1
|
Banda-Flores IA, Torres-Tirado D, Mora-Montes HM, Pérez-Flores G, Pérez-García LA. Resilience in Resistance: The Role of Cell Wall Integrity in Multidrug-Resistant Candida. J Fungi (Basel) 2025; 11:271. [PMID: 40278091 PMCID: PMC12028102 DOI: 10.3390/jof11040271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/12/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
The Candida species cell wall plays a pivotal role as a structural and functional barrier against external aggressors and as an intermediary in host-pathogen interactions. Candida species exhibit unique adaptations in their cell wall composition, with varying proportions of chitin, mannans, and β-glucans influenced by the environmental conditions and the morphological states. These components not only maintain cellular viability under osmotic, thermal, and chemical stress, but also serve as the key targets for novel antifungal strategies. MAPK signaling pathways, like the cell wall integrity pathway and the high-osmolarity glycerol pathway, play a crucial role in responding to cell wall stressors. Due to the rise of antifungal resistance and its clinical challenges, there is a need to identify new antifungal targets. This review discusses the recent advances in understanding the mechanisms underlying cell wall integrity, their impact on antifungal resistance and virulence, and their potential as therapeutic targets of C. albicans, N. glabratus, and C. auris.
Collapse
Affiliation(s)
- Iván A. Banda-Flores
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, Romualdo del Campo 501, Fracc. Rafael Curiel, Ciudad Valles 79060, San Luis Potosi, Mexico; (I.A.B.-F.); (D.T.-T.); (G.P.-F.)
| | - David Torres-Tirado
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, Romualdo del Campo 501, Fracc. Rafael Curiel, Ciudad Valles 79060, San Luis Potosi, Mexico; (I.A.B.-F.); (D.T.-T.); (G.P.-F.)
| | - Héctor M. Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, Col. Noria Alta, Guanajuato 36050, Guanajuato, Mexico;
| | - Gabriela Pérez-Flores
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, Romualdo del Campo 501, Fracc. Rafael Curiel, Ciudad Valles 79060, San Luis Potosi, Mexico; (I.A.B.-F.); (D.T.-T.); (G.P.-F.)
| | - Luis A. Pérez-García
- Facultad de Estudios Profesionales Zona Huasteca, Universidad Autónoma de San Luis Potosí, Romualdo del Campo 501, Fracc. Rafael Curiel, Ciudad Valles 79060, San Luis Potosi, Mexico; (I.A.B.-F.); (D.T.-T.); (G.P.-F.)
| |
Collapse
|
2
|
Véronique L, Véronique A, Guillaume C, Jean-Michel C, Françoise A. Candida albicans cells exhibit media specific proteomic profiles during induction of filamentation. BMC Microbiol 2024; 24:500. [PMID: 39592958 PMCID: PMC11600622 DOI: 10.1186/s12866-024-03627-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Candida albicans is an opportunist pathogen responsible for a broad spectrum of infections, from superficial mycosis to the systemic disease candidiasis. C. albicans has various morphological forms, including unicellular budding yeasts, filamentous pseudohyphae and true hyphae, and the ability to switch from yeast to hyphal forms is a key survival mechanism underlying the adaptation of the pathogen to the microenvironments encountered within the host. Filamentation is regulated by multiple signalling pathways and its induction in different growth media in vitro has often led to conflicting results. In this study, we performed quantitative proteomic analyses to compare the response of C. albicans yeast cells grown in YNB minimal medium to those of cells grown in four media widely used in the literature to induce the yeast-to-hyphae transition: YNB-Serum, YNB-N-acetylglucosamine (YNB-NAG), Lee medium and rich Spider medium. We show that each growth medium induces a unique pattern of response in C. albicans cells, and that some conditions trigger an original and specific adaptive metabolic response, showing significant differences in the intracellular content of the various filamentous forms. Moreover, this comparison of proteomic profiles indicates that the medium used can modify the thiol-dependent redox status of the cells, particularly in YNB-Serum and Lee medium and, to a lesser extent, in Spider medium, confirming the role of oxidative stress in the filamentation process. Overall, our data indicate that some of the media routinely used to induce hyphae cause significant changes in proteomic signature that should be taken account more carefully when exploring the hyphal transition in this pathogen.
Collapse
Affiliation(s)
- Legros Véronique
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013, Paris, France
| | - Albanese Véronique
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013, Paris, France
| | - Chevreux Guillaume
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013, Paris, France
| | | | - Auchère Françoise
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013, Paris, France.
| |
Collapse
|
3
|
Alvarado M, Gómez-Navajas JA, Blázquez-Muñoz MT, Gómez-Molero E, Fernández-Sánchez S, Eraso E, Munro CA, Valentín E, Mateo E, de Groot PWJ. The good, the bad, and the hazardous: comparative genomic analysis unveils cell wall features in the pathogen Candidozyma auris typical for both baker's yeast and Candida. FEMS Yeast Res 2024; 24:foae039. [PMID: 39656857 PMCID: PMC11657238 DOI: 10.1093/femsyr/foae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 11/04/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024] Open
Abstract
The drug-resistant pathogenic yeast Candidozyma auris (formerly named Candida auris) is considered a critical health problem of global importance. As the cell wall plays a crucial role in pathobiology, here we performed a detailed bioinformatic analysis of its biosynthesis in C. auris and related Candidozyma haemuli complex species using Candida albicans and Saccharomyces cerevisiae as references. Our data indicate that the cell wall architecture described for these reference yeasts is largely conserved in Candidozyma spp.; however, expansions or reductions in gene families point to subtle alterations, particularly with respect to β--1,3--glucan synthesis and remodeling, phosphomannosylation, β-mannosylation, and glycosylphosphatidylinositol (GPI) proteins. In several aspects, C. auris holds a position in between C. albicans and S. cerevisiae, consistent with being classified in a separate genus. Strikingly, among the identified putative GPI proteins in C. auris are adhesins typical for both Candida (Als and Hyr/Iff) and Saccharomyces (Flo11 and Flo5-like flocculins). Further, 26 putative C. auris GPI proteins lack homologs in Candida genus species. Phenotypic analysis of one such gene, QG37_05701, showed mild phenotypes implicating a role associated with cell wall β-1,3-glucan. Altogether, our study uncovered a wealth of information relevant for the pathogenicity of C. auris as well as targets for follow-up studies.
Collapse
Affiliation(s)
- María Alvarado
- Institute for Biomedicine, ETSIAMB, University of Castilla-La Mancha, 02008 Albacete, Spain
| | - Jesús A Gómez-Navajas
- Institute for Biomedicine, ETSIAMB, University of Castilla-La Mancha, 02008 Albacete, Spain
| | | | - Emilia Gómez-Molero
- Institute for Biomedicine, ETSIAMB, University of Castilla-La Mancha, 02008 Albacete, Spain
| | | | - Elena Eraso
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Bilbao, Spain
| | - Carol A Munro
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | - Eulogio Valentín
- GMCA Research Unit, Departament of Microbiology and Ecology, University of Valencia, Burjassot, 46010 Valencia, Spain
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Estibaliz Mateo
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Bilbao, Spain
| | - Piet W J de Groot
- Institute for Biomedicine, ETSIAMB, University of Castilla-La Mancha, 02008 Albacete, Spain
| |
Collapse
|
4
|
Canto-Canché B, Burgos-Canul YY, Chi-Chuc D, Tzec-Simá M, Ku-González A, Brito-Argáez L, Carrillo-Pech M, De Los Santos-Briones C, Canseco-Pérez MÁ, Luna-Moreno D, Beltrán-García MJ, Islas-Flores I. Moonlight-like proteins are actually cell wall components in Pseudocercospora fijiensis. World J Microbiol Biotechnol 2023; 39:232. [PMID: 37349471 DOI: 10.1007/s11274-023-03676-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Abstract
The fungal cell wall protects fungi against threats, both biotic and abiotic, and plays a role in pathogenicity by facilitating host adhesion, among other functions. Although carbohydrates (e.g. glucans, chitin) are the most abundant components, the fungal cell wall also harbors ionic proteins, proteins bound by disulfide bridges, alkali-extractable, SDS-extractable, and GPI-anchored proteins, among others; the latter consisting of suitable targets which can be used for fungal pathogen control. Pseudocercospora fijiensis is the causal agent of black Sigatoka disease, the principal threat to banana and plantain worldwide. Here, we report the isolation of the cell wall of this pathogen, followed by extensive washing to eliminate all loosely associated proteins and conserve those integrated to its cell wall. In the HF-pyridine protein fraction, one of the most abundant protein bands was recovered from SDS-PAGE gels, electro-eluted and sequenced. Seven proteins were identified from this band, none of which were GPI-anchored proteins. Instead, atypical (moonlight-like) cell wall proteins were identified, suggesting a new class of atypical proteins, bound to the cell wall by unknown linkages. Western blot and histological analyses of the cell wall fractions support that these proteins are true cell wall proteins, most likely involved in fungal pathogenesis/virulence, since they were found conserved in many fungal pathogens.
Collapse
Affiliation(s)
- Blondy Canto-Canché
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Colonia Chuburná de Hidalgo, Calle 43 No. 130 x 32 y 34, Mérida, A.C., Yucatán, C.P. 97205, México
| | - Yamily Yazmin Burgos-Canul
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Colonia Chuburná de Hidalgo, Calle 43 No. 130 x 32 y 34, Mérida, A.C., Yucatán, C.P. 97205, México
| | - Deysi Chi-Chuc
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Colonia Chuburná de Hidalgo, Calle 43 No. 130 x 32 y 34, Mérida, A.C., Yucatán, C.P. 97205, México
- Escuela Telebachillerato Comunitario de Xcunya, Calle 20, Mérida, México
| | - Miguel Tzec-Simá
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Colonia Chuburná de Hidalgo, Calle 43 No. 130 x 32 y 34, Mérida, A.C., Yucatán, C.P. 97205, México
| | - Angela Ku-González
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Colonia Chuburná de Hidalgo, Calle 43 No. 130 x 32 y 34, Mérida, A.C., Yucatán, C.P. 97205, México
| | - Ligia Brito-Argáez
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Colonia Chuburná de Hidalgo, Calle 43 No. 130 x 32 y 34, Mérida, A.C., Yucatán, C.P. 97205, México
| | - Mildred Carrillo-Pech
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Colonia Chuburná de Hidalgo, Calle 43 No. 130 x 32 y 34, Mérida, A.C., Yucatán, C.P. 97205, México
| | - César De Los Santos-Briones
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Colonia Chuburná de Hidalgo, Calle 43 No. 130 x 32 y 34, Mérida, A.C., Yucatán, C.P. 97205, México
| | - Miguel Ángel Canseco-Pérez
- Dirección de Investigación, Evaluación y Posgrado, Universidad Tecnológica de Tlaxcala, Carretera a el Carmen Xalplatlahuaya s/n. El Carmen Xalplatlahuaya, Tlaxcala, Huamantla, C.P. 90500, Mexico
| | - Donato Luna-Moreno
- Centro de Investigaciones en Óptica AC, División de Fotónica, Loma del Bosque 115, Col. Lomas del Campestre, León, Gto, C.P. 37150, México
| | | | - Ignacio Islas-Flores
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Colonia Chuburná de Hidalgo, Calle 43 No. 130 x 32 y 34, Mérida, A.C., Yucatán, C.P. 97205, México.
| |
Collapse
|
5
|
Raj V, Raorane CJ, Lee JH, Lee J. Gum Arabic polysaccharide embedded L-cysteine capped copper oxide nanocarriers selectively inhibit fluconazole-resistant C. albicans biofilm and remove the toxic dye from wastewater. Int J Biol Macromol 2023:125361. [PMID: 37327931 DOI: 10.1016/j.ijbiomac.2023.125361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 06/18/2023]
Abstract
Copper oxide nanocarriers have attracted increasing interest in the scientific community, including antimicrobial applications. Candida biofilm developed causes serious clinical problems, leading to drug failure caused by its inherent drug tolerance. Nanocarriers are a good alternative approach to solving this challenge because of their excellent penetration power inside biofilms. Hence, main objectives of this research were to prepare gum arabic-embedded L-cysteine-capped copper oxide nanocarriers (GCCuO NCs) and tested against C. albicans and explore another application. To achieve the main research objectives, GCCuO NCs were synthesized and investigated for antibiofilm potency against C. albicans. Various methods were employed to measure antibiofilm potency such as biofilm assay etc., of NCs. The nano size of GCCuO NCs is advantageous for augmenting penetration power and retention into biofilms. GCCuO NCs at 100 μg/mL exhibited significant antibiofilm activity against the C. albicans DAY185 by switching of yeast-to-hyphae and gene perturbation. The level of CR dye adsorption was 58.96 % using 30 μg/mL of NCs. Based on effective C. albicans biofilm inhibition and CR dye adsorption capacity of NCs, it can be suggested that present research work opens an innovative path to treat biofilm-associated fungal infections, and these NCs can be used for environmental remedies.
Collapse
Affiliation(s)
- Vinit Raj
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | | | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
6
|
Alvarado M, Gómez-Navajas JA, Blázquez-Muñoz MT, Gómez-Molero E, Berbegal C, Eraso E, Kramer G, De Groot PWJ. Integrated post-genomic cell wall analysis reveals floating biofilm formation associated with high expression of flocculins in the pathogen Pichia kudriavzevii. PLoS Pathog 2023; 19:e1011158. [PMID: 37196016 DOI: 10.1371/journal.ppat.1011158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/30/2023] [Accepted: 04/27/2023] [Indexed: 05/19/2023] Open
Abstract
The pathogenic yeast Pichia kudriavzevii, previously known as Candida krusei, is more distantly related to Candida albicans than clinically relevant CTG-clade Candida species. Its cell wall, a dynamic organelle that is the first point of interaction between pathogen and host, is relatively understudied, and its wall proteome remains unidentified to date. Here, we present an integrated study of the cell wall in P. kudriavzevii. Our comparative genomic studies and experimental data indicate that the general structure of the cell wall in P. kudriavzevii is similar to Saccharomyces cerevisiae and C. albicans and is comprised of β-1,3-glucan, β-1,6-glucan, chitin, and mannoproteins. However, some pronounced differences with C. albicans walls were observed, for instance, higher mannan and protein levels and altered protein mannosylation patterns. Further, despite absence of proteins with high sequence similarity to Candida adhesins, protein structure modeling identified eleven proteins related to flocculins/adhesins in S. cerevisiae or C. albicans. To obtain a proteomic comparison of biofilm and planktonic cells, P. kudriavzevii cells were grown to exponential phase and in static 24-h cultures. Interestingly, the 24-h static cultures of P. kudriavzevii yielded formation of floating biofilm (flor) rather than adherence to polystyrene at the bottom. The proteomic analysis of both conditions identified a total of 33 cell wall proteins. In line with a possible role in flor formation, increased abundance of flocculins, in particular Flo110, was observed in the floating biofilm compared to exponential cells. This study is the first to provide a detailed description of the cell wall in P. kudriavzevii including its cell wall proteome, and paves the way for further investigations on the importance of flor formation and flocculins in the pathogenesis of P. kudriavzevii.
