive, computationally derived map of TOR downstream effectors, with the objective of discovering key lifespan mediators, their crosstalk, and high-level organization. We adopt a systematic approach for tracing information flow from the TOR complex and use it to identify relevant signaling elements. By constructing a high-level functional map of TOR downstream effectors, we show that our approach is not only capable of recapturing previously known pathways, but also suggests potential targets for future studies. Information flow scores provide an aggregate ranking of relevance of proteins with respect to the TOR signaling pathway. These rankings must be normalized for degree bias, appropriately interpreted, and mapped to associated roles in pathways. We propose a novel statistical framework for integrating information flow scores, the set of differentially expressed genes in response to rapamycin treatment, and the transcriptional regulatory network. We use this framework to identify the most relevant transcription factors in mediating the observed transcriptional response, and to construct the effective response network of the TOR pathway. This network is hypothesized to mediate life-span extension in response to TOR inhibition. Conclusions Our approach, unlike experimental methods, is not limited to specific aspects of cellular response. Rather, it predicts transcriptional changes and post-translational modifications in response to TOR inhibition. The constructed effective response network greatly enhances understanding of the mechanisms underlying the aging process and helps in identifying new targets for further investigation of anti-aging regimes. It also allows us to identify potential network biomarkers for diagnosis and prognosis of age-related pathologies.
Collapse
|
11
|
Encapsulation-induced stress helps Saccharomyces cerevisiae resist convertible Lignocellulose derived inhibitors. Int J Mol Sci 2012; 13:11881-11894. [PMID: 23109889 PMCID: PMC3472781 DOI: 10.3390/ijms130911881] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 08/24/2012] [Accepted: 09/04/2012] [Indexed: 11/17/2022] Open
Abstract
The ability of macroencapsulated Saccharomyces cerevisiae CBS8066 to withstand readily and not readily in situ convertible lignocellulose-derived inhibitors was investigated in anaerobic batch cultivations. It was shown that encapsulation increased the tolerance against readily convertible furan aldehyde inhibitors and to dilute acid spruce hydrolysate, but not to organic acid inhibitors that cannot be metabolized anaerobically. Gene expression analysis showed that the protective effect arising from the encapsulation is evident also on the transcriptome level, as the expression of the stress-related genes YAP1, ATR1 and FLR1 was induced upon encapsulation. The transcript levels were increased due to encapsulation already in the medium without added inhibitors, indicating that the cells sensed low stress level arising from the encapsulation itself. We present a model, where the stress response is induced by nutrient limitation, that this helps the cells to cope with the increased stress added by a toxic medium, and that superficial cells in the capsules degrade convertible inhibitors, alleviating the inhibition for the cells deeper in the capsule.
Collapse
|
12
|
Lushchak VI. Adaptive response to oxidative stress: Bacteria, fungi, plants and animals. Comp Biochem Physiol C Toxicol Pharmacol 2011; 153:175-90. [PMID: 20959147 DOI: 10.1016/j.cbpc.2010.10.004] [Citation(s) in RCA: 301] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 10/08/2010] [Accepted: 10/08/2010] [Indexed: 01/17/2023]
Abstract
Reactive oxygen species (ROS) are continuously produced and eliminated by living organisms normally maintaining ROS at certain steady-state levels. Under some circumstances, the balance between ROS generation and elimination is disturbed leading to enhanced ROS level called "oxidative stress". The primary goal of this review is to characterize two principal mechanisms of protection against oxidative stress - regulation of membrane permeability and antioxidant potential. The ancillary goals of this work are to describe up to date knowledge on the regulation of the previously mentioned mechanisms and to identify areas of prospective research and emerging directions in investigation of adaptation to oxidative stress. The ubiquity for challenges leading to oxidative stress development calls for identification of common mechanisms. They are cysteine residues and [Fe,S]-clusters of specific regulatory proteins. The latter mechanism is realized via SoxR bacterial protein, whereas the former mechanism is involved in operation of bacterial OxyR regulon, yeast H(2)O(2)-stimulon, plant NPR1/TGA and Rap2.4a systems, and animal Keap1/Nrf2, NF-κB and AP-1, and others. Although hundreds of studies have been carried out in the field with different taxa, the comparative analysis of adaptive response is quite incomplete and therefore, this work aims to cover a plethora of phylogenetic groups to delineate common mechanisms. In addition, this article raises some questions to be elucidated and points out future directions of this research. The comparative approach is used to shed light on fundamental principles and mechanisms of regulation of antioxidant systems. The idea is to provide starting points from which we can develop novel tools and hypothesis to facilitate meaningful investigations in the physiology and biochemistry of organismic response to oxidative stress.
