1
|
Peyretaillade E, Akossi RF, Tournayre J, Delbac F, Wawrzyniak I. How to overcome constraints imposed by microsporidian genome features to ensure gene prediction? J Eukaryot Microbiol 2024; 71:e13038. [PMID: 38934348 DOI: 10.1111/jeu.13038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Since the advent of sequencing techniques and due to their continuous evolution, it has become easier and less expensive to obtain the complete genome sequence of any organism. Nevertheless, to elucidate all biological processes governing organism development, quality annotation is essential. In genome annotation, predicting gene structure is one of the most important and captivating challenges for computational biology. This aspect of annotation requires continual optimization, particularly for genomes as unusual as those of microsporidia. Indeed, this group of fungal-related parasites exhibits specific features (highly reduced gene sizes, sequences with high rate of evolution) linked to their evolution as intracellular parasites, requiring the implementation of specific annotation approaches to consider all these features. This review aimed to outline these characteristics and to assess the increasingly efficient approaches and tools that have enhanced the accuracy of gene prediction for microsporidia, both in terms of sensitivity and specificity. Subsequently, a final part will be dedicated to postgenomic approaches aimed at reinforcing the annotation data generated by prediction software. These approaches include the characterization of other understudied genes, such as those encoding regulatory noncoding RNAs or very small proteins, which also play crucial roles in the life cycle of these microorganisms.
Collapse
Affiliation(s)
| | - Reginal F Akossi
- LMGE, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Jérémy Tournayre
- INRAE, UMR Herbivores, Université Clermont Auvergne, VetAgro Sup, Saint-Genès-Champanelle, France
| | - Frédéric Delbac
- LMGE, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Ivan Wawrzyniak
- LMGE, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
2
|
Berg A, Berntsson RPA, Barandun J. Nematocida displodere mechanosensitive ion channel of small conductance 2 assembles into a unique 6-channel super-structure in vitro. PLoS One 2024; 19:e0301951. [PMID: 39038013 PMCID: PMC11262690 DOI: 10.1371/journal.pone.0301951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024] Open
Abstract
Mechanosensitive ion channels play an essential role in reacting to environmental signals and sustaining cell integrity by facilitating ion flux across membranes. For obligate intracellular pathogens like microsporidia, adapting to changes in the host environment is crucial for survival and propagation. Despite representing a eukaryote of extreme genome reduction, microsporidia have expanded the gene family of mechanosensitive ion channels of small conductance (mscS) through repeated gene duplication and horizontal gene transfer. All microsporidian genomes characterized to date contain mscS genes of both eukaryotic and bacterial origin. Here, we investigated the cryo-electron microscopy structure of the bacterially derived mechanosensitive ion channel of small conductance 2 (MscS2) from Nematocida displodere, an intracellular pathogen of Caenorhabditis elegans. MscS2 is the most compact MscS-like channel known and assembles into a unique superstructure in vitro with six heptameric MscS2 channels. Individual MscS2 channels are oriented in a heterogeneous manner to one another, resembling an asymmetric, flexible six-way cross joint. Finally, we show that microsporidian MscS2 still forms a heptameric membrane channel, however the extreme compaction suggests a potential new function of this MscS-like protein.
Collapse
Affiliation(s)
- Alexandra Berg
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research, Science for Life Laboratory, Umeå University, Umeå, Västerbotten, Sweden
- Department of Medical Biochemistry and Biophysics, Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Västerbotten, Sweden
| | - Ronnie P.-A. Berntsson
- Department of Medical Biochemistry and Biophysics, Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Västerbotten, Sweden
- Wallenberg Centre for Molecular Medicine & Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Jonas Barandun
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research, Science for Life Laboratory, Umeå University, Umeå, Västerbotten, Sweden
| |
Collapse
|
3
|
Dziuba MK, McIntire KM, Seto K, Davenport ES, Rogalski MA, Gowler CD, Baird E, Vaandrager M, Huerta C, Jaye R, Corcoran FE, Withrow A, Ahrendt S, Salamov A, Nolan M, Tejomurthula S, Barry K, Grigoriev IV, James TY, Duffy MA. Phylogeny, morphology, virulence, ecology, and host range of Ordospora pajunii (Ordosporidae), a microsporidian symbiont of Daphnia spp. mBio 2024; 15:e0058224. [PMID: 38651867 PMCID: PMC11237803 DOI: 10.1128/mbio.00582-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024] Open
Abstract
The impacts of microsporidia on host individuals are frequently subtle and can be context dependent. A key example of the latter comes from a recently discovered microsporidian symbiont of Daphnia, the net impact of which was found to shift from negative to positive based on environmental context. Given this, we hypothesized low baseline virulence of the microsporidian; here, we investigated the impact of infection on hosts in controlled conditions and the absence of other stressors. We also investigated its phylogenetic position, ecology, and host range. The genetic data indicate that the symbiont is Ordospora pajunii, a newly described microsporidian parasite of Daphnia. We show that O. pajunii infection damages the gut, causing infected epithelial cells to lose microvilli and then rupture. The prevalence of this microsporidian could be high (up to 100% in the lab and 77% of adults in the field). Its overall virulence was low in most cases, but some genotypes suffered reduced survival and/or reproduction. Susceptibility and virulence were strongly host-genotype dependent. We found that North American O. pajunii were able to infect multiple Daphnia species, including the European species Daphnia longispina, as well as Ceriodaphnia spp. Given the low, often undetectable virulence of this microsporidian and potentially far-reaching consequences of infections for the host when interacting with other pathogens or food, this Daphnia-O. pajunii symbiosis emerges as a valuable system for studying the mechanisms of context-dependent shifts between mutualism and parasitism, as well as for understanding how symbionts might alter host interactions with resources. IMPORTANCE The net outcome of symbiosis depends on the costs and benefits to each partner. Those can be context dependent, driving the potential for an interaction to change between parasitism and mutualism. Understanding the baseline fitness impact in an interaction can help us understand those shifts; for an organism that is generally parasitic, it should be easier for it to become a mutualist if its baseline virulence is relatively low. Recently, a microsporidian was found to become beneficial to its Daphnia hosts in certain ecological contexts, but little was known about the symbiont (including its species identity). Here, we identify it as the microsporidium Ordospora pajunii. Despite the parasitic nature of microsporidia, we found O. pajunii to be, at most, mildly virulent; this helps explain why it can shift toward mutualism in certain ecological contexts and helps establish O. pajunii is a valuable model for investigating shifts along the mutualism-parasitism continuum.