Collapse
Affiliation(s)
- María Alvarado
- Regional Center for Biomedical Research, Castilla-La Mancha Science & Technology Park, University of Castilla-La Mancha, Albacete, Spain
| | - Jesús Alberto Gómez-Navajas
- Regional Center for Biomedical Research, Castilla-La Mancha Science & Technology Park, University of Castilla-La Mancha, Albacete, Spain
| | - María Teresa Blázquez-Muñoz
- Regional Center for Biomedical Research, Castilla-La Mancha Science & Technology Park, University of Castilla-La Mancha, Albacete, Spain
| | - Emilia Gómez-Molero
- Regional Center for Biomedical Research, Castilla-La Mancha Science & Technology Park, University of Castilla-La Mancha, Albacete, Spain
| | - Carmen Berbegal
- ENOLAB, Estructura de Recerca Interdisciplinar (ERI) BioTecMed and Departament de Microbiologia i Ecología, Universitat de València, Burjassot, Spain
| | - Elena Eraso
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Gertjan Kramer
- Mass Spectrometry of Biomolecules, University of Amsterdam, Swammerdam Institute for Life Sciences Amsterdam, Amsterdam, The Netherlands
| | - Piet W J De Groot
- Regional Center for Biomedical Research, Castilla-La Mancha Science & Technology Park, University of Castilla-La Mancha, Albacete, Spain
| |
Collapse
|
7
|
do Rosário Esteves Guimarães C, de Freitas HF, Barros TF. Candida albicans antibiofilm molecules: analysis based on inhibition and eradication studies. Braz J Microbiol 2023; 54:37-52. [PMID: 36576671 PMCID: PMC9944165 DOI: 10.1007/s42770-022-00876-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/14/2022] [Indexed: 12/29/2022] Open
Abstract
Biofilms are communities of microbial cells surrounded by an extracellular polysaccharide matrix, recognized as a fungal source for local and systemic infections and less susceptible to antifungal drugs. Thus, treatment of biofilm-related Candida spp. infections with popular antifungals such as fluconazole is limited and species-dependent and alternatively demands the use of expensive and high toxic drugs. In this sense, molecules with antibiofilm activity have been studied but without care regarding the use of important criteria such as antibiofilm concentration lower than antifungal concentration when considering the process of inhibition of formation and concentrations equal to or lower than 300 µM. Therefore, this review tries to gather the most promising molecules regarding the activity against the C. albicans biofilm described in the last 10 years, considering the activity of inhibition and eradication. From January 2011 to July 2021, articles were searched on Scopus, PubMed, and Science Direct, combining the keywords "antibiofilm," "candida albicans," "compound," and "molecule" with AND and OR operators. After 3 phases of selection, 21 articles describing 42 molecules were discussed in the review. Most of them were more promising for the inhibition of biofilm formation, with SM21 (24) being an interesting molecule for presenting inhibitory and eradication activity in biofilms with 24 and 48 h, as well as alizarin (26) and chrysazine (27), with concentrations well below the antifungal concentration. Despite the detection of these molecules and the attempts to determine the mechanisms of action by microscopic analysis and gene expression, no specific target has been determined. Thus, a gap is signaled, requiring further studies such as proteomic analyses to clarify it.
Collapse
Affiliation(s)
- Carolina do Rosário Esteves Guimarães
- Post-Graduation Program in Pharmacy, Pharmacy College, Federal University of Bahia, Barão de Geremoabo Street, 147, Ondina, Salvador, Bahia CEP, 40170115, Brazil
| | - Humberto Fonseca de Freitas
- Post-Graduation Program in Pharmacy, Pharmacy College, Federal University of Bahia, Barão de Geremoabo Street, 147, Ondina, Salvador, Bahia CEP, 40170115, Brazil
| | - Tânia Fraga Barros
- Post-Graduation Program in Pharmacy, Pharmacy College, Federal University of Bahia, Barão de Geremoabo Street, 147, Ondina, Salvador, Bahia CEP, 40170115, Brazil.
| |
Collapse
|
8
|
The adaptive response to alternative carbon sources in the pathogen Candida albicans involves a remodeling of thiol- and glutathione-dependent redox status. Biochem J 2023; 480:197-217. [PMID: 36625375 DOI: 10.1042/bcj20220505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/03/2023] [Accepted: 01/10/2023] [Indexed: 01/11/2023]
Abstract
Candida albicans is an opportunist pathogen responsible for a large spectrum of infections, from superficial mycosis to systemic diseases known as candidiasis. During infection in vivo, Candida albicans must adapt to host microenvironments and this adaptive response is crucial for the survival of this organism, as it facilitates the effective assimilation of alternative carbon sources others than glucose. We performed a global proteomic analysis on the global changes in protein abundance in response to changes in micronutrient levels, and, in parallel, explored changes in the intracellular redox and metabolic status of the cells. We show here that each of the carbon sources considered - glucose, acetate and lactate - induces a unique pattern of response in C. albicans cells, and that some conditions trigger an original and specific adaptive response involving the adaptation of metabolic pathways, but also a complete remodeling of thiol-dependent antioxidant defenses. Protein S-thiolation and the overproduction of reduced glutathione are two components of the response to high glucose concentration. In the presence of acetate, glutathione-dependent oxidative stress occurs, reduced thiol groups bind to proteins, and glutathione is exported out of the cells, these changes probably being triggered by an increase in glutathione-S-transferases. Overall, our results suggest that the role of cellular redox status regulation and defenses against oxidative stress, including the thiol- and glutathione-dependent response, in the adaptive response of C. albicans to alternative carbon sources should be reconsidered.
Collapse
|
9
|
Singh S, Barbarino A, Youssef EG, Coleman D, Gebremariam T, Ibrahim AS. Protective Efficacy of Anti-Hyr1p Monoclonal Antibody against Systemic Candidiasis Due to Multi-Drug-Resistant Candida auris. J Fungi (Basel) 2023; 9:103. [PMID: 36675924 PMCID: PMC9860579 DOI: 10.3390/jof9010103] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Candida auris is a multi-drug-resistant fungal pathogen that can survive outside the host and can easily spread and colonize the healthcare environment, medical devices, and human skin. C. auris causes serious life-threatening infections (up to 60% mortality) in immunosuppressed patients staying in such contaminated healthcare facilities. Some isolates of C. auris are resistant to virtually all clinically available antifungal drugs. Therefore, alternative therapeutic approaches are urgently needed. Using in silico protein modeling and analysis, we identified a highly immunogenic and surface-exposed epitope that is conserved between C. albicans hyphal-regulated protein (Cal-Hyr1p) and Hyr1p/Iff-like proteins in C. auris (Cau-HILp). We generated monoclonal antibodies (MAb) against this Cal-Hyr1p epitope, which recognized several clinical isolates of C. auris representing all four clades. An anti-Hyr1p MAb prevented biofilm formation and enhanced opsonophagocytic killing of C. auris by macrophages. When tested for in vivo efficacy, anti-Hyr1p MAb protected 55% of mice against lethal systemic C. auris infection and showed significantly less fungal burden. Our study is highly clinically relevant and provides an effective alternative therapeutic option to treat infections due to MDR C. auris.
Collapse
Affiliation(s)
- Shakti Singh
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance, CA 90502, USA
- David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Ashley Barbarino
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance, CA 90502, USA
| | - Eman G. Youssef
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance, CA 90502, USA
| | - Declan Coleman
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance, CA 90502, USA
- Biology Department, Pomona College, Pomona, CA 91711, USA
| | - Teclegiorgis Gebremariam
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance, CA 90502, USA
| | - Ashraf S. Ibrahim
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance, CA 90502, USA
- David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
10
|
Yammine M, Bray F, Flament S, Picavet A, Lacroix JM, Poilpré E, Mouly I, Rolando C. Reliable Approach for Pure Yeast Cell Wall Protein Isolation from Saccharomyces cerevisiae Yeast Cells. ACS OMEGA 2022; 7:29702-29713. [PMID: 36061670 PMCID: PMC9435031 DOI: 10.1021/acsomega.2c02176] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Saccharomyces cerevisiae yeast is a fungus presenting a peripheral organelle called the cell wall. The cell wall protects the yeast cell from stress and provides means for communication with the surrounding environment. It has a complex molecular structure, composed of an internal part of cross-linked polysaccharides and an external part of mannoproteins. These latter are very interesting owing to their functional properties, dependent on their molecular features with massive mannosylations. Therefore, the molecular characterization of mannoproteins is a must relying on the optimal isolation and preparation of the cell wall fraction. Multiple methods are well reported for yeast cell wall isolation. The most applied one consists of yeast cell lysis by mechanical disruption. However, applying this classical approach to S288C yeast cells showed considerable contamination with noncell wall proteins, mainly comprising mitochondrial proteins. Herein, we tried to further purify the yeast cell wall preparation by two means: ultracentrifugation and Triton X-100 addition. While the first strategy showed limited outcomes in mitochondrial protein removal, the second strategy showed optimal results when Triton X-100 was added at 5%, allowing the identification of more mannoproteins and significantly enriching their amounts. This promising method could be reliably implemented on the lab scale for identification of mannoproteins and molecular characterization and industrial processes for "pure" cell wall isolation.
Collapse
Affiliation(s)
- Marie Yammine
- Univ.
Lille, CNRS, USR 3290, MSAP, Miniaturisation pour la Synthèse,
l’Analyse et la Protéomique, F-59000 Lille, France
- Lesaffre
international, Research and Development department, 77 rue de Menin, F-59520 Marquette-lez-Lille, France
| | - Fabrice Bray
- Univ.
Lille, CNRS, USR 3290, MSAP, Miniaturisation pour la Synthèse,
l’Analyse et la Protéomique, F-59000 Lille, France
| | - Stéphanie Flament
- Univ.
Lille, CNRS, USR 3290, MSAP, Miniaturisation pour la Synthèse,
l’Analyse et la Protéomique, F-59000 Lille, France
| | - Antoine Picavet
- Lesaffre
international, Research and Development department, 77 rue de Menin, F-59520 Marquette-lez-Lille, France
| | - Jean-Marie Lacroix
- Univ.
Lille, CNRS, UMR 8765, UGSF, Unité de Glycobiologie Structurale
et Fonctionnelle, F-59000 Lille, France
| | - Emmanuel Poilpré
- Lesaffre
international, Research and Development department, 77 rue de Menin, F-59520 Marquette-lez-Lille, France
| | - Isabelle Mouly
- Lesaffre
international, Research and Development department, 77 rue de Menin, F-59520 Marquette-lez-Lille, France
| | - Christian Rolando
- Univ.
Lille, CNRS, USR 3290, MSAP, Miniaturisation pour la Synthèse,
l’Analyse et la Protéomique, F-59000 Lille, France
- Shrieking
sixties, 1-3 Allée
Lavoisier, F-59650 Villeneuve-d’Ascq, France
| |
Collapse
|
11
|
Function of the phosphatidylinositol synthase Pis1 in maintenance of endoplasmic reticulum function and pathogenicity in Candida albicans. Fungal Genet Biol 2022; 160:103674. [DOI: 10.1016/j.fgb.2022.103674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 01/23/2022] [Accepted: 02/14/2022] [Indexed: 11/18/2022]
|
12
|
Phenotypic Switching and Filamentation in Candida haemulonii, an Emerging Opportunistic Pathogen of Humans. Microbiol Spectr 2021; 9:e0077921. [PMID: 34878301 PMCID: PMC8653834 DOI: 10.1128/spectrum.00779-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Phenotypic plasticity is a common strategy adopted by fungal pathogens to adapt to diverse host environments. Candida haemulonii is an emerging multidrug-resistant human pathogen that is closely related to Candida auris. Until recently, it was assumed that C. haemulonii is incapable of phenotypic switching or filamentous growth. In this study, we report the identification of three distinct phenotypes in C. haemulonii: white, pink, and filament. The white and pink phenotypes differ in cellular size, colony morphology, and coloration on phloxine B- or CuSO4-containing agar. Switching between the white and pink cell types is heritable and reversible and is referred to as “the primary switching system.” The additional switch phenotype, filament, has been identified and exhibits obviously filamentous morphology when grown on glycerol-containing medium. Several unique characteristics of the filamentous phenotype suggest that switching from or to this phenotype poses as a second yeast-filament switching system. The yeast-filament switch is nonheritable and temperature-dependent. Low temperatures favor the filamentous phenotype, whereas high temperatures promote filament-yeast transition. We further demonstrated that numerous aspects of the distinct cell types differ in numerous biological aspects, including their high temperature response, specific gene expression, CuSO4 tolerance, secreted aspartyl protease (SAP) activity, and virulence. Therefore, transition among the three phenotypes could enable C. haemulonii to rapidly adapt to, survive, and thrive in certain host niches, thereby contributing to its virulence. IMPORTANCE The capacity to switch between distinct cell types, known as phenotypic switching, is a common strategy adopted by Candida species to adapt to diverse environments. Despite considerable studies on phenotypic plasticity of various Candida species, Candida haemulonii is considered to be incapable of phenotypic switching or filamentous growth. Here, we report and describe filamentation and three distinct phenotypes (white, pink, and filament) in C. haemulonii. The three cell types differ in cellular and colony appearance, gene expression profiles, CuSO4 tolerance, and virulence. C. haemulonii cells switch heritably and reversibly between white and pink cell types, which is referred to as the “primary switching system.” Switching between pink and filamentous phenotypes is nonheritable and temperature-dependent, representing a second switching system. As in other Candida species, switching among distinct morphological types may provide C. haemulonii with phenotypic plasticity for rapid responses to the changing host environment, and may contribute to its virulence.