Collapse
Affiliation(s)
- Volodymyr I Lushchak
- Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, 57 Shevchenko Str., 76025, Ivano-Frankivsk, Ukraine.
| |
Collapse
|
13
|
Liu Q, Tan Y, Huang T, Ding G, Tu Z, Liu L, Li Y, Dai H, Xie L. TF-centered downstream gene set enrichment analysis: Inference of causal regulators by integrating TF-DNA interactions and protein post-translational modifications information. BMC Bioinformatics 2010; 11 Suppl 11:S5. [PMID: 21172055 PMCID: PMC3024863 DOI: 10.1186/1471-2105-11-s11-s5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Inference of causal regulators responsible for gene expression changes under different conditions is of great importance but remains rather challenging. To date, most approaches use direct binding targets of transcription factors (TFs) to associate TFs with expression profiles. However, the low overlap between binding targets of a TF and the affected genes of the TF knockout limits the power of those methods. Results We developed a TF-centered downstream gene set enrichment analysis approach to identify potential causal regulators responsible for expression changes. We constructed hierarchical and multi-layer regulation models to derive possible downstream gene sets of a TF using not only TF-DNA interactions, but also, for the first time, post-translational modifications (PTM) information. We verified our method in one expression dataset of large-scale TF knockout and another dataset involving both TF knockout and TF overexpression. Compared with the flat model using TF-DNA interactions alone, our method correctly identified five more actual perturbed TFs in large-scale TF knockout data and six more perturbed TFs in overexpression data. Potential regulatory pathways downstream of three perturbed regulators— SNF1, AFT1 and SUT1 —were given to demonstrate the power of multilayer regulation models integrating TF-DNA interactions and PTM information. Additionally, our method successfully identified known important TFs and inferred some novel potential TFs involved in the transition from fermentative to glycerol-based respiratory growth and in the pheromone response. Downstream regulation pathways of SUT1 and AFT1 were also supported by the mRNA and/or phosphorylation changes of their mediating TFs and/or “modulator” proteins. Conclusions The results suggest that in addition to direct transcription, indirect transcription and post-translational regulation are also responsible for the effects of TFs perturbation, especially for TFs overexpression. Many TFs inferred by our method are supported by literature. Multiple TF regulation models could lead to new hypotheses for future experiments. Our method provides a valuable framework for analyzing gene expression data to identify causal regulators in the context of TF-DNA interactions and PTM information.
Collapse
Affiliation(s)
- Qi Liu
- School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
The mechanisms of production and elimination of reactive oxygen species in the cells of the budding yeast Saccharomyces cerevisiae are analyzed. Coordinative role of special regulatory proteins including Yap1p, Msn2/4p, and Skn7p (Pos9p) in regulation of defense mechanisms in S. cerevisiae is described. A special section is devoted to two other well-studied species from the point of view of oxidative stress -- Schizosaccharomyces pombe and Candida albicans. Some examples demonstrating the use of yeast for investigation of apoptosis, aging, and some human diseases are given in the conclusion part.
