1
|
Sun Y, Bakhtiari S, Valente-Paterno M, Wu Y, Nishimura Y, Shen W, Law C, Dhaliwal J, Dai D, Bui KH, Zerges W. Chloroplast biogenesis involves spatial coordination of nuclear and organellar gene expression in Chlamydomonas. PLANT PHYSIOLOGY 2024; 196:112-123. [PMID: 38709497 PMCID: PMC11376380 DOI: 10.1093/plphys/kiae256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/01/2024] [Accepted: 04/12/2024] [Indexed: 05/07/2024]
Abstract
The localization of translation can direct the polypeptide product to the proper intracellular compartment. Our results reveal translation by cytosolic ribosomes on a domain of the chloroplast envelope in the unicellular green alga Chlamydomonas (Chlamydomonas reinhardtii). We show that this envelope domain of isolated chloroplasts retains translationally active ribosomes and mRNAs encoding chloroplast proteins. This domain is aligned with localized translation by chloroplast ribosomes in the translation zone, a chloroplast compartment where photosystem subunits encoded by the plastid genome are synthesized and assembled. Roles of localized translation in directing newly synthesized subunits of photosynthesis complexes to discrete regions within the chloroplast for their assembly are suggested by differences in localization on the chloroplast of mRNAs encoding either subunit of the light-harvesting complex II or the small subunit of Rubisco. Transcription of the chloroplast genome is spatially coordinated with translation, as revealed by our demonstration of a subpopulation of transcriptionally active chloroplast nucleoids at the translation zone. We propose that the expression of chloroplast proteins by the nuclear-cytosolic and organellar genetic systems is organized in spatially aligned subcompartments of the cytoplasm and chloroplast to facilitate the biogenesis of the photosynthetic complexes.
Collapse
Affiliation(s)
- Yi Sun
- Department of Biology, Concordia University, Montreal, Quebec, Canada, H4B 1R6
| | - Shiva Bakhtiari
- Department of Biology, Concordia University, Montreal, Quebec, Canada, H4B 1R6
| | - Melissa Valente-Paterno
- Department of Biology, Concordia University, Montreal, Quebec, Canada, H4B 1R6
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada, H3A 0C7
| | - Yanxia Wu
- Department of Biology, Concordia University, Montreal, Quebec, Canada, H4B 1R6
| | - Yoshiki Nishimura
- Laboratory of Plant Molecular Genetics, Department of Botany, Graduate School of Sciences, Koyoto University, Oiwake-cho, Kita-Shirakawa, Kyoto-shi 606-8502, Japan
| | - Weike Shen
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Christopher Law
- Centre for Microscopy and Cell Imaging, Concordia University, Montreal, Quebec, Canada, H4B 1R6
| | - James Dhaliwal
- Department of Biology, Concordia University, Montreal, Quebec, Canada, H4B 1R6
| | - Daniel Dai
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada, H3A 0C7
| | - Khanh Huy Bui
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada, H3A 0C7
| | - William Zerges
- Department of Biology, Concordia University, Montreal, Quebec, Canada, H4B 1R6
| |
Collapse
|
2
|
Kosugi M, Ohtani S, Hara K, Toyoda A, Nishide H, Ozawa SI, Takahashi Y, Kashino Y, Kudoh S, Koike H, Minagawa J. Characterization of the far-red light absorbing light-harvesting chlorophyll a/ b binding complex, a derivative of the distinctive Lhca gene family in green algae. FRONTIERS IN PLANT SCIENCE 2024; 15:1409116. [PMID: 38916036 PMCID: PMC11194369 DOI: 10.3389/fpls.2024.1409116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/22/2024] [Indexed: 06/26/2024]
Abstract
Prasiola crispa, an aerial green alga, exhibits remarkable adaptability to the extreme conditions of Antarctica by forming layered colonies capable of utilizing far-red light for photosynthesis. Despite a recent report on the structure of P. crispa's unique light-harvesting chlorophyll (Chl)-binding protein complex (Pc-frLHC), which facilitates far-red light absorption and uphill excitation energy transfer to photosystem II, the specific genes encoding the subunits of Pc-frLHC have not yet been identified. Here, we report a draft genome sequence of P. crispa strain 4113, originally isolated from soil samples on Ongul Island, Antarctica. We obtained a 92 Mbp sequence distributed in 1,045 scaffolds comprising 10,244 genes, reflecting 87.1% of the core eukaryotic gene set. Notably, 26 genes associated with the light-harvesting Chl a/b binding complex (LHC) were identified, including four Pc-frLHC genes, with similarity to a noncanonical Lhca gene with four transmembrane helices, such as Ot_Lhca6 in Ostreococcus tauri and Cr_LHCA2 in Chlamydomonas reinhardtii. A comparative analysis revealed that Pc-frLHC shares homology with certain Lhca genes found in Coccomyxa and Trebouxia species. This similarity indicates that Pc-frLHC has evolved from an ancestral Lhca gene with four transmembrane helices and branched out within the Trebouxiaceae family. Furthermore, RNA-seq analysis conducted during the initiation of Pc-frLHC gene induction under red light illumination indicated that Pc-frLHC genes were induced independently from other genes associated with photosystems or LHCs. Instead, the genes of transcription factors, helicases, chaperones, heat shock proteins, and components of blue light receptors were identified to coexpress with Pc-frLHC. Those kinds of information could provide insights into the expression mechanisms of Pc-frLHC and its evolutional development.
Collapse
Affiliation(s)
- Makiko Kosugi
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki, Japan
| | - Shuji Ohtani
- Faculty of Education, Shimane University, Matsue, Japan
| | - Kojiro Hara
- Faculty of Bioresource Sciences, Akita Prefectural University, Akita, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Hiroyo Nishide
- Data Integration and Analysis Facility, National Institute for Basic Biology, National Institutes of Natural Science, Okazaki, Japan
| | - Shin-Ichiro Ozawa
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Yuichiro Takahashi
- Research Institute for Interdisciplinary Science, Okayama University, Okayama, Japan
| | | | - Sakae Kudoh
- National Institute of Polar Research, Research Organization of Information and Systems, Tokyo, Japan
- Department of Polar Science, School of Multidisciplinary Science, The Graduate University for Advanced Studies, SOKENDAI, Tokyo, Japan
| | - Hiroyuki Koike
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Jun Minagawa
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Japan
| |
Collapse
|
3
|
Plouviez M, Dubreucq E. Key Proteomics Tools for Fundamental and Applied Microalgal Research. Proteomes 2024; 12:13. [PMID: 38651372 PMCID: PMC11036299 DOI: 10.3390/proteomes12020013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
Microscopic, photosynthetic prokaryotes and eukaryotes, collectively referred to as microalgae, are widely studied to improve our understanding of key metabolic pathways (e.g., photosynthesis) and for the development of biotechnological applications. Omics technologies, which are now common tools in biological research, have been shown to be critical in microalgal research. In the past decade, significant technological advancements have allowed omics technologies to become more affordable and efficient, with huge datasets being generated. In particular, where studies focused on a single or few proteins decades ago, it is now possible to study the whole proteome of a microalgae. The development of mass spectrometry-based methods has provided this leap forward with the high-throughput identification and quantification of proteins. This review specifically provides an overview of the use of proteomics in fundamental (e.g., photosynthesis) and applied (e.g., lipid production for biofuel) microalgal research, and presents future research directions in this field.
Collapse
Affiliation(s)
- Maxence Plouviez
- School of Agriculture and Environment, Massey University, Palmerston North 4410, New Zealand
- The Cawthron Institute, Nelson 7010, New Zealand
| | - Eric Dubreucq
- Agropolymer Engineering and Emerging Technologies, L’Institut Agro Montpellier, 34060 Montpellier, France;
| |
Collapse
|
4
|
Sun H, Shang H, Pan X, Li M. Structural insights into the assembly and energy transfer of the Lhcb9-dependent photosystem I from moss Physcomitrium patens. NATURE PLANTS 2023; 9:1347-1358. [PMID: 37474782 DOI: 10.1038/s41477-023-01463-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/21/2023] [Indexed: 07/22/2023]
Abstract
In plants and green algae, light-harvesting complexes I and II (LHCI and LHCII) constitute the antennae of photosystem I (PSI), thus effectively increasing the cross-section of the PSI core. The moss Physcomitrium patens (P. patens) represents a well-studied primary land-dwelling photosynthetic autotroph branching from the common ancestor of green algae and land plants at the early stage of evolution. P. patens possesses at least three types of PSI with different antenna sizes. The largest PSI form (PpPSI-L) exhibits a unique organization found neither in flowering plants nor in algae. Its formation is mediated by the P. patens-specific LHC protein, Lhcb9. While previous studies have revealed the overall architecture of PpPSI-L, its assembly details and the relationship between different PpPSI types remain unclear. Here we report the high-resolution structure of PpPSI-L. We identified 14 PSI core subunits, one Lhcb9, one phosphorylated LHCII trimer and eight LHCI monomers arranged as two belts. Our structural analysis established the essential role of Lhcb9 and the phosphorylated LHCII in stabilizing the complex. In addition, our results suggest that PpPSI switches between different types, which share identical modules. This feature may contribute to the dynamic adjustment of the light-harvesting capability of PSI under different light conditions.
Collapse
Affiliation(s)
- Haiyu Sun
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui Shang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Science, Capital Normal University, Beijing, China
| | - Xiaowei Pan
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Science, Capital Normal University, Beijing, China.
| | - Mei Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
Nakanishi A, Nemoto S, Yamamoto N, Iritani K, Watanabe M. Identification of Cell-Attachment Factors Derived from Green Algal Cells Disrupted by Sonication in Fabrication of Cell Plastics. Bioengineering (Basel) 2023; 10:893. [PMID: 37627778 PMCID: PMC10451321 DOI: 10.3390/bioengineering10080893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Cell plastics which are composed of unicellular green algal cells have been proposed in previous studies. While unicellular green algae can be freely arranged using fabrication processes, a matrix is required to attach the cells together. To date, although the cell contents collected from Chlamydomonas reinhardtii show the possibility of attaching cells, but it is unclear which components can be considered attachment factors. Therefore, in this study, C. reinhardtii cells were disrupted with sonication, and the components were separated and purified with hexane. The cell plastics with only 0.5 wt% of intermediate showed similar mechanical properties to those with 17 wt% and 25 wt% of cell components that were untreated with hexane, meaning that the purified intermediates could function as matrices. The purified intermediate was composed of approximately 60 wt% of protein as the main component, and proteomic analysis was performed to survey the main proteins that remained after hexane treatment. The protein compositions of the cell content and purified intermediate were compared via proteomic analysis, revealing that the existing ratios of 532 proteins were increased in the purified intermediate rather than in the cell content. In particular, the outer structure of each of the 49 proteins-the intensity of which was increased by over 10 times-had characteristically random coil conformations, containing ratios of proline and alanine. The information could suggest a matrix of cell plastics, inspiring the possibility to endow the cell plastics with more properties and functions.
