1
|
Mwangi KW, Macharia RW, Bargul JL. Gene co-expression network analysis of Trypanosoma brucei in tsetse fly vector. Parasit Vectors 2021; 14:74. [PMID: 33482903 PMCID: PMC7821691 DOI: 10.1186/s13071-021-04597-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/13/2021] [Indexed: 01/14/2023] Open
Abstract
Background Trypanosoma brucei species are motile protozoan parasites that are cyclically transmitted by tsetse fly (genus Glossina) causing human sleeping sickness and nagana in livestock in sub-Saharan Africa. African trypanosomes display digenetic life cycle stages in the tsetse fly vector and in their mammalian host. Experimental work on insect-stage trypanosomes is challenging because of the difficulty in setting up successful in vitro cultures. Therefore, there is limited knowledge on the trypanosome biology during its development in the tsetse fly. Consequently, this limits the development of new strategies for blocking parasite transmission in the tsetse fly. Methods In this study, RNA-Seq data of insect-stage trypanosomes were used to construct a T. brucei gene co-expression network using the weighted gene co-expression analysis (WGCNA) method. The study identified significant enriched modules for genes that play key roles during the parasite’s development in tsetse fly. Furthermore, potential 3′ untranslated region (UTR) regulatory elements for genes that clustered in the same module were identified using the Finding Informative Regulatory Elements (FIRE) tool. Results A fraction of gene modules (12 out of 27 modules) in the constructed network were found to be enriched in functional roles associated with the cell division, protein biosynthesis, mitochondrion, and cell surface. Additionally, 12 hub genes encoding proteins such as RNA-binding protein 6 (RBP6), arginine kinase 1 (AK1), brucei alanine-rich protein (BARP), among others, were identified for the 12 significantly enriched gene modules. In addition, the potential regulatory elements located in the 3′ untranslated regions of genes within the same module were predicted. Conclusions The constructed gene co-expression network provides a useful resource for network-based data mining to identify candidate genes for functional studies. This will enhance understanding of the molecular mechanisms that underlie important biological processes during parasite’s development in tsetse fly. Ultimately, these findings will be key in the identification of potential molecular targets for disease control.![]()
Collapse
Affiliation(s)
- Kennedy W Mwangi
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya. .,Jomo Kenyatta University of Agriculture and Technology, P.O. BOX 62000-00200, Nairobi, Kenya.
| | | | - Joel L Bargul
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya.,Jomo Kenyatta University of Agriculture and Technology, P.O. BOX 62000-00200, Nairobi, Kenya
| |
Collapse
|
2
|
Chávez S, Eastman G, Smircich P, Becco LL, Oliveira-Rizzo C, Fort R, Potenza M, Garat B, Sotelo-Silveira JR, Duhagon MA. Transcriptome-wide analysis of the Trypanosoma cruzi proliferative cycle identifies the periodically expressed mRNAs and their multiple levels of control. PLoS One 2017; 12:e0188441. [PMID: 29182646 PMCID: PMC5705152 DOI: 10.1371/journal.pone.0188441] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 11/07/2017] [Indexed: 12/02/2022] Open
Abstract
Trypanosoma cruzi is the protozoan parasite causing American trypanosomiasis or Chagas disease, a neglected parasitosis with important human health impact in Latin America. The efficacy of current therapy is limited, and its toxicity is high. Since parasite proliferation is a fundamental target for rational drug design, we sought to progress into its understanding by applying a genome-wide approach. Treating a TcI linage strain with hydroxyurea, we isolated epimastigotes in late G1, S and G2/M cell cycle stages at 70% purity. The sequencing of each phase identified 305 stage-specific transcripts (1.5-fold change, p≤0.01), coding for conserved cell cycle regulated proteins and numerous proteins whose cell cycle dependence has not been recognized before. Comparisons with the parasite T. brucei and the human host reveal important differences. The meta-analysis of T. cruzi transcriptomic and ribonomic data indicates that cell cycle regulated mRNAs are subject to sub-cellular compartmentalization. Compositional and structural biases of these genes- including CAI, GC content, UTR length, and polycistron position- may contribute to their regulation. To discover nucleotide motifs responsible for the co-regulation of cell cycle regulated genes, we looked for overrepresented motifs at their UTRs and found a variant of the cell cycle sequence motif at the 3' UTR of most of the S and G2 stage genes. We additionally identified hairpin structures at the 5' UTRs of a high proportion of the transcripts, suggesting that periodic gene expression might also rely on translation initiation in T. cruzi. In summary, we report a comprehensive list of T. cruzi cell cycle regulated genes, including many previously unstudied proteins, we show evidence favoring a multi-step control of their expression, and we identify mRNA motifs that may mediate their regulation. Our results provide novel information of the T. cruzi proliferative proteins and the integrated levels of their gene expression control.