Collapse
Affiliation(s)
- Marcin K. Dziuba
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kristina M. McIntire
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kensuke Seto
- Faculty of Environment and Information Sciences, Yokohama National University, Yokohama, Kanagawa, Japan
| | - Elizabeth S. Davenport
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Mary A. Rogalski
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
- Biology Department, Bowdoin College, Brunswick, Maine, USA
| | - Camden D. Gowler
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Emma Baird
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Megan Vaandrager
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Cristian Huerta
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Riley Jaye
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Fiona E. Corcoran
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Alicia Withrow
- Center for Advanced Microscopy, Michigan State University, East Lansing, Michigan, USA
| | - Steven Ahrendt
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Asaf Salamov
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Matt Nolan
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Sravanthi Tejomurthula
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Kerrie Barry
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Igor V. Grigoriev
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Timothy Y. James
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Meghan A. Duffy
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Svedberg D, Winiger RR, Berg A, Sharma H, Tellgren-Roth C, Debrunner-Vossbrinck BA, Vossbrinck CR, Barandun J. Functional annotation of a divergent genome using sequence and structure-based similarity. BMC Genomics 2024; 25:6. [PMID: 38166563 PMCID: PMC10759460 DOI: 10.1186/s12864-023-09924-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/18/2023] [Indexed: 01/04/2024] Open
Abstract
BACKGROUND Microsporidia are a large taxon of intracellular pathogens characterized by extraordinarily streamlined genomes with unusually high sequence divergence and many species-specific adaptations. These unique factors pose challenges for traditional genome annotation methods based on sequence similarity. As a result, many of the microsporidian genomes sequenced to date contain numerous genes of unknown function. Recent innovations in rapid and accurate structure prediction and comparison, together with the growing amount of data in structural databases, provide new opportunities to assist in the functional annotation of newly sequenced genomes. RESULTS In this study, we established a workflow that combines sequence and structure-based functional gene annotation approaches employing a ChimeraX plugin named ANNOTEX (Annotation Extension for ChimeraX), allowing for visual inspection and manual curation. We employed this workflow on a high-quality telomere-to-telomere sequenced tetraploid genome of Vairimorpha necatrix. First, the 3080 predicted protein-coding DNA sequences, of which 89% were confirmed with RNA sequencing data, were used as input. Next, ColabFold was used to create protein structure predictions, followed by a Foldseek search for structural matching to the PDB and AlphaFold databases. The subsequent manual curation, using sequence and structure-based hits, increased the accuracy and quality of the functional genome annotation compared to results using only traditional annotation tools. Our workflow resulted in a comprehensive description of the V. necatrix genome, along with a structural summary of the most prevalent protein groups, such as the ricin B lectin family. In addition, and to test our tool, we identified the functions of several previously uncharacterized Encephalitozoon cuniculi genes. CONCLUSION We provide a new functional annotation tool for divergent organisms and employ it on a newly sequenced, high-quality microsporidian genome to shed light on this uncharacterized intracellular pathogen of Lepidoptera. The addition of a structure-based annotation approach can serve as a valuable template for studying other microsporidian or similarly divergent species.
Collapse
Affiliation(s)
- Dennis Svedberg
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Science for Life Laboratory, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, 90187, Sweden
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, 90736, Sweden
| | - Rahel R Winiger
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Science for Life Laboratory, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, 90187, Sweden
| | - Alexandra Berg
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Science for Life Laboratory, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, 90187, Sweden
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, 90736, Sweden
| | - Himanshu Sharma
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Science for Life Laboratory, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, 90187, Sweden
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, 90736, Sweden
| | - Christian Tellgren-Roth
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | - Charles R Vossbrinck
- Department of Environmental Science, Connecticut Agricultural Experiment Station, New Haven, CT, 06504, USA
| | - Jonas Barandun
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Science for Life Laboratory, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, 90187, Sweden.
| |
Collapse
|
5
|
Structure of the reduced microsporidian proteasome bound by PI31-like peptides in dormant spores. Nat Commun 2022; 13:6962. [PMID: 36379934 PMCID: PMC9666519 DOI: 10.1038/s41467-022-34691-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 11/02/2022] [Indexed: 11/17/2022] Open
Abstract
Proteasomes play an essential role in the life cycle of intracellular pathogens with extracellular stages by ensuring proteostasis in environments with limited resources. In microsporidia, divergent parasites with extraordinarily streamlined genomes, the proteasome complexity and structure are unknown, which limits our understanding of how these unique pathogens adapt and compact essential eukaryotic complexes. We present cryo-electron microscopy structures of the microsporidian 20S and 26S proteasome isolated from dormant or germinated Vairimorpha necatrix spores. The discovery of PI31-like peptides, known to inhibit proteasome activity, bound simultaneously to all six active sites within the central cavity of the dormant spore proteasome, suggests reduced activity in the environmental stage. In contrast, the absence of the PI31-like peptides and the existence of 26S particles post-germination in the presence of ATP indicates that proteasomes are reactivated in nutrient-rich conditions. Structural and phylogenetic analyses reveal that microsporidian proteasomes have undergone extensive reductive evolution, lost at least two regulatory proteins, and compacted nearly every subunit. The highly derived structure of the microsporidian proteasome, and the minimized version of PI31 presented here, reinforce the feasibility of the development of specific inhibitors and provide insight into the unique evolution and biology of these medically and economically important pathogens.
Collapse
|
6
|
Jespersen N, Monrroy L, Barandun J. Impact of Genome Reduction in Microsporidia. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 114:1-42. [PMID: 35543997 DOI: 10.1007/978-3-030-93306-7_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Microsporidia represent an evolutionary outlier in the tree of life and occupy the extreme edge of the eukaryotic domain with some of their biological features. Many of these unicellular fungi-like organisms have reduced their genomic content to potentially the lowest limit. With some of the most compacted eukaryotic genomes, microsporidia are excellent model organisms to study reductive evolution and its functional consequences. While the growing number of sequenced microsporidian genomes have elucidated genome composition and organization, a recent increase in complementary post-genomic studies has started to shed light on the impacts of genome reduction in these unique pathogens. This chapter will discuss the biological framework enabling genome minimization and will use one of the most ancient and essential macromolecular complexes, the ribosome, to illustrate the effects of extreme genome reduction on a structural, molecular, and cellular level. We outline how reductive evolution in microsporidia has shaped DNA organization, the composition and function of the ribosome, and the complexity of the ribosome biogenesis process. Studying compacted mechanisms, processes, or macromolecular machines in microsporidia illuminates their unique lifestyle and provides valuable insights for comparative eukaryotic structural biology.
Collapse
Affiliation(s)
- Nathan Jespersen
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Science for Life Laboratory, Umeå University, Umeå, Sweden.
| | - Leonardo Monrroy
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Science for Life Laboratory, Umeå University, Umeå, Sweden
| | - Jonas Barandun
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Science for Life Laboratory, Umeå University, Umeå, Sweden.