Collapse
Affiliation(s)
- V I Lushchak
- Department of Biochemistry, Vassyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, Ukraine.
| |
Collapse
|
15
|
Alriksson B, Horváth IS, Jönsson LJ. Overexpression of Saccharomyces cerevisiae transcription factor and multidrug resistance genes conveys enhanced resistance to lignocellulose-derived fermentation inhibitors. Process Biochem 2010. [DOI: 10.1016/j.procbio.2009.09.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Usaite R, Jewett MC, Oliveira AP, Yates JR, Olsson L, Nielsen J. Reconstruction of the yeast Snf1 kinase regulatory network reveals its role as a global energy regulator. Mol Syst Biol 2009; 5:319. [PMID: 19888214 PMCID: PMC2795470 DOI: 10.1038/msb.2009.67] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 08/17/2009] [Indexed: 01/06/2023] Open
Abstract
Highly conserved among eukaryotic cells, the AMP-activated kinase (AMPK) is a central regulator of carbon metabolism. To map the complete network of interactions around AMPK in yeast (Snf1) and to evaluate the role of its regulatory subunit Snf4, we measured global mRNA, protein and metabolite levels in wild type, Δsnf1, Δsnf4, and Δsnf1Δsnf4 knockout strains. Using four newly developed computational tools, including novel DOGMA sub-network analysis, we showed the benefits of three-level ome-data integration to uncover the global Snf1 kinase role in yeast. We for the first time identified Snf1's global regulation on gene and protein expression levels, and showed that yeast Snf1 has a far more extensive function in controlling energy metabolism than reported earlier. Additionally, we identified complementary roles of Snf1 and Snf4. Similar to the function of AMPK in humans, our findings showed that Snf1 is a low-energy checkpoint and that yeast can be used more extensively as a model system for studying the molecular mechanisms underlying the global regulation of AMPK in mammals, failure of which leads to metabolic diseases.
Collapse
Affiliation(s)
- Renata Usaite
- Department of Systems Biology, Center for Microbial Biotechnology, BioCentrum-DTU, Technical University of Denmark, Lyngby, Denmark
| | | | | | | | | | | |
Collapse
|
17
|
von Plehwe U, Berndt U, Conz C, Chiabudini M, Fitzke E, Sickmann A, Petersen A, Pfeifer D, Rospert S. The Hsp70 homolog Ssb is essential for glucose sensing via the SNF1 kinase network. Genes Dev 2009; 23:2102-15. [PMID: 19723765 DOI: 10.1101/gad.529409] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Yeast senses the availability of external energy sources via multiple interconnected signaling networks. One of the central components is SNF1, the homolog of mammalian AMP-activated protein kinase, which in yeast is essential for the expression of glucose-repressed genes. When glucose is available hyperphosphorylated SNF1 is rendered inactive by the type 1 protein phosphatase Glc7. Dephosphorylation requires Reg1, which physically targets Glc7 to SNF1. Here we show that the chaperone Ssb is required to keep SNF1 in the nonphosphorylated state in the presence of glucose. Using a proteome approach we found that the Deltassb1Deltassb2 strain displays alterations in protein expression and suffers from phenotypic characteristics reminiscent of glucose repression mutants. Microarray analysis revealed a correlation between deregulation on the protein and on the transcript level. Supporting studies uncovered that SSB1 was an effective multicopy suppressor of severe growth defects caused by the Deltareg1 mutation. Suppression of Deltareg1 by high levels of Ssb was coupled to a reduction of Snf1 hyperphosphorylation back to the wild-type phosphorylation level. The data are consistent with a model in which Ssb is crucial for efficient regulation within the SNF1 signaling network, thereby allowing an appropriate response to changing glucose levels.