Collapse
Affiliation(s)
- Santiago Chávez
- Laboratory of Molecular Interactions, School of Sciences, Universidad de la República, Montevideo, Uruguay
- Department of Genetics, School of Medicine, Universidad de la República, Montevideo, Uruguay
| | - Guillermo Eastman
- Department of Genomics, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Pablo Smircich
- Laboratory of Molecular Interactions, School of Sciences, Universidad de la República, Montevideo, Uruguay
- Department of Genetics, School of Medicine, Universidad de la República, Montevideo, Uruguay
| | - Lorena Lourdes Becco
- Laboratory of Molecular Interactions, School of Sciences, Universidad de la República, Montevideo, Uruguay
| | - Carolina Oliveira-Rizzo
- Laboratory of Molecular Interactions, School of Sciences, Universidad de la República, Montevideo, Uruguay
- Department of Genetics, School of Medicine, Universidad de la República, Montevideo, Uruguay
| | - Rafael Fort
- Laboratory of Molecular Interactions, School of Sciences, Universidad de la República, Montevideo, Uruguay
- Department of Genetics, School of Medicine, Universidad de la República, Montevideo, Uruguay
| | - Mariana Potenza
- Institute for Research in Genetic Engineering and Molecular Biology 'Dr. N.H. Torres', Buenos Aires, Argentina
| | - Beatriz Garat
- Laboratory of Molecular Interactions, School of Sciences, Universidad de la República, Montevideo, Uruguay
| | - José Roberto Sotelo-Silveira
- Department of Genomics, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Department of Cell and Molecular Biology, School of Sciences, Universidad de la República, Montevideo, Uruguay
| | - María Ana Duhagon
- Laboratory of Molecular Interactions, School of Sciences, Universidad de la República, Montevideo, Uruguay
- Department of Genetics, School of Medicine, Universidad de la República, Montevideo, Uruguay
- * E-mail:
| |
Collapse
|
3
|
Fadda A, Ryten M, Droll D, Rojas F, Färber V, Haanstra JR, Merce C, Bakker BM, Matthews K, Clayton C. Transcriptome-wide analysis of trypanosome mRNA decay reveals complex degradation kinetics and suggests a role for co-transcriptional degradation in determining mRNA levels. Mol Microbiol 2014; 94:307-26. [PMID: 25145465 PMCID: PMC4285177 DOI: 10.1111/mmi.12764] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2014] [Indexed: 01/14/2023]
Abstract
African trypanosomes are an excellent system for quantitative modelling of post-transcriptional mRNA control. Transcription is constitutive and polycistronic; individual mRNAs are excised by trans splicing and polyadenylation. We here measure mRNA decay kinetics in two life cycle stages, bloodstream and procyclic forms, by transcription inhibition and RNASeq. Messenger RNAs with short half-lives tend to show initial fast degradation, followed by a slower phase; they are often stabilized by depletion of the 5′–3′ exoribonuclease XRNA. Many longer-lived mRNAs show initial slow degradation followed by rapid destruction: we suggest that the slow phase reflects gradual deadenylation. Developmentally regulated mRNAs often show regulated decay, and switch their decay pattern. Rates of mRNA decay are good predictors of steady state levels for short mRNAs, but mRNAs longer than 3 kb show unexpectedly low abundances. Modelling shows that variations in splicing and polyadenylation rates can contribute to steady-state mRNA levels, but this is completely dependent on competition between processing and co-transcriptional mRNA precursor destruction.