| |
Collapse
|
7
|
Steenwyk JL, Opulente DA, Kominek J, Shen XX, Zhou X, Labella AL, Bradley NP, Eichman BF, Čadež N, Libkind D, DeVirgilio J, Hulfachor AB, Kurtzman CP, Hittinger CT, Rokas A. Extensive loss of cell-cycle and DNA repair genes in an ancient lineage of bipolar budding yeasts. PLoS Biol 2019; 17:e3000255. [PMID: 31112549 PMCID: PMC6528967 DOI: 10.1371/journal.pbio.3000255] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 04/18/2019] [Indexed: 02/06/2023] Open
Abstract
Cell-cycle checkpoints and DNA repair processes protect organisms from potentially lethal mutational damage. Compared to other budding yeasts in the subphylum Saccharomycotina, we noticed that a lineage in the genus Hanseniaspora exhibited very high evolutionary rates, low Guanine-Cytosine (GC) content, small genome sizes, and lower gene numbers. To better understand Hanseniaspora evolution, we analyzed 25 genomes, including 11 newly sequenced, representing 18/21 known species in the genus. Our phylogenomic analyses identify two Hanseniaspora lineages, a faster-evolving lineage (FEL), which began diversifying approximately 87 million years ago (mya), and a slower-evolving lineage (SEL), which began diversifying approximately 54 mya. Remarkably, both lineages lost genes associated with the cell cycle and genome integrity, but these losses were greater in the FEL. E.g., all species lost the cell-cycle regulator WHIskey 5 (WHI5), and the FEL lost components of the spindle checkpoint pathway (e.g., Mitotic Arrest-Deficient 1 [MAD1], Mitotic Arrest-Deficient 2 [MAD2]) and DNA-damage-checkpoint pathway (e.g., Mitosis Entry Checkpoint 3 [MEC3], RADiation sensitive 9 [RAD9]). Similarly, both lineages lost genes involved in DNA repair pathways, including the DNA glycosylase gene 3-MethylAdenine DNA Glycosylase 1 (MAG1), which is part of the base-excision repair pathway, and the DNA photolyase gene PHotoreactivation Repair deficient 1 (PHR1), which is involved in pyrimidine dimer repair. Strikingly, the FEL lost 33 additional genes, including polymerases (i.e., POLymerase 4 [POL4] and POL32) and telomere-associated genes (e.g., Repressor/activator site binding protein-Interacting Factor 1 [RIF1], Replication Factor A 3 [RFA3], Cell Division Cycle 13 [CDC13], Pbp1p Binding Protein [PBP2]). Echoing these losses, molecular evolutionary analyses reveal that, compared to the SEL, the FEL stem lineage underwent a burst of accelerated evolution, which resulted in greater mutational loads, homopolymer instabilities, and higher fractions of mutations associated with the common endogenously damaged base, 8-oxoguanine. We conclude that Hanseniaspora is an ancient lineage that has diversified and thrived, despite lacking many otherwise highly conserved cell-cycle and genome integrity genes and pathways, and may represent a novel, to our knowledge, system for studying cellular life without them.
Collapse
Affiliation(s)
- Jacob L Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Dana A Opulente
- Laboratory of Genetics, Genome Center of Wisconsin, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Wisconsin, United States of America
| | - Jacek Kominek
- Laboratory of Genetics, Genome Center of Wisconsin, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Wisconsin, United States of America
| | - Xing-Xing Shen
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Abigail L Labella
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Noah P Bradley
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Brandt F Eichman
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Neža Čadež
- University of Ljubljana Biotechnical Faculty, Department of Food Science and Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Diego Libkind
- Laboratorio de Microbiología Aplicada, Biotecnología y Bioinformática, Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales, Universidad Nacional del Comahue-CONICET, San Carlos de Bariloche, Río Negro, Argentina
| | - Jeremy DeVirgilio
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, Illinois, United States of America
| | - Amanda Beth Hulfachor
- Laboratory of Genetics, Genome Center of Wisconsin, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Cletus P Kurtzman
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, Illinois, United States of America
| | - Chris Todd Hittinger
- Laboratory of Genetics, Genome Center of Wisconsin, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Wisconsin, United States of America
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
8
|
Li W, Xiao L. Multilocus Sequence Typing and Population Genetic Analysis of Enterocytozoon bieneusi: Host Specificity and Its Impacts on Public Health. Front Genet 2019; 10:307. [PMID: 31001333 PMCID: PMC6454070 DOI: 10.3389/fgene.2019.00307] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 03/20/2019] [Indexed: 01/13/2023] Open
Abstract
Microsporidia comprise a large class of unicellular eukaryotic pathogens that are medically and agriculturally important, but poorly understood. There have been nearly 1,500 microsporidian species described thus far, which are variable in biology, genetics, genomics, and host specificity. Among those, Enterocytozoon bieneusi is the well-known species responsible for the most recorded cases of human microsporidian affections. The pathogen can colonize a broad range of mammals and birds and most of the animals surveyed share some genotypes with humans, posing a threat to public health. Based on DNA sequence analysis of the ribosomal internal transcribed spacer (ITS) and phylogenetic analysis, several hundreds of E. bieneusi genotypes have been defined and clustered into different genetic groups with varied levels of host specificity. However, single locus-based typing using ITS might have insufficient resolution to discriminate among E. bieneusi isolates with complex genetic or hereditary characteristics and to assess the elusive reproduction or transmission modes of the organism, highlighting the need for exploration and application of multilocus sequence typing (MLST) and population genetic tools. The present review begins with a primer on microsporidia and major microsporidian species, briefly introduces the recent advances on E. bieneusi ITS genotyping and phylogeny, summarizes recent MLST and population genetic data, analyzes the inter- and intragroup host specificity at the MLST level, and interprets the public health implications of host specificity in zoonotic or cross-species transmission of this ubiquitous fungus.
Collapse
Affiliation(s)
- Wei Li
- Heilongjiang Key Laboratory for Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Lihua Xiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
9
|
Lukeš J, Husník F. Microsporidia: A Single Horizontal Gene Transfer Drives a Great Leap Forward. Curr Biol 2018; 28:R712-R715. [DOI: 10.1016/j.cub.2018.05.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
10
|
Abstract
Fungi belong to one of the largest and most diverse kingdoms of living organisms. The evolutionary kinship within a fungal population has so far been inferred mostly from the gene-information-based trees ("gene trees"), constructed commonly based on the degree of differences of proteins or DNA sequences of a small number of highly conserved genes common among the population by a multiple sequence alignment (MSA) method. Since each gene evolves under different evolutionary pressure and time scale, it has been known that one gene tree for a population may differ from other gene trees for the same population depending on the subjective selection of the genes. Within the last decade, a large number of whole-genome sequences of fungi have become publicly available, which represent, at present, the most fundamental and complete information about each fungal organism. This presents an opportunity to infer kinship among fungi using a whole-genome information-based tree ("genome tree"). The method we used allows comparison of whole-genome information without MSA, and is a variation of a computational algorithm developed to find semantic similarities or plagiarism in two books, where we represent whole-genomic information of an organism as a book of words without spaces. The genome tree reveals several significant and notable differences from the gene trees, and these differences invoke new discussions about alternative narratives for the evolution of some of the currently accepted fungal groups.
Collapse
Affiliation(s)
- JaeJin Choi
- Department of Chemistry, University of California, Berkeley, CA 94720
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Department of Integrated Omics for Biomedical Sciences, Yonsei University, Seoul 03722, Republic of Korea
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Sung-Hou Kim
- Department of Chemistry, University of California, Berkeley, CA 94720;
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Department of Integrated Omics for Biomedical Sciences, Yonsei University, Seoul 03722, Republic of Korea
- Center for Computational Biology, University of California, Berkeley, CA 94720
| |
Collapse
|
11
|
Stajich JE. Fungal Genomes and Insights into the Evolution of the Kingdom. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0055-2016. [PMID: 28820125 PMCID: PMC6078396 DOI: 10.1128/microbiolspec.funk-0055-2016] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Indexed: 12/23/2022] Open
Abstract
The kingdom Fungi comprises species that inhabit nearly all ecosystems. Fungi exist as both free-living and symbiotic unicellular and multicellular organisms with diverse morphologies. The genomes of fungi encode genes that enable them to thrive in diverse environments, invade plant and animal cells, and participate in nutrient cycling in terrestrial and aquatic ecosystems. The continuously expanding databases of fungal genome sequences have been generated by individual and large-scale efforts such as Génolevures, Broad Institute's Fungal Genome Initiative, and the 1000 Fungal Genomes Project (http://1000.fungalgenomes.org). These efforts have produced a catalog of fungal genes and genomic organization. The genomic datasets can be utilized to better understand how fungi have adapted to their lifestyles and ecological niches. Large datasets of fungal genomic and transcriptomic data have enabled the use of novel methodologies and improved the study of fungal evolution from a molecular sequence perspective. Combined with microscopes, petri dishes, and woodland forays, genome sequencing supports bioinformatics and comparative genomics approaches as important tools in the study of the biology and evolution of fungi.