Collapse
|
13
|
Kumari A, Tripathi AH, Gautam P, Gahtori R, Pande A, Singh Y, Madan T, Upadhyay SK. Adhesins in the virulence of opportunistic fungal pathogens of human. Mycology 2021; 12:296-324. [PMID: 34900383 PMCID: PMC8654403 DOI: 10.1080/21501203.2021.1934176] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Aspergillosis, candidiasis, and cryptococcosis are the most common cause of mycoses-related disease and death among immune-compromised patients. Adhesins are cell-surface exposed proteins or glycoproteins of pathogens that bind to the extracellular matrix (ECM) constituents or mucosal epithelial surfaces of the host cells. The forces of interaction between fungal adhesins and host tissues are accompanied by ligand binding, hydrophobic interactions and protein-protein aggregation. Adherence is the primary and critical step involved in the pathogenesis; however, there is limited information on fungal adhesins compared to that on the bacterial adhesins. Except a few studies based on screening of proteome for adhesin identification, majority are based on characterization of individual adhesins. Recently, based on their characteristic signatures, many putative novel fungal adhesins have been predicted using bioinformatics algorithms. Some of these novel adhesin candidates have been validated by in-vitro studies; though, most of them are yet to be characterised experimentally. Morphotype specific adhesin expression as well as tissue tropism are the crucial determinants for a successful adhesion process. This review presents a comprehensive overview of various studies on fungal adhesins and discusses the targetability of the adhesins and adherence phenomenon, for combating the fungal infection in a preventive or therapeutic mode.
Collapse
Affiliation(s)
- Amrita Kumari
- Department of Biotechnology, Sir J.C. Bose Technical campus, Kumaun University, Nainital, India
| | - Ankita H Tripathi
- Department of Biotechnology, Sir J.C. Bose Technical campus, Kumaun University, Nainital, India
| | - Poonam Gautam
- ICMR-National Institute of Pathology, New Delhi, India
| | - Rekha Gahtori
- Department of Biotechnology, Sir J.C. Bose Technical campus, Kumaun University, Nainital, India
| | - Amit Pande
- Directorate of Coldwater Fisheries Research (DCFR), Nainital, India
| | - Yogendra Singh
- Department of Zoology, University of Delhi, New Delhi, India
| | - Taruna Madan
- ICMR-National Institute for Research in Reproductive Health (NIRRH), Mumbai, India
| | - Santosh K Upadhyay
- Department of Biotechnology, Sir J.C. Bose Technical campus, Kumaun University, Nainital, India
| |
Collapse
|
14
|
The Membrane Proteome of Spores and Vegetative Cells of the Food-Borne Pathogen Bacillus cereus. Int J Mol Sci 2021; 22:ijms222212475. [PMID: 34830357 PMCID: PMC8624511 DOI: 10.3390/ijms222212475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
Membrane proteins are fascinating since they play an important role in diverse cellular functions and constitute many drug targets. Membrane proteins are challenging to analyze. The spore, the most resistant form of known life, harbors a compressed inner membrane. This membrane acts not only as a barrier for undesired molecules but also as a scaffold for proteins involved in signal transduction and the transport of metabolites during spore germination and subsequent vegetative growth. In this study, we adapted a membrane enrichment method to study the membrane proteome of spores and cells of the food-borne pathogen Bacillus cereus using quantitative proteomics. Using bioinformatics filtering we identify and quantify 498 vegetative cell membrane proteins and 244 spore inner membrane proteins. Comparison of vegetative and spore membrane proteins showed there were 54 spore membrane-specific and 308 cell membrane-specific proteins. Functional characterization of these proteins showed that the cell membrane proteome has a far larger number of transporters, receptors and proteins related to cell division and motility. This was also reflected in the much higher expression level of many of these proteins in the cellular membrane for those proteins that were in common with the spore inner membrane. The spore inner membrane had specific expression of several germinant receptors and spore-specific proteins, but also seemed to show a preference towards the use of simple carbohydrates like glucose and fructose owing to only expressing transporters for these. These results show the differences in membrane proteome composition and show us the specific proteins necessary in the inner membrane of a dormant spore of this toxigenic spore-forming bacterium to survive adverse conditions.
Collapse
|
15
|
Fernández-Pereira J, Alvarado M, Gómez-Molero E, Dekker HL, Blázquez-Muñoz MT, Eraso E, Bader O, de Groot PWJ. Characterization of Awp14, A Novel Cluster III Adhesin Identified in a High Biofilm-Forming Candida glabrata Isolate. Front Cell Infect Microbiol 2021; 11:790465. [PMID: 34869084 PMCID: PMC8634165 DOI: 10.3389/fcimb.2021.790465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/25/2021] [Indexed: 12/30/2022] Open
Abstract
Candida glabrata is among the most prevalent causes of candidiasis. Unlike Candida albicans, it is not capable of changing morphology between yeast and hyphal forms but instead has developed other virulence factors. An important feature is its unprecedented large repertoire of predicted cell wall adhesins, which are thought to enable adherence to a variety of surfaces under different conditions. Here, we analyzed the wall proteome of PEU1221, a high biofilm-forming clinical strain isolated from an infected central venous catheter, under biofilm-forming conditions. This isolate shows increased incorporation of putative adhesins, including eight proteins that were not detected in walls of reference strain ATCC 2001, and of which Epa22, Awp14, and Awp2e were identified for the first time. The proteomics data suggest that cluster III adhesin Awp14 is relatively abundant in PEU1221. Phenotypic studies with awp14Δ deletion mutants showed that Awp14 is not responsible for the high biofilm formation of PEU1221 onto polystyrene. However, awp14Δ mutant cells in PEU1221 background showed a slightly diminished binding to chitin and seemed to sediment slightly slower than the parental strain suggesting implication in fungal cell-cell interactions. By structural modeling, we further demonstrate similarity between the ligand-binding domains of cluster III adhesin Awp14 and those of cluster V and VI adhesins. In conclusion, our work confirms the increased incorporation of putative adhesins, such as Awp14, in high biofilm-forming isolates, and contributes to decipher the precise role of these proteins in the establishment of C. glabrata infections.
Collapse
Affiliation(s)
- Jordan Fernández-Pereira
- Albacete Regional Center for Biomedical Research, Castilla - La Mancha Science & Technology Park, University of Castilla-La Mancha, Albacete, Spain
| | - María Alvarado
- Albacete Regional Center for Biomedical Research, Castilla - La Mancha Science & Technology Park, University of Castilla-La Mancha, Albacete, Spain
| | - Emilia Gómez-Molero
- Albacete Regional Center for Biomedical Research, Castilla - La Mancha Science & Technology Park, University of Castilla-La Mancha, Albacete, Spain
- Institute for Medical Microbiology, University Medical Center Göttingen, Göttingen, Germany
| | - Henk L. Dekker
- Mass Spectrometry of Biomolecules, Swammerdam Institute for Life Sciences Amsterdam, University of Amsterdam, Amsterdam, Netherlands
| | - María Teresa Blázquez-Muñoz
- Albacete Regional Center for Biomedical Research, Castilla - La Mancha Science & Technology Park, University of Castilla-La Mancha, Albacete, Spain
| | - Elena Eraso
- Mass Spectrometry of Biomolecules, Swammerdam Institute for Life Sciences Amsterdam, University of Amsterdam, Amsterdam, Netherlands
| | - Oliver Bader
- Institute for Medical Microbiology, University Medical Center Göttingen, Göttingen, Germany
| | - Piet W. J. de Groot
- Albacete Regional Center for Biomedical Research, Castilla - La Mancha Science & Technology Park, University of Castilla-La Mancha, Albacete, Spain
| |
Collapse
|
16
|
Overexpression of cell-wall GPI-anchored proteins restores cell growth of N-glycosylation-defective och1 mutants in Schizosaccharomyces pombe. Appl Microbiol Biotechnol 2021; 105:8771-8781. [PMID: 34738170 DOI: 10.1007/s00253-021-11649-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 10/19/2022]
Abstract
The glycoproteins of yeast contain a large outer chain on N-linked oligosaccharides; therefore, yeast is not suitable for producing therapeutic glycoproteins for human use. Using a deletion mutant strain of α1,6-mannosyltransferase (och1Δ), we previously produced humanized N-glycans in fission yeast; however, the Schizosaccharomyces pombe och1Δ cells displayed a growth delay even during vegetative growth, resulting in reduced productivity of heterologous proteins. To overcome this problem, here we performed a genome-wide screen for genes that would suppress the growth defect of temperature-sensitive och1Δ cells. Using a genomic library coupled with screening of 18,000 transformants, we identified two genes (pwp1+, SPBC1E8.05), both encoding GPI-anchored proteins, that increased the growth rate of och1Δ cells, lacking the outer chain. We further showed that a high copy number of the genes was needed to improve the growth rate. Mutational analysis of Pwp1p revealed that the GPI-anchored region of Pwp1p is important in attenuating the growth defect. Analysis of disruptants of pwp1+ and SPBC1E8.05 showed that neither gene was essential for cell viability; however, both mutants were sensitive β-glucanase, suggesting that Pwp1p and the protein encoded by SPBC1E8.05 non-enzymatically support β-glucan on the cell-surface of S. pombe. Collectively, our work not only sheds light on the functional relationships between GPI-anchored proteins and N-linked oligosaccharides of glycoproteins in S. pombe, but also supports the application of S. pombe to the production of human glycoprotein. KEY POINTS: • We screened for genes that suppress the growth defect of fission yeast och1Δ cells. • Appropriate expression of GPI-anchored proteins alleviates the growth delay of och1Δ cells. • The GPI-anchor domain of Pwp1p is important for suppressing the growth defect of och1Δ cells.
Collapse
|
17
|
Carvalho VSD, Gómez-Delgado L, Curto MÁ, Moreno MB, Pérez P, Ribas JC, Cortés JCG. Analysis and application of a suite of recombinant endo-β(1,3)-D-glucanases for studying fungal cell walls. Microb Cell Fact 2021; 20:126. [PMID: 34217291 PMCID: PMC8254974 DOI: 10.1186/s12934-021-01616-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/19/2021] [Indexed: 12/31/2022] Open
Abstract
Background The fungal cell wall is an essential and robust external structure that protects the cell from the environment. It is mainly composed of polysaccharides with different functions, some of which are necessary for cell integrity. Thus, the process of fractionation and analysis of cell wall polysaccharides is useful for studying the function and relevance of each polysaccharide, as well as for developing a variety of practical and commercial applications. This method can be used to study the mechanisms that regulate cell morphogenesis and integrity, giving rise to information that could be applied in the design of new antifungal drugs. Nonetheless, for this method to be reliable, the availability of trustworthy commercial recombinant cell wall degrading enzymes with non-contaminating activities is vital. Results Here we examined the efficiency and reproducibility of 12 recombinant endo-β(1,3)-d-glucanases for specifically degrading the cell wall β(1,3)-d-glucan by using a fast and reliable protocol of fractionation and analysis of the fission yeast cell wall. This protocol combines enzymatic and chemical degradation to fractionate the cell wall into the four main polymers: galactomannoproteins, α-glucan, β(1,3)-d-glucan and β(1,6)-d-glucan. We found that the GH16 endo-β(1,3)-d-glucanase PfLam16A from Pyrococcus furiosus was able to completely and reproducibly degrade β(1,3)-d-glucan without causing the release of other polymers. The cell wall degradation caused by PfLam16A was similar to that of Quantazyme, a recombinant endo-β(1,3)-d-glucanase no longer commercially available. Moreover, other recombinant β(1,3)-d-glucanases caused either incomplete or excessive degradation, suggesting deficient access to the substrate or release of other polysaccharides. Conclusions The discovery of a reliable and efficient recombinant endo-β(1,3)-d-glucanase, capable of replacing the previously mentioned enzyme, will be useful for carrying out studies requiring the digestion of the fungal cell wall β(1,3)-d-glucan. This new commercial endo-β(1,3)-d-glucanase will allow the study of the cell wall composition under different conditions, along the cell cycle, in response to environmental changes or in cell wall mutants. Furthermore, this enzyme will also be greatly valuable for other practical and commercial applications such as genome research, chromosomes extraction, cell transformation, protoplast formation, cell fusion, cell disruption, industrial processes and studies of new antifungals that specifically target cell wall synthesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01616-0.
Collapse
Affiliation(s)
- Vanessa S D Carvalho
- Instituto de Biología Funcional y Genómica Zacarías González, 2. CSIC and Universidad de Salamanca, 37007, Salamanca, Spain
| | - Laura Gómez-Delgado
- Instituto de Biología Funcional y Genómica Zacarías González, 2. CSIC and Universidad de Salamanca, 37007, Salamanca, Spain
| | - M Ángeles Curto
- Instituto de Biología Funcional y Genómica Zacarías González, 2. CSIC and Universidad de Salamanca, 37007, Salamanca, Spain
| | - M Belén Moreno
- Instituto de Biología Funcional y Genómica Zacarías González, 2. CSIC and Universidad de Salamanca, 37007, Salamanca, Spain
| | - Pilar Pérez
- Instituto de Biología Funcional y Genómica Zacarías González, 2. CSIC and Universidad de Salamanca, 37007, Salamanca, Spain
| | - Juan Carlos Ribas
- Instituto de Biología Funcional y Genómica Zacarías González, 2. CSIC and Universidad de Salamanca, 37007, Salamanca, Spain.
| | - Juan Carlos G Cortés
- Instituto de Biología Funcional y Genómica Zacarías González, 2. CSIC and Universidad de Salamanca, 37007, Salamanca, Spain.
| |
Collapse
|
18
|
Mass Spectrometry-Based Proteomic and Immunoproteomic Analyses of the Candida albicans Hyphal Secretome Reveal Diagnostic Biomarker Candidates for Invasive Candidiasis. J Fungi (Basel) 2021; 7:jof7070501. [PMID: 34201883 PMCID: PMC8306665 DOI: 10.3390/jof7070501] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/18/2021] [Accepted: 06/18/2021] [Indexed: 01/08/2023] Open
Abstract
Invasive candidiasis (IC) is associated with high morbidity and mortality in hospitalized patients if not diagnosed early. Long-term use of central venous catheters is a predisposing factor for IC. Hyphal forms of Candida albicans (the major etiological agent of IC) are related to invasion of host tissues. The secreted proteins of hyphae are involved in virulence, host interaction, immune response, and immune evasion. To identify IC diagnostic biomarker candidates, we characterized the C. albicans hyphal secretome by gel-free proteomic analysis, and further assessed the antibody-reactivity patterns to this subproteome in serum pools from 12 patients with non-catheter-associated IC (ncIC), 11 patients with catheter-associated IC (cIC), and 11 non-IC patients. We identified 301 secreted hyphal proteins stratified to stem from the extracellular region, cell wall, cell surface, or intracellular compartments. ncIC and cIC patients had higher antibody levels to the hyphal secretome than non-IC patients. Seven secreted hyphal proteins were identified to be immunogenic (Bgl2, Eno1, Pgk1, Glx3, Sap5, Pra1 and Tdh3). Antibody-reactivity patterns to Bgl2, Eno1, Pgk1 and Glx3 discriminated IC patients from non-IC patients, while those to Sap5, Pra1 and Tdh3 differentiated between cIC and non-IC patients. These proteins may be useful for development of future IC diagnostic tests.