Collapse
Affiliation(s)
- Abeer Fadda
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
|
5
|
The cell cycle regulated transcriptome of Trypanosoma brucei. PLoS One 2011; 6:e18425. [PMID: 21483801 PMCID: PMC3069104 DOI: 10.1371/journal.pone.0018425] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 03/07/2011] [Indexed: 11/19/2022] Open
Abstract
Progression of the eukaryotic cell cycle requires the regulation of hundreds of genes to ensure that they are expressed at the required times. Integral to cell cycle progression in yeast and animal cells are temporally controlled, progressive waves of transcription mediated by cell cycle-regulated transcription factors. However, in the kinetoplastids, a group of early-branching eukaryotes including many important pathogens, transcriptional regulation is almost completely absent, raising questions about the extent of cell-cycle regulation in these organisms and the mechanisms whereby regulation is achieved. Here, we analyse gene expression over the Trypanosoma brucei cell cycle, measuring changes in mRNA abundance on a transcriptome-wide scale. We developed a “double-cut” elutriation procedure to select unperturbed, highly synchronous cell populations from log-phase cultures, and compared this to synchronization by starvation. Transcriptome profiling over the cell cycle revealed the regulation of at least 430 genes. While only a minority were homologous to known cell cycle regulated transcripts in yeast or human, their functions correlated with the cellular processes occurring at the time of peak expression. We searched for potential target sites of RNA-binding proteins in these transcripts, which might earmark them for selective degradation or stabilization. Over-represented sequence motifs were found in several co-regulated transcript groups and were conserved in other kinetoplastids. Furthermore, we found evidence for cell-cycle regulation of a flagellar protein regulon with a highly conserved sequence motif, bearing similarity to consensus PUF-protein binding motifs. RNA sequence motifs that are functional in cell-cycle regulation were more widespread than previously expected and conserved within kinetoplastids. These findings highlight the central importance of post-transcriptional regulation in the proliferation of parasitic kinetoplastids.
Collapse
|
6
|
Abstract
Trypanosomes are a group of protozoan eukaryotes, many of which are major parasites of humans and livestock. The genomes of trypanosomes and their modes of gene expression differ in several important aspects from those of other eukaryotic model organisms. Protein-coding genes are organized in large directional gene clusters on a genome-wide scale, and their polycistronic transcription is not generally regulated at initiation. Transcripts from these polycistrons are processed by global trans-splicing of pre-mRNA. Furthermore, in African trypanosomes, some protein-coding genes are transcribed by a multifunctional RNA polymerase I from a specialized extranucleolar compartment. The primary DNA sequence of the trypanosome genomes and their cellular organization have usually been treated as separate entities. However, it is becoming increasingly clear that in order to understand how a genome functions in a living cell, we will need to unravel how the one-dimensional genomic sequence and its trans-acting factors are arranged in the three-dimensional space of the eukaryotic nucleus. Understanding this cell biology of the genome will be crucial if we are to elucidate the genetic control mechanisms of parasitism. Here, we integrate the concepts of nuclear architecture, deduced largely from studies of yeast and mammalian nuclei, with recent developments in our knowledge of the trypanosome genome, gene expression, and nuclear organization. We also compare this nuclear organization to those in other systems in order to shed light on the evolution of nuclear architecture in eukaryotes.
Collapse
|
7
|
Kramer S, Carrington M. Trans-acting proteins regulating mRNA maturation, stability and translation in trypanosomatids. Trends Parasitol 2010; 27:23-30. [PMID: 20609625 PMCID: PMC3070815 DOI: 10.1016/j.pt.2010.06.011] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 06/05/2010] [Accepted: 06/07/2010] [Indexed: 12/30/2022]
Abstract
In trypanosomatids, alterations in gene expression in response to intrinsic or extrinsic signals are achieved through post-transcriptional mechanisms. In the last 20 years, research has concentrated on defining the responsible cis-elements in the untranslated regions of several regulated mRNAs. More recently, the focus has shifted towards the identification of RNA-binding proteins that act as trans-acting factors. Trypanosomatids have a large number of predicted RNA-binding proteins of which the vast majority have no orthologues in other eukaryotes. Several RNA-binding proteins have been shown to bind and/or regulate the expression of a group of mRNAs that code for functionally related proteins, indicating the possible presence of co-regulated mRNA cohorts.