Collapse
Affiliation(s)
- Jason E Stajich
- Department of Plant Pathology and Microbiology and Institute of Integrative Genome Biology, University of California, Riverside, CA 92521
| |
Collapse
|
12
|
Pyle JD, Keeling PJ, Nibert ML. Amalga-like virus infecting Antonospora locustae, a microsporidian pathogen of grasshoppers, plus related viruses associated with other arthropods. Virus Res 2017; 233:95-104. [PMID: 28267607 DOI: 10.1016/j.virusres.2017.02.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/18/2017] [Accepted: 02/21/2017] [Indexed: 12/16/2022]
Abstract
A previously reported Expressed Sequence Tag (EST) library from spores of microsporidian Antonospora locustae includes a number of clones with sequence similarities to plant amalgaviruses. Reexamining the sequence accessions from that library, we found additional such clones, contributing to a 3247-nt contig that approximates the length of an amalga-like virus genome. Using A. locustae spores stored from that previous study, and new ones obtained from the same source, we newly visualized the putative dsRNA genome of this virus and obtained amplicons yielding a 3387-nt complete genome sequence. Phylogenetic analyses suggested it as prototype strain of a new genus in family Amalgaviridae. The genome contains two partially overlapping long ORFs, with downstream ORF2 in the +1 frame relative to ORF1 and a proposed motif for +1 ribosomal frameshifting in the region of overlap. Subsequent database searches using the predicted fusion protein sequence of this new amalga-like virus identified related sequences in the transcriptome of a basal hexapod, the springtail species Tetrodontophora bielanensis. We speculate that this second new amalga-like virus (contig length, 3475 nt) likely also derived from a microsporidian, or related organism, which was associated with the springtail specimens at the time of sampling for transcriptome analysis. Other findings of interest include evidence that the ORF1 translation products of these two new amalga-like viruses contain a central region of predicted α-helical coiled coil, as recently reported for plant amalgaviruses, and transcriptome-based evidence for another new amalga-like virus in the transcriptome of another basal hexapod, the two-pronged bristletail species Campodea augens.
Collapse
Affiliation(s)
- Jesse D Pyle
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Harvard Ph.D. Program in Virology, Division of Medical Sciences, Harvard University, Boston, MA 02115, USA
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Max L Nibert
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Harvard Ph.D. Program in Virology, Division of Medical Sciences, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
13
|
Nadimi M, Stefani FOP, Hijri M. The large (134.9 kb) mitochondrial genome of the glomeromycete Funneliformis mosseae. MYCORRHIZA 2016; 26:747-755. [PMID: 27246226 DOI: 10.1007/s00572-016-0710-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/23/2016] [Indexed: 06/05/2023]
Abstract
Funneliformis mosseae is among the most ecologically and economically important glomeromycete species and occurs both in natural and disturbed areas in a wide range of habitats and climates. In this study, we report the sequencing of the complete mitochondrial (mt) genome of F. mosseae isolate FL299 using 454 pyrosequencing and Illumina HiSeq technologies. This mt genome is a full-length circular chromosome of 134,925 bp, placing it among the largest mitochondrial DNAs (mtDNAs) in the fungal kingdom. A comparative analysis with publically available arbuscular mycorrhizal fungal mtDNAs revealed that the mtDNA of F. mosseae FL299 contained a very large number of insertions contributing to its expansion. The gene synteny was completely reshuffled compared to previously published glomeromycotan mtDNAs and several genes were oriented in an anti-sense direction. Furthermore, the presence of different types of introns and insertions in rnl (14 introns) made this gene very distinctive in Glomeromycota. The presence of alternative genetic codes in both initiation (GUG) and termination (UGA) codons was another new feature in this mtDNA compared to previously published glomeromycotan mt genomes. The phylogenetic analysis inferred from the analysis of 14 protein mt genes confirmed the position of the Glomeromycota clade as a sister group of Mortierellomycotina. This mt genome is the largest observed so far in Glomeromycota and the first mt genome within the Funneliformis clade, providing new opportunities to better understand their evolution and to develop molecular markers.
Collapse
Affiliation(s)
- Maryam Nadimi
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, QC, H1X 2B2, Canada
| | - Franck O P Stefani
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, QC, H1X 2B2, Canada
| | - Mohamed Hijri
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, QC, H1X 2B2, Canada.
| |
Collapse
|
14
|
Pasha SN, Meenakshi I, Sowdhamini R. Revisiting Myosin Families Through Large-scale Sequence Searches Leads to the Discovery of New Myosins. Evol Bioinform Online 2016; 12:201-11. [PMID: 27597808 PMCID: PMC5006635 DOI: 10.4137/ebo.s39880] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/19/2016] [Accepted: 06/24/2016] [Indexed: 11/26/2022] Open
Abstract
Myosins are actin-based motor proteins involved in many cellular movements. It is interesting to study the evolutionary patterns and the functional attributes of various types of myosins. Computational search algorithms were performed to identify putative myosin members by phylogenetic analysis, sequence motifs, and coexisting domains. This study is aimed at understanding the distribution and the likely biological functions of myosins encoded in various taxa and available eukaryotic genomes. We report here a phylogenetic analysis of around 4,064 myosin motor domains, built entirely from complete or near-complete myosin repertoires incorporating many unclassified, uncharacterized sequences and new myosin classes, with emphasis on myosins from Fungi, Haptophyta, and other Stramenopiles, Alveolates, and Rhizaria (SAR). The identification of large classes of myosins in Oomycetes, Cellular slime molds, Choanoflagellates, Pelagophytes, Eustigmatophyceae, Fonticula, Eucoccidiorida, and Apicomplexans with novel myosin motif variants that are conserved and thus presumably functional extends our knowledge of this important family of motor proteins. This work provides insights into the distribution and probable function of myosins including newly identified myosin classes.
Collapse
Affiliation(s)
- Shaik Naseer Pasha
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, GKVK campus, Bangalore, India
- Manipal University, Madhav Nagar, Manipal, Karnataka
| | - Iyer Meenakshi
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, GKVK campus, Bangalore, India
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, GKVK campus, Bangalore, India
| |
Collapse
|
15
|
Campos C, Cardoso H, Nogales A, Svensson J, Lopez-Ráez JA, Pozo MJ, Nobre T, Schneider C, Arnholdt-Schmitt B. Intra and Inter-Spore Variability in Rhizophagus irregularis AOX Gene. PLoS One 2015; 10:e0142339. [PMID: 26540237 PMCID: PMC4634980 DOI: 10.1371/journal.pone.0142339] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/20/2015] [Indexed: 12/03/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) are root-inhabiting fungi that form mutualistic symbioses with their host plants. AMF symbiosis improves nutrient uptake and buffers the plant against a diversity of stresses. Rhizophagus irregularis is one of the most widespread AMF species in the world, and its application in agricultural systems for yield improvement has increased over the last years. Still, from the inoculum production perspective, a lack of consistency of inoculum quality is referred to, which partially may be due to a high genetic variability of the fungus. The alternative oxidase (AOX) is an enzyme of the alternative respiratory chain already described in different taxa, including various fungi, which decreases the damage caused by oxidative stress. Nevertheless, virtually nothing is known on the involvement of AMF AOX on symbiosis establishment, as well on the existence of AOX variability that could affect AMF effectiveness and consequently plant performance. Here, we report the isolation and characterisation of the AOX gene of R. irregularis (RiAOX), and show that it is highly expressed during early phases of the symbiosis with plant roots. Phylogenetic analysis clustered RiAOX sequence with ancient fungi, and multiple sequence alignment revealed the lack of several regulatory motifs which are present in plant AOX. The analysis of RiAOX polymorphisms in single spores of three different isolates showed a reduced variability in one spore relatively to a group of spores. A high number of polymorphisms occurred in introns; nevertheless, some putative amino acid changes resulting from non-synonymous variants were found, offering a basis for selective pressure to occur within the populations. Given the AOX relatedness with stress responses, differences in gene variants amongst R. irregularis isolates are likely to be related with its origin and environmental constraints and might have a potential impact on inoculum production.