Collapse
|
19
|
Gonçales RA, Salamanca AL, Júnior LR, E Silva KS, de Vasconcelos EJ, Dos Reis TF, Castro RC, C Ruy PD, Romagnoli B, Ruiz J, Pereira M, de A Soares CM, Coelho PS. In silico identification of glycosylphosphatidylinositol-anchored proteins in Paracoccidioides spp. Future Microbiol 2021; 16:589-606. [PMID: 33998266 DOI: 10.2217/fmb-2020-0282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To predict glycosylphosphatidylinositol (GPI)-anchored proteins in the genome of Paracoccidioides brasiliensis and Paracoccidioides lutzii. Materials & methods: Five different bioinformatics tools were used for predicting GPI-anchored proteins; we considered as GPI-anchored proteins those detected by at least two in silico analysis methods. We also performed the proteomic analysis of P. brasiliensis cell wall by mass spectrometry. Results: Hundred GPI-anchored proteins were predicted in P. brasiliensis and P. lutzii genomes. A series of 57 proteins were classified in functional categories and 43 conserved proteins were reported with unknown functions. Four proteins identified by in silico analyses were also identified in the cell wall proteome. Conclusion: The data obtained in this study are important resources for future research of GPI-anchored proteins in Paracoccidioides spp. to identify targets for new diagnostic tools, drugs and immunological tests.
Collapse
Affiliation(s)
- Relber A Gonçales
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal, ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ayda Lm Salamanca
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas II (ICB II), Universidade Federal de Goiás (UFG), Goiânia, Goiás, 74690-900, Brazil
| | - Luiz Rb Júnior
- Department of Cellular & Molecular Biology and Pathogenic Bioagents, Faculty of Medicine of Ribeirão Preto (FMRP), University of São Paulo (USP), Ribeirão Preto, 14049-900, Brazil
| | - Kleber Sf E Silva
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas II (ICB II), Universidade Federal de Goiás (UFG), Goiânia, Goiás, 74690-900, Brazil
| | - Elton Jr de Vasconcelos
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Thaila F Dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, 14040-900, Brazil
| | - Ricardo C Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, 14040-900, Brazil
| | - Patrícia de C Ruy
- Department of Cellular & Molecular Biology and Pathogenic Bioagents, Faculty of Medicine of Ribeirão Preto (FMRP), University of São Paulo (USP), Ribeirão Preto, 14049-900, Brazil
| | - Bárbara Romagnoli
- Department of Cellular & Molecular Biology and Pathogenic Bioagents, Faculty of Medicine of Ribeirão Preto (FMRP), University of São Paulo (USP), Ribeirão Preto, 14049-900, Brazil
| | - Jerônimo Ruiz
- Fundação Oswaldo Cruz, Instituto Rene Rachaou (IRR), Belo Horizonte, Minas Gerais, 30190-002, Brazil
| | - Maristela Pereira
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas II (ICB II), Universidade Federal de Goiás (UFG), Goiânia, Goiás, 74690-900, Brazil
| | - Célia M de A Soares
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas II (ICB II), Universidade Federal de Goiás (UFG), Goiânia, Goiás, 74690-900, Brazil
| | - Paulo Sr Coelho
- Department of Cellular & Molecular Biology and Pathogenic Bioagents, Faculty of Medicine of Ribeirão Preto (FMRP), University of São Paulo (USP), Ribeirão Preto, 14049-900, Brazil
| |
Collapse
|
20
|
d'Enfert C, Kaune AK, Alaban LR, Chakraborty S, Cole N, Delavy M, Kosmala D, Marsaux B, Fróis-Martins R, Morelli M, Rosati D, Valentine M, Xie Z, Emritloll Y, Warn PA, Bequet F, Bougnoux ME, Bornes S, Gresnigt MS, Hube B, Jacobsen ID, Legrand M, Leibundgut-Landmann S, Manichanh C, Munro CA, Netea MG, Queiroz K, Roget K, Thomas V, Thoral C, Van den Abbeele P, Walker AW, Brown AJP. The impact of the Fungus-Host-Microbiota interplay upon Candida albicans infections: current knowledge and new perspectives. FEMS Microbiol Rev 2021; 45:fuaa060. [PMID: 33232448 PMCID: PMC8100220 DOI: 10.1093/femsre/fuaa060] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
Candida albicans is a major fungal pathogen of humans. It exists as a commensal in the oral cavity, gut or genital tract of most individuals, constrained by the local microbiota, epithelial barriers and immune defences. Their perturbation can lead to fungal outgrowth and the development of mucosal infections such as oropharyngeal or vulvovaginal candidiasis, and patients with compromised immunity are susceptible to life-threatening systemic infections. The importance of the interplay between fungus, host and microbiota in driving the transition from C. albicans commensalism to pathogenicity is widely appreciated. However, the complexity of these interactions, and the significant impact of fungal, host and microbiota variability upon disease severity and outcome, are less well understood. Therefore, we summarise the features of the fungus that promote infection, and how genetic variation between clinical isolates influences pathogenicity. We discuss antifungal immunity, how this differs between mucosae, and how individual variation influences a person's susceptibility to infection. Also, we describe factors that influence the composition of gut, oral and vaginal microbiotas, and how these affect fungal colonisation and antifungal immunity. We argue that a detailed understanding of these variables, which underlie fungal-host-microbiota interactions, will present opportunities for directed antifungal therapies that benefit vulnerable patients.
Collapse
Affiliation(s)
- Christophe d'Enfert
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Ann-Kristin Kaune
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Leovigildo-Rey Alaban
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Sayoni Chakraborty
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Neugasse 25, 07743 Jena, Germany
| | - Nathaniel Cole
- Gut Microbiology Group, Rowett Institute, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Margot Delavy
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Daria Kosmala
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Benoît Marsaux
- ProDigest BV, Technologiepark 94, B-9052 Gent, Belgium
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links, 9000 Ghent, Belgium
| | - Ricardo Fróis-Martins
- Immunology Section, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 266a, Zurich 8057, Switzerland
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| | - Moran Morelli
- Mimetas, Biopartner Building 2, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands
| | - Diletta Rosati
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Marisa Valentine
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Zixuan Xie
- Gut Microbiome Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
| | - Yoan Emritloll
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Peter A Warn
- Magic Bullet Consulting, Biddlecombe House, Ugbrook, Chudleigh Devon, TQ130AD, UK
| | - Frédéric Bequet
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
| | - Marie-Elisabeth Bougnoux
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Stephanie Bornes
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF0545, 20 Côte de Reyne, 15000 Aurillac, France
| | - Mark S Gresnigt
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Bernhard Hube
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Ilse D Jacobsen
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Mélanie Legrand
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Salomé Leibundgut-Landmann
- Immunology Section, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 266a, Zurich 8057, Switzerland
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| | - Chaysavanh Manichanh
- Gut Microbiome Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
| | - Carol A Munro
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Karla Queiroz
- Mimetas, Biopartner Building 2, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands
| | - Karine Roget
- NEXBIOME Therapeutics, 22 allée Alan Turing, 63000 Clermont-Ferrand, France
| | - Vincent Thomas
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
| | - Claudia Thoral
- NEXBIOME Therapeutics, 22 allée Alan Turing, 63000 Clermont-Ferrand, France
| | | | - Alan W Walker
- Gut Microbiology Group, Rowett Institute, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Alistair J P Brown
- MRC Centre for Medical Mycology, Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
21
|
Moreno-Martínez AE, Gómez-Molero E, Sánchez-Virosta P, Dekker HL, de Boer A, Eraso E, Bader O, de Groot PWJ. High Biofilm Formation of Non-Smooth Candida parapsilosis Correlates with Increased Incorporation of GPI-Modified Wall Adhesins. Pathogens 2021; 10:pathogens10040493. [PMID: 33921809 PMCID: PMC8073168 DOI: 10.3390/pathogens10040493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 11/16/2022] Open
Abstract
Candida parapsilosis is among the most frequent causes of candidiasis. Clinical isolates of this species show large variations in colony morphotype, ranging from round and smooth to a variety of non-smooth irregular colony shapes. A non-smooth appearance is related to increased formation of pseudohyphae, higher capacity to form biofilms on abiotic surfaces, and invading agar. Here, we present a comprehensive study of the cell wall proteome of C. parapsilosis reference strain CDC317 and seven clinical isolates under planktonic and sessile conditions. This analysis resulted in the identification of 40 wall proteins, most of them homologs of known Candida albicans cell wall proteins, such as Gas, Crh, Bgl2, Cht2, Ecm33, Sap, Sod, Plb, Pir, Pga30, Pga59, and adhesin family members. Comparative analysis of exponentially growing and stationary phase planktonic cultures of CDC317 at 30 °C and 37 °C revealed only minor variations. However, comparison of smooth isolates to non-smooth isolates with high biofilm formation capacity showed an increase in abundance and diversity of putative wall adhesins from Als, Iff/Hyr, and Hwp families in the latter. This difference depended more strongly on strain phenotype than on the growth conditions, as it was observed in planktonic as well as biofilm cells. Thus, in the set of isolates analyzed, the high biofilm formation capacity of non-smooth C. parapsilosis isolates with elongated cellular phenotypes correlates with the increased surface expression of putative wall adhesins in accordance with their proposed cellular function.
Collapse
Affiliation(s)
- Ana Esther Moreno-Martínez
- Albacete Regional Center for Biomedical Research, Castilla—La Mancha Science & Technology Park, University of Castilla-La Mancha, 02008 Albacete, Spain; (A.E.M.-M.); (E.G.-M.); (P.S.-V.); (A.d.B.)
| | - Emilia Gómez-Molero
- Albacete Regional Center for Biomedical Research, Castilla—La Mancha Science & Technology Park, University of Castilla-La Mancha, 02008 Albacete, Spain; (A.E.M.-M.); (E.G.-M.); (P.S.-V.); (A.d.B.)
- Institute for Medical Microbiology, University Medical Center Göttingen, Kreuzbergring 57, 37075 Göttingen, Germany
| | - Pablo Sánchez-Virosta
- Albacete Regional Center for Biomedical Research, Castilla—La Mancha Science & Technology Park, University of Castilla-La Mancha, 02008 Albacete, Spain; (A.E.M.-M.); (E.G.-M.); (P.S.-V.); (A.d.B.)
| | - Henk L. Dekker
- Mass Spectrometry of Biomolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
| | - Albert de Boer
- Albacete Regional Center for Biomedical Research, Castilla—La Mancha Science & Technology Park, University of Castilla-La Mancha, 02008 Albacete, Spain; (A.E.M.-M.); (E.G.-M.); (P.S.-V.); (A.d.B.)
| | - Elena Eraso
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Bilbao, Spain;
| | - Oliver Bader
- Institute for Medical Microbiology, University Medical Center Göttingen, Kreuzbergring 57, 37075 Göttingen, Germany
- Correspondence: (O.B.); (P.W.J.d.G.)
| | - Piet W. J. de Groot
- Albacete Regional Center for Biomedical Research, Castilla—La Mancha Science & Technology Park, University of Castilla-La Mancha, 02008 Albacete, Spain; (A.E.M.-M.); (E.G.-M.); (P.S.-V.); (A.d.B.)
- Correspondence: (O.B.); (P.W.J.d.G.)
| |
Collapse
|
22
|
Staniszewska M. Virulence Factors in Candida species. Curr Protein Pept Sci 2021; 21:313-323. [PMID: 31544690 DOI: 10.2174/1389203720666190722152415] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/06/2019] [Accepted: 07/14/2019] [Indexed: 02/08/2023]
Abstract
Fungal diseases are severe and have very high morbidity as well as up to 60% mortality for patients diagnosed with invasive fungal infection. In this review, in vitro and in vivo studies provided us with the insight into the role of Candida virulence factors that mediate their success as pathogens, such as: membrane and cell wall (CW) barriers, dimorphism, biofilm formation, signal transduction pathway, proteins related to stress tolerance, hydrolytic enzymes (e.g. proteases, lipases, haemolysins), and toxin production. The review characterized the virulence of clinically important C. albicans, C. parapsilosis, C. tropicalis, C. glabrata and C. krusei. Due to the white-opaque transition in the mating-type locus MTL-homozygous cells, C. albicans demonstrates an advantage over other less related species of Candida as a human commensal and pathogen. It was reviewed that Candida ergosterol biosynthesis genes play a role in cellular stress and are essential for Candida pathogenesis both in invasive and superficial infections. Hydrolases associated with CW are involved in the host-pathogen interactions. Adhesins are crucial in colonization and biofilm formation, an important virulence factor for candidiasis. Calcineurin is involved in membrane and CW stress as well as virulence. The hyphae-specific toxin, named candidalysin, invades mucosal cells facilitating fungal invasion into deeper tissues. Expression of this protein promotes resistance to neutrophil killing in candidiasis. The virulence factors provide immunostimulatory factors, activating dendric cells and promoting T cell infiltration and activation. Targeting virulence factors, can reduce the risk of resistance development in Candida infections.
Collapse
Affiliation(s)
- Monika Staniszewska
- Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| |
Collapse
|
23
|
Plaza V, Silva-Moreno E, Castillo L. Breakpoint: Cell Wall and Glycoproteins and their Crucial Role in the Phytopathogenic Fungi Infection. Curr Protein Pept Sci 2021; 21:227-244. [PMID: 31490745 DOI: 10.2174/1389203720666190906165111] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/02/2019] [Accepted: 08/17/2019] [Indexed: 01/09/2023]
Abstract
The cell wall that surrounds fungal cells is essential for their survival, provides protection against physical and chemical stresses, and plays relevant roles during infection. In general, the fungal cell wall is composed of an outer layer of glycoprotein and an inner skeletal layer of β-glucans or α- glucans and chitin. Chitin synthase genes have been shown to be important for septum formation, cell division and virulence. In the same way, chitin can act as a potent elicitor to activate defense response in several plant species; however, the fungi can convert chitin to chitosan during plant infection to evade plant defense mechanisms. Moreover, α-1,3-Glucan, a non-degradable polysaccharide in plants, represents a key feature in fungal cell walls formed in plants and plays a protective role for this fungus against plant lytic enzymes. A similar case is with β-1,3- and β-1,6-glucan which are essential for infection, structure rigidity and pathogenicity during fungal infection. Cell wall glycoproteins are also vital to fungi. They have been associated with conidial separation, the increase of chitin in conidial cell walls, germination, appressorium formation, as well as osmotic and cell wall stress and virulence; however, the specific roles of glycoproteins in filamentous fungi remain unknown. Fungi that can respond to environmental stimuli distinguish these signals and relay them through intracellular signaling pathways to change the cell wall composition. They play a crucial role in appressorium formation and penetration, and release cell wall degrading enzymes, which determine the outcome of the interaction with the host. In this review, we highlight the interaction of phypatophogen cell wall and signaling pathways with its host and their contribution to fungal pathogenesis.