Collapse
Affiliation(s)
- Ulrike von Plehwe
- Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Gibson BR, Lawrence SJ, Boulton CA, Box WG, Graham NS, Linforth RS, Smart KA. The oxidative stress response of a lager brewing yeast strain during industrial propagation and fermentation. FEMS Yeast Res 2008; 8:574-85. [DOI: 10.1111/j.1567-1364.2008.00371.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
19
|
Sepuri NBV, Yadav S, Anandatheerthavarada HK, Avadhani NG. Mitochondrial targeting of intact CYP2B1 and CYP2E1 and N-terminal truncated CYP1A1 proteins in Saccharomyces cerevisiae − role of protein kinase A in the mitochondrial targeting of CYP2E1. FEBS J 2007; 274:4615-30. [PMID: 17697118 DOI: 10.1111/j.1742-4658.2007.05990.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Previously we showed that intact rat cytochrome P450 2E1, cytochrome P450 2B1 and truncated cytochrome P450 1A1 are targeted to mitochondria in rat tissues and COS cells. However, some reports suggest that truncated cytochrome P450 2E1 is targeted to mitochondria. In this study, we used a heterologous yeast system to ascertain the conservation of targeting mechanisms and the nature of mitochondria-targeted proteins. Mitochondrial integrity and purity were established using electron microscopy, and treatment with digitonin and protease. Full-length cytochrome P450 2E1 and cytochrome P450 2B1 were targeted both to microsomes and mitochondria, whereas truncated cytochrome P450 1A1 (+ 5 and + 33/cytochrome P450 1A1) were targeted to mitochondria. Inability to target intact cytochrome P450 1A1 was probably due to lack of cytosolic endoprotease activity in yeast cells. Mitochondrial targeting of cytochrome P450 2E1 was severely impaired in protein kinase A-deficient cells. Similarly, a phosphorylation site mutant cytochrome P450 2E1 (Ser129A) was poorly targeted to the mitochondria, thus confirming the importance of protein kinase A-mediated protein phosphorylation in mitochondrial targeting. Mitochondria-targeted proteins were localized in the matrix compartment peripherally associated with the inner membrane and their ethoxyresorufin O-dealkylation, erythromycin N-demethylase, benzoxyresorufin O-dealkylation and nitrosodimethylamine N-demethylase activities were fully supported by yeast mitochondrial ferredoxin and ferredoxin reductase.
Collapse
Affiliation(s)
- Naresh B V Sepuri
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
20
|
Demasi APD, Pereira GAG, Netto LES. Yeast oxidative stress response. Influences of cytosolic thioredoxin peroxidase I and of the mitochondrial functional state. FEBS J 2006; 273:805-16. [PMID: 16441666 DOI: 10.1111/j.1742-4658.2006.05116.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We investigated the changes in the oxidative stress response of yeast cells suffering mitochondrial dysfunction that could impair their viability. First, we demonstrated that cells with this dysfunction rely exclusively on cytosolic thioredoxin peroxidase I (cTPxI) and its reductant sulfiredoxin, among other antioxidant enzymes tested, to protect them against H2O2-induced death. This cTPxI-dependent protection could be related to its dual functions, as peroxidase and as molecular chaperone, suggested by mixtures of low and high molecular weight oligomeric structures of cTPxI observed in cells challenged with H2O2. We found that cTPxI deficiency leads to increased basal sulfhydryl levels and transcriptional activation of most of the H2O2-responsive genes, interpreted as an attempt by the cells to improve their antioxidant defense. On the other hand, mitochondrial dysfunction, specifically the electron transport blockage, provoked a huge depletion of sulfhydryl groups after H2O2 treatment and reduced the H2O2-mediated activation of some genes otherwise observed, impairing cell defense and viability. The transcription factors Yap1 and Skn7 are crucial for the antioxidant response of cells under inhibited electron flow condition and probably act in the same pathway of cTPxI to protect cells affected by this disorder. Yap1 cellular distribution was not affected by cTpxI deficiency and by mitochondrial dysfunction, in spite of the observed expression alterations of several Yap1-target genes, indicating alternative mechanisms of Yap1 activation/deactivation. Therefore, we propose that cTPxI is specifically important in the protection of yeast with mitochondrial dysfunction due to its functional versatility as an antioxidant, chaperone and modulator of gene expression.
Collapse
Affiliation(s)
- Ana P D Demasi
- Departamento de Genética e Evolução - IB - UNICAMP, Campinas, Brazil
| | | | | |
Collapse
|
21
|
Dubacq C, Chevalier A, Courbeyrette R, Petat C, Gidrol X, Mann C. Role of the iron mobilization and oxidative stress regulons in the genomic response of yeast to hydroxyurea. Mol Genet Genomics 2005; 275:114-24. [PMID: 16328372 DOI: 10.1007/s00438-005-0077-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Accepted: 11/07/2005] [Indexed: 10/25/2022]
Abstract
Hydroxyurea (HU) is a specific inhibitor of ribonucleotide reductase and thus impairs dNTP synthesis and DNA replication. The long-term transcriptional response of yeast cells to hydroxyurea was investigated using DNA microarrays containing all yeast coding sequences. We show that the redox-responsive Yap regulon and the iron-mobilization Aft regulon are activated in yeast cells treated with HU. Yap1 accumulates in the nucleus in response to HU, but HU activation of the Yap regulon was only partially dependent on Yap1 and yap1Delta mutants were not hypersensitive to HU. In contrast, deletion of the AFT1 and AFT2 transcription factor genes blocked the HU activation of a subset of the Aft regulon and the aft1Delta aft2Delta double mutant was hypersensitive to HU in an iron-suppressible manner. These results highlight the importance of the redox and iron mobilization regulons in the cellular response to HU.