Collapse
Affiliation(s)
- Catarina Campos
- EU Marie Curie Chair, ICAAM—Instituto de Ciências Agrárias e Ambientais Mediterrânicas, IIFA-Instituto de Formação e Investigação Avançada, Universidade de Évora, Núcleo da Mitra, Évora, Portugal
| | - Hélia Cardoso
- EU Marie Curie Chair, ICAAM—Instituto de Ciências Agrárias e Ambientais Mediterrânicas, IIFA-Instituto de Formação e Investigação Avançada, Universidade de Évora, Núcleo da Mitra, Évora, Portugal
| | - Amaia Nogales
- EU Marie Curie Chair, ICAAM—Instituto de Ciências Agrárias e Ambientais Mediterrânicas, IIFA-Instituto de Formação e Investigação Avançada, Universidade de Évora, Núcleo da Mitra, Évora, Portugal
| | | | - Juan Antonio Lopez-Ráez
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas (EEZ-CSIC), Granada, Spain
| | - María José Pozo
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas (EEZ-CSIC), Granada, Spain
| | - Tânia Nobre
- EU Marie Curie Chair, ICAAM—Instituto de Ciências Agrárias e Ambientais Mediterrânicas, IIFA-Instituto de Formação e Investigação Avançada, Universidade de Évora, Núcleo da Mitra, Évora, Portugal
| | | | - Birgit Arnholdt-Schmitt
- EU Marie Curie Chair, ICAAM—Instituto de Ciências Agrárias e Ambientais Mediterrânicas, IIFA-Instituto de Formação e Investigação Avançada, Universidade de Évora, Núcleo da Mitra, Évora, Portugal
| |
Collapse
|
16
|
He X, Fu Z, Li M, Liu H, Cai S, Man N, Lu X. Nosema bombycis (Microsporidia) suppresses apoptosis in BmN cells (Bombyx mori). Acta Biochim Biophys Sin (Shanghai) 2015; 47:696-702. [PMID: 26188202 DOI: 10.1093/abbs/gmv062] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/16/2015] [Indexed: 01/08/2023] Open
Abstract
Nosema bombycis (N. bombycis, Nb) is a fungus-related and obligate intracellular parasite that causes chronic pebrine disease in the silkworm. After infecting the host, spores obtain energy from host cells and survive for several days. This symbiosis between the pathogen and the host cell suggests that N. bombycis prevents apoptosis and reactive oxygen species (ROS) production of host cells to create the optimal environmental conditions for its growth and development. In this study, different methods were used to prove that N. bombycis suppressed apoptosis in BmN cells. Flow cytometry analysis results showed that spores suppressed apoptosis of BmN cells at 2 and 5 days after infection (P < 0.05). Compared with actinomycin D (ActD) treatment, apoptosis of BmN cells was apparently reduced after spore infection (P < 0.01). Forty-eight hours after infection, the ROS production of BmN cells was down-regulated compared with that after ActD treatment for 6 h. Furthermore, N. bombycis prevented the formation of apoptosomes by down-regulating the expression of apaf-1 and cytochrome C. In addition, N. bombycis also up-regulated the expression of buffy. Western blot analysis demonstrated that spores decreased the level of host cytochrome C at 48 and 98 h post infection. Thus, our results suggested that N. bombycis inhibited the mitochondrial apoptotic pathway of the host cells to create an optimal environment for its own survival.
Collapse
Affiliation(s)
- Xinyi He
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhangwuke Fu
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mingqian Li
- TongDe Hospital of Zhejiang Province, Hangzhou 310058, China
| | - Han Liu
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shunfeng Cai
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Nana Man
- Hangzhou Seed Station, Hangzhou 310029, China
| | - Xingmeng Lu
- Laboratory of Invertebrate Pathology, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
17
|
Morphological and molecular characterization of Nosema pernyi, a microsporidian parasite in Antheraea pernyi. Parasitol Res 2015; 114:3327-36. [DOI: 10.1007/s00436-015-4558-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/25/2015] [Indexed: 10/23/2022]
|
18
|
Vilcinskas A, Schmidtberg H, Estoup A, Tayeh A, Facon B, Vogel H. Evolutionary ecology of microsporidia associated with the invasive ladybird Harmonia axyridis. INSECT SCIENCE 2015; 22:313-324. [PMID: 25131382 DOI: 10.1111/1744-7917.12159] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/07/2014] [Indexed: 06/03/2023]
Abstract
Invasive species are characterized by the rapid growth and spread of their populations after establishing a foothold in new habitats, and there are now many examples of such species negatively affecting biodiversity and the economy. It is unclear why some species can become successful invaders, whereas most (even if closely related) remain noninvasive. We previously proposed a hypothesis that parasites associated with invading species can promote their invasive success if they are harmless toward the invaders but harmful to their competitors and/or predators in the newly colonized habitat. Here we discuss whether microsporidia that have recently been discovered in the invasive ladybird Harmonia axyridis contribute to its invasive success. We show that all H. axyridis beetles sourced from diverse collection sites all over the world carry abundant microsporidia. This suggests that both native and invasive H. axyridis populations are associated with these tolerated parasites, which were likely to have existed in native populations before expansion rather than being acquired in newly colonized areas. We describe the pathogenesis of the microsporidia during different developmental stages of H. axyridis and we address the possibility that the predation of its infected eggs and larvae by competing native ladybird species may lead to their infection and ultimately to their decline. Finally, we discuss our initial hypothesis: microsporidia that are tolerated by an invasive vector insect can be active against susceptible native competitors and/or predator species.