Collapse
Affiliation(s)
- Verónica Plaza
- Laboratorio de Biología Molecular y Bioquímica, Departamento de Biología, Universidad de La Serena, La Serena, Chile
| | - Evelyn Silva-Moreno
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Temuco, Chile
| | - Luis Castillo
- Laboratorio de Biología Molecular y Bioquímica, Departamento de Biología, Universidad de La Serena, La Serena, Chile
| |
Collapse
|
24
|
Lenardon MD, Sood P, Dorfmueller HC, Brown AJ, Gow NA. Scalar nanostructure of the Candida albicans cell wall; a molecular, cellular and ultrastructural analysis and interpretation. Cell Surf 2020; 6:100047. [PMID: 33294751 PMCID: PMC7691183 DOI: 10.1016/j.tcsw.2020.100047] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/16/2022] Open
Abstract
Despite the importance of fungal cell walls as the principle determinant of fungal morphology and the defining element determining fungal interactions with other cells, few scalar models have been developed that reconcile chemical and microscopic attributes of its structure. The cell wall of the fungal pathogen Candida albicans is comprised of an amorphous inner skeletal layer of β(1,3)- and β(1,6)-glucan and chitin and an outer fibrillar layer thought to be dominated by highly mannosylated cell wall proteins. The architecture of these two layers can be resolved at the electron microscopy level, but the visualised structure of the wall has not yet been defined precisely in chemical terms. We have therefore examined the precise structure, location and molecular sizes of the cell wall components using transmission electron microscopy and tomography and tested predictions of the cell wall models using mutants and agents that perturb the normal cell wall structure. We demonstrate that the fibrils are comprised of a frond of N-linked outer chain mannans linked to a basal layer of GPI-proteins concentrated in the mid-wall region and that the non-elastic chitin microfibrils are cantilevered with sufficient lengths of non-fibrillar chitin and/or β-glucan to enable the chitin-glucan cage to flex, e.g. during morphogenesis and osmotic swelling. We present the first three-dimensional nano-scalar model of the C. albicans cell wall which can be used to test hypotheses relating to the structure-function relationships that underpin the pathobiology of this fungal pathogen.
Collapse
Key Words
- 2D, two dimensions
- 2°, secondary
- 3D, three dimensions
- 3°, tertiary
- 6xHis, hexahistidine tag
- AFM, atomic force microscopy
- BSA, bovine serum albumin
- CWPs, cell wall proteins
- Cell wall proteins
- ChBD, chitin binding domain
- Chitin
- EndoH, endoglycosidase H
- Fc-dectin-1, soluble chimeric form of dectin-1
- Fungal cell wall ultrastructure
- GPI, glycosylphosphatidylinositol
- HPF/FS, high pressure freezing/freeze substitution
- HuCκ, human kappa light chain
- N-mannan
- NMR, nuclear magnetic resonance
- OD600, optical density at 600 nm
- PAMPs, pathogen associated molecular patterns
- PBS, phosphate buffered saline
- PRRs, pattern recognition receptors
- SEM, scanning electron microscopy
- TEM, transmission electron microscopy
- WGA, wheat germ agglutinin
- rpm, revolutions per minute
- scAb, single chain antibody
- β-glucan
Collapse
Affiliation(s)
- Megan D. Lenardon
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Prashant Sood
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Helge C. Dorfmueller
- Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Alistair J.P. Brown
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Neil A.R. Gow
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| |
Collapse
|
25
|
Moonlighting Proteins at the Candidal Cell Surface. Microorganisms 2020; 8:microorganisms8071046. [PMID: 32674422 PMCID: PMC7409194 DOI: 10.3390/microorganisms8071046] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/11/2020] [Accepted: 07/12/2020] [Indexed: 12/31/2022] Open
Abstract
The cell wall in Candida albicans is not only a tight protective envelope but also a point of contact with the human host that provides a dynamic response to the constantly changing environment in infection niches. Particularly important roles are attributed to proteins exposed at the fungal cell surface. These include proteins that are stably and covalently bound to the cell wall or cell membrane and those that are more loosely attached. Interestingly in this regard, numerous loosely attached proteins belong to the class of “moonlighting proteins” that are originally intracellular and that perform essentially different functions in addition to their primary housekeeping roles. These proteins also demonstrate unpredicted interactions with non-canonical partners at an a priori unexpected extracellular location, achieved via non-classical secretion routes. Acting both individually and collectively, the moonlighting proteins contribute to candidal virulence and pathogenicity through their involvement in mechanisms critical for successful host colonization and infection, such as the adhesion to host cells, interactions with plasma homeostatic proteolytic cascades, responses to stress conditions and molecular mimicry. The documented knowledge of the roles of these proteins in C. albicans pathogenicity has utility for assisting the design of new therapeutic, diagnostic and preventive strategies against candidiasis.
Collapse
|
26
|
Lin B, Qing X, Liao J, Zhuo K. Role of Protein Glycosylation in Host-Pathogen Interaction. Cells 2020; 9:E1022. [PMID: 32326128 PMCID: PMC7226260 DOI: 10.3390/cells9041022] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/11/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023] Open
Abstract
Host-pathogen interactions are fundamental to our understanding of infectious diseases. Protein glycosylation is one kind of common post-translational modification, forming glycoproteins and modulating numerous important biological processes. It also occurs in host-pathogen interaction, affecting host resistance or pathogen virulence often because glycans regulate protein conformation, activity, and stability, etc. This review summarizes various roles of different glycoproteins during the interaction, which include: host glycoproteins prevent pathogens as barriers; pathogen glycoproteins promote pathogens to attack host proteins as weapons; pathogens glycosylate proteins of the host to enhance virulence; and hosts sense pathogen glycoproteins to induce resistance. In addition, this review also intends to summarize the roles of lectin (a class of protein entangled with glycoprotein) in host-pathogen interactions, including bacterial adhesins, viral lectins or host lectins. Although these studies show the importance of protein glycosylation in host-pathogen interaction, much remains to be discovered about the interaction mechanism.
Collapse
Affiliation(s)
- Borong Lin
- Laboratory of Plant Nematology, South China Agricultural University, Guangzhou 510642, China; (B.L.); (J.L.)
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Xue Qing
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China;
| | - Jinling Liao
- Laboratory of Plant Nematology, South China Agricultural University, Guangzhou 510642, China; (B.L.); (J.L.)
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
- Guangdong Eco-Engineering Polytechnic, Guangzhou 510520, China
| | - Kan Zhuo
- Laboratory of Plant Nematology, South China Agricultural University, Guangzhou 510642, China; (B.L.); (J.L.)
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
27
|
Schatzman SS, Peterson RL, Teka M, He B, Cabelli DE, Cormack BP, Culotta VC. Copper-only superoxide dismutase enzymes and iron starvation stress in Candida fungal pathogens. J Biol Chem 2019; 295:570-583. [PMID: 31806705 DOI: 10.1074/jbc.ra119.011084] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/27/2019] [Indexed: 12/11/2022] Open
Abstract
Copper (Cu)-only superoxide dismutases (SOD) represent a newly characterized class of extracellular SODs important for virulence of several fungal pathogens. Previous studies of the Cu-only enzyme SOD5 from the opportunistic fungal pathogen Candida albicans have revealed that the active-site structure and Cu binding of SOD5 strongly deviate from those of Cu/Zn-SODs in its animal hosts, making Cu-only SODs a possible target for future antifungal drug design. C. albicans also expresses a Cu-only SOD4 that is highly similar in sequence to SOD5, but is poorly characterized. Here, we compared the biochemical, biophysical, and cell biological properties of C. albicans SOD4 and SOD5. Analyzing the recombinant proteins, we found that, similar to SOD5, Cu-only SOD4 can react with superoxide at rates approaching diffusion limits. Both SODs were monomeric and they exhibited similar binding affinities for their Cu cofactor. In C. albicans cultures, SOD4 and SOD5 were predominantly cell wall proteins. Despite these similarities, the SOD4 and SOD5 genes strongly differed in transcriptional regulation. SOD5 was predominantly induced during hyphal morphogenesis, together with a fungal burst in reactive oxygen species. Conversely, SOD4 expression was specifically up-regulated by iron (Fe) starvation and controlled by the Fe-responsive transcription factor SEF1. Interestingly, Candida tropicalis and the emerging fungal pathogen Candida auris contain a single SOD5-like SOD rather than a pair, and in both fungi, this SOD was induced by Fe starvation. This unexpected link between Fe homeostasis and extracellular Cu-SODs may help many fungi adapt to Fe-limited conditions of their hosts.
Collapse
Affiliation(s)
- Sabrina S Schatzman
- Department of Biochemistry and Molecular Biology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Ryan L Peterson
- Department of Biochemistry and Molecular Biology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Mieraf Teka
- Department of Biochemistry and Molecular Biology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Bixi He
- Department of Biochemistry and Molecular Biology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Diane E Cabelli
- Chemistry Department, Brookhaven National Laboratories, Upton, New York 11973
| | - Brendan P Cormack
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Valeria C Culotta
- Department of Biochemistry and Molecular Biology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205.
| |
Collapse
|
28
|
Oliveira WF, Cabrera MP, Santos NRM, Napoleão TH, Paiva PMG, Neves RP, Silva MV, Santos BS, Coelho LCBB, Cabral Filho PE, Fontes A, Correia MTS. Evaluating glucose and mannose profiles in Candida species using quantum dots conjugated with Cramoll lectin as fluorescent nanoprobes. Microbiol Res 2019; 230:126330. [PMID: 31541842 DOI: 10.1016/j.micres.2019.126330] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/01/2019] [Accepted: 09/06/2019] [Indexed: 02/06/2023]
Abstract
Glycoconjugates found on cell walls of Candida species are fundamental for their pathogenicity. Laborious techniques have been employed to investigate the sugar composition of these microorganisms. Herein, we prepared a nanotool, based on the fluorescence of quantum dots (QDs) combined with the specificity of Cramoll lectin, to evaluate glucose/mannose profiles on three Candida species. The QDs-Cramoll conjugates presented specificity and bright fluorescence emission. The lectin preserved its biological activity after the conjugation process mediated by adsorption interactions. The labeling of Candida species was analyzed by fluorescence microscopy and quantified by flow cytometry. Morphological analyses of yeasts labeled with QDs-Cramoll conjugates indicated that C. glabrata (2.7 μm) was smaller when compared to C. albicans (4.0 μm) and C. parapsilosis sensu stricto (3.8 μm). Also, C. parapsilosis population was heterogeneous, presenting rod-shaped blastoconidia. More than 90% of cells of the three species were labeled by conjugates. Inhibition and saturation assays indicated that C. parapsilosis had a higher content of exposed glucose/mannose than the other two species. Therefore, QDs-Cramoll conjugates demonstrated to be effective fluorescent nanoprobes for evaluation of glucose/mannose constitution on the cell walls of fungal species frequently involved in candidiasis.
Collapse
Affiliation(s)
- Weslley F Oliveira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil; Departamento de Biofísica e Radiobiologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Mariana P Cabrera
- Departamento de Biofísica e Radiobiologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Natália R M Santos
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil; Departamento de Biofísica e Radiobiologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Thiago H Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Patrícia M G Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Rejane P Neves
- Departamento de Micologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Márcia V Silva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Beate S Santos
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Luana C B B Coelho
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Paulo E Cabral Filho
- Departamento de Biofísica e Radiobiologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Adriana Fontes
- Departamento de Biofísica e Radiobiologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| | - Maria T S Correia
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
29
|
Tasaki S, Cho T, Nagao JI, Ikezaki S, Narita Y, Arita-Morioka KI, Yasumatsu K, Toyoda K, Kojima H, Tanaka Y. Th17 cells differentiated with mycelial membranes of Candida albicans prevent oral candidiasis. FEMS Yeast Res 2019; 18:4862473. [PMID: 29462298 PMCID: PMC6019029 DOI: 10.1093/femsyr/foy018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 02/14/2018] [Indexed: 12/16/2022] Open
Abstract
Candida albicans is a human commensal that causes opportunistic infections. Th17 cells provide resistance against mucosal infection with C. albicans; however, the T cell antigens remain little known. Our final goal is to find effective T cell antigens of C. albicans that are responsible for immunotherapy against candidiasis. Here, we prepared fractions including cytosol, membrane and cell wall from yeast and mycelial cells. Proteins derived from a membrane fraction of mycelial cells effectively induced differentiation of CD4+ T cells into IL-17A-producing Th17 cells. To confirm the immunological response in vivo of proteins from mycelial membrane, we performed adoptive transfer experiments using ex vivo stimulated CD4+ T cells from IL-17A-GFP reporter mice. Mycelial membrane-differentiated CD4+ Th17 cells adoptively transferred intravenously prevented oral candidiasis by oral infection of C. albicans, compared with control anti-CD3-stimulated CD4+ T cells. This was confirmed by the clinical score and the number of neutrophils on the infected tissues. These data suggest that effective T cell antigens against candidiasis could be present in the membrane protein fraction of mycelial cells. The design of novel vaccination strategies against candidiasis will be our next step.