Collapse
Affiliation(s)
- Caroline Dubacq
- Service de Biochimie et de Génétique Moléculaire, CEA/Saclay, Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|
22
|
A Triticum tauschii protein kinase related to wheat PKABA1 is associated with ABA signaling and is distributed between the nucleus and cytosol. J Cereal Sci 2005. [DOI: 10.1016/j.jcs.2004.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Kabir MA, Kaminska J, Segel GB, Bethlendy G, Lin P, Della Seta F, Blegen C, Swiderek KM, Zoładek T, Arndt KT, Sherman F. Physiological effects of unassembled chaperonin Cct subunits in the yeast Saccharomyces cerevisiae. Yeast 2005; 22:219-39. [PMID: 15704212 DOI: 10.1002/yea.1210] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Eukaryotic chaperonins, the Cct complexes, are assembled into two rings, each of which is composed of a stoichiometric array of eight different subunits, which are denoted Cct1p-Cct8p. Overexpression of a single CCT gene in Saccharomyces cerevisiae causes an increase of the corresponding Cct subunit, but not of the Cct complex. Nevertheless, overexpression of certain Cct subunits, especially CCT6, suppresses a wide range of abnormal phenotypes, including those caused by the diverse types of conditional mutations tor2-21, lst8-2 and rsp5-9 and those caused by the concomitant overexpression of Sit4p and Sap155p. The examination of 73 altered forms of Cct6p revealed that the cct6-24 mutation, containing GDGTT --> AAAAA replacements of the conserved ATP-binding motif, was unable to suppress any of these traits, although the cct6-24 allele was completely functional for growth. These results provide evidence for functional differences among Cct subunits and for physiological properties of unassembled subunits. We suggest that the suppression is due to the competition of specific Cct subunits for activities that normally modify various cellular components. Furthermore, we also suggest that the Cct subunits can act as suppressors only in certain states, such as when associated with ATP.
Collapse
Affiliation(s)
- M Anaul Kabir
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Okazaki S, Naganuma A, Kuge S. Peroxiredoxin-mediated redox regulation of the nuclear localization of Yap1, a transcription factor in budding yeast. Antioxid Redox Signal 2005; 7:327-34. [PMID: 15706081 DOI: 10.1089/ars.2005.7.327] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A redox reaction involving cysteine thiol-disulfide exchange is crucial for the intracellular monitoring of oxidation status. The yeast transcription factor Yap1 is activated by formation of a disulfide bond, which inhibits nuclear export in response to peroxide stress, with resultant enhancement of the nuclear localization of Yap1. A glutathione peroxidase-like protein, Gpx3, which has peroxiredoxin activity, is required for formation of the disulfide bond in Yap1. We show here that the requirement for Gpx3 in the regulation of Yap1 is strain-specific. Thus, Tsa1, a ubiquitous thioredoxin peroxidase, is required for the activation of Yap1 in yeast strain Y700, which is derived from W303. The strain-specific utilization of different peroxiredoxins appears to be determined by Ybp1, a Yap1-binding protein. The Ybp1 of Y700 has a nonsense mutation, and a wild-type YBP1 gene can restore the Gpx3-dependent activation of Yap1. These results suggest that Tsa1, a ubiquitous peroxiredoxin, has the potential for transducing redox signals to a particular sensor protein.