Collapse
Affiliation(s)
- Susanne Kramer
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, UK, CB2 1QW
| | | |
Collapse
|
8
|
Archer SK, Luu VD, de Queiroz RA, Brems S, Clayton C. Trypanosoma brucei PUF9 regulates mRNAs for proteins involved in replicative processes over the cell cycle. PLoS Pathog 2009; 5:e1000565. [PMID: 19714224 PMCID: PMC2727004 DOI: 10.1371/journal.ppat.1000565] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 08/04/2009] [Indexed: 12/18/2022] Open
Abstract
Many genes that are required at specific points in the cell cycle exhibit cell cycle–dependent expression. In the early-diverging model eukaryote and important human pathogen Trypanosoma brucei, regulation of gene expression in the cell cycle and other processes is almost entirely post-transcriptional. Here, we show that the T. brucei RNA-binding protein PUF9 stabilizes certain transcripts during S-phase. Target transcripts of PUF9—LIGKA, PNT1 and PNT2—were identified by affinity purification with TAP-tagged PUF9. RNAi against PUF9 caused an accumulation of cells in G2/M phase and unexpectedly destabilized the PUF9 target mRNAs, despite the fact that most known Puf-domain proteins promote degradation of their target mRNAs. The levels of the PUF9-regulated transcripts were cell cycle dependent, peaking in mid- to late- S-phase, and this effect was abolished when PUF9 was targeted by RNAi. The sequence UUGUACC was over-represented in the 3′ UTRs of PUF9 targets; a point mutation in this motif abolished PUF9-dependent stabilization of a reporter transcript carrying the PNT1 3′ UTR. LIGKA is involved in replication of the kinetoplast, and here we show that PNT1 is also kinetoplast-associated and its over-expression causes kinetoplast-related defects, while PNT2 is localized to the nucleus in G1 phase and redistributes to the mitotic spindle during mitosis. PUF9 targets may constitute a post-transcriptional regulon, encoding proteins involved in temporally coordinated replicative processes in early G2 phase. The unicellular protozoan Trypanosoma brucei is the causative agent of African sleeping sickness, responsible for over 100,000 deaths annually, and is related to other important pathogens (e.g. Leishmania major and Trypanosoma cruzi). Unusually, these organisms do not regulate their genes by changing the rate at which they are copied into RNA, but by changing the rate of RNA destruction or the rate of translation into protein. We identified an RNA-binding protein, PUF9, responsible for the accumulation of several RNA molecules at a specific time point in the cell division cycle, just after DNA replication. Correspondingly, the proteins encoded by these RNAs appear to function in the division of various cellular structures at this time point or shortly afterwards. Two of them facilitate replication of the kinetoplast (an organelle containing the mitochondrial DNA) while another was found in the mitotic spindle. Their temporal co-expression may stem from another unusual feature of trypanosomes: only one copy of the kinetoplast (and several other organelles) are present per cell, their replication being coordinated with cell division. Indeed, PUF9 may be important in the control of organelle copy-number because suppression of PUF9 resulted in cells with too many kinetoplasts, flagella, or nuclei.