Collapse
Affiliation(s)
- Sonoko Tasaki
- Section of Infection Biology, Department of Functional Bioscience, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan.,Section of Dentistry for the Disabled, Department of Oral Growth and Development, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Tamaki Cho
- Section of Infection Biology, Department of Functional Bioscience, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Jun-Ichi Nagao
- Section of Infection Biology, Department of Functional Bioscience, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Shojiro Ikezaki
- Section of Infection Biology, Department of Functional Bioscience, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Yuka Narita
- Section of Infection Biology, Department of Functional Bioscience, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Ken-Ichi Arita-Morioka
- Advanced Science Research Center, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Kanae Yasumatsu
- Section of Infection Biology, Department of Functional Bioscience, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Keita Toyoda
- Section of Infection Biology, Department of Functional Bioscience, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Hiroshi Kojima
- Section of Dentistry for the Disabled, Department of Oral Growth and Development, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Yoshihiko Tanaka
- Section of Infection Biology, Department of Functional Bioscience, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan.,Advanced Science Research Center, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| |
Collapse
|
30
|
Du T, Ouyang H, Voglmeir J, Wilson IBH, Jin C. Aspergillus fumigatus Mnn9 is responsible for mannan synthesis and required for covalent linkage of mannoprotein to the cell wall. Fungal Genet Biol 2019; 128:20-28. [PMID: 30904668 DOI: 10.1016/j.fgb.2019.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/17/2019] [Accepted: 03/19/2019] [Indexed: 12/25/2022]
Abstract
Owing to the essential role in protection of the Aspergillus fumigatus cell against human defense reactions, its cell wall has long been taken as a promising antifungal target. The cell wall of A. fumigatus composed of chitin, glucan and galactomannan and mannoproteins. Although galactomannan has been used as a diagnostic target for a long time, its biosynthesis remains unknown in A. fumigatus. In this study, a putative α1,6-mannosyltransferase gene mnn9 was identified in A. fumigatus. Deletion of the mnn9 gene resulted in an increased sensitivity to calcofluor white, Congo red, or hygromycin B as well as in reduced cell wall components and abnormal polarity. Although there was no major effect on N-glycan synthesis, covalently-linked cell wall mannoprotein Mp1 was significantly reduced in the mutant. Based on our results, we propose that Mnn9p is a mannosyltransferase responsible for the formation of the α-mannan in cell wall mannoproteins, potentially via elongation of O-linked mannose chains.
Collapse
Affiliation(s)
- Ting Du
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, China
| | - Haomiao Ouyang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Josef Voglmeir
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna A-1190, Austria
| | - Iain B H Wilson
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna A-1190, Austria
| | - Cheng Jin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Guangxi Academy of Sciences, Nanning 530007, Guangxi, China.
| |
Collapse
|
31
|
Yoo SJ, Moon HY, Kang HA. Screening and Selection of Production Strains: Secretory Protein Expression and Analysis in Hansenula polymorpha. Methods Mol Biol 2019; 1923:133-151. [PMID: 30737738 DOI: 10.1007/978-1-4939-9024-5_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The thermotolerant methylotrophic yeast Hansenula polymorpha has been used as a host for the high-level production of recombinant proteins from industrial enzymes to therapeutic proteins. Despite favorable characteristics of the H. polymorpha-based platform for application to heterologous gene expression, several problems and limitations, such as over-glycosylation and proteolytic degradation, can be encountered in the development of production strains for secretory proteins. Here, H. polymorpha genetic tools and host strains, developed for authentic processing and modification of secretory recombinant proteins, are introduced with the analytical protocols.
Collapse
Affiliation(s)
- Su Jin Yoo
- Department of Life Science, College of Natural Science, Chung-Ang University, Seoul, Republic of Korea
| | - Hye Yun Moon
- Department of Life Science, College of Natural Science, Chung-Ang University, Seoul, Republic of Korea
| | - Hyun Ah Kang
- Department of Life Science, College of Natural Science, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
32
|
Young ID, Montilla A, Olano A, Wittmann A, Kawasaki N, Villamiel M. Effect of purification of galactooligosaccharides derived from lactulose with Saccharomyces cerevisiae on their capacity to bind immune cell receptor Dectin-2. Food Res Int 2019; 115:10-15. [DOI: 10.1016/j.foodres.2018.07.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/19/2018] [Accepted: 07/28/2018] [Indexed: 10/28/2022]
|
33
|
Miura N, Ueda M. Evaluation of Unconventional Protein Secretion by Saccharomyces cerevisiae and other Fungi. Cells 2018; 7:cells7090128. [PMID: 30200367 PMCID: PMC6162777 DOI: 10.3390/cells7090128] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/27/2018] [Accepted: 08/27/2018] [Indexed: 12/11/2022] Open
Abstract
Development of proteome analysis of extracellular proteins has revealed that a wide variety of proteins, including fungal allergens are present outside the cell. These secreted allergens often do not contain known secretion signal sequences. Recent research progress shows that some fungal allergens are secreted by unconventional secretion pathways, including autophagy- and extracellular-vesicle-dependent pathways. However, secretion pathways remain unknown for the majority of extracellular proteins. This review summarizes recent data on unconventional protein secretion in Saccharomyces cerevisiae and other fungi. Particularly, methods for evaluating unconventional protein secretion are proposed for fungal species, including S. cerevisiae, a popular model organism for investigating protein secretion pathways.
Collapse
Affiliation(s)
- Natsuko Miura
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Japan.
| | - Mitsuyoshi Ueda
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
34
|
Boppidi KR, Ribeiro LFC, Iambamrung S, Nelson SM, Wang Y, Momany M, Richardson EA, Lincoln S, Srivastava R, Harris SD, Marten MR. Altered secretion patterns and cell wall organization caused by loss of PodB function in the filamentous fungus Aspergillus nidulans. Sci Rep 2018; 8:11433. [PMID: 30061727 PMCID: PMC6065416 DOI: 10.1038/s41598-018-29615-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 07/12/2018] [Indexed: 12/27/2022] Open
Abstract
Filamentous fungi are widely used in the production of a variety of industrially relevant enzymes and proteins as they have the unique ability to secrete tremendous amounts of proteins. However, the secretory pathways in filamentous fungi are not completely understood. Here, we investigated the role of a mutation in the POlarity Defective (podB) gene on growth, protein secretion, and cell wall organization in Aspergillus nidulans using a temperature sensitive (Ts) mutant. At restrictive temperature, the mutation resulted in lack of biomass accumulation, but led to a significant increase in specific protein productivity. Proteomic analysis of the secretome showed that the relative abundance of 584 (out of 747 identified) proteins was altered due to the mutation. Of these, 517 were secreted at higher levels. Other phenotypic differences observed in the mutant include up-regulation of unfolded protein response (UPR), deformation of Golgi apparatus and uneven cell wall thickness. Furthermore, proteomic analysis of cell wall components in the mutant revealed the presence of intracellular proteins in higher abundance accompanied by lower levels of most cell wall proteins. Taken together, results from this study suggest the importance of PodB as a target when engineering fungal strains for enhanced secretion of valuable biomolecules.
Collapse
Affiliation(s)
- Karthik R Boppidi
- University of Maryland - Baltimore County, Department of Chemical Biochemical and Environmental Engineering, Baltimore, MD, USA
| | - Liliane Fraga Costa Ribeiro
- University of Maryland - Baltimore County, Department of Chemical Biochemical and Environmental Engineering, Baltimore, MD, USA
| | - Sirasa Iambamrung
- University of Maryland - Baltimore County, Department of Chemical Biochemical and Environmental Engineering, Baltimore, MD, USA
| | - Sidney M Nelson
- University of Maryland - Baltimore County, Department of Chemical Biochemical and Environmental Engineering, Baltimore, MD, USA
| | - Yan Wang
- University of Maryland - College Park, Department of Cell Biology and Molecular Genetics, College Park, MD, USA
| | - Michelle Momany
- University of Georgia, Fungal Biology Group and Department of Plant Biology, Athens, GA, USA
| | | | - Stephen Lincoln
- University of Connecticut, Department of Chemical and Biomolecular Engineering, Storrs, CT, USA
| | - Ranjan Srivastava
- University of Connecticut, Department of Chemical and Biomolecular Engineering, Storrs, CT, USA
| | - Steven D Harris
- University of Manitoba, Department of Biological Sciences, Winnipeg, MB, Canada
| | - Mark R Marten
- University of Maryland - Baltimore County, Department of Chemical Biochemical and Environmental Engineering, Baltimore, MD, USA.
| |
Collapse
|
35
|
Sentandreu R, Caminero A, Rentería I, León-Ramirez C, González-de-la-Vara L, Valentin-Gomez E, Ruiz-Herrera J. Analysis of the 3H8 antigen of Candida albicans reveals new aspects of the organization of fungal cell wall proteins. FEMS Yeast Res 2018; 18:4966986. [PMID: 29648589 DOI: 10.1093/femsyr/foy035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/09/2018] [Indexed: 11/13/2022] Open
Abstract
The walls of both, yeast and mycelial cells of Candida albicans possess a species-specific antigen that is recognized by a monoclonal antibody (MAb 3H8). This antigen can be extracted in the form of a very high Mr complex, close or over 106 Da, by treatment, with β-1,3-glucanase, β mercaptoethanol or dithothreitol, or mild alkali, but not by saturated hydrogen fluoride (HF) in pyridine, suggesting that the complex is bound to wall β-1,3 glucans, and to proteins by disulfide bonds, but not to β-1,6 glucans. Through its sensitivity to trypsin and different deglycosylation procedures, it was concluded that the epitope is associated to a glycoprotein containing N-glycosidic, but not O-glycosidic mannan moieties. By means of electrophoresis in polycrylamide gradient gels, followed by mass spectrometric analysis, the epitope was pinpointed to a very high MW complex containing Agglutinin-Like Sequence (ALS) family proteins, and other cytoplasmic, membrane and secreted proteins. The components of this complex are bound by unknown covalent bonds. The material extracted with β mercaptoethanol or dilute alkali appeared under the electron microscope as large aggregates in the form of spheroidal and mostly web-like structures of large sizes. These, and additional data, suggest that this protein complex may constitute an important part of the basic glycoprotein structure of C. albicans. The possibility that similar complexes exist in the wall of other fungi is an attractive, although yet untested possibility.
Collapse
Affiliation(s)
- Rafael Sentandreu
- Departament de Microbiologia, Facultat de Farmacia, Universitat de València, Avgda. V. Andrés Estellés, Burjassot, València E-46100, Spain
| | - Antonio Caminero
- Departament de Microbiologia, Facultat de Farmacia, Universitat de València, Avgda. V. Andrés Estellés, Burjassot, València E-46100, Spain
| | - Itzel Rentería
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados Unidad Irapuato, Km. 9.6 Lib. Nte. Carretera Irapuato-León, Irapuato 36500, México
| | - Claudia León-Ramirez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados Unidad Irapuato, Km. 9.6 Lib. Nte. Carretera Irapuato-León, Irapuato 36500, México
| | - Luis González-de-la-Vara
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados Unidad Irapuato, Km. 9.6 Lib. Nte. Carretera Irapuato-León, Irapuato 36500, México
| | - Eulogio Valentin-Gomez
- Departament de Microbiologia, Facultat de Farmacia, Universitat de València, Avgda. V. Andrés Estellés, Burjassot, València E-46100, Spain
| | - José Ruiz-Herrera
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados Unidad Irapuato, Km. 9.6 Lib. Nte. Carretera Irapuato-León, Irapuato 36500, México
| |
Collapse
|
36
|
Proteomic analysis of a Candida albicans pir32 null strain reveals proteins involved in adhesion, filamentation and virulence. PLoS One 2018; 13:e0194403. [PMID: 29554112 PMCID: PMC5858828 DOI: 10.1371/journal.pone.0194403] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/04/2018] [Indexed: 11/29/2022] Open
Abstract
We have previously characterized Pir32, a Candia albicans cell wall protein that we found to be involved in filamentation, virulence, chitin deposition, and resistance to oxidative stress. Other than defining the cell shape, the cell wall is critical for the interaction with the surrounding environment and the point of contact and interaction with the host surface. In this study, we applied tandem mass spectrometry combined with bioinformatics to investigate cell wall proteome changes in a pir32 null strain. A total of 16 and 25 proteins were identified exclusively in the null mutant strains grown under non-filamentous and filamentous conditions. These proteins included members of the PGA family with various functions, lipase and the protease involved in virulence, superoxide dismutases required for resisting oxidative stress, alongside proteins required for cell wall remodeling and synthesis such as Ssr1, Xog1, Dfg5 and Dcw1. In addition proteins needed for filamentation like Cdc42, Ssu81 and Ucf1, and other virulence proteins such as Als3, Rbt5, and Csa2 were also detected. The detection of these proteins in the mutant and their lack of detection in the wild type can explain the differential phenotypes previously observed.
Collapse
|
37
|
Yang D, Pan L, Chen Z, Du H, Luo B, Luo J, Pan G. The roles of microsporidia spore wall proteins in the spore wall formation and polar tube anchorage to spore wall during development and infection processes. Exp Parasitol 2018. [PMID: 29522765 DOI: 10.1016/j.exppara.2018.03.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Microsporidia are highly specialized obligate intracellular, spore forming divergent fungi with a wide variety host range that includes most vertebrates and invertebrates. The resistant spores are surrounded by a rigid cell wall which consists of three layers: the electron-lucent chitin and protein inner endospore, the outer-electron-dense and mainly proteinaceous exospore and plasma membrane. Interestingly, microsporidia owns a special invasion organelle, called polar tube, coiled within the interior of the spore wall and attached to anchoring disk at the anterior end of spore. Spore wall and polar tube are the major apparatuses for mature spores adhering and infecting to the host cells. In this review, we summarize the research advances in spore wall proteins (SWPs) related to spore adherence and infection, and SWPs and deproteinated chitin spore coats (DCSCs) interaction associated with SWPs deposit processes and spore wall assembly. Furthermore, we highlight the SWPs-polar tube proteins (PTPs) interaction correlated to polar tube orderly orientation, arrangement and anchorage to anchoring disk. Based on results obtained, it is helpful to improve understanding of the spore wall assembly and polar tube orderly arrangement mechanisms and molecular pathogenesis of microsporidia infection. Also, such information will provide a basis for developing effective control strategies against microporidia.