Collapse
Affiliation(s)
- Andreas Vilcinskas
- Institute of Phytopathology and Applied Zoology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, Giessen, D-35392, Germany
| | - Henrike Schmidtberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchester Strasse 2, Giessen, D-35394, Germany
| | | | | | | | - Heiko Vogel
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745, Jena, Germany
| |
Collapse
|
19
|
Nadimi M, Stefani FOP, Hijri M. The mitochondrial genome of the glomeromycete Rhizophagus sp. DAOM 213198 reveals an unusual organization consisting of two circular chromosomes. Genome Biol Evol 2014; 7:96-105. [PMID: 25527840 PMCID: PMC4316621 DOI: 10.1093/gbe/evu268] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2014] [Indexed: 01/02/2023] Open
Abstract
Mitochondrial (mt) genomes are intensively studied in Ascomycota and Basidiomycota, but they are poorly documented in basal fungal lineages. In this study, we sequenced the complete mtDNA of Rhizophagus sp. DAOM 213198, a close relative to Rhizophagus irregularis, a widespread, ecologically and economical relevant species belonging to Glomeromycota. Unlike all other known taxonomically close relatives harboring a full-length circular chromosome, mtDNA of Rhizophagus sp. reveals an unusual organization with two circular chromosomes of 61,964 and 29,078 bp. The large chromosome contained nine protein-coding genes (atp9, nad5, cob, nad4, nad1, nad4L, cox1, cox2, and atp8), small subunit rRNA gene (rns), and harbored 20 tRNA-coding genes and 10 orfs, while the small chromosome contained five protein-coding genes (atp6, nad2, nad3, nad6, and cox3), large subunit rRNA gene (rnl) in addition to 5 tRNA-coding genes, and 8 plasmid-related DNA polymerases (dpo). Although structural variation of plant mt genomes is well documented, this study is the first report of the presence of two circular mt genomes in arbuscular mycorrhizal fungi. Interestingly, the presence of dpo at the breakage point in intergenes cox1-cox2 and rnl-atp6 for large and small mtDNAs, respectively, could be responsible for the conversion of Rhizophagus sp. mtDNA into two chromosomes. Using quantitative real-time polymerase chain reaction, we found that both mtDNAs have an equal abundance. This study reports a novel mtDNA organization in Glomeromycota and highlights the importance of studying early divergent fungal lineages to describe novel evolutionary pathways in the fungal kingdom.
Collapse
Affiliation(s)
- Maryam Nadimi
- Département de Sciences Biologiques, Université de Montréal, Institut de Recherche en Biologie Végétale (IRBV), Quebec, Canada
| | - Franck O P Stefani
- Département de Sciences Biologiques, Université de Montréal, Institut de Recherche en Biologie Végétale (IRBV), Quebec, Canada
| | - Mohamed Hijri
- Département de Sciences Biologiques, Université de Montréal, Institut de Recherche en Biologie Végétale (IRBV), Quebec, Canada
| |
Collapse
|
20
|
Pathology of Experimental Encephalitozoon cuniculi Infection in Immunocompetent and Immunosuppressed Mice in Iraq. PATHOLOGY RESEARCH INTERNATIONAL 2014; 2014:857036. [PMID: 24772366 PMCID: PMC3977525 DOI: 10.1155/2014/857036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/08/2014] [Accepted: 02/08/2014] [Indexed: 11/17/2022]
Abstract
This study was performed to evaluate pathology of experimental Encephalitozoon cuniculi (Iraqi isolate) infection in normal and immunosuppressed mice. Pathological changes were not seen in negative control mice while secondary bacterial infections were noted in the lungs, kidneys, and heart of mice given dexamethasone. Typical E. cuniculi infection lesions were found in brain, livers, lungs, and kidneys of mice given 10(7) E. cuniculi spores/mouse orally. These lesions were in the form of nonsuppurative meningoencephalitis with vasculitis in brain, interstitial inflammation with infiltration of both lymphocytes and plasma cells in lung tissue, and nonsuppurative interstitial (focal and diffuse) nephritis, presence of vacuole containing mature and immature spores in enterocytes within the tips of villi, and lymphoiod hyperplasia of the white pulp and vasculitis of the intratrabecular vessels. Mice that were given 10(7) E. cuniculi spores/mouse orally showed lesions similar to those observed in the previous group (vasculitis and granulomas) but the lesions were more severe and widespread. In conclusion, this is the first report of experimental E. cuniculi infection induced by E. cuniculi isolated from a naturally infected rabbit in Iraq and that infection became more severe and widespread upon the administration of dexaethasone.
Collapse
|
21
|
The genome of Spraguea lophii and the basis of host-microsporidian interactions. PLoS Genet 2013; 9:e1003676. [PMID: 23990793 PMCID: PMC3749934 DOI: 10.1371/journal.pgen.1003676] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 06/12/2013] [Indexed: 11/19/2022] Open
Abstract
Microsporidia are obligate intracellular parasites with the smallest known eukaryotic genomes. Although they are increasingly recognized as economically and medically important parasites, the molecular basis of microsporidian pathogenicity is almost completely unknown and no genetic manipulation system is currently available. The fish-infecting microsporidian Spraguea lophii shows one of the most striking host cell manipulations known for these parasites, converting host nervous tissue into swollen spore factories known as xenomas. In order to investigate the basis of these interactions between microsporidian and host, we sequenced and analyzed the S. lophii genome. Although, like other microsporidia, S. lophii has lost many of the protein families typical of model eukaryotes, we identified a number of gene family expansions including a family of leucine-rich repeat proteins that may represent pathogenicity factors. Building on our comparative genomic analyses, we exploited the large numbers of spores that can be obtained from xenomas to identify potential effector proteins experimentally. We used complex-mix proteomics to identify proteins released by the parasite upon germination, resulting in the first experimental isolation of putative secreted effector proteins in a microsporidian. Many of these proteins are not related to characterized pathogenicity factors or indeed any other sequences from outside the Microsporidia. However, two of the secreted proteins are members of a family of RICIN B-lectin-like proteins broadly conserved across the phylum. These proteins form syntenic clusters arising from tandem duplications in several microsporidian genomes and may represent a novel family of conserved effector proteins. These computational and experimental analyses establish S. lophii as an attractive model system for understanding the evolution of host-parasite interactions in microsporidia and suggest an important role for lineage-specific innovations and fast evolving proteins in the evolution of the parasitic microsporidian lifecycle. Microsporidia are unusual intracellular parasites that infect a broad range of animal cells. In comparison to their fungal relatives, microsporidian genomes have shrunk during evolution, encoding as few as 2000 proteins. This minimal molecular repertoire makes them a reduced model system for understanding host-parasite interactions. A number of microsporidian genomes have now been sequenced, but the lack of a system for genetic manipulation makes it difficult to translate these data into a better understanding of microsporidian biology. Here we present a deep sequencing project of Spraguea lophii, a fish-infecting microsporidian that is abundantly available from environmental samples. We use our sequence data combined with germination protocols and complex-mix proteomics to identify proteins released by the cell at the earliest stage of germination, representing potential pathogenicity factors. We profile the RNA expression pattern of germinating cells and identify a set of highly transcribed hypothetical genes. Our study provides new insight into the importance of uncharacterized, lineage-specific and/or fast evolving proteins in microsporidia and provides new leads for the investigation of virulence factors in these enigmatic parasites.
Collapse
|
22
|
Higes M, Juarranz Á, Dias-Almeida J, Lucena S, Botías C, Meana A, García-Palencia P, Martín-Hernández R. Apoptosis in the pathogenesis of Nosema ceranae (Microsporidia: Nosematidae) in honey bees (Apis mellifera). ENVIRONMENTAL MICROBIOLOGY REPORTS 2013; 5:530-536. [PMID: 23864567 DOI: 10.1111/1758-2229.12059] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Accepted: 03/20/2013] [Indexed: 06/02/2023]
Abstract
Nosema ceranae is a parasite of the epithelial ventricular cells of the honey bee that belongs to the microsporidian phylum, a biological group of single-cell, spore-forming obligate intracellular parasites found in all major animal lineages. The ability of host cells to accommodate a large parasitic burden for several days suggests that these parasites subvert the normal host cells to ensure optimal environmental conditions for growth and development. Once infected, cells can counteract the invasive pathogen by initiating their own death by apoptosis as a defence strategy. To determine whether N. ceranae blocks apoptosis in infected ventricular cells, cell death was assessed in sections of the ventriculum from experimentally infected honey bees using the TUNEL assay and by immunohistochemistry for caspase-3. Ventricular epithelial cells from infected bees were larger than those in the uninfected control bees, and they contained N. ceranae at both mature and immature stages in the cytoplasm. Apoptotic nuclei were only observed in some restricted areas of the ventriculum, whereas apoptosis was typically observed throughout the epithelium in uninfected bees. Indeed, the apoptotic index was higher in uninfected versus infected ventriculi. Our results suggested that N. ceranae prevents apoptosis in epithelial cells of infected ventriculi, a mechanism possible designed to enhance parasite development.