Collapse
Affiliation(s)
- Akihito Nakanishi
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo 192-0982, Japan
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo 192-0982, Japan; (S.N.); (N.Y.); (M.W.)
| | - Shintaro Nemoto
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo 192-0982, Japan; (S.N.); (N.Y.); (M.W.)
| | - Naotaka Yamamoto
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo 192-0982, Japan; (S.N.); (N.Y.); (M.W.)
| | - Kohei Iritani
- Department of Applied Chemistry, School of Engineering, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo 192-0982, Japan
- Research Center for Advanced Lignin-Based Materials, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo 192-0982, Japan
| | - Marina Watanabe
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo 192-0982, Japan; (S.N.); (N.Y.); (M.W.)
| |
Collapse
|
6
|
Effect of Cryopreservation on Proteins from the Ubiquitous Marine Dinoflagellate Breviolum sp. (Family Symbiodiniaceae). PLANTS 2021; 10:plants10081731. [PMID: 34451777 PMCID: PMC8401993 DOI: 10.3390/plants10081731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 12/29/2022]
Abstract
Coral reefs around the world are exposed to thermal stress from climate change, disrupting the delicate symbiosis between the coral host and its symbionts. Cryopreservation is an indispensable tool for the preservation of species, as well as the establishment of a gene bank. However, the development of cryopreservation techniques for application to symbiotic algae is limited, in addition to the scarceness of related studies on the molecular level impacts post-thawing. Hence, it is essential to set up a suitable freezing protocol for coral symbionts, as well as to analyze its cryo-injury at the molecular level. The objective of this study was to develop a suitable protocol for the coral symbiont Breviolum subjected to two-step freezing. The thawed Breviolum were then cultured for 3, 7, 14, and 28 days before they were analyzed by Western blot for protein expression, light-harvesting protein (LHP), and red fluorescent protein (RFP) and tested by adenosine triphosphate bioassay for cell viability. The results showed the highest cell viability for thawed Breviolum that was treated with 2 M propylene glycol (PG) and 2 M methanol (MeOH) and equilibrated with both cryoprotectants for 30 min and 20 min. Both treatment groups demonstrated a significant increase in cell population after 28 days of culture post-thawing, especially for the MeOH treatment group, whose growth rate was twice of the PG treatment group. Regarding protein expression, the total amounts of each type of protein were significantly affected by cryopreservation. After 28 days of culture, the protein expression for the MeOH treatment group showed no significant difference to that of the control group, whereas the protein expression for the PG treatment group showed a significant difference. Breviolum that were frozen with MeOH recovered faster upon thawing than those frozen with PG. LHP was positively and RFP was negatively correlated with Symbiodiniaceae viability and so could serve as health-informing biomarkers. This work represents the first time to document it in Symbiodiniaceae, and this study established a suitable protocol for the cryopreservation of Breviolum and further refined the current understanding of the impact of low temperature on its protein expression. By gaining further understanding of the use of cryopreservation as a way to conserve Symbiodiniaceae, we hope to make an effort in the remediation and conservation of the coral reef ecosystem and provide additional methods to rescue coral reefs.
Collapse
|
7
|
Pan X, Tokutsu R, Li A, Takizawa K, Song C, Murata K, Yamasaki T, Liu Z, Minagawa J, Li M. Structural basis of LhcbM5-mediated state transitions in green algae. NATURE PLANTS 2021; 7:1119-1131. [PMID: 34239095 DOI: 10.1038/s41477-021-00960-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/03/2021] [Indexed: 05/10/2023]
Abstract
In green algae and plants, state transitions serve as a short-term light-acclimation process in the regulation of the light-harvesting capacity of photosystems I and II (PSI and PSII, respectively). During the process, a portion of light-harvesting complex II (LHCII) is phosphorylated, dissociated from PSII and binds with PSI to form the supercomplex PSI-LHCI-LHCII. Here, we report high-resolution structures of PSI-LHCI-LHCII from Chlamydomonas reinhardtii, revealing the mechanism of assembly between the PSI-LHCI complex and two phosphorylated LHCII trimers containing all four types of LhcbM protein. Two specific LhcbM isoforms, namely LhcbM1 and LhcbM5, directly interact with the PSI core through their phosphorylated amino terminal regions. Furthermore, biochemical and functional studies on mutant strains lacking either LhcbM1 or LhcbM5 indicate that only LhcbM5 is indispensable in supercomplex formation. The results unravel the specific interactions and potential excitation energy transfer routes between green algal PSI and two phosphorylated LHCIIs.
Collapse
Affiliation(s)
- Xiaowei Pan
- National Laboratory of Biomacromolecules, CAS Centre for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Science, Capital Normal University, Beijing, China
| | - Ryutaro Tokutsu
- National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
- Department of Basic Biology, School of Life Science, the Graduate University for Advanced Studies, SOKENDAI, Okazaki, Japan
| | - Anjie Li
- National Laboratory of Biomacromolecules, CAS Centre for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Kenji Takizawa
- National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
- Astrobiology Centre, National Institutes of Natural Sciences, Mitaka, Japan
| | - Chihong Song
- Exploratory Research Centre on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Kazuyoshi Murata
- Exploratory Research Centre on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Tomohito Yamasaki
- Science and Technology Department, Natural Science Cluster, Kochi University, Kochi, Japan
| | - Zhenfeng Liu
- National Laboratory of Biomacromolecules, CAS Centre for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Jun Minagawa
- National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan.
- Department of Basic Biology, School of Life Science, the Graduate University for Advanced Studies, SOKENDAI, Okazaki, Japan.
| | - Mei Li
- National Laboratory of Biomacromolecules, CAS Centre for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
8
|
Yan Q, Zhao L, Wang W, Pi X, Han G, Wang J, Cheng L, He YK, Kuang T, Qin X, Sui SF, Shen JR. Antenna arrangement and energy-transfer pathways of PSI-LHCI from the moss Physcomitrella patens. Cell Discov 2021; 7:10. [PMID: 33589616 PMCID: PMC7884438 DOI: 10.1038/s41421-021-00242-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023] Open
Abstract
Plants harvest light energy utilized for photosynthesis by light-harvesting complex I and II (LHCI and LHCII) surrounding photosystem I and II (PSI and PSII), respectively. During the evolution of green plants, moss is at an evolutionarily intermediate position from aquatic photosynthetic organisms to land plants, being the first photosynthetic organisms that landed. Here, we report the structure of the PSI–LHCI supercomplex from the moss Physcomitrella patens (Pp) at 3.23 Å resolution solved by cryo-electron microscopy. Our structure revealed that four Lhca subunits are associated with the PSI core in an order of Lhca1–Lhca5–Lhca2–Lhca3. This number is much decreased from 8 to 10, the number of subunits in most green algal PSI–LHCI, but the same as those of land plants. Although Pp PSI–LHCI has a similar structure as PSI–LHCI of land plants, it has Lhca5, instead of Lhca4, in the second position of Lhca, and several differences were found in the arrangement of chlorophylls among green algal, moss, and land plant PSI–LHCI. One chlorophyll, PsaF–Chl 305, which is found in the moss PSI–LHCI, is located at the gap region between the two middle Lhca subunits and the PSI core, and therefore may make the excitation energy transfer from LHCI to the core more efficient than that of land plants. On the other hand, energy-transfer paths at the two side Lhca subunits are relatively conserved. These results provide a structural basis for unravelling the mechanisms of light-energy harvesting and transfer in the moss PSI–LHCI, as well as important clues on the changes of PSI–LHCI after landing.
Collapse
Affiliation(s)
- Qiujing Yan
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liang Zhao
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wenda Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xiong Pi
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jie Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingpeng Cheng
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yi-Kun He
- College of Life Sciences, Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Tingyun Kuang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xiaochun Qin
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong, 250022, China.
| | - Sen-Fang Sui
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, 100084, China. .,Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China. .,Research Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.
| |
Collapse
|
9
|
Míguez L, Esperanza M, Seoane M, Cid Á. Assessment of cytotoxicity biomarkers on the microalga Chlamydomonas reinhardtii exposed to emerging and priority pollutants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111646. [PMID: 33396166 DOI: 10.1016/j.ecoenv.2020.111646] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/29/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
Contamination of aquatic ecosystems linked to anthropogenic activity is currently a major concern; therefore, ecotoxicological studies are needed to assess its effect on organisms. The main objective of this study was to investigate the effects of different pollutants on microalgae in search of sensitive biomarkers that can promote a common cytotoxic response regardless of the contaminant. Cultures of the freshwater microalga Chlamydomonas reinhardtii were exposed for 24 h to four chemicals, three emerging pollutants (benzophenone-3, bisphenol A and oxytetracycline) and one priority substance (atrazine). A cytometric panel was carried out to assess toxicity biomarkers including cellular growth, inherent cell properties, viability, vitality, cytoplasmic membrane potential and ROS levels. Lipid peroxidation, photosynthetic efficiency and transcriptional responses of photosynthesis- and oxidative stress-related genes using RT-qPCR were also studied. Some toxicity responses showed a similar pattern; a decrease in growth rate, vitality and photosynthetic efficiency and an increase in autofluorescence and in the number of cells with depolarised cytoplasmic membrane and were found for all chemicals tested. However, ATZ and OTC provoked a decrease in cell size, whereas BP-3 and BPA caused an increase in cell size, intracellular complexity and ROS levels and a decrease in cell viability. Assayed pollutants generally promoted an overexpression of genes related to cellular antioxidant defence system and a subexpression of photosynthesis-related genes. In addition to the traditional growth endpoint, cell vitality, autofluorescence and gene expression of catalase, glutathione peroxidase and Fe-superoxide dismutase were significantly affected for all chemicals tested, showing a common cytotoxic response. Among the tested substances, BP-3 provoked the strongest cytotoxic alterations on this microalga, pointing out that some emerging contaminants could be more harmful to organisms than priority pollutants.
Collapse
Affiliation(s)
- Laura Míguez
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, 15071 A Coruña, Spain
| | - Marta Esperanza
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, 15071 A Coruña, Spain
| | - Marta Seoane
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, 15071 A Coruña, Spain
| | - Ángeles Cid
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, 15071 A Coruña, Spain.
| |
Collapse
|
10
|
Devadasu E, Pandey J, Dhokne K, Subramanyam R. Restoration of photosynthetic activity and supercomplexes from severe iron starvation in Chlamydomonas reinhardtii. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148331. [PMID: 33127356 DOI: 10.1016/j.bbabio.2020.148331] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/24/2020] [Indexed: 02/06/2023]
Abstract
The eukaryotic alga Chlamydomonas (C.) reinhardtii is used as a model organism to study photosynthetic efficiency. We studied the organization and protein profile of thylakoid membranes under severe iron (Fe2+) deficiency condition and iron supplement for their restoration. Chlorophyll (Chl) a fluorescence fast OJIP transients were decreased in the severe Fe2+ deficient cells resulting in the reduction of the photochemical efficiency. The circular dichroism (CD) results from Fe2+ deficient thylakoid membranes show a significant change in pigment-pigment and pigment-protein excitonic interactions. The organization of super-complexes was also affected significantly. Furthermore, super-complexes of photosystem (PS) II and PSI, along with its dimers, were severely reduced. The complexes separated using sucrose gradient centrifugation shows that loss of super-complexes and excitonic pigment-pigment interactions were restored in the severely Fe2+ deficient cells upon Fe supplementation for three generations. Additionally, the immunoblots demonstrated that both PSII, PSI core, and their light-harvesting complex antenna proteins were differentially decreased. However, reduced core proteins were aggregated, which in turn proteins were unfold and destabilized the supercomplexes and its function. Interestingly, the aggregated proteins were insoluble after n-Dodecyl β-D-maltoside solubilization. Further, they were identified in the pellet form. When Fe2+ was added to the severely deficient cells, the photosynthetic activity, pigment-proteins complexes, and proteins were restored to the level of control after 3rd generation.