Collapse
Affiliation(s)
- Donglin Yang
- International Academy of Targeted Therapeutics and Innovation, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing University of Arts and Sciences, Chongqing, China.
| | - Lixia Pan
- Chongqing Water Resources and Electric Engineering College, Chongqing, China
| | - Zhongzhu Chen
- International Academy of Targeted Therapeutics and Innovation, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing University of Arts and Sciences, Chongqing, China
| | - Huihui Du
- Chongqing Three Gorges University, Chongqing, China
| | - Bo Luo
- Zunyi Medical University, Zunyi, Guizhou province, China
| | - Jie Luo
- College of Forestry and Life Sciences, Chongqing University of Arts and Sciences, Chongqing, China
| | - Guoqing Pan
- The State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| |
Collapse
|
38
|
Granger BL. Accessibility and contribution to glucan masking of natural and genetically tagged versions of yeast wall protein 1 of Candida albicans. PLoS One 2018; 13:e0191194. [PMID: 29329339 PMCID: PMC5766240 DOI: 10.1371/journal.pone.0191194] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/30/2017] [Indexed: 02/06/2023] Open
Abstract
Yeast wall protein 1 (Ywp1) is an abundant glycoprotein of the cell wall of the yeast form of Candida albicans, the most prevalent fungal pathogen of humans. Antibodies that bind to the polypeptide backbone of isolated Ywp1 show little binding to intact yeast cells, presumably because the Ywp1 epitopes are masked by the polysaccharides of the mannoproteins that form the outer layer of the cell wall. Rare cells do exhibit much greater anti-Ywp1 binding, however, and one of these was isolated and characterized. No differences were seen in its Ywp1, but it exhibited greater adhesiveness, sensitivity to wall perturbing agents, and exposure of its underlying β-1,3-glucan layer to external antibodies. The molecular basis for this greater epitope accessibility has not been determined, but has facilitated exploration of how these properties change as a function of cell growth and morphology. In addition, previously engineered strains with reduced quantities of Ywp1 in their cell walls were also found to have greater β-1,3-glucan exposure, indicating that Ywp1 itself contributes to the masking of wall epitopes, which may be important for understanding the anti-adhesive effect of Ywp1. Ectopic production of Ywp1 by hyphae, which reduces the adhesivity of these filamentous forms of C. albicans, was similarly found to reduce exposure of the β-1,3-glucan in their walls. To monitor Ywp1 in the cell wall irrespective of its accessibility, green fluorescent protein (Gfp) was genetically inserted into wall-anchored Ywp1 using a bifunctional cassette that also allowed production from a single transfection of a soluble, anchor-free version. The wall-anchored Ywp1-Gfp-Ywp1 accumulated in the wall of the yeast forms but not hyphae, and appeared to have properties similar to native Ywp1, including its adhesion-inhibiting effect. Some pseudohyphal walls also detectably accumulated this probe. Strains of C. albicans with tandem hemagglutinin (HA) epitopes inserted into wall-anchored Ywp1 were previously created by others, and were further explored here. As above, rare cells with much greater accessibility of the HA epitopes were isolated, and also found to exhibit greater exposure of Ywp1 and β-1,3-glucan. The placement of the HA cassette inhibited the normal N-glycosylation and propeptide cleavage of Ywp1, but the wall-anchored Ywp1-HA-Ywp1 still accumulated in the cell wall of yeast forms. Bifunctional transformation cassettes were used to additionally tag these molecules with Gfp, generating soluble Ywp1-HA-Gfp and wall-anchored Ywp1-HA-Gfp-Ywp1 molecules. The former revealed unexpected electrophoretic properties caused by the HA insertion, while the latter further highlighted differences between the presence of a tagged Ywp1 molecule (as revealed by Gfp fluorescence) and its accessibility in the cell wall to externally applied antibodies specific for HA, Gfp and Ywp1, with accessibility being greatest in the rapidly expanding walls of budding daughter cells. These strains and results increase our understanding of cell wall properties and how C. albicans masks itself from recognition by the human immune system.
Collapse
Affiliation(s)
- Bruce L. Granger
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, United States of America
- * E-mail:
| |
Collapse
|
39
|
Gil-Bona A, Amador-García A, Gil C, Monteoliva L. The external face of Candida albicans: A proteomic view of the cell surface and the extracellular environment. J Proteomics 2017; 180:70-79. [PMID: 29223801 DOI: 10.1016/j.jprot.2017.12.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 11/06/2017] [Accepted: 12/04/2017] [Indexed: 01/06/2023]
Abstract
The cell surface and secreted proteins are the initial points of contact between Candida albicans and the host. Improvements in protein extraction approaches and mass spectrometers have allowed researchers to obtain a comprehensive knowledge of these external subproteomes. In this paper, we review the published proteomic studies that have examined C. albicans extracellular proteins, including the cell surface proteins or surfome and the secreted proteins or secretome. The use of different approaches to isolate cell wall and cell surface proteins, such as fractionation approaches or cell shaving, have resulted in different outcomes. Proteins with N-terminal signal peptide, known as classically secreted proteins, and those that lack the signal peptide, known as unconventionally secreted proteins, have been consistently identified. Existing studies on C. albicans extracellular vesicles reveal that they are relevant as an unconventional pathway of protein secretion and can help explain the presence of proteins without a signal peptide, including some moonlighting proteins, in the cell wall and the extracellular environment. According to the global view presented in this review, cell wall proteins, virulence factors such as adhesins or hydrolytic enzymes, metabolic enzymes and stress related-proteins are important groups of proteins in C. albicans surfome and secretome. BIOLOGICAL SIGNIFICANCE Candida albicans extracellular proteins are involved in biofilm formation, cell nutrient acquisition and cell wall integrity maintenance. Furthermore, these proteins include virulence factors and immunogenic proteins. This review is of outstanding interest, not only because it extends knowledge of the C. albicans surface and extracellular proteins that could be related with pathogenesis, but also because it presents insights that may facilitate the future development of new antifungal drugs and vaccines and contributes to efforts to identify new biomarkers that can be employed to diagnose candidiasis. Here, we list more than 570 C. albicans proteins that have been identified in extracellular locations to deliver the most extensive catalogue of this type of proteins to date. Moreover, we describe 16 proteins detected at all locations analysed in the works revised. These proteins include the glycophosphatidylinositol (GPI)-anchored proteins Ecm33, Pga4 and Phr2 and unconventional secretory proteins such as Eft2, Eno1, Hsp70, Pdc11, Pgk1 and Tdh3. Furthermore, 13 of these 16 proteins are immunogenic and could represent a set of interesting candidates for biomarker discovery.
Collapse
Affiliation(s)
- Ana Gil-Bona
- Departamento de Microbiologia II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramon y Cajal s/n, 28040 Madrid, Spain
| | - Ahinara Amador-García
- Departamento de Microbiologia II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramon y Cajal s/n, 28040 Madrid, Spain; Instituto Ramon y Cajal de Investigacion Sanitaria (IRYCIS), Ctra. De Colmenar Viejo, 28034 Madrid, Spain
| | - Concha Gil
- Departamento de Microbiologia II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramon y Cajal s/n, 28040 Madrid, Spain; Instituto Ramon y Cajal de Investigacion Sanitaria (IRYCIS), Ctra. De Colmenar Viejo, 28034 Madrid, Spain.
| | - Lucia Monteoliva
- Departamento de Microbiologia II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramon y Cajal s/n, 28040 Madrid, Spain; Instituto Ramon y Cajal de Investigacion Sanitaria (IRYCIS), Ctra. De Colmenar Viejo, 28034 Madrid, Spain.
| |
Collapse
|
40
|
The PHR Family: The Role of Extracellular Transglycosylases in Shaping Candida albicans Cells. J Fungi (Basel) 2017; 3:jof3040059. [PMID: 29371575 PMCID: PMC5753161 DOI: 10.3390/jof3040059] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 10/19/2017] [Accepted: 10/24/2017] [Indexed: 01/25/2023] Open
Abstract
Candida albicans is an opportunistic microorganism that can become a pathogen causing mild superficial mycosis or more severe invasive infections that can be life-threatening for debilitated patients. In the etiology of invasive infections, key factors are the adaptability of C. albicans to the different niches of the human body and the transition from a yeast form to hypha. Hyphal morphology confers high adhesiveness to the host cells, as well as the ability to penetrate into organs. The cell wall plays a crucial role in the morphological changes C. albicans undergoes in response to specific environmental cues. Among the different categories of enzymes involved in the formation of the fungal cell wall, the GH72 family of transglycosylases plays an important assembly role. These enzymes cut and religate β-(1,3)-glucan, the major determinant of cell shape. In C. albicans, the PHR family encodes GH72 enzymes, some of which work in specific environmental conditions. In this review, we will summarize the work from the initial discovery of PHR genes to the study of the pH-dependent expression of PHR1 and PHR2, from the characterization of the gene products to the recent findings concerning the stress response generated by the lack of GH72 activity in C. albicans hyphae.
Collapse
|
41
|
Araújo DS, de Sousa Lima P, Baeza LC, Parente AFA, Melo Bailão A, Borges CL, de Almeida Soares CM. Employing proteomic analysis to compare Paracoccidioides lutzii yeast and mycelium cell wall proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1304-1314. [PMID: 28844734 DOI: 10.1016/j.bbapap.2017.08.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 08/17/2017] [Accepted: 08/21/2017] [Indexed: 12/21/2022]
Abstract
Paracoccidioidomycosis is an important systemic mycosis caused by thermodimorphic fungi of the Paracoccidioides genus. During the infective process, the cell wall acts at the interface between the fungus and the host. In this way, the cell wall has a key role in growth, environment sensing and interaction, as well as morphogenesis of the fungus. Since the cell wall is absent in mammals, it may present molecules that are described as target sites for new antifungal drugs. Despite its importance, up to now few studies have been conducted employing proteomics in for the identification of cell wall proteins in Paracoccidioides spp. Here, a detailed proteomic approach, including cell wall-fractionation coupled to NanoUPLC-MSE, was used to study and compare the cell wall fractions from Paracoccidioides lutzii mycelia and yeast cells. The analyzed samples consisted of cell wall proteins extracted by hot SDS followed by extraction by mild alkali. In summary, 512 proteins constituting different cell wall fractions were identified, including 7 predicted GPI-dependent cell wall proteins that are potentially involved in cell wall metabolism. Adhesins previously described in Paracoccidioides spp. such as enolase, glyceraldehyde-3-phosphate dehydrogenase were identified. Comparing the proteins in mycelium and yeast cells, we detected some that are common to both fungal phases, such as Ecm33, and some specific proteins, as glucanase Crf1. All of those proteins were described in the metabolism of cell wall. Our study provides an important elucidation of cell wall composition of fractions in Paracoccidioides, opening a way to understand the fungus cell wall architecture.
Collapse
Affiliation(s)
- Danielle Silva Araújo
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970 Goiânia, Goiás, Brazil
| | - Patrícia de Sousa Lima
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970 Goiânia, Goiás, Brazil; Laboratório Interdisciplinar de Biologia, Universidade Estadual de Goiás, Itapuranga, Goiás, Brazil
| | - Lilian Cristiane Baeza
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970 Goiânia, Goiás, Brazil
| | - Ana Flávia Alves Parente
- Laboratório de Bioquímica e Química de Proteínas, Instituto de Biologia, Campus Universitário Darci Ribeiro, Brasília, DF, Brazil
| | - Alexandre Melo Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970 Goiânia, Goiás, Brazil
| | - Clayton Luiz Borges
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970 Goiânia, Goiás, Brazil
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICB II, Campus II, Universidade Federal de Goiás, 74001-970 Goiânia, Goiás, Brazil.
| |
Collapse
|
42
|
Abstract
The molecular composition of the cell wall is critical for the biology and ecology of each fungal species. Fungal walls are composed of matrix components that are embedded and linked to scaffolds of fibrous load-bearing polysaccharides. Most of the major cell wall components of fungal pathogens are not represented in humans, other mammals, or plants, and therefore the immune systems of animals and plants have evolved to recognize many of the conserved elements of fungal walls. For similar reasons the enzymes that assemble fungal cell wall components are excellent targets for antifungal chemotherapies and fungicides. However, for fungal pathogens, the cell wall is often disguised since key signature molecules for immune recognition are sometimes masked by immunologically inert molecules. Cell wall damage leads to the activation of sophisticated fail-safe mechanisms that shore up and repair walls to avoid catastrophic breaching of the integrity of the surface. The frontiers of research on fungal cell walls are moving from a descriptive phase defining the underlying genes and component parts of fungal walls to more dynamic analyses of how the various components are assembled, cross-linked, and modified in response to environmental signals. This review therefore discusses recent advances in research investigating the composition, synthesis, and regulation of cell walls and how the cell wall is targeted by immune recognition systems and the design of antifungal diagnostics and therapeutics.
Collapse
Affiliation(s)
- Neil A R Gow
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB252ZD, United Kingdom
| | | | - Carol A Munro
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB252ZD, United Kingdom
| |
Collapse
|
43
|
Gow NAR, Latge JP, Munro CA. The Fungal Cell Wall: Structure, Biosynthesis, and Function. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0035-2016. [PMID: 28513415 PMCID: PMC11687499 DOI: 10.1128/microbiolspec.funk-0035-2016] [Citation(s) in RCA: 692] [Impact Index Per Article: 86.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Indexed: 02/06/2023] Open
Abstract
The molecular composition of the cell wall is critical for the biology and ecology of each fungal species. Fungal walls are composed of matrix components that are embedded and linked to scaffolds of fibrous load-bearing polysaccharides. Most of the major cell wall components of fungal pathogens are not represented in humans, other mammals, or plants, and therefore the immune systems of animals and plants have evolved to recognize many of the conserved elements of fungal walls. For similar reasons the enzymes that assemble fungal cell wall components are excellent targets for antifungal chemotherapies and fungicides. However, for fungal pathogens, the cell wall is often disguised since key signature molecules for immune recognition are sometimes masked by immunologically inert molecules. Cell wall damage leads to the activation of sophisticated fail-safe mechanisms that shore up and repair walls to avoid catastrophic breaching of the integrity of the surface. The frontiers of research on fungal cell walls are moving from a descriptive phase defining the underlying genes and component parts of fungal walls to more dynamic analyses of how the various components are assembled, cross-linked, and modified in response to environmental signals. This review therefore discusses recent advances in research investigating the composition, synthesis, and regulation of cell walls and how the cell wall is targeted by immune recognition systems and the design of antifungal diagnostics and therapeutics.
Collapse
Affiliation(s)
- Neil A R Gow
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB252ZD, United Kingdom
| | | | - Carol A Munro
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB252ZD, United Kingdom
| |
Collapse
|
44
|
Smith IM, Baker A, Christensen JE, Boekhout T, Frøkiær H, Arneborg N, Jespersen L. Kluyveromyces marxianus and Saccharomyces boulardii Induce Distinct Levels of Dendritic Cell Cytokine Secretion and Significantly Different T Cell Responses In Vitro. PLoS One 2016; 11:e0167410. [PMID: 27898740 PMCID: PMC5127564 DOI: 10.1371/journal.pone.0167410] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 11/14/2016] [Indexed: 02/07/2023] Open
Abstract
Interactions between members of the intestinal microbiota and the mucosal immune system can significantly impact human health, and in this context, fungi and food-related yeasts are known to influence intestinal inflammation through direct interactions with specialized immune cells in vivo. The aim of the present study was to characterize the immune modulating properties of the food-related yeast Kluyveromyces marxianus in terms of adaptive immune responses indicating inflammation versus tolerance and to explore the mechanisms behind the observed responses. Benchmarking against a Saccharomyces boulardii strain with probiotic effects documented in clinical trials, we evaluated the ability of K. marxianus to modulate human dendritic cell (DC) function in vitro. Further, we assessed yeast induced DC modulation of naive T cells toward effector responses dominated by secretion of IFNγ and IL-17 versus induction of a Treg response characterized by robust IL-10 secretion. In addition, we blocked relevant DC surface receptors and investigated the stimulating properties of β-glucan containing yeast cell wall extracts. K. marxianus and S. boulardii induced distinct levels of DC cytokine secretion, primarily driven by Dectin-1 recognition of β-glucan components in their cell walls. Upon co-incubation of yeast exposed DCs and naive T cells, S. boulardii induced a potent IFNγ response indicating TH1 mobilization. In contrast, K. marxianus induced a response dominated by Foxp3+ Treg cells, a characteristic that may benefit human health in conditions characterized by excessive inflammation and positions K. marxianus as a strong candidate for further development as a novel yeast probiotic.