Collapse
Affiliation(s)
- Mariano Higes
- Laboratorio de Patología Apícola, Centro Apícola Regional, JCCM, 19180, Marchamalo, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Parasitism, aptly defined as one of the 'living-together' strategies (Trager, 1986), presents a dynamic system in which the parasite and its host are under evolutionary pressure to evolve new and specific adaptations, thus enabling the coexistence of the two closely interacting partners. Microsporidia are very frequently encountered obligatory intracellular protistan parasites that can infect both animals and some protists and are a consummate example of various aspects of the 'living-together' strategy. Microsporidia, relatives of fungi in the superkingdom Opisthokonta, belong to the relatively small group of parasites for which the host cell cytoplasm is the site of both reproduction and maturation. The structural and physiological reduction of their vegetative stage, together with the manipulation of host cell physiology, enables microsporidia to live in the cytosolic environment for most of their life cycle in a way resembling endocytobionts. The ability to form structurally complex spores and the invention and assembly of a unique injection mechanism enable microsporidia to disperse within host tissues and between host organisms, resulting in long-lasting infections. Microsporidia have adapted their genomes to the intracellular way of life, evolved strategies how to obtain nutrients directly from the host and how to manipulate not only the infected cells, but also the hosts themselves. The enormous variability of host organisms and their tissues provide microsporidian parasites a virtually limitless terrain for diversification and ecological expansion. This review attempts to present a general overview of microsporidia, emphasising some less known and/or more recently discovered facets of their biology.
Collapse
|
24
|
|
25
|
Bohne W, Böttcher K, Groß U. The parasitophorous vacuole of Encephalitozoon cuniculi: Biogenesis and characteristics of the host cell–pathogen interface. Int J Med Microbiol 2011; 301:395-9. [DOI: 10.1016/j.ijmm.2011.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
26
|
Recent developments in the taxonomic affiliation and phylogenetic positioning of fungi: impact in applied microbiology and environmental biotechnology. Appl Microbiol Biotechnol 2011; 90:41-57. [PMID: 21336930 DOI: 10.1007/s00253-011-3143-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 01/19/2011] [Accepted: 01/19/2011] [Indexed: 12/12/2022]
Abstract
The goal of modern taxonomy is to understand the relationships of living organisms in terms of evolutionary descent. Thereby, the relationships between living organisms are understood in terms of nested clades--every time a speciation event takes place, two new clades are produced. Life comprises three domains of living organisms, these are the Bacteria, the Archaea and the Eukaryota. Within the eukaryotic domain, the fungi form a monophyletic group of the eukaryotic crown group and are thus high up in the evolutionary hierarchy of life. Fungus-like organisms possess certain morphological features of fungi, such as the hyphal organization of the Oomycota or the spores and reproductive structures inside a fructification of plasmodiophorids (Plasmodiophoromycota) and slime moulds (Mycetozoa). The first group are algae which secondarily lost their plastids during evolution and contain cellulose in their cell walls. Both osmotrophic phyla, the Oomycota and the Plasmidiophoromycota belong to the Chromista and Rhizaria, respectively, whereas the last group, the cellular and plasmodial slime moulds (Mycetozoa) are phagotrophic amoeboid protists belonging to the Amoebozoa. These fungus-like organisms are not considered further in this review. The Fungi sensu stricto comprise a heterogenous, often inconspicuous group of microorganisms which (1) are primarily heterotrophic with an (2) osmotrophic style of nutrition containing (3) chitin and its derivatives in the cell wall. This review discusses species concepts and current strategies in fungal taxonomy, phylogenetic affiliations of miscellaneous fungus-like groups like the microsporidia, perspectives of fungal nomenclature, and their impact on natural product research.
Collapse
|
27
|
Hancock L, Goff L, Lane C. Red algae lose key mitochondrial genes in response to becoming parasitic. Genome Biol Evol 2010; 2:897-910. [PMID: 21081313 PMCID: PMC3014286 DOI: 10.1093/gbe/evq075] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Red algal parasites are unusual because the vast majority of them parasitize species with which they share a recent common ancestor. This strategy has earned them the name “adelphoparasites,” from the Greek, adelpho, meaning “kin.” Intracellular adelphoparasites are very rare in nature, yet have independently evolved hundreds of times among the floridiophyte red algae. Much is known about the life history and infection cycle of these parasites but nearly nothing in known about their genomes. We sequenced the mitochondrial genomes of the free-living Gracilariopsis andersonii and its closely related parasite Gracilariophila oryzoides to determine what effect a parasitic lifestyle has on the genomes of red algal parasites. Whereas the parasite genome is similar to the host in many ways, the genes encoding essential proteins ATP8 and SDHC are pseudogenes in the parasite. The mitochondrial genome of parasite from a different class of red algae, Plocamiocolax puvinata, has lost the atp8 gene entirely, indicating that this gene is no longer critical in red algal parasite mitochondria.
Collapse
Affiliation(s)
- Lillian Hancock
- Department of Biological Sciences, University of Rhode Island, RI, USA
| | | | | |
Collapse
|
28
|
Zhao W, Yu H, Li S, Huang Y. Identification and analysis of candidate fungal tRNA 3'-end processing endonucleases tRNase Zs, homologs of the putative prostate cancer susceptibility protein ELAC2. BMC Evol Biol 2010; 10:272. [PMID: 20819227 PMCID: PMC2942849 DOI: 10.1186/1471-2148-10-272] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 09/06/2010] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND tRNase Z is the endonuclease that is responsible for the 3'-end processing of tRNA precursors, a process essential for tRNA 3'-CCA addition and subsequent tRNA aminoacylation. Based on their sizes, tRNase Zs can be divided into the long (tRNase ZL) and short (tRNase ZS) forms. tRNase ZL is thought to have arisen from a tandem gene duplication of tRNase ZS with further sequence divergence. The species distribution of tRNase Z is complex. Fungi represent an evolutionarily diverse group of eukaryotes. The recent proliferation of fungal genome sequences provides an opportunity to explore the structural and functional diversity of eukaryotic tRNase Zs. RESULTS We report a survey and analysis of candidate tRNase Zs in 84 completed fungal genomes, spanning a broad diversity of fungi. We find that tRNase ZL is present in all fungi we have examined, whereas tRNase ZS exists only in the fungal phyla Basidiomycota, Chytridiomycota and Zygomycota. Furthermore, we find that unlike the Pezizomycotina and Saccharomycotina, which contain a single tRNase ZL, Schizosaccharomyces fission yeasts (Taphrinomycotina) contain two tRNase ZLs encoded by two different tRNase ZL genes. These two tRNase ZLs are most likely localized to the nucleus and mitochondria, respectively, suggesting partitioning of tRNase Z function between two different tRNase ZLs in fission yeasts. The fungal tRNase Z phylogeny suggests that tRNase ZSs are ancestral to tRNase ZLs. Additionally, the evolutionary relationship of fungal tRNase ZLs is generally consistent with known phylogenetic relationships among the fungal species and supports tRNase ZL gene duplication in certain fungal taxa, including Schizosaccharomyces fission yeasts. Analysis of tRNase Z protein sequences reveals putative atypical substrate binding domains in most fungal tRNase ZSs and in a subset of fungal tRNase ZLs. Finally, we demonstrate the presence of pseudo-substrate recognition and catalytic motifs at the N-terminal halves of tRNase ZLs. CONCLUSIONS This study describes the first comprehensive identification and sequence analysis of candidate fungal tRNase Zs. Our results support the proposal that tRNase ZL has evolved as a result of duplication and diversification of the tRNase ZS gene.