Collapse
Affiliation(s)
- Stuart K Archer
- Zentrum für Molekulare Biologie Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
9
|
Identification of new kinetoplast DNA replication proteins in trypanosomatids based on predicted S-phase expression and mitochondrial targeting. EUKARYOTIC CELL 2007; 6:2303-10. [PMID: 17965251 DOI: 10.1128/ec.00284-07] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Trypanosomatid parasites contain an unusual form of mitochondrial DNA (kinetoplast DNA [kDNA]) consisting of a catenated network of several thousand minicircles and a smaller number of maxicircles. Many of the proteins involved in the replication and division of kDNA are likely to have no counterparts in other organisms and would not be identified by similarity to known replication proteins in other organisms. A new kDNA replication protein conserved in kinetoplastids has been identified based on the presence of posttranscriptional regulatory sequences associated with S-phase gene expression and predicted mitochondrial targeting. The Leishmania major protein P105 (LmP105) and Trypanosoma brucei protein P93 (TbP93) localize to antipodal sites flanking the kDNA disk, where several other replication proteins and nascent minicircles have been localized. Like some of these kDNA replication proteins, the LmP105 protein is only present at the antipodal sites during S phase. RNA interference (RNAi) of TbP93 expression resulted in a cessation of cell growth and the loss of kDNA. Nicked/gapped forms of minicircles, the products of minicircle replication, were preferentially lost from the population of free minicircles during RNAi, suggesting involvement of TbP93 in minicircle replication. This approach should allow the identification of other novel proteins involved in the duplication of kDNA.
Collapse
|
10
|
Teixeira ARL, Nascimento RJ, Sturm NR. Evolution and pathology in chagas disease--a review. Mem Inst Oswaldo Cruz 2007; 101:463-91. [PMID: 17072450 DOI: 10.1590/s0074-02762006000500001] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Accepted: 06/07/2006] [Indexed: 02/04/2023] Open
Abstract
Trypanosoma cruzi acute infections often go unperceived, but one third of chronically infected individuals die of Chagas disease, showing diverse manifestations affecting the heart, intestines, and nervous systems. A common denominator of pathology in Chagas disease is the minimal rejection unit, whereby parasite-free target host cells are destroyed by immune system mononuclear effectors cells infiltrates. Another key feature stemming from T. cruzi infection is the integration of kDNA minicircles into the vertebrate host genome; horizontal transfer of the parasite DNA can undergo vertical transmission to the progeny of mammals and birds. kDNA integration-induced mutations can enter multiple loci in diverse chromosomes, generating new genes, pseudo genes and knock-outs, and resulting in genomic shuffling and remodeling over time. As a result of the juxtaposition of kDNA insertions with host open reading frames, novel chimeric products may be generated. Germ line transmission of kDNA-mutations determined the appearance of lesions in birds that are indistinguishable from those seen in Chagas disease patients. The production of tissue lesions showing typical minimal rejection units in birds' refractory to T. cruzi infection is consistent with the hypothesis that autoimmunity, likely triggered by integration-induced phenotypic alterations, plays a major role in the pathogenesis of Chagas disease.
Collapse
Affiliation(s)
- Antonio R L Teixeira
- Laboratório de Pesquisa Multidisciplinar em Doença de Chagas, Faculdade de Medicina, Universidade de Brasilia, Caixa Postal 04536, 70919-970 Brasilia,-DF, Brasil.
| | | | | |
Collapse
|
11
|
Sinha KM, Hines JC, Ray DS. Cell cycle-dependent localization and properties of a second mitochondrial DNA ligase in Crithidia fasciculata. EUKARYOTIC CELL 2006; 5:54-61. [PMID: 16400168 PMCID: PMC1360255 DOI: 10.1128/ec.5.1.54-61.2006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mitochondrial DNA in kinetoplastid protozoa is contained in a single highly condensed structure consisting of thousands of minicircles and approximately 25 maxicircles. The disk-shaped structure is termed kinetoplast DNA (kDNA) and is located in the mitochondrial matrix near the basal body. We have previously identified a mitochondrial DNA ligase (LIG kbeta) in the trypanosomatid Crithidia fasciculata that localizes to antipodal sites flanking the kDNA disk where several other replication proteins are localized. We describe here a second mitochondrial DNA ligase (LIG kalpha). LIG kalpha localizes to the kinetoplast primarily in cells that have completed mitosis and contain either a dividing kinetoplast or two newly divided kinetoplasts. Essentially all dividing or newly divided kinetoplasts show localization of LIG kalpha. The ligase is present on both faces of the kDNA disk and at a high level in the kinetoflagellar zone of the mitochondrial matrix. Cells containing a single nucleus show localization of the LIG kalpha to the kDNA but at a much lower frequency. The mRNA level of LIG kalpha varies during the cell cycle out of phase with that of LIG kbeta. LIG kalpha transcript levels are maximal during the phase when cells contain two nuclei, whereas LIG kbeta transcript levels are maximal during S phase. The LIG kalpha protein decays with a half-life of 100 min in the absence of protein synthesis. The periodic expression of the LIG kalpha transcript and the instability of the LIG kalpha protein suggest a possible role of the ligase in regulating minicircle replication.