Collapse
Affiliation(s)
- Ida M. Smith
- Health & Nutrition Division Discovery, Chr. Hansen A/S, Hørsholm, Denmark
- Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
- * E-mail:
| | - Adam Baker
- Health & Nutrition Division Discovery, Chr. Hansen A/S, Hørsholm, Denmark
| | - Jeffrey E. Christensen
- Institute of Metabolic and Cardiovascular Disease, French Institute of Health and Medical Research (INSERM), Toulouse, France
| | - Teun Boekhout
- CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands
| | - Hanne Frøkiær
- Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
| | - Nils Arneborg
- Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | - Lene Jespersen
- Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
45
|
van Wijlick L, Swidergall M, Brandt P, Ernst JF. Candida albicansresponds to glycostructure damage by Ace2-mediated feedback regulation of Cek1 signaling. Mol Microbiol 2016; 102:827-849. [DOI: 10.1111/mmi.13494] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Lasse van Wijlick
- Department Biologie; Molekulare Mykologie, Heinrich-Heine-Universität; 40225 Düsseldorf Germany
- Manchot Graduate School Molecules of Infection, Heinrich-Heine-Universität; 40225 Düsseldorf Germany
| | - Marc Swidergall
- Department Biologie; Molekulare Mykologie, Heinrich-Heine-Universität; 40225 Düsseldorf Germany
| | - Philipp Brandt
- Department Biologie; Molekulare Mykologie, Heinrich-Heine-Universität; 40225 Düsseldorf Germany
| | - Joachim F. Ernst
- Department Biologie; Molekulare Mykologie, Heinrich-Heine-Universität; 40225 Düsseldorf Germany
- Manchot Graduate School Molecules of Infection, Heinrich-Heine-Universität; 40225 Düsseldorf Germany
| |
Collapse
|
46
|
Liu W, Zou Z, Huang X, Shen H, He LJ, Chen SM, Li LP, Yan L, Zhang SQ, Zhang JD, Xu Z, Xu GT, An MM, Jiang YY. Bst1 is required for Candida albicans infecting host via facilitating cell wall anchorage of Glycosylphosphatidyl inositol anchored proteins. Sci Rep 2016; 6:34854. [PMID: 27708385 PMCID: PMC5052643 DOI: 10.1038/srep34854] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 09/21/2016] [Indexed: 02/08/2023] Open
Abstract
Glycosylphosphatidyl inositol anchored proteins (GPI-APs) on fungal cell wall are essential for invasive infections. While the function of inositol deacylation of GPI-APs in mammalian cells has been previously characterized the impact of inositol deacylation in fungi and implications to host infection remains largely unexplored. Herein we describe our identification of BST1, an inositol deacylase of GPI-Aps in Candida albicans, was critical for GPI-APs cell wall attachment and host infection. BST1-deficient C. albicans (bst1Δ/Δ) was associated with severely impaired cell wall anchorage of GPI-APs and subsequen unmasked β-(1,3)-glucan. Consistent with the aberrant cell wall structures, bst1Δ/Δ strain did not display an invasive ability and could be recognized more efficiently by host immune systems. Moreover, BST1 null mutants or those expressing Bst1 variants did not display inositol deacylation activity and exhibited severely attenuated virulence and reduced organic colonization in a murine systemic candidiasis model. Thus, Bst1 can facilitate cell wall anchorage of GPI-APs in C. albicans by inositol deacylation, and is critical for host invasion and immune escape.
Collapse
Affiliation(s)
- Wei Liu
- Shanghai Tenth People's Hospital, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, 200092, P.R. China
| | - Zui Zou
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, 200433, P.R. China
| | - Xin Huang
- Department of dermatology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, P.R. China
| | - Hui Shen
- Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Li Juan He
- Research and Development Center of New Drug, School of Pharmacy, Second Military Medical University, Shanghai, 200433, P.R. China
| | - Si Min Chen
- Shanghai Tenth People's Hospital, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, 200092, P.R. China
| | - Li Ping Li
- Shanghai Tenth People's Hospital, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, 200092, P.R. China
| | - Lan Yan
- Research and Development Center of New Drug, School of Pharmacy, Second Military Medical University, Shanghai, 200433, P.R. China
| | - Shi Qun Zhang
- Shanghai Tenth People's Hospital, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, 200092, P.R. China
| | - Jun Dong Zhang
- Shanghai Tenth People's Hospital, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, 200092, P.R. China
| | - Zheng Xu
- Research and Development Center of New Drug, School of Pharmacy, Second Military Medical University, Shanghai, 200433, P.R. China
| | - Guo Tong Xu
- Shanghai Tenth People's Hospital, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, 200092, P.R. China
| | - Mao Mao An
- Shanghai Tenth People's Hospital, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, 200092, P.R. China
| | - Yuan Ying Jiang
- Shanghai Tenth People's Hospital, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, 200092, P.R. China.,Research and Development Center of New Drug, School of Pharmacy, Second Military Medical University, Shanghai, 200433, P.R. China
| |
Collapse
|
47
|
Pemmaraju SC, Padmapriya K, Pruthi PA, Prasad R, Pruthi V. Impact of oxidative and osmotic stresses on Candida albicans biofilm formation. BIOFOULING 2016; 32:897-909. [PMID: 27472386 DOI: 10.1080/08927014.2016.1212021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 07/05/2016] [Indexed: 06/06/2023]
Abstract
Candida albicans possesses an ability to grow under different host-driven stress conditions by developing robust protective mechanisms. In this investigation the focus was on the impact of osmotic (2M NaCl) and oxidative (5 mM H2O2) stress conditions during C. albicans biofilm formation. Oxidative stress enhanced extracellular DNA secretion into the biofilm matrix, increased the chitin level, and reduced virulence factors, namely phospholipase and proteinase activity, while osmotic stress mainly increased extracellular proteinase and decreased phospholipase activity. Fourier transform infrared and nuclear magnetic resonance spectroscopy analysis of mannan isolated from the C. albicans biofilm cell wall revealed a decrease in mannan content and reduced β-linked mannose moieties under stress conditions. The results demonstrate that C. albicans adapts to oxidative and osmotic stress conditions by inducing biofilm formation with a rich exopolymeric matrix, modulating virulence factors as well as the cell wall composition for its survival in different host niches.
Collapse
Affiliation(s)
- Suma C Pemmaraju
- a Department of Biotechnology, Indian Institute of Technology Roorkee , Roorkee , Uttarakhand , India
| | - Kumar Padmapriya
- a Department of Biotechnology, Indian Institute of Technology Roorkee , Roorkee , Uttarakhand , India
| | - Parul A Pruthi
- a Department of Biotechnology, Indian Institute of Technology Roorkee , Roorkee , Uttarakhand , India
| | | | - Vikas Pruthi
- a Department of Biotechnology, Indian Institute of Technology Roorkee , Roorkee , Uttarakhand , India
| |
Collapse
|
48
|
Yu Q, Li J, Zhang Y, Wang Y, Liu L, Li M. Inhibition of gold nanoparticles (AuNPs) on pathogenic biofilm formation and invasion to host cells. Sci Rep 2016; 6:26667. [PMID: 27220400 PMCID: PMC4879543 DOI: 10.1038/srep26667] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/06/2016] [Indexed: 01/25/2023] Open
Abstract
Owing to the growing infectious diseases caused by eukaryotic and prokaryotic pathogens, it is urgent to develop novel antimicrobial agents against clinical pathogenic infections. Biofilm formation and invasion into the host cells are vital processes during pathogenic colonization and infection. In this study, we tested the inhibitory effect of Au nanoparticles (AuNPs) on pathogenic growth, biofilm formation and invasion. Interestingly, although the synthesized AuNPs had no significant toxicity to the tested pathogens, Candida albicans and Pseudomonas aeruginosa, the nanoparticles strongly inhibited pathogenic biofilm formation and invasion to dental pulp stem cells (DPSCs). Further investigations revealed that AuNPs abundantly bound to the pathogen cells, which likely contributed to their inhibitory effect on biofilm formation and invasion. Moreover, treatment of AuNPs led to activation of immune response-related genes in DPSCs, which may enhance the activity of host immune system against the pathogens. Zeta potential analysis and polyethylene glycol (PEG)/polyethyleneimine (PEI) coating tests further showed that the interaction between pathogen cells and AuNPs is associated with electrostatic attractions. Our findings shed novel light on the application of nanomaterials in fighting against clinical pathogens, and imply that the traditional growth inhibition test is not the only way to evaluate the drug effect during the screening of antimicrobial agents.
Collapse
Affiliation(s)
- Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, Nankai University, Tianjin, PR China
| | - Jianrong Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, Nankai University, Tianjin, PR China
| | - Yueqi Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, Nankai University, Tianjin, PR China
| | - Yufan Wang
- Clinical Laboratory, Tianjin Third Central Hospital, Tianjin, PR China
| | - Lu Liu
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, PR China
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, Nankai University, Tianjin, PR China
| |
Collapse
|
49
|
Maicas S, Caminero A, Martínez JP, Sentandreu R, Valentín E. The GCA1 gene encodes a glycosidase-like protein in the cell wall of Candida albicans. FEMS Yeast Res 2016; 16:fow032. [PMID: 27189368 DOI: 10.1093/femsyr/fow032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2016] [Indexed: 11/14/2022] Open
Abstract
Candida albicans Gca1p is a putative glucoamylase enzyme which contains 946 amino acids, 11 putative sites for N-glycosylation and 9 for O-glycosylation. Gca1p was identified in β-mercaptoethanol extracts from isolated cell walls of strain C. albicans SC5314 and it is involved in carbohydrate metabolism. The significance and the role of this protein within the cell wall structure were studied in the corresponding mutants. The homozygous mutant showed that GCA1 was not an essential gene for cell viability. Subsequent phenotypic analysis performed in the mutants obtained did not show significant difference in the behavior of mutant when compared with the wild strain SC5314. Zymoliase, Calcofluor White, Congo red, SDS, caffeine or inorganic compounds did not affect the integrity of the cell wall. No differences were observed when hyphal formation assays were carried out. However, an enzyme assay in the presence of substrate p-nitrophenyl-α-D-glucopyranoside enabled us to detect a significant decrease in glycosidase activity in the mutants compared with the parental strain, revealing the function of Gca1.
Collapse
Affiliation(s)
- Sergi Maicas
- Departament de Microbiologia i Ecologia, Facultat de Biologia, Universitat de València, 46100-E, Burjassot, Spain
| | - Antonio Caminero
- Departament de Microbiologia i Ecologia, Facultat de Farmàcia, Universitat de València, 46100-E, Burjassot, Spain
| | - José Pedro Martínez
- Departament de Microbiologia i Ecologia, Facultat de Farmàcia, Universitat de València, 46100-E, Burjassot, Spain
| | - Rafael Sentandreu
- Departament de Microbiologia i Ecologia, Facultat de Farmàcia, Universitat de València, 46100-E, Burjassot, Spain
| | - Eulogio Valentín
- Departament de Microbiologia i Ecologia, Facultat de Farmàcia, Universitat de València, 46100-E, Burjassot, Spain
| |
Collapse
|
50
|
Mnn10 Maintains Pathogenicity in Candida albicans by Extending α-1,6-Mannose Backbone to Evade Host Dectin-1 Mediated Antifungal Immunity. PLoS Pathog 2016; 12:e1005617. [PMID: 27144456 PMCID: PMC4856274 DOI: 10.1371/journal.ppat.1005617] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/16/2016] [Indexed: 12/20/2022] Open
Abstract
The cell wall is a dynamic structure that is important for the pathogenicity of Candida albicans. Mannan, which is located in the outermost layer of the cell wall, has been shown to contribute to the pathogenesis of C. albicans, however, the molecular mechanism by which this occurs remains unclear. Here we identified a novel α-1,6-mannosyltransferase encoded by MNN10 in C. albicans. We found that Mnn10 is required for cell wall α-1,6-mannose backbone biosynthesis and polysaccharides organization. Deletion of MNN10 resulted in significant attenuation of the pathogenesis of C. albicans in a murine systemic candidiasis model. Inhibition of α-1,6-mannose backbone extension did not, however, impact the invasive ability of C. albicans in vitro. Notably, mnn10 mutant restored the invasive capacity in athymic nude mice, which further supports the notion of an enhanced host antifungal defense related to this backbone change. Mnn10 mutant induced enhanced Th1 and Th17 cell mediated antifungal immunity, and resulted in enhanced recruitment of neutrophils and monocytes for pathogen clearance in vivo. We also demonstrated that MNN10 could unmask the surface β-(1,3)-glucan, a crucial pathogen-associated molecular pattern (PAMP) of C. albicans recognized by host Dectin-1. Our results demonstrate that mnn10 mutant could stimulate an enhanced Dectin-1 dependent immune response of macrophages in vitro, including the activation of nuclear factor-κB, mitogen-activated protein kinase pathways, and secretion of specific cytokines such as TNF-α, IL-6, IL-1β and IL-12p40. In summary, our study indicated that α-1,6-mannose backbone is critical for the pathogenesis of C. albicans via shielding β-glucan from recognition by host Dectin-1 mediated immune recognition. Moreover, our work suggests that inhibition of α-1,6-mannose extension by Mnn10 may represent a novel modality to reduce the pathogenicity of C. albicans. Mannan plays a crucial role in cell wall structure and virulence of the opportunistic pathogen Candida albicans. Both the invasive ability of the pathogen and the host defense against the pathogen contribute to the outcome of invasive infection. In the present study, we identified a novel α-1,6-mannosyltransferase, which was responsible for cell wall α-1,6-mannose backbone extension in C. albicans. We determined that α-1,6-mannose backbone is necessary for the pathogenesis of C. albicans due to its ability to shield β-(1,3)-glucan from the host Dectin-1 recognition and Th1/Th7 response. Our study highlights a novel strategy to enhance the host immune response towards C. albicans.
Collapse
|