Collapse
Affiliation(s)
- Elsinraju Devadasu
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Gachibowli, Telangana 500046, India
| | - Jayendra Pandey
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Gachibowli, Telangana 500046, India
| | - Kunal Dhokne
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Gachibowli, Telangana 500046, India
| | - Rajagopal Subramanyam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Gachibowli, Telangana 500046, India.
| |
Collapse
|
11
|
Kim E, Kawakami K, Sato R, Ishii A, Minagawa J. Photoprotective Capabilities of Light-Harvesting Complex II Trimers in the Green Alga Chlamydomonas reinhardtii. J Phys Chem Lett 2020; 11:7755-7761. [PMID: 32822182 DOI: 10.1021/acs.jpclett.0c02098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Major light-harvesting complex (LHCII) trimers in plants induce the thermal dissipation of absorbed excitation energy against photooxidative damage under excess light conditions. LHCII trimers in green algae have been thought to be incapable of energy dissipation without additional quencher proteins, although LHCIIs in plants and green algae are homologous. In this study, we investigated the energy-dissipative capabilities of four distinct types of LHCII trimers isolated from the model green alga Chlamydomonas reinhardtii using spectroscopic analysis. Our results revealed that the LHCII trimers possessing LHCII type II (LHCBM5) and LHCII type IV (LHCBM1) had efficient energy-dissipative capabilities, whereas LHCII type I (LHCBM3/4/6/8/9) and type III (LHCBM2/7) did not. On the basis of the amino acid sequences of LHCBM5 and LHCBM1 compared with the other LHCBMs, we propose that positively charged extra N-terminal amino acid residues mediate the interactions between LHCII trimers to form energy-dissipative states.
Collapse
Affiliation(s)
- Eunchul Kim
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Keisuke Kawakami
- Research Center for Artificial Photosynthesis, Osaka City University, 3-3-138, Osaka, Japan
| | - Ryoichi Sato
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Asako Ishii
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Jun Minagawa
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| |
Collapse
|
12
|
Cariti F, Chazaux M, Lefebvre-Legendre L, Longoni P, Ghysels B, Johnson X, Goldschmidt-Clermont M. Regulation of Light Harvesting in Chlamydomonas reinhardtii Two Protein Phosphatases Are Involved in State Transitions. PLANT PHYSIOLOGY 2020; 183:1749-1764. [PMID: 32327546 PMCID: PMC7401111 DOI: 10.1104/pp.20.00384] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/09/2020] [Indexed: 05/09/2023]
Abstract
Protein phosphorylation plays important roles in short-term regulation of photosynthetic electron transfer, and during state transitions, the kinase STATE TRANSITION7 (STT7) of Chlamydomonas reinhardtii phosphorylates components of light-harvesting antenna complex II (LHCII). This reversible phosphorylation governs the dynamic allocation of a part of LHCII to PSI or PSII, depending on light conditions and metabolic demands, but counteracting phosphatase(s) remain unknown in C. reinhardtii Here we analyzed state transitions in C. reinhardtii mutants of two phosphatases, PROTEIN PHOSPHATASE1 and PHOTOSYSTEM II PHOSPHATASE, which are homologous to proteins that antagonize the state transition kinases (STN7 and STN8) in Arabidopsis (Arabidopsis thaliana). The transition from state 2 to state 1 was retarded in pph1, and surprisingly also in pbcp However, both mutants eventually returned to state 1. In contrast, the double mutant pph1;pbcp appeared strongly locked in state 2. The complex phosphorylation patterns of the LHCII trimers and of the monomeric subunits were affected in the phosphatase mutants. Their analysis indicated that the two phosphatases have different yet overlapping sets of protein targets. The dual control of thylakoid protein dephosphorylation and the more complex antenna phosphorylation patterns in C. reinhardtii compared to Arabidopsis are discussed in the context of the stronger amplitude of state transitions and the more diverse LHCII isoforms in the alga.
Collapse
Affiliation(s)
- Federica Cariti
- Department of Botany and Plant Biology, University of Geneva, 1211, Geneva 4, Switzerland
| | - Marie Chazaux
- Aix Marseille University, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Centre National de la Recherche Scientifique, Biosciences and Biotechnologies Institute of Aix-Marseille, F-13108 Saint Paul-Lez-Durance, France
| | | | - Paolo Longoni
- Institute of Genetics and Genomics of Geneva, University of Geneva, 1205 Geneva 4, Switzerland
| | - Bart Ghysels
- Aix Marseille University, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Centre National de la Recherche Scientifique, Biosciences and Biotechnologies Institute of Aix-Marseille, F-13108 Saint Paul-Lez-Durance, France
| | - Xenie Johnson
- Aix Marseille University, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Centre National de la Recherche Scientifique, Biosciences and Biotechnologies Institute of Aix-Marseille, F-13108 Saint Paul-Lez-Durance, France
| | | |
Collapse
|
13
|
Song H, He M, Wu C, Gu C, Wang C. Global transcriptomic analysis of an Arctic Chlorella-Arc reveals its eurythermal adaptivity mechanisms. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101792] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Burton-Smith RN, Watanabe A, Tokutsu R, Song C, Murata K, Minagawa J. Structural determination of the large photosystem II-light-harvesting complex II supercomplex of Chlamydomonas reinhardtii using nonionic amphipol. J Biol Chem 2019; 294:15003-15013. [PMID: 31420447 DOI: 10.1074/jbc.ra119.009341] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/14/2019] [Indexed: 02/01/2023] Open
Abstract
In photosynthetic organisms, photosystem II (PSII) is a large membrane protein complex, consisting of a pair of core complexes surrounded by an array of variable numbers of light-harvesting complex (LHC) II proteins. Previously reported structures of the PSII-LHCII supercomplex of the green alga Chlamydomonas reinhardtii exhibit significant structural heterogeneity, but recently improved purification methods employing ionic amphipol A8-35 have enhanced supercomplex stability, providing opportunities for determining a more intact structure. Herein, we present a 5.8 Å cryo-EM map of the C. reinhardtii PSII-LHCII supercomplex containing six LHCII trimers (C2S2M2L2). Utilizing a newly developed nonionic amphipol-based purification and stabilizing method, we purified the largest photosynthetic supercomplex to the highest percentage of the intact configuration reported to date. We found that the interprotein distances within the light-harvesting complex array in the green algal photosystem are larger than those previously observed in higher plants, indicating that the potential route of energy transfer in the PSII-LHCII supercomplex in green algae may be altered. Interestingly, we also observed an asymmetric PSII-LHCII supercomplex structure comprising C2S2M1L1 in the same sample. Moreover, we found a new density adjacent to the PSII core complex, attributable to a single-transmembrane helix. It was previously unreported in the cryo-EM maps of PSII-LHCII supercomplexes from land plants.
Collapse
Affiliation(s)
- Raymond N Burton-Smith
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan.,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Akimasa Watanabe
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan.,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan.,Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
| | - Ryutaro Tokutsu
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan.,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan.,Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
| | - Chihong Song
- National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Kazuyoshi Murata
- National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan .,Department of Physiological Sciences, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
| | - Jun Minagawa
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan .,Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan.,Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
| |
Collapse
|
15
|
Pan X, Cao P, Su X, Liu Z, Li M. Structural analysis and comparison of light-harvesting complexes I and II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1861:148038. [PMID: 31229568 DOI: 10.1016/j.bbabio.2019.06.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/04/2019] [Accepted: 06/15/2019] [Indexed: 12/30/2022]
Abstract
Photosynthesis is a fundamental biological process involving the conversion of solar energy into chemical energy. The initial photochemical and photophysical events of photosynthesis are mediated by photosystem II (PSII) and photosystem I (PSI). Both PSII and PSI are multi-subunit supramolecular machineries composed of a core complex and a peripheral antenna system. The antenna system serves to capture light energy and transfer it to the core efficiently. Both PSII and PSI in the green lineage (plants and green algae) and PSI in red algae have an antenna system comprising a series of chlorophyll- and carotenoid-binding membrane proteins belonging to the light-harvesting complex (LHC) superfamily, including LHCII and LHCI. However, the antenna size and subunit composition vary considerably in the two photosystems from diverse organisms. On the basis of the plant and algal LHCII and LHCI structures that have been solved by X-ray crystallography and single-particle cryo-electron microscopy we review the detailed structural features and characteristic pigment properties of these LHCs in PSII and PSI. This article is part of a Special Issue entitled Light harvesting, edited by Dr. Roberta Croce.
Collapse
Affiliation(s)
- Xiaowei Pan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Peng Cao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xiaodong Su
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Zhenfeng Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Mei Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, PR China.
| |
Collapse
|
16
|
Su X, Ma J, Pan X, Zhao X, Chang W, Liu Z, Zhang X, Li M. Antenna arrangement and energy transfer pathways of a green algal photosystem-I-LHCI supercomplex. NATURE PLANTS 2019; 5:273-281. [PMID: 30850819 DOI: 10.1038/s41477-019-0380-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/04/2019] [Indexed: 05/05/2023]
Abstract
During oxygenic photosynthesis, photosystems I and II (PSI and PSII) are essential for light-driven electron transport. Excitation energy transfer in PSI occurs extremely quickly, making it an efficient energy converter. In the alga Chlamydomonas reinhardtii (Cr), multiple units of light-harvesting complex I (LHCI) bind to the PSI core and function as peripheral antennae, forming a PSI-LHCI supercomplex. CrPSI-LHCI shows significantly larger antennae compared with plant PSI-LHCI while maintaining highly efficient energy transfer from LHCI to PSI. Here, we report structures of CrPSI-LHCI, solved by cryo-electron microscopy, revealing that up to ten LHCIs are associated with the PSI core. The structures provide detailed information about antenna organization and pigment arrangement within the supercomplexes. Highly populated and closely associated chlorophylls in the antennae explain the high efficiency of light harvesting and excitation energy transfer in CrPSI-LHCI.
Collapse
Affiliation(s)
- Xiaodong Su
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jun Ma
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaowei Pan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xuelin Zhao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Wenrui Chang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhenfeng Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xinzheng Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
- Center for Biological Imaging, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Mei Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
17
|
Kubota-Kawai H, Burton-Smith RN, Tokutsu R, Song C, Akimoto S, Yokono M, Ueno Y, Kim E, Watanabe A, Murata K, Minagawa J. Ten antenna proteins are associated with the core in the supramolecular organization of the photosystem I supercomplex in Chlamydomonas reinhardtii. J Biol Chem 2019; 294:4304-4314. [PMID: 30670590 DOI: 10.1074/jbc.ra118.006536] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/11/2019] [Indexed: 12/20/2022] Open
Abstract
Photosystem I (PSI) is a large pigment-protein complex mediating light-driven charge separation and generating a highly negative redox potential, which is eventually utilized to produce organic matter. In plants and algae, PSI possesses outer antennae, termed light-harvesting complex I (LHCI), which increase the energy flux to the reaction center. The number of outer antennae for PSI in the green alga Chlamydomonas reinhardtii is known to be larger than that of land plants. However, their exact number and location remain to be elucidated. Here, applying a newly established sample purification procedure, we isolated a highly pure PSI-LHCI supercomplex containing all nine LHCA gene products under state 1 conditions. Single-particle cryo-EM revealed the 3D structure of this supercomplex at 6.9 Å resolution, in which the densities near the PsaF and PsaJ subunits were assigned to two layers of LHCI belts containing eight LHCIs, whereas the densities between the PsaG and PsaH subunits on the opposite side of the LHCI belt were assigned to two extra LHCIs. Using single-particle cryo-EM, we also determined the 2D projection map of the lhca2 mutant, which confirmed the assignment of LHCA2 and LHCA9 to the densities between PsaG and PsaH. Spectroscopic measurements of the PSI-LHCI supercomplex suggested that the bound LHCA2 and LHCA9 proteins have the ability to increase the light-harvesting energy for PSI. We conclude that the PSI in C. reinhardtii has a larger and more distinct outer-antenna organization and higher light-harvesting capability than that in land plants.