Collapse
Affiliation(s)
- Krishna Murari Sinha
- Molecular Biology Institute and Department of Microbiology, Immunology and Molecular Genetics, University of California at Los Angeles, 301A Paul D. Boyer Hall, 611 Charles Young Dr. East, Los Angeles, California 90095-1570, USA
| | | | | |
Collapse
|
12
|
Zick A, Onn I, Bezalel R, Margalit H, Shlomai J. Assigning functions to genes: identification of S-phase expressed genes in Leishmania major based on post-transcriptional control elements. Nucleic Acids Res 2005; 33:4235-42. [PMID: 16052032 PMCID: PMC1181863 DOI: 10.1093/nar/gki742] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Assigning functions to genes is one of the major challenges of the post-genomic era. Usually, functions are assigned based on similarity of the coding sequences to sequences of known genes, or by identification of transcriptional cis-regulatory elements that are known to be associated with specific pathways or conditions. In trypanosomatids, where regulation of gene expression takes place mainly at the post-transcriptional level, new approaches for function assignment are needed. Here we demonstrate the identification of novel S-phase expressed genes in Leishmania major, based on a post-transcriptional control element that was recognized in Crithidia fasciculata as involved in the cell cycle-dependent expression of several nuclear and mitochondrial S-phase expressed genes. Hypothesizing that a similar regulatory mechanism is manifested in L.major, we have applied a computational search for similar control elements in the genome of L.major. Our computational scan yielded 132 genes, of which 33% are homologues of known DNA metabolism genes and 63% lack any annotation. Experimental testing of seven of these genes revealed that their mRNAs cycle throughout the cell cycle, reaching a maximum level during S-phase or just prior to it. It is suggested that screening for post-transcriptional control elements associated with a specific function provides an efficient method for assigning functions to trypanosomatid genes.
Collapse
Affiliation(s)
- Aviad Zick
- Department of Parasitology, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical SchoolJerusalem 91120, Israel
| | - Itay Onn
- Department of Parasitology, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical SchoolJerusalem 91120, Israel
- Department of Molecular Genetics and Biotechnology, The Hebrew University-Hadassah Medical SchoolJerusalem 91120, Israel
| | - Rachel Bezalel
- Department of Parasitology, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical SchoolJerusalem 91120, Israel
| | - Hanah Margalit
- Department of Molecular Genetics and Biotechnology, The Hebrew University-Hadassah Medical SchoolJerusalem 91120, Israel
| | - Joseph Shlomai
- Department of Parasitology, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical SchoolJerusalem 91120, Israel
- To whom correspondence should be addressed. Tel: 972 2 6758089; Fax: 972 2 6757425; E-mail:
| |
Collapse
|
13
|
Webb H, Burns R, Kimblin N, Ellis L, Carrington M. A novel strategy to identify the location of necessary and sufficient cis-acting regulatory mRNA elements in trypanosomes. RNA (NEW YORK, N.Y.) 2005; 11:1108-16. [PMID: 15928343 PMCID: PMC1360220 DOI: 10.1261/rna.2510505] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Expression of nearly all protein coding genes in trypanosomes is regulated post-transcriptionally, predominantly at the level of mRNA half-life. The identification of cis-acting elements involved in mRNA stability has been hindered by a lack of ability to screen for loss-of-regulation mutants. The method described in this article allows the region containing the necessary and sufficient elements within a mRNA to be identified and uses antibiotic resistance genes as both selectable markers and reporters. In the case of unstable mRNAs, the strategy can be extended by performing a screen for spontaneous loss-of-function mutants in regulatory parts of a mRNA. The method was validated by using the GPI-PLC mRNA, which is unstable in procyclic form trypanosomes and showed that the 3'UTR of the GPI-PLC mRNA contains all elements required for developmentally regulated instability. Loss-of-instability mutants all contained deletions within the 2300-nucleotide-long 3'UTR, and their analysis showed that a deletion including the last 800 nt of the gene stabilized the mRNA. The method is nonpresumptive, allows far more rapid screening for cis-elements than existing procedures, and has the advantage of identifying functional mutants. It is applicable to all eukaryotes using polycistronic transcription.