Collapse
Affiliation(s)
- Shoko Okazaki
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | | | | |
Collapse
|
25
|
Maeta K, Izawa S, Okazaki S, Kuge S, Inoue Y. Activity of the Yap1 transcription factor in Saccharomyces cerevisiae is modulated by methylglyoxal, a metabolite derived from glycolysis. Mol Cell Biol 2004; 24:8753-64. [PMID: 15367692 PMCID: PMC516737 DOI: 10.1128/mcb.24.19.8753-8764.2004] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methylglyoxal (MG) is synthesized during glycolysis, although it inhibits cell growth in all types of organisms. Hence, it has long been asked why such a toxic metabolite is synthesized in vivo. Glyoxalase I is a major enzyme detoxifying MG. Here we show that the Yap1 transcription factor, which is critical for the oxidative-stress response in Saccharomyces cerevisiae, is constitutively concentrated in the nucleus and activates the expression of its target genes in a glyoxalase I-deficient mutant. Yap1 contains six cysteine residues in two cysteine-rich domains (CRDs), i.e., three cysteine residues clustering near the N terminus (n-CRD) and the remaining three cysteine residues near the C terminus (c-CRD). We reveal that any of the three cysteine residues in the c-CRD is sufficient for MG to allow Yap1 to translocate into the nucleus and to activate the expression of its target gene. A Yap1 mutant possessing only one cysteine residue in the c-CRD but no cysteine in the n-CRD and deletion of the basic leucine zipper domain can concentrate in the nucleus with MG treatment. However, substitution of all the cysteine residues in Yap1 abolishes the ability of this transcription factor to concentrate in the nucleus following MG treatment. The redox status of Yap1 is substantially unchanged, and protein(s) interaction with Yap1 through disulfide bond is hardly detected in cells treated with MG. Collectively, neither intermolecular nor intramolecular disulfide bond formation seems to be involved in Yap1 activation by MG. Moreover, we show that nucleocytoplasmic localization of Yap1 closely correlates with growth phase and intracellular MG level. We propose a novel regulatory pathway underlying Yap1 activation by a natural metabolite in the cell.
Collapse
Affiliation(s)
- Kazuhiro Maeta
- Laboratory of Molecular Microbiology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | | | | | | | | |
Collapse
|
26
|
Madrid M, Soto T, Franco A, Paredes V, Vicente J, Hidalgo E, Gacto M, Cansado J. A cooperative role for Atf1 and Pap1 in the detoxification of the oxidative stress induced by glucose deprivation in Schizosaccharomyces pombe. J Biol Chem 2004; 279:41594-602. [PMID: 15247218 DOI: 10.1074/jbc.m405509200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Schizosaccharomyces pombe, glucose concentrations below a certain threshold trigger the stress-activated protein kinase (SAPK) signal transduction pathway and promote increased transcription of Atf1-dependent genes coding for the general stress response. Removal of glucose specifically induces the nuclear accumulation of green fluorescent protein-labeled Pap1 (GFP-Pap1) and the expression of genes dependent on this transcription factor. In contrast, depletion of the nitrogen source triggers the SAPK pathway but does not activate Pap1-dependent gene transcription, indicating that carbon stress rather than growth arrest leads to an endogenous oxidative condition that favors nuclear accumulation of Pap1. The reductant agents glutathione or N-acetylcysteine suppress the nuclear accumulation of GFP-Pap1 induced by glucose deprivation without inhibiting the activation of the MAPK Sty1. In addition, cells expressing a mutant GFP-Pap1 unable to accumulate into the nucleus upon hydrogen peroxide-mediated oxidative stress failed to show this protein into the nucleus in the absence of glucose. These results support the concept of a concerted action between the SAPK pathway and the Pap1 transcription factor during glucose exhaustion by which glucose limitation induces activation of the SAPK pathway prior to the oxidative stress caused by glucose deprivation. The ensuing induction of Atf1-dependent genes (catalase) decreases the level of hydroperoxides allowing Pap1 nuclear accumulation and function. Congruent with this interpretation, glucose-depleted cells show higher adaptive response to exogenous oxidative stress than those maintained in the presence of glucose.