Collapse
Affiliation(s)
- Hisako Kubota-Kawai
- From the Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Raymond N Burton-Smith
- From the Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Ryutaro Tokutsu
- From the Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan.,the Departments of Basic Biology and
| | - Chihong Song
- the National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Seiji Akimoto
- the Graduate School of Science, Kobe University, Kobe 657-8501, Japan, and
| | - Makio Yokono
- the Innovation Center, Nippon Flour Mills Co., Ltd., Atsugi 243-0041, Japan
| | - Yoshifumi Ueno
- the Graduate School of Science, Kobe University, Kobe 657-8501, Japan, and
| | - Eunchul Kim
- From the Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Akimasa Watanabe
- From the Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan.,the Departments of Basic Biology and
| | - Kazuyoshi Murata
- the National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan.,Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
| | - Jun Minagawa
- From the Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan, .,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan.,the Departments of Basic Biology and
| |
Collapse
|
18
|
Ozawa SI, Bald T, Onishi T, Xue H, Matsumura T, Kubo R, Takahashi H, Hippler M, Takahashi Y. Configuration of Ten Light-Harvesting Chlorophyll a/ b Complex I Subunits in Chlamydomonas reinhardtii Photosystem I. PLANT PHYSIOLOGY 2018; 178:583-595. [PMID: 30126869 PMCID: PMC6181050 DOI: 10.1104/pp.18.00749] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/07/2018] [Indexed: 05/03/2023]
Abstract
In plants, the photosystem I (PSI) core complex stably associates with its light-harvesting chlorophyll a/b complex I (LHCI) to form the PSI-LHCI supercomplex. The vascular plant PSI core complex associates with four distinct LHCI subunits, whereas that of the green alga Chlamydomonas reinhardtii binds nine distinct LHCI subunits (LHCA1-LHCA9). The stoichiometry and configuration of these LHCI subunits in the PSI-LHCI supercomplex of C. reinhardtii remain controversial. Here, we determined the stoichiometry of the nine distinct LHCI subunits relative to PSI subunits through uniform labeling of total proteins using 14C. We separated the nine LHCI polypeptides by three different sodium dodecyl sulfate-polyacrylamide gel electrophoresis systems. Our data revealed that the PSI-LHCI supercomplex contains two LHCA1 proteins and one of each of the other eight LHCI subunits. Subsequently, we identified their cross-linked products by immunodetection and mass spectrometry to determine the configuration of the 10 LHCI subunits within the PSI-LHCI supercomplex. Furthermore, analyses of PSI-LHCI complexes isolated from ΔLHCA2 and ΔLHCA5 mutants and oligomeric LHCI from a PSI-deficient (ΔpsaA/B) mutant provided supporting evidence for the LHCI subunit configuration. In conclusion, eight LHCI subunits bind to the PSI core at the site of PSAF subunit in two layers: LHCA1-LHCA8-LHCA7-LHCA3 from PSAG to PSAK, in the inner layer, and LHCA1-LHCA4-LHCA6-LHCA5 in the outer layer. The other two LHCI subunits, LHCA2 and LHCA9, bind PSAB between PSAG and PSAH, PSAG-LHCA9-LHCA2-PSAH. Our study provides new insights into the LHCI configuration linked to the PSI core.
Collapse
Affiliation(s)
- Shin-Ichiro Ozawa
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
- Japan Science and Technology Agency-CREST, 4-1-8 Kawaguchi, Saitama 332-0012, Japan
| | - Till Bald
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Münster, Germany
| | - Takahito Onishi
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| | - Huidan Xue
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Münster, Germany
| | - Takunori Matsumura
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| | - Ryota Kubo
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| | - Hiroko Takahashi
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| | - Michael Hippler
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Münster, Germany
| | - Yuichiro Takahashi
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
- Japan Science and Technology Agency-CREST, 4-1-8 Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
19
|
Nan F, Feng J, Lv J, Liu Q, Xie S. Transcriptome analysis of the typical freshwater rhodophytes Sheathia arcuata grown under different light intensities. PLoS One 2018; 13:e0197729. [PMID: 29813098 PMCID: PMC5973588 DOI: 10.1371/journal.pone.0197729] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 05/08/2018] [Indexed: 01/25/2023] Open
Abstract
The Rhodophyta Sheathia arcuata is exclusively distributed in freshwater, constituting an important component in freshwater flora. This study presents the first transcriptome profiling of freshwater Rhodophyta taxa. A total of 161,483 assembled transcripts were identified, annotated and classified into different biological categories and pathways based on BLAST against diverse databases. Different gene expression patterns were caused principally by different irradiances considering the similar water conditions of the sampling site when the specimens were collected. Comparison results of gene expression levels under different irradiances revealed that photosynthesis-related pathways significantly up-regulated under the weak light. Molecular responses for improved photosynthetic activity include the transcripts corresponding to antenna proteins (LHCA1 and LHCA4), photosynthetic apparatus proteins (PSBU, PETB, PETC, PETH and beta and gamma subunits of ATPase) and metabolic enzymes in the carbon fixation. Along with photosynthesis, other metabolic activities were also regulated to optimize the growing and development of S. arcuata under appropriate sunlight. Protein-protein interactive networks revealed the most responsive up-expressed transcripts were ribosomal proteins. The de-novo transcriptome assembly of S. arcuata provides a foundation for further investigation on the molecular mechanism of photosynthesis and environmental adaption for freshwater Rhodophyta.
Collapse
Affiliation(s)
- Fangru Nan
- School of Life Science, Shanxi University, Taiyuan, China
| | - Jia Feng
- School of Life Science, Shanxi University, Taiyuan, China
| | - Junping Lv
- School of Life Science, Shanxi University, Taiyuan, China
| | - Qi Liu
- School of Life Science, Shanxi University, Taiyuan, China
| | - Shulian Xie
- School of Life Science, Shanxi University, Taiyuan, China
- * E-mail:
| |
Collapse
|
20
|
Jeong J, Baek K, Yu J, Kirst H, Betterle N, Shin W, Bae S, Melis A, Jin E. Deletion of the chloroplast LTD protein impedes LHCI import and PSI-LHCI assembly in Chlamydomonas reinhardtii. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1147-1158. [PMID: 29300952 PMCID: PMC6018721 DOI: 10.1093/jxb/erx457] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 12/12/2017] [Indexed: 05/26/2023]
Abstract
Nuclear-encoded light-harvesting chlorophyll- and carotenoid-binding proteins (LHCPs) are imported into the chloroplast and transported across the stroma to thylakoid membrane assembly sites by the chloroplast signal recognition particle (CpSRP) pathway. The LHCP translocation defect (LTD) protein is essential for the delivery of imported LHCPs to the CpSRP pathway in Arabidopsis. However, the function of the LTD protein in Chlamydomonas reinhardtii has not been investigated. Here, we generated a C. reinhardtii ltd (Crltd) knockout mutant by using CRISPR-Cas9, a new target-specific knockout technology. The Crltd1 mutant showed a low chlorophyll content per cell with an unusual increase in appressed thylakoid membranes and enlarged cytosolic vacuoles. Profiling of thylakoid membrane proteins in the Crltd1 mutant showed a more severe reduction in the levels of photosystem I (PSI) core proteins and absence of functional LHCI compared with those of photosystem II, resulting in a much smaller PSI pool size and diminished chlorophyll antenna size. The lack of CrLTD did not prevent photoautotrophic growth of the cells. These results are substantially different from those for Arabidopsis ltd null mutant, indicating LTD function in LHCP delivery and PSI assembly may not be as stringent in C. reinhardtii as it is in higher plants.
Collapse
Affiliation(s)
- Jooyeon Jeong
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - Kwangryul Baek
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - Jihyeon Yu
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Henning Kirst
- Department of Plant and Microbial Biology, University of California, Berkeley, California USA
| | - Nico Betterle
- Department of Plant and Microbial Biology, University of California, Berkeley, California USA
| | - Woongghi Shin
- Department of Biology, Chungnam National University, Daejeon, Korea
| | - Sangsu Bae
- Department of Chemistry, Hanyang University, Seoul, Korea
| | - Anastasios Melis
- Department of Plant and Microbial Biology, University of California, Berkeley, California USA
| | - EonSeon Jin
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| |
Collapse
|
21
|
Kim E, Tokutsu R, Minagawa J. Investigation on the Thermodynamic Dissociation Kinetics of Photosystem II Supercomplexes To Determine the Binding Strengths of Light-Harvesting Complexes. J Phys Chem B 2018; 122:1627-1630. [DOI: 10.1021/acs.jpcb.7b12417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Eunchul Kim
- Division
of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Ryutaro Tokutsu
- Division
of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Department
of Basic Biology, School of Life Science, Graduate University for Advanced Studies, Okazaki 444-8585, Japan
- Core
Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Jun Minagawa
- Division
of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Department
of Basic Biology, School of Life Science, Graduate University for Advanced Studies, Okazaki 444-8585, Japan
- Core
Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan
| |
Collapse
|
22
|
Büchel C, Wilhelm C, Wagner V, Mittag M. Functional proteomics of light-harvesting complex proteins under varying light-conditions in diatoms. JOURNAL OF PLANT PHYSIOLOGY 2017; 217:38-43. [PMID: 28709708 DOI: 10.1016/j.jplph.2017.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/08/2017] [Accepted: 06/09/2017] [Indexed: 06/07/2023]
Abstract
Comparative proteome analysis of subcellular compartments like thylakoid membranes and their associated supercomplexes can deliver important in-vivo information on the molecular basis of physiological functions which go far beyond to that what can be learnt from transcriptional-based gene expression studies. For instance, the finding that light intensity influences mainly the relative stoichiometry of subunits could be obtained only by high resolution proteome analysis. The high sensitivity of LC-ESI-MS/MS based proteome analysis allows the determination of proteins in very small subfractions along with their non-labeled semi quantitative analysis. This provides insights in the protein-protein interactions of supercomplexes that are the operative units in intact cells. Here, we have focused on functional proteome approaches for the identification of microalgal light-harvesting complex proteins in chloroplasts and the eyespot in general and in detail for those of diatoms that are exposed to varying light conditions.
Collapse
Affiliation(s)
- Claudia Büchel
- Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Christian Wilhelm
- Institute of Biology, Department of Plant Physiology, University of Leipzig, 04103 Leipzig, Germany
| | - Volker Wagner
- Institute of General Botany and Plant Physiology, Friedrich Schiller University, 07743 Jena, Germany
| | - Maria Mittag
- Institute of General Botany and Plant Physiology, Friedrich Schiller University, 07743 Jena, Germany.
| |
Collapse
|
23
|
Proteomic approaches in microalgae: perspectives and applications. 3 Biotech 2017; 7:197. [PMID: 28667637 DOI: 10.1007/s13205-017-0831-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/19/2017] [Indexed: 12/13/2022] Open
Abstract
Biofuels are the promising sources which are produced by various microalgae or in the form of metabolic by-products from organic or food waste products. Microalgae have been widely reported for the production of biofuels since these have a high storage of lipids as triacylglycerides, which can mainly be converted into biofuels. Recently, products such as biodiesel, bioethanol and biogas have renewed the interest toward the microalgae. The proteomics alone will not pave the way toward finding an ideal alga which will fulfill the current energy demands, but a combined approach of proteomics, genomics and bioinformatics can be pivotal for a sustainable solution. The present review emphasizes various technologies currently involved in algal proteomics for the efficient production of biofuels.