Collapse
Affiliation(s)
- Helena Webb
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | | | | | | | | |
Collapse
|
14
|
Golden DE, Hajduk SL. The 3'-untranslated region of cytochrome oxidase II mRNA functions in RNA editing of African trypanosomes exclusively as a cis guide RNA. RNA (NEW YORK, N.Y.) 2005; 11:29-37. [PMID: 15574518 PMCID: PMC1370688 DOI: 10.1261/rna.7170705] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2004] [Accepted: 10/08/2004] [Indexed: 05/24/2023]
Abstract
RNA editing in trypanosomes is a post-transcriptional process responsible for correcting the coding sequences of many mitochondrial mRNAs. Uridines are specifically added or deleted from mRNA by an enzymatic cascade in which a pre-edited mRNA is specifically cleaved, uridines are added or removed, and the corrected mRNA is ligated. The process is directed by RNA molecules, termed guide RNAs (gRNA). The ability of this class of small, noncoding RNA to function in RNA editing is essential for these organisms. Typically, gRNAs are transcribed independent of the their cognate mRNA and anneal to form a binary RNA complex . An exception for this process may be cytochrome oxidase subunit II (COII) mRNA since a gene encoding a trans acting gRNA has not been identified. Using an in vitro editing assay we find that the 3' UTR of COII, indeed, functions as a guide for both the site and number of uridines added to the coding region of the COII mRNA. We further show that the guiding sequence within the COII 3' UTR can only function in COII editing when contiguous with the editing substrate, indicating that the 3' UTR of COII lacks sequence or structure information necessary to function as a trans-acting gRNA. While other RNAs have been shown to "guide" RNA processing reactions, our discovery that the COII 3' UTR directs editing of its cognate mRNA in cis, is a unique function for a 3' UTR. The findings described here have led us to propose a new model for the evolution of gRNAs in kinetoplastids.
Collapse
Affiliation(s)
- Daniel E Golden
- Program in Global Infectious Diseases, Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | | |
Collapse
|
15
|
Avliyakulov NK, Lukes J, Ray DS. Mitochondrial histone-like DNA-binding proteins are essential for normal cell growth and mitochondrial function in Crithidia fasciculata. EUKARYOTIC CELL 2004; 3:518-26. [PMID: 15075280 PMCID: PMC387644 DOI: 10.1128/ec.3.2.518-526.2004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Crithidia fasciculata KAP2 and KAP3 proteins are closely related kinetoplast-specific histone-like DNA-binding proteins. The KAP2 and KAP3 genes are 46% identical and are arranged in tandem on the chromosomal DNA. Disruption of both alleles of either gene alone shows no detectable phenotype. However, replacement of both copies of the sequence encoding the entire KAP2 and KAP3 locus increases maxicircle mRNA levels two- to fourfold. These double-knockout cells are viable but grow extremely slowly, have reduced respiration and very abnormal cell morphologies, and accumulate numerous large vacuoles. The extreme phenotype of these mutant cells suggests an important role for the KAP2 and KAP3 proteins in mitochondrial metabolism and cell growth.
Collapse
Affiliation(s)
- Nuraly K Avliyakulov
- Molecular Biology Institute University of California, Los Angeles, California 90095-1570, USA
| | | | | |
Collapse
|