Collapse
Affiliation(s)
- Marisa Madrid
- Department of Genetics and Microbiology, Facultad de Biología, University of Murcia, 30071 Murcia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Hedbacker K, Townley R, Carlson M. Cyclic AMP-dependent protein kinase regulates the subcellular localization of Snf1-Sip1 protein kinase. Mol Cell Biol 2004; 24:1836-43. [PMID: 14966266 PMCID: PMC350547 DOI: 10.1128/mcb.24.5.1836-1843.2004] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Snf1/AMP-activated protein kinase family has diverse roles in cellular responses to metabolic stress. In Saccharomyces cerevisiae, Snf1 protein kinase has three isoforms of the beta subunit that confer versatility on the kinase and that exhibit distinct patterns of subcellular localization. The Sip1 beta subunit resides in the cytosol in glucose-grown cells and relocalizes to the vacuolar membrane in response to carbon stress. We show that translation of Sip1 initiates at the second ATG of the open reading frame, yielding a potential site for N myristoylation, and that mutation of the critical glycine abolishes relocalization. We further show that the cyclic AMP-dependent protein kinase (protein kinase A [PKA]) pathway maintains the cytoplasmic localization of Sip1 in glucose-grown cells. The Snf1 catalytic subunit also exhibits aberrant localization to the vacuolar membrane in PKA-deficient cells, indicating that PKA regulates the localization of Snf1-Sip1 protein kinase. These findings establish a novel mechanism of regulation of Snf1 protein kinase by the PKA pathway.
Collapse
Affiliation(s)
- Kristina Hedbacker
- Department of Genetics and Development, Columbia University, New York, New York 10032, USA
| | | | | |
Collapse
|
28
|
Abstract
Glutathione (GSH; gamma-L-glutamyl-L-cysteinyl-glycine), a non-protein thiol with a very low redox potential (E'0 = 240 mV for thiol-disulfide exchange), is present in high concentration up to 10 mM in yeasts and filamentous fungi. GSH is concerned with basic cellular functions as well as the maintenance of mitochondrial structure, membrane integrity, and in cell differentiation and development. GSH plays key roles in the response to several stress situations in fungi. For example, GSH is an important antioxidant molecule, which reacts non-enzymatically with a series of reactive oxygen species. In addition, the response to oxidative stress also involves GSH biosynthesis enzymes, NADPH-dependent GSH-regenerating reductase, glutathione S-transferase along with peroxide-eliminating glutathione peroxidase and glutaredoxins. Some components of the GSH-dependent antioxidative defence system confer resistance against heat shock and osmotic stress. Formation of protein-SSG mixed disulfides results in protection against desiccation-induced oxidative injuries in lichens. Intracellular GSH and GSH-derived phytochelatins hinder the progression of heavy metal-initiated cell injuries by chelating and sequestering the metal ions themselves and/or by eliminating reactive oxygen species. In fungi, GSH is mobilized to ensure cellular maintenance under sulfur or nitrogen starvation. Moreover, adaptation to carbon deprivation stress results in an increased tolerance to oxidative stress, which involves the induction of GSH-dependent elements of the antioxidant defence system. GSH-dependent detoxification processes concern the elimination of toxic endogenous metabolites, such as excess formaldehyde produced during the growth of the methylotrophic yeasts, by formaldehyde dehydrogenase and methylglyoxal, a by-product of glycolysis, by the glyoxalase pathway. Detoxification of xenobiotics, such as halogenated aromatic and alkylating agents, relies on glutathione S-transferases. In yeast, these enzymes may participate in the elimination of toxic intermediates that accumulate in stationary phase and/or act in a similar fashion as heat shock proteins. GSH S-conjugates may also form in a glutathione S-transferases-independent way, e.g. through chemical reaction between GSH and the antifugal agent Thiram. GSH-dependent detoxification of penicillin side-chain precursors was shown in Penicillium sp. GSH controls aging and autolysis in several fungal species, and possesses an anti-apoptotic feature.
Collapse
Affiliation(s)
- István Pócsi
- Department of Microbiology and Biotechnology, Faculty of Sciences, University of Debrecen, P.O. Box 63, H-4010 Debrecen, Hungary
| | | | | |
Collapse
|
29
|
Current awareness on yeast. Yeast 2003; 20:837-44. [PMID: 12886942 DOI: 10.1002/yea.946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|