Collapse
|
24
|
Anderson MS, Muff TJ, Georgianna DR, Mayfield SP. Towards a synthetic nuclear transcription system in green algae: Characterization of Chlamydomonas reinhardtii nuclear transcription factors and identification of targeted promoters. ALGAL RES 2017. [DOI: 10.1016/j.algal.2016.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
25
|
Esperanza M, Seoane M, Rioboo C, Herrero C, Cid Á. Early alterations on photosynthesis-related parameters in Chlamydomonas reinhardtii cells exposed to atrazine: A multiple approach study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 554-555:237-245. [PMID: 26950638 DOI: 10.1016/j.scitotenv.2016.02.175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/18/2016] [Accepted: 02/18/2016] [Indexed: 06/05/2023]
Abstract
Chlamydomonas reinhardtii cells were exposed to a sublethal concentration of the widespread herbicide atrazine for 3h. Physiological cellular parameters, such as chlorophyll a fluorescence and oxidative stress monitored by flow cytometry and pigments levels were altered in microalgal cells exposed to 0.25 μM of atrazine. Furthermore, the effects of this herbicide on C. reinhardtii were explored using "omics" techniques. Transcriptomic analyses, carried out by RNA-Seq technique, displayed 9 differentially expressed genes, related to photosynthesis, between control cultures and atrazine exposed cultures. Proteomic profiles were obtained using iTRAQ tags and MALDI-MS/MS analysis, identifying important changes in the proteome during atrazine stress; 5 proteins related to photosynthesis were downexpressed. The results of these experiments advance the understanding of photosynthetic adjustments that occur during an early herbicide exposure. Inhibition of photosynthesis induced by atrazine toxicity will affect the entire physiological and biochemical states of microalgal cells.
Collapse
Affiliation(s)
- Marta Esperanza
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad de A Coruña, Campus de A Zapateira, s/n 15071 A Coruña, Spain
| | - Marta Seoane
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad de A Coruña, Campus de A Zapateira, s/n 15071 A Coruña, Spain
| | - Carmen Rioboo
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad de A Coruña, Campus de A Zapateira, s/n 15071 A Coruña, Spain
| | - Concepción Herrero
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad de A Coruña, Campus de A Zapateira, s/n 15071 A Coruña, Spain
| | - Ángeles Cid
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad de A Coruña, Campus de A Zapateira, s/n 15071 A Coruña, Spain.
| |
Collapse
|
26
|
Lu Y, Zhang H, Cui W, Saer R, Liu H, Gross ML, Blankenship RE. Top-Down Mass Spectrometry Analysis of Membrane-Bound Light-Harvesting Complex 2 from Rhodobacter sphaeroides. Biochemistry 2015; 54:7261-71. [PMID: 26574182 PMCID: PMC6020673 DOI: 10.1021/acs.biochem.5b00959] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report a top-down proteomic analysis of the membrane-bound peripheral light-harvesting complex LH2 isolated from the purple photosynthetic bacterium Rhodobacter sphaeroides. The LH2 complex is coded for by the puc operon. The Rb. sphaeroides genome contains two puc operons, designated puc1BAC and puc2BA. Although previous work has shown consistently that the LH2 β polypeptide coded by the puc2B gene was assembled into LH2 complexes, there are contradictory reports as to whether the Puc2A polypeptides are incorporated into LH2 complexes. Furthermore, post-translational modifications of this protein offer the prospect that it could coordinate bacteriochlorophyll a (Bchl a) by a modified N-terminal residue. Here, we describe the components of the LH2 complex on the basis of electron-capture dissociation fragmentation to confirm the identity and sequence of the protein's subunits. We found that both gene products of the β polypeptides are expressed and assembled in the mature LH2 complex, but only the Puc1A-encoded polypeptide α is observed here. The methionine of the Puc2B-encoded polypeptide is missing, and a carboxyl group is attached to the threonine at the N-terminus. Surprisingly, one amino acid encoded as an isoleucine in both the puc2B gene and the mRNA is found as valine in the mature LH2 complex, suggesting an unexpected and unusual post-translational modification or a specific tRNA recoding of this one amino acid.
Collapse
Affiliation(s)
- Yue Lu
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Hao Zhang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Weidong Cui
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Rafael Saer
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Haijun Liu
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Robert E. Blankenship
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
27
|
Minagawa J, Tokutsu R. Dynamic regulation of photosynthesis in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:413-428. [PMID: 25702778 DOI: 10.1111/tpj.12805] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 02/16/2015] [Accepted: 02/18/2015] [Indexed: 05/10/2023]
Abstract
Plants and algae have acquired the ability to acclimatize to ever-changing environments to survive. During photosynthesis, light energy is converted by several membrane protein supercomplexes into electrochemical energy, which is eventually used to assimilate CO2 . The efficiency of photosynthesis is modulated by many environmental factors, including temperature, drought, CO2 concentration, and the quality and quantity of light. Recently, our understanding of such regulators of photosynthesis and the underlying molecular mechanisms has increased considerably. The photosynthetic supercomplexes undergo supramolecular reorganizations within a short time after receiving environmental cues. These reorganizations include state transitions that balance the excitation of the two photosystems: qE quenching, which thermally dissipates excess energy at the level of the light-harvesting antenna, and cyclic electron flow, which supplies the increased ATP demanded by CO2 assimilation and the pH gradient to activate qE quenching. This review focuses on the recent findings regarding the environmental regulation of photosynthesis in model organisms, paying particular attention to the unicellular green alga Chlamydomonas reinhardtii, which offer a glimpse into the dynamic behavior of photosynthetic machinery in nature.
Collapse
Affiliation(s)
- Jun Minagawa
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki, 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, Okazaki, 444-8585, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, 332-0012, Japan
| | - Ryutaro Tokutsu
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki, 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, Okazaki, 444-8585, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, 332-0012, Japan
| |
Collapse
|
28
|
Xue H, Tokutsu R, Bergner SV, Scholz M, Minagawa J, Hippler M. PHOTOSYSTEM II SUBUNIT R is required for efficient binding of LIGHT-HARVESTING COMPLEX STRESS-RELATED PROTEIN3 to photosystem II-light-harvesting supercomplexes in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2015; 167:1566-78. [PMID: 25699588 PMCID: PMC4378180 DOI: 10.1104/pp.15.00094] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 02/04/2015] [Indexed: 05/18/2023]
Abstract
In Chlamydomonas reinhardtii, the LIGHT-HARVESTING COMPLEX STRESS-RELATED PROTEIN3 (LHCSR3) protein is crucial for efficient energy-dependent thermal dissipation of excess absorbed light energy and functionally associates with photosystem II-light-harvesting complex II (PSII-LHCII) supercomplexes. Currently, it is unknown how LHCSR3 binds to the PSII-LHCII supercomplex. In this study, we investigated the role of PHOTOSYSTEM II SUBUNIT R (PSBR) an intrinsic membrane-spanning PSII subunit, in the binding of LHCSR3 to PSII-LHCII supercomplexes. Down-regulation of PSBR expression diminished the efficiency of oxygen evolution and the extent of nonphotochemical quenching and had an impact on the stability of the oxygen-evolving complex as well as on PSII-LHCII-LHCSR3 supercomplex formation. Its down-regulation destabilized the PSII-LHCII supercomplex and strongly reduced the binding of LHCSR3 to PSII-LHCII supercomplexes, as revealed by quantitative proteomics. PHOTOSYSTEM II SUBUNIT P deletion, on the contrary, destabilized PHOTOSYSTEM II SUBUNIT Q binding but did not affect PSBR and LHCSR3 association with PSII-LHCII. In summary, these data provide clear evidence that PSBR is required for the stable binding of LHCSR3 to PSII-LHCII supercomplexes and is essential for efficient energy-dependent quenching and the integrity of the PSII-LHCII-LHCSR3 supercomplex under continuous high light.
Collapse
Affiliation(s)
- Huidan Xue
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Muenster, Germany (H.X., S.V.B., M.S., M.H.); andDivision of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan (R.T., J.M.)
| | - Ryutaro Tokutsu
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Muenster, Germany (H.X., S.V.B., M.S., M.H.); andDivision of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan (R.T., J.M.)
| | - Sonja Verena Bergner
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Muenster, Germany (H.X., S.V.B., M.S., M.H.); andDivision of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan (R.T., J.M.)
| | - Martin Scholz
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Muenster, Germany (H.X., S.V.B., M.S., M.H.); andDivision of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan (R.T., J.M.)
| | - Jun Minagawa
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Muenster, Germany (H.X., S.V.B., M.S., M.H.); andDivision of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan (R.T., J.M.)
| | - Michael Hippler
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Muenster, Germany (H.X., S.V.B., M.S., M.H.); andDivision of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan (R.T., J.M.)
| |
Collapse
|
29
|
Dent RM, Sharifi MN, Malnoë A, Haglund C, Calderon RH, Wakao S, Niyogi KK. Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:337-51. [PMID: 25711437 DOI: 10.1111/tpj.12806] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/11/2015] [Accepted: 02/18/2015] [Indexed: 05/21/2023]
Abstract
Chlamydomonas reinhardtii is a unicellular green alga that is a key model organism in the study of photosynthesis and oxidative stress. Here we describe the large-scale generation of a population of insertional mutants that have been screened for phenotypes related to photosynthesis and the isolation of 459 flanking sequence tags from 439 mutants. Recent phylogenomic analysis has identified a core set of genes, named GreenCut2, that are conserved in green algae and plants. Many of these genes are likely to be central to the process of photosynthesis, and they are over-represented by sixfold among the screened insertional mutants, with insertion events isolated in or adjacent to 68 of 597 GreenCut2 genes. This enrichment thus provides experimental support for functional assignments based on previous bioinformatic analysis. To illustrate one of the uses of the population, a candidate gene approach based on genome position of the flanking sequence of the insertional mutant CAL027_01_20 was used to identify the molecular basis of the classical C. reinhardtii mutation ac17. These mutations were shown to affect the gene PDH2, which encodes a subunit of the plastid pyruvate dehydrogenase complex. The mutants and associated flanking sequence data described here are publicly available to the research community, and they represent one of the largest phenotyped collections of algal insertional mutants to date.
Collapse
Affiliation(s)
- Rachel M Dent
- Department of Plant and Microbial Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720-3102, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Natali A, Croce R. Characterization of the major light-harvesting complexes (LHCBM) of the green alga Chlamydomonas reinhardtii. PLoS One 2015; 10:e0119211. [PMID: 25723534 PMCID: PMC4344250 DOI: 10.1371/journal.pone.0119211] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/17/2015] [Indexed: 11/21/2022] Open
Abstract
Nine genes (LHCBM1-9) encode the major light-harvesting system of Chlamydomonas reinhardtii. Transcriptomic and proteomic analyses have shown that those genes are all expressed albeit in different amounts and some of them only in certain conditions. However, little is known about the properties and specific functions of the individual gene products because they have never been isolated. Here we have purified several complexes from native membranes and/or we have reconstituted them in vitro with pigments extracted from C. reinhardtii. It is shown that LHCBM1 and -M2/7 represent more than half of the LHCBM population in the membrane. LHCBM2/7 forms homotrimers while LHCBM1 seems to be present in heterotrimers. Trimers containing only type I LHCBM (M3/4/6/8/9) were also observed. Despite their different roles, all complexes have very similar properties in terms of pigment content, organization, stability, absorption, fluorescence and excited-state lifetimes. Thus the involvement of LHCBM1 in non-photochemical quenching is suggested to be due to specific interactions with other components of the membrane and not to the inherent quenching properties of the complex. Similarly, the overexpression of LHCBM9 during sulfur deprivation can be explained by its low sulfur content as compared with the other LHCBMs. Considering the highly conserved biochemical and spectroscopic properties, the major difference between the complexes may be in their capacity to interact with other components of the thylakoid membrane.
Collapse
Affiliation(s)
- Alberto Natali
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Roberta Croce
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
31
|
Iwai M, Yokono M, Kono M, Noguchi K, Akimoto S, Nakano A. Light-harvesting complex Lhcb9 confers a green alga-type photosystem I supercomplex to the moss Physcomitrella patens. NATURE PLANTS 2015; 1:14008. [PMID: 27246756 DOI: 10.1038/nplants.2014.8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 11/14/2014] [Indexed: 05/10/2023]
Abstract
Light-harvesting complex (LHC) proteins in chloroplast thylakoid membranes not only transfer absorbed light energy to the two photosystems but also regulate the rate of energy transfer to avoid photodamage. Here we demonstrate that Lhcb9, a recently discovered LHC protein in the moss Physcomitrella patens, functions to connect LHC proteins with photosystem I (PSI), resulting in the formation of two different types of PSI supercomplexes in thylakoid membranes. We observed that the Lhcb9-containing PSI supercomplex is disassembled in response to excess light conditions. On the basis of our phylogenetic analysis, it appears that P. patens acquired Lhcb9 by horizontal gene transfer from the earlier green algal lineage, leading to the presence of both green alga-type and vascular plant-type PSI supercomplexes, which would have been crucial for conquering the dynamic environmental interface between aquatic and terrestrial conditions it faced during evolution.
Collapse
Affiliation(s)
- Masakazu Iwai
- Live Cell Molecular Imaging Research Team, Extreme Photonics Research Group, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- PRESTO, Japan Science and Technology Agency (JST), Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Makio Yokono
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido 060-0819 Japan
| | - Masaru Kono
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ko Noguchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Seiji Akimoto
- Molecular Photoscience Research Center, Kobe University, Kobe 657-8501, Japan
| | - Akihiko Nakano
- Live Cell Molecular Imaging Research Team, Extreme Photonics Research Group, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
32
|
Qin X, Wang W, Chang L, Chen J, Wang P, Zhang J, He Y, Kuang T, Shen JR. Isolation and characterization of a PSI-LHCI super-complex and its sub-complexes from a siphonaceous marine green alga, Bryopsis Corticulans. PHOTOSYNTHESIS RESEARCH 2015; 123:61-76. [PMID: 25214185 DOI: 10.1007/s11120-014-0039-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 09/03/2014] [Indexed: 05/24/2023]
Abstract
A novel super-complex of photosystem I (PSI)-light-harvesting complex I (LHCI) was isolated from a siphonaceous marine green alga, Bryopsis corticulans. The super-complex contained 9-10 Lhca antennas as external LHCI bound to the core complex. The super-complex was further disintegrated into PSI core and LHCI sub-complexes, and analysis of the pigment compositions by high-performance liquid chromatography revealed unique characteristics of the B. corticulans PSI in that one PSI core contained around 14 α-carotenes and 1-2 ε-carotenes. This is in sharp contrast to the PSI core from higher plants and most cyanobacteria where only β-carotenes were present, and is the first report for an α-carotene-type PSI core complex among photosynthetic eukaryotes, suggesting a structural flexibility of the PSI core. Lhca antennas from B. corticulans contained seven kinds of carotenoids (siphonaxanthin, all-trans neoxanthin, 9'-cis neoxanthin, violaxanthin, siphonein, ε-carotene, and α-carotene) and showed a high carotenoid:chlorophyll ratio of around 7.5:13. PSI-LHCI super-complex and PSI core showed fluorescence emission peaks at 716 and 718 nm at 77 K, respectively; whereas two Lhca oligomers had fluorescence peaks at 681 and 684 nm, respectively. By comparison with spinach PSI preparations, it was found that B. corticulans PSI had less red chlorophylls, most of them are present in the core complex but not in the outer light-harvesting systems. These characteristics may contribute to the fine tuning of the energy transfer network, and to acclimate to the ever-changing light conditions under which the unique green alga inhabits.
Collapse
Affiliation(s)
- Xiaochun Qin
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China,
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Madireddi SK, Nama S, Devadasu ER, Subramanyam R. Photosynthetic membrane organization and role of state transition in cyt, cpII, stt7 and npq mutants of Chlamydomonas reinhardtii. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 137:77-83. [DOI: 10.1016/j.jphotobiol.2014.03.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 03/13/2014] [Accepted: 03/31/2014] [Indexed: 11/29/2022]
|
34
|
Takahashi H, Okamuro A, Minagawa J, Takahashi Y. Biochemical Characterization of Photosystem I-Associated Light-Harvesting Complexes I and II Isolated from State 2 Cells of Chlamydomonas reinhardtii. ACTA ACUST UNITED AC 2014; 55:1437-49. [DOI: 10.1093/pcp/pcu071] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
35
|
Garcés Cea M, Claverol S, Alvear Castillo C, Rabert Pinilla C, Bravo Ramírez L. Desiccation tolerance of Hymenophyllacea filmy ferns is mediated by constitutive and non-inducible cellular mechanisms. C R Biol 2014; 337:235-43. [PMID: 24702892 DOI: 10.1016/j.crvi.2014.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/31/2014] [Accepted: 02/01/2014] [Indexed: 10/25/2022]
Abstract
The Hymenophyllaceae is a primitive family within the Filicopsidae. One of the most exceptional features of this family of ferns is the presence of fronds with one or just a few cell layers (hence their name of filmy ferns), and the absence of stomata. Hymenophyllum caudiculatum and Hymenophyllum dentatum are able to lose more than 82% of their fully hydrated water content, to remain dry for extended periods of time (days or weeks), and to survive and remain viable following rehydration. The aim of this work was to understand whether the adaptive strategy of the Hymenophyllaceae for desiccation tolerance is constitutive or inducible. A proteomic approach was adopted in combination with physiological parameters to assess whether there were changes in the protein content during dehydration and following rehydration. Detached fronds were used to monitor the rates of photosynthesis in desiccation experiments, sugar accumulation, and high-resolution 2-DE to analyze proteome variation during a desiccation-rehydration cycle. The analyzed proteome exhibited little variation (3-4%) between hydrated and desiccated states, while variation was greater between the desiccated and rehydrated states (8.7-10%). Eighty-two discrete proteins were analyzed by MS/MS, and 65 were identified. About 21% of the analyzed proteins (17) were mixtures of two or more different polypeptides. Of the identified proteins, more than a half (33 spots, 55%) had functions related to energy-photosynthesis. The second largest category with known function (five spots, 8%) was related to cell rescue, defense, and virulence. More than one in every four proteins analyzed belonged to a group of hypothetical proteins (18 spots, 28%). The results suggest that the Hymenophyllaceae represent an example of a change in adaptive strategy from a typical vascular to the poikilohydric homoiochlorophyllous adaptation, which they share with the bryophytes that grow in profusion in the same habitats. The speed at which desiccation takes place therefore precludes the induction of protective systems, suggesting a constitutive mechanism of cellular protection.
Collapse
Affiliation(s)
- Marcelo Garcés Cea
- Departamento de Ingeniería Química, Facultad de Ingeniería, Ciencias y Administración, Universidad de la Frontera, PO Box 54-D, Temuco, Chile; Departamento de Recursos Naturales, Facultad de Ciencias Agronómicas y Forestales, Universidad de la Frontera, PO Box 54-D, Temuco, Chile.
| | - Stephan Claverol
- Pôle Protéomique, Plateforme génomique fonctionnelle de Bordeaux, Université Victor-Segalen, Bordeaux-2, 146, rue Léo-Saignat, 33076 Bordeaux, France
| | - Carla Alvear Castillo
- Departamento de Recursos Naturales, Facultad de Ciencias Agronómicas y Forestales, Universidad de la Frontera, PO Box 54-D, Temuco, Chile
| | - Claudia Rabert Pinilla
- Departamento de Recursos Naturales, Facultad de Ciencias Agronómicas y Forestales, Universidad de la Frontera, PO Box 54-D, Temuco, Chile
| | - León Bravo Ramírez
- Departamento de Recursos Naturales, Facultad de Ciencias Agronómicas y Forestales, Universidad de la Frontera, PO Box 54-D, Temuco, Chile
| |
Collapse
|
36
|
Drop B, Webber-Birungi M, Yadav SK, Filipowicz-Szymanska A, Fusetti F, Boekema EJ, Croce R. Light-harvesting complex II (LHCII) and its supramolecular organization in Chlamydomonas reinhardtii. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:63-72. [DOI: 10.1016/j.bbabio.2013.07.012] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/23/2013] [Accepted: 07/30/2013] [Indexed: 11/25/2022]
|
37
|
Schröter Y, Steiner S, Weisheit W, Mittag M, Pfannschmidt T. A purification strategy for analysis of the DNA/RNA-associated sub-proteome from chloroplasts of mustard cotyledons. FRONTIERS IN PLANT SCIENCE 2014; 5:557. [PMID: 25400643 PMCID: PMC4212876 DOI: 10.3389/fpls.2014.00557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/29/2014] [Indexed: 05/20/2023]
Abstract
Plant cotyledons are a tissue that is particularly active in plastid gene expression in order to develop functional chloroplasts from pro-plastids, the plastid precursor stage in plant embryos. Cotyledons, therefore, represent a material being ideal for the study of composition, function and regulation of protein complexes involved in plastid gene expression. Here, we present a pilot study that uses heparin-Sepharose and phospho-cellulose chromatography in combination with isoelectric focussing and denaturing SDS gel electrophoresis (two-dimensional gel electrophoresis) for investigating the nucleic acids binding sub-proteome of mustard chloroplasts purified from cotyledons. We describe the technical requirements for a highly resolved biochemical purification of several hundreds of protein spots obtained from such samples. Subsequent mass spectrometry of peptides isolated out of cut spots that had been treated with trypsin identified 58 different proteins within 180 distinct spots. Our analyses indicate a high enrichment of proteins involved in transcription and translation and, in addition, the presence of massive post-translational modification of this plastid protein sub-fraction. The study provides an extended catalog of plastid proteins from mustard being involved in gene expression and its regulation and describes a suitable purification strategy for further analysis of low abundant gene expression related proteins.
Collapse
Affiliation(s)
- Yvonne Schröter
- Lehrstuhl für Pflanzenphysiologie, Institut für Allgemeine Botanik und Pflanzenphysiologie, Friedrich-Schiller-Universität JenaJena, Germany
| | - Sebastian Steiner
- Lehrstuhl für Pflanzenphysiologie, Institut für Allgemeine Botanik und Pflanzenphysiologie, Friedrich-Schiller-Universität JenaJena, Germany
- KWS SAAT AGEinbeck, Germany
| | - Wolfram Weisheit
- Lehrstuhl für Pflanzenphysiologie, Institut für Allgemeine Botanik und Pflanzenphysiologie, Friedrich-Schiller-Universität JenaJena, Germany
- Department of General Botany, Institute of General Botany and Plant Physiology, Friedrich Schiller University JenaJena, Germany
| | - Maria Mittag
- Lehrstuhl für Pflanzenphysiologie, Institut für Allgemeine Botanik und Pflanzenphysiologie, Friedrich-Schiller-Universität JenaJena, Germany
- Department of General Botany, Institute of General Botany and Plant Physiology, Friedrich Schiller University JenaJena, Germany
| | - Thomas Pfannschmidt
- Lehrstuhl für Pflanzenphysiologie, Institut für Allgemeine Botanik und Pflanzenphysiologie, Friedrich-Schiller-Universität JenaJena, Germany
- University of Grenoble-AlpesGrenoble, France
- CNRS, UMR5168Grenoble, France
- Commissariat a L'energie Atomique (CEA), iRTSV, Laboratoire de Physiologie Cellulaire & VégétaleGrenoble, France
- INRA, USC1359Grenoble, France
- *Correspondence: Thomas Pfannschmidt, Commissariat a L'energie Atomique (CEA), iRTSV, Laboratoire de Physiologie Cellulaire & Végétale, 17 Rue des Martyrs, 38000 Grenoble, France e-mail:
| |
Collapse
|
38
|
Iwai M, Pack CG, Takenaka Y, Sako Y, Nakano A. Photosystem II antenna phosphorylation-dependent protein diffusion determined by fluorescence correlation spectroscopy. Sci Rep 2013; 3:2833. [PMID: 24088948 PMCID: PMC3789154 DOI: 10.1038/srep02833] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 09/09/2013] [Indexed: 11/20/2022] Open
Abstract
Flexibility of chloroplast thylakoid membrane proteins is essential for plant fitness and survival under fluctuating light environments. Phosphorylation of light-harvesting antenna complex II (LHCII) is known to induce dynamic protein reorganization that fine-tunes the rate of energy conversion in each photosystem. However, molecular details of how LHCII phosphorylation causes light energy redistribution throughout thylakoid membranes still remain unclear. By using fluorescence correlation spectroscopy, we here determined the LHCII phosphorylation-dependent protein diffusion in thylakoid membranes isolated from the green alga Chlamydomonas reinhardtii. As compared to the LHCII dephosphorylation-induced condition, the diffusion coefficient of LHCII increased nearly twofold under the LHCII phosphorylation-induced condition. We also verified the results by using the LHCII phosphorylation-deficient mutant. Our observation suggests that LHCII phosphorylation-dependent protein reorganization occurs along with the changes in the rate of protein diffusion, which would have an important role in mediating light energy redistribution throughout thylakoid membranes.
Collapse
Affiliation(s)
- Masakazu Iwai
- 1] Live Cell Molecular Imaging Research Team, Extreme Photonics Research Group, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan [2] PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | | | | | | | | |
Collapse
|
39
|
Ikeda Y, Yamagishi A, Komura M, Suzuki T, Dohmae N, Shibata Y, Itoh S, Koike H, Satoh K. Two types of fucoxanthin-chlorophyll-binding proteins I tightly bound to the photosystem I core complex in marine centric diatoms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:529-39. [PMID: 23416844 DOI: 10.1016/j.bbabio.2013.02.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 01/31/2013] [Accepted: 02/06/2013] [Indexed: 12/30/2022]
Abstract
Intact fucoxanthin (Fucox)-chlorophyll (Chl)-binding protein I-photosystem I supercomplexes (FCPI-PSIs) were prepared by a newly developed simple fast procedure from centric diatoms Chaetoceros gracilis and Thalassiosira pseudonana to study the mechanism of their efficient solar energy accumulation. FCPI-PSI purified from C. gracilis contained 252 Chl a, 23 Chl c, 56 Fucox, 34 diadinoxanthin+diatoxanthin, 1 violaxanthin, 21 ß-carotene, and 2 menaquinone-4 per P700. The complex showed a high electron transfer activity at 185,000μmolmg Chl a(-1)·h(-1) to reduce methyl viologen from added cytochrome c6. We identified 14 and 21 FCP proteins in FCPI-PSI of C. gracilis and T. pseudonana, respectively, determined by N-terminal and internal amino acid sequences and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses. PsaO and a red lineage Chla/b-binding-like protein (RedCAP), Thaps3:270215, were also identified. Severe detergent treatment of FCPI-PSI released FCPI-1 first, leaving the FCPI-2-PSI-core complex. FCPI-1 contained more Chl c and showed Chl a fluorescence at a shorter wavelength than FCPI-2, suggesting an excitation-energy transfer from FCPI-1 to FCPI-2 and then to the PSI core. Fluorescence emission spectra at 17K in FCPI-2 varied depending on the excitation wavelength, suggesting two independent energy transfer routes. We formulated a model of FCPI-PSI based on the biochemical assay results.
Collapse
Affiliation(s)
- Yohei Ikeda
- Graduate School of Life Science, University of Hyogo, Harima Science Garden City, Hyogo 678-1297, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Nellaepalli S, Kodru S, Tirupathi M, Subramanyam R. Anaerobiosis induced state transition: a non photochemical reduction of PQ pool mediated by NDH in Arabidopsis thaliana. PLoS One 2012. [PMID: 23185453 PMCID: PMC3504099 DOI: 10.1371/journal.pone.0049839] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background Non photochemical reduction of PQ pool and mobilization of LHCII between PSII and PSI are found to be linked under abiotic stress conditions. The interaction of non photochemical reduction of PQ pool and state transitions associated physiological changes are critically important under anaerobic condition in higher plants. Methodology/Findings The present study focused on the effect of anaerobiosis on non-photochemical reduction of PQ pool which trigger state II transition in Arabidopsis thaliana. Upon exposure to dark-anaerobic condition the shape of the OJIP transient rise is completely altered where as in aerobic treated leaves the rise is unaltered. Rise in Fo and FJ was due to the loss of oxidized PQ pool as the PQ pool becomes more reduced. The increase in Fo′ was due to the non photochemical reduction of PQ pool which activated STN7 kinase and induced LHCII phosphorylation under anaerobic condition. Further, it was observed that the phosphorylated LHCII is migrated and associated with PSI supercomplex increasing its absorption cross-section. Furthermore, evidences from crr2-2 (NDH mutant) and pgr5 mutants (deficient in non NDH pathway of cyclic electron transport) have indicated that NDH is responsible for non photochemical reduction of the PQ pool. We propose that dark anaerobic condition accelerates production of reducing equivalents (such as NADPH by various metabolic pathways) which reduce PQ pool and is mediated by NDH leading to state II transition. Conclusions/Significance Anaerobic condition triggers non photochemical reduction of PQ pool mediated by NDH complex. The reduced PQ pool activates STN7 kinase leading to state II transition in A. thaliana.
Collapse
Affiliation(s)
- Sreedhar Nellaepalli
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Sireesha Kodru
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Malavath Tirupathi
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Rajagopal Subramanyam
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
- * E-mail:
| |
Collapse
|
41
|
Wang DZ, Li C, Zhang Y, Wang YY, He ZP, Lin L, Hong HS. Quantitative proteomic analysis of differentially expressed proteins in the toxicity-lost mutant of Alexandrium catenella (Dinophyceae) in the exponential phase. J Proteomics 2012; 75:5564-77. [DOI: 10.1016/j.jprot.2012.08.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 07/28/2012] [Accepted: 08/01/2012] [Indexed: 11/16/2022]
|
42
|
Differential protein expression associated with heat stress in Antarctic microalga. BIOCHIP JOURNAL 2012. [DOI: 10.1007/s13206-012-6310-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
43
|
Ferrante P, Ballottari M, Bonente G, Giuliano G, Bassi R. LHCBM1 and LHCBM2/7 polypeptides, components of major LHCII complex, have distinct functional roles in photosynthetic antenna system of Chlamydomonas reinhardtii. J Biol Chem 2012; 287:16276-88. [PMID: 22431727 DOI: 10.1074/jbc.m111.316729] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The photosystem II antenna of Chlamydomonas reinhardtii is composed of monomeric and trimeric complexes, the latter encoded by LHCBM genes. We employed artificial microRNA technology to specifically silence the LHCBM2 and LHCBM7 genes, encoding identical mature polypeptides, and the LHCBM1 gene. As a control, we studied the npq5 mutant, deficient in the LHCBM1 protein. The organization of LHCII complexes, functional antenna size, capacity for photoprotection, thermal energy dissipation and state transitions, and resistance to reactive oxygen species was studied in the various genotypes. Silencing of the LHCBM2/7 genes resulted in a decrease of an LHCII protein with an apparent molecular mass of 22 kDa, whereas silencing/lack of LHCBM1 caused the decrease/disappearance of a 23-kDa protein. A decrease in the abundance of trimeric LHCII complexes and in functional antenna size was observed in both LHCBM2/7 and LHCBM1 knockouts. In agreement with previous data, depletion of LHCBM1 decreased the capacity for excess energy dissipation but not the ability to perform state transitions. The opposite was true for LHCBM2/7, implying that this polypeptide has a different functional role from LHCBM1. The abundance of LHCBM1 and LHCBM2/7 is in both cases correlated with resistance to superoxide anion, whereas only LHCBM1 is also involved in singlet oxygen scavenging. These results suggest that different LHCBM components have well defined, non-redundant functions despite their high homology, implying that engineering of LHCBM proteins can be an effective strategy for manipulating the light harvesting system of Chlamydomonas reinhardtii.
Collapse
Affiliation(s)
- Paola Ferrante
- ENEA (Italian National Agency for New technologies, Energy, and Sustainable Development), Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy
| | | | | | | | | |
Collapse
|
44
|
Drop B, Webber-Birungi M, Fusetti F, Kouřil R, Redding KE, Boekema EJ, Croce R. Photosystem I of Chlamydomonas reinhardtii contains nine light-harvesting complexes (Lhca) located on one side of the core. J Biol Chem 2011; 286:44878-87. [PMID: 22049081 PMCID: PMC3247965 DOI: 10.1074/jbc.m111.301101] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 10/28/2011] [Indexed: 11/06/2022] Open
Abstract
In this work we have purified the Photosystem I (PSI) complex of Chlamydomonas reinhardtii to homogeneity. Biochemical, proteomic, spectroscopic, and structural analyses reveal the main properties of this PSI-LHCI supercomplex. The data show that the largest purified complex is composed of one core complex and nine Lhca antennas and that it contains all Lhca gene products. A projection map at 15 Å resolution obtained by electron microscopy reveals that the Lhcas are organized on one side of the core in a double half-ring arrangement, in contrast with previous suggestions. A series of stable disassembled PSI-LHCI intermediates was purified. The analysis of these complexes suggests the sequence of the assembly/disassembly process. It is shown that PSI-LHCI of C. reinhardtii is larger but far less stable than the complex from higher plants. Lhca2 and Lhca9 (the red-most antenna complexes), although present in the largest complex in 1:1 ratio with the core, are only loosely associated with it. This can explain the large variation in antenna composition of PSI-LHCI from C. reinhardtii found in the literature. The analysis of several subcomplexes with reduced antenna size allows determination of the position of Lhca2 and Lhca9 and leads to a proposal for a model of the organization of the Lhcas within the PSI-LHCI supercomplex.
Collapse
Affiliation(s)
- Bartlomiej Drop
- From the Department of Biophysical Chemistry and
- the Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | | | - Fabrizia Fusetti
- Department of Biochemistry and the Netherlands Proteomics Centre, Groningen Biological Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Roman Kouřil
- From the Department of Biophysical Chemistry and
| | - Kevin E. Redding
- the Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, and
| | | | - Roberta Croce
- From the Department of Biophysical Chemistry and
- the Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
45
|
Steiner S, Schröter Y, Pfalz J, Pfannschmidt T. Identification of essential subunits in the plastid-encoded RNA polymerase complex reveals building blocks for proper plastid development. PLANT PHYSIOLOGY 2011; 157:1043-55. [PMID: 21949211 PMCID: PMC3252157 DOI: 10.1104/pp.111.184515] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 09/14/2011] [Indexed: 05/18/2023]
Abstract
The major RNA polymerase activity in mature chloroplasts is a multisubunit, Escherichia coli-like protein complex called PEP (for plastid-encoded RNA polymerase). Its subunit structure has been extensively investigated by biochemical means. Beside the "prokaryotic" subunits encoded by the plastome-located RNA polymerase genes, a number of additional nucleus-encoded subunits of eukaryotic origin have been identified in the PEP complex. These subunits appear to provide additional functions and regulation modes necessary to adapt transcription to the varying functional situations in chloroplasts. However, despite the enormous progress in genomic data and mass spectrometry techniques, it is still under debate which of these subunits belong to the core complex of PEP and which ones represent rather transient or peripheral components. Here, we present a catalog of true PEP subunits that is based on comparative analyses from biochemical purifications, protein mass spectrometry, and phenotypic analyses. We regard reproducibly identified protein subunits of the basic PEP complex as essential when the corresponding knockout mutants reveal an albino or pale-green phenotype. Our study provides a clearly defined subunit catalog of the basic PEP complex, generating the basis for a better understanding of chloroplast transcription regulation. In addition, the data support a model that links PEP complex assembly and chloroplast buildup during early seedling development in vascular plants.
Collapse
|
46
|
Bonente G, Formighieri C, Mantelli M, Catalanotti C, Giuliano G, Morosinotto T, Bassi R. Mutagenesis and phenotypic selection as a strategy toward domestication of Chlamydomonas reinhardtii strains for improved performance in photobioreactors. PHOTOSYNTHESIS RESEARCH 2011; 108:107-20. [PMID: 21547493 DOI: 10.1007/s11120-011-9660-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 04/24/2011] [Indexed: 05/11/2023]
Abstract
Microalgae have a valuable potential for biofuels production. As a matter of fact, algae can produce different molecules with high energy content, including molecular hydrogen (H(2)) by the activity of a chloroplastic hydrogenase fueled by reducing power derived from water and light energy. The efficiency of this reaction, however, is limited and depends from an intricate relationships between oxygenic photosynthesis and mitochondrial respiration. The way toward obtaining algal strains with high productivity in photobioreactors requires engineering of their metabolism at multiple levels in a process comparable to domestication of crops that were derived from their wild ancestors through accumulation of genetic traits providing improved productivity under conditions of intensive cultivation as well as improved nutritional/industrial properties. This holds true for the production of any biofuels from algae: there is the need to isolate multiple traits to be combined and produce organisms with increased performances. Among the different limitations in H(2) productivity, we identified three with a major relevance, namely: (i) the light distribution through the mass culture; (ii) the strong sensitivity of the hydrogenase to even very low oxygen concentrations; and (iii) the presence of alternative pathways, such as the cyclic electron transport, competing for reducing equivalents with hydrogenase and H(2) production. In order to identify potentially favorable mutations, we generated a collection of random mutants in Chlamydomonas reinhardtii which were selected through phenotype analysis for: (i) a reduced photosynthetic antenna size, and thus a lower culture optical density; (ii) an altered photosystem II activity as a tool to manipulate the oxygen concentration within the culture; and (iii) State 1-State 2 transition mutants, for a reduced cyclic electron flow and maximized electrons flow toward the hydrogenase. Such a broad approach has been possible thanks to the high throughput application of absorption/fluorescence optical spectroscopy methods. Strong and weak points of this approach are discussed.
Collapse
Affiliation(s)
- Giulia Bonente
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | | | | | | | | | | | | |
Collapse
|
47
|
Terashima M, Specht M, Hippler M. The chloroplast proteome: a survey from the Chlamydomonas reinhardtii perspective with a focus on distinctive features. Curr Genet 2011; 57:151-68. [PMID: 21533645 DOI: 10.1007/s00294-011-0339-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 04/05/2011] [Accepted: 04/07/2011] [Indexed: 01/12/2023]
Abstract
The unicellular green alga Chlamydomonas reinhardtii has emerged to be an important model organism for the study of oxygenic eukaryotic photosynthesis as well as other processes occurring in the chloroplast. However, the chloroplast proteome in C. reinhardtii has only recently been comprehensively characterized, made possible by proteomics emerging as an accessible and powerful tool over the last decade. In this review, we introduce a compiled list of 996 experimentally chloroplast-localized proteins for C. reinhardtii, stemming largely from our previous proteomic dataset comparing chloroplasts and mitochondria samples to localize proteins. In order to get a taste of some cellular functions taking place in the C. reinhardtii chloroplast, we will focus this review particularly on metabolic differences between chloroplasts of C. reinhardtii and higher plants. Areas that will be covered are photosynthesis, chlorophyll biosynthesis, carbon metabolism, fermentative metabolism, ferredoxins and ferredoxin-interacting proteins.
Collapse
Affiliation(s)
- Mia Terashima
- Department of Biology, Institute of Plant Biology and Biotechnology, University of Münster, Hindenburgplatz 55, 48143, Münster, Germany
| | | | | |
Collapse
|
48
|
Winck FV, Kwasniewski M, Wienkoop S, Mueller-Roeber B. AN OPTIMIZED METHOD FOR THE ISOLATION OF NUCLEI FROM CHLAMYDOMONAS REINHARDTII (CHLOROPHYCEAE)(1). JOURNAL OF PHYCOLOGY 2011; 47:333-340. [PMID: 27021865 DOI: 10.1111/j.1529-8817.2011.00967.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The cell nucleus harbors a large number of proteins involved in transcription, RNA processing, chromatin remodeling, nuclear signaling, and ribosome assembly. The nuclear genome of the model alga Chlamydomonas reinhardtii P. A. Dang. was recently sequenced, and many genes encoding nuclear proteins, including transcription factors and transcription regulators, have been identified through computational discovery tools. However, elucidating the specific biological roles of nuclear proteins will require support from biochemical and proteomics data. Cellular preparations with enriched nuclei are important to assist in such analyses. Here, we describe a simple protocol for the isolation of nuclei from Chlamydomonas, based on a commercially available kit. The modifications done in the original protocol mainly include alterations of the differential centrifugation parameters and detergent-based cell lysis. The nuclei-enriched fractions obtained with the optimized protocol show low contamination with mitochondrial and plastid proteins. The protocol can be concluded within only 3 h, and the proteins extracted can be used for gel-based and non-gel-based proteomic approaches.
Collapse
Affiliation(s)
- Flavia Vischi Winck
- University of Potsdam, GoFORSYS Research Unit for Systems Biology, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam-Golm, Germany Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany University of Potsdam, GoFORSYS Research Unit for Systems Biology, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam-Golm, Germany Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany University of Silesia, Department of Genetics, Jagiellonska 28, 40-032, Katowice, PolandMax-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany University of Potsdam, GoFORSYS Research Unit for Systems Biology, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam-Golm, Germany Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Miroslaw Kwasniewski
- University of Potsdam, GoFORSYS Research Unit for Systems Biology, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam-Golm, Germany Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany University of Potsdam, GoFORSYS Research Unit for Systems Biology, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam-Golm, Germany Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany University of Silesia, Department of Genetics, Jagiellonska 28, 40-032, Katowice, PolandMax-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany University of Potsdam, GoFORSYS Research Unit for Systems Biology, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam-Golm, Germany Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Stefanie Wienkoop
- University of Potsdam, GoFORSYS Research Unit for Systems Biology, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam-Golm, Germany Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany University of Potsdam, GoFORSYS Research Unit for Systems Biology, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam-Golm, Germany Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany University of Silesia, Department of Genetics, Jagiellonska 28, 40-032, Katowice, PolandMax-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany University of Potsdam, GoFORSYS Research Unit for Systems Biology, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam-Golm, Germany Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Bernd Mueller-Roeber
- University of Potsdam, GoFORSYS Research Unit for Systems Biology, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam-Golm, Germany Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany University of Potsdam, GoFORSYS Research Unit for Systems Biology, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam-Golm, Germany Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany University of Silesia, Department of Genetics, Jagiellonska 28, 40-032, Katowice, PolandMax-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany University of Potsdam, GoFORSYS Research Unit for Systems Biology, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam-Golm, Germany Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
49
|
Pandit A, Morosinotto T, Reus M, Holzwarth AR, Bassi R, de Groot HJ. First solid-state NMR analysis of uniformly 13C-enriched major light-harvesting complexes from Chlamydomonas reinhardtii and identification of protein and cofactor spin clusters. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:437-43. [DOI: 10.1016/j.bbabio.2011.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 01/13/2011] [Accepted: 01/18/2011] [Indexed: 11/26/2022]
|
50
|
Voß B, Meinecke L, Kurz T, Al-Babili S, Beck CF, Hess WR. Hemin and magnesium-protoporphyrin IX induce global changes in gene expression in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2011; 155:892-905. [PMID: 21148414 PMCID: PMC3032474 DOI: 10.1104/pp.110.158683] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 11/29/2010] [Indexed: 05/19/2023]
Abstract
Retrograde signaling is a pathway of communication from mitochondria and plastids to the nucleus in the context of cell differentiation, development, and stress response. In Chlamydomonas reinhardtii, the tetrapyrroles magnesium-protoporphyrin IX and heme are only synthesized within the chloroplast, and they have been implicated in the retrograde control of nuclear gene expression in this unicellular green alga. Feeding the two tetrapyrroles to Chlamydomonas cultures was previously shown to transiently induce five nuclear genes, three of which encode the heat shock proteins HSP70A, HSP70B, and HSP70E. In contrast, controversial results exist on the possible role of magnesium-protoporphyrin IX in the repression of genes for light-harvesting proteins in higher plants, raising the question of how important this mode of regulation is. Here, we used genome-wide transcriptional profiling to measure the global impact of these tetrapyrroles on gene regulation and the scope of the response. We identified almost 1,000 genes whose expression level changed transiently but significantly. Among them were only a few genes for photosynthetic proteins but several encoding enzymes of the tricarboxylic acid cycle, heme-binding proteins, stress-response proteins, as well as proteins involved in protein folding and degradation. More than 50% of the latter class of genes was also regulated by heat shock. The observed drastic fold changes at the RNA level did not correlate with similar changes in protein concentrations under the tested experimental conditions. Phylogenetic profiling revealed that genes of putative endosymbiontic origin are not overrepresented among the responding genes. This and the transient nature of changes in gene expression suggest a signaling role of both tetrapyrroles as secondary messengers for adaptive responses affecting the entire cell and not only organellar proteins.
Collapse
|