Collapse
Affiliation(s)
- Wei Zhao
- Nanjing Engineering and Technology Research Center for Microbiology, Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Haiyan Yu
- Nanjing Engineering and Technology Research Center for Microbiology, Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Shuzhen Li
- Nanjing Engineering and Technology Research Center for Microbiology, Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Ying Huang
- Nanjing Engineering and Technology Research Center for Microbiology, Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| |
Collapse
|
29
|
Phylogenetic approach to the variability of the microsporidian Enterocytozoon bieneusi and its implications for inter- and intrahost transmission. Appl Environ Microbiol 2010; 76:3333-42. [PMID: 20228101 DOI: 10.1128/aem.03026-09] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterocytozoon bieneusi is a microsporidian parasite that infects many vertebrate animals, including humans. The rDNA internal transcribed spacer (ITS) shows a hypervariable sequence; however, so far no clear information has been inferred about strain evolution in this species. We reviewed all the sequences described and performed a phylogenetic study. Four groups of sequences strongly differentiated from each other were detected, although most of the isolates (94%) corresponded to group I. The highly diverse sequences of this group were analyzed using median-joining networks. The host species (humans, pets, swine, cattle, birds, and wild animals) and the continents of origin of the isolates were considered. Central haplotypes in the network were obtained from very diverse hosts and geographical origins. The results show that although E. bieneusi has a broad host specificity, transmission is not completely free: some strains were able to circulate within a given host species and were only occasionally transmitted to another host. Additionally, while not relevant for swine or cattle hosts, geography seems to be a relevant factor for human infection by E. bieneusi.
Collapse
|
30
|
Gibson CM, Hunter MS. Extraordinarily widespread and fantastically complex: comparative biology of endosymbiotic bacterial and fungal mutualists of insects. Ecol Lett 2010; 13:223-34. [DOI: 10.1111/j.1461-0248.2009.01416.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Torres-Machorro AL, Hernández R, Cevallos AM, López-Villaseñor I. Ribosomal RNA genes in eukaryotic microorganisms: witnesses of phylogeny? FEMS Microbiol Rev 2010; 34:59-86. [DOI: 10.1111/j.1574-6976.2009.00196.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
32
|
Dong S, Shen Z, Xu L, Zhu F. Sequence and phylogenetic analysis of SSU rRNA gene of five microsporidia. Curr Microbiol 2009; 60:30-7. [PMID: 19768503 PMCID: PMC2796967 DOI: 10.1007/s00284-009-9495-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 07/03/2009] [Accepted: 08/24/2009] [Indexed: 11/30/2022]
Abstract
The complete small subunit rRNA (SSU rRNA) gene sequences of five microsporidia including Nosema heliothidis, and four novel microsporidia isolated from Pieris rapae, Phyllobrotica armta, Hemerophila atrilineata, and Bombyx mori, respectively, were obtained by PCR amplification, cloning, and sequencing. Two phylogenetic trees based on SSU rRNA sequences had been constructed by using Neighbor-Joining of Phylip software and UPGMA of MEGA4.0 software. The taxonomic status of four novel microsporidia was determined by analysis of phylogenetic relationship, length, G+C content, identity, and divergence of the SSU rRNA sequences. The results showed that the microsporidia isolated from Pieris rapae, Phyllobrotica armta, and Hemerophila atrilineata have close phylogenetic relationship with the Nosema, while another microsporidium isolated from Bombyx mori is closely related to the Endoreticulatus. So, we temporarily classify three novel species of microsporidia to genus Nosema, as Nosema sp. PR, Nosema sp. PA, Nosema sp. HA. Another is temporarily classified into genus Endoreticulatus, as Endoreticulatus sp. Zhenjiang. The result indicated as well that it is feasible and valuable to elucidate phylogenetic relationships and taxonomic status of microsporidian species by analyzing information from SSU rRNA sequences of microsporidia.
Collapse
Affiliation(s)
- ShiNan Dong
- College of Biotechnology and Environmental Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | | | | | | |
Collapse
|
33
|
Archibald JM, Lane CE. Going, going, not quite gone: nucleomorphs as a case study in nuclear genome reduction. J Hered 2009; 100:582-90. [PMID: 19617523 DOI: 10.1093/jhered/esp055] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Nucleomorphs are the relic nuclei of algal endosymbionts that became permanent fixtures inside nonphotosynthetic eukaryotic host cells. These unusual organelles exist in only 2 lineages, the cryptophytes, which possess nucleomorphs and plastids (chloroplasts) derived from the uptake of a red algal endosymbiont, and the chlorarachniophytes, which harbor green algal derived nucleomorphs and plastids. Despite having evolved independently of one another, the nucleomorph genomes of cryptophytes and chlorarachniophytes are strikingly similar in size and basic structure. Both are <1 Mbp in size-the smallest nuclear genomes known-and are composed of only 3 chromosomes, each with its own subtelomeric rDNA repeats. Nucleomorph-containing algae thus represent an interesting system in which to study genome and chromosome evolution in eukaryotes. Here, we provide an overview of nucleomorph genome biology and focus on new information gleaned from comparisons of complete nucleomorph genome sequences, both within and between cryptophytes and chlorarachniophytes. Such comparisons provide fascinating insight into the evolution of these highly derived organelles and, more generally, the potential causes and consequences of genome reduction in eukaryotes.
Collapse
Affiliation(s)
- John M Archibald
- Canadian Institute for Advanced Research, Integrated Microbial Biodiversity Program, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada.
| | | |
Collapse
|
34
|
Cornman RS, Chen YP, Schatz MC, Street C, Zhao Y, Desany B, Egholm M, Hutchison S, Pettis JS, Lipkin WI, Evans JD. Genomic analyses of the microsporidian Nosema ceranae, an emergent pathogen of honey bees. PLoS Pathog 2009; 5:e1000466. [PMID: 19503607 PMCID: PMC2685015 DOI: 10.1371/journal.ppat.1000466] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 05/05/2009] [Indexed: 11/19/2022] Open
Abstract
Recent steep declines in honey bee health have severely impacted the beekeeping industry, presenting new risks for agricultural commodities that depend on insect pollination. Honey bee declines could reflect increased pressures from parasites and pathogens. The incidence of the microsporidian pathogen Nosema ceranae has increased significantly in the past decade. Here we present a draft assembly (7.86 MB) of the N. ceranae genome derived from pyrosequence data, including initial gene models and genomic comparisons with other members of this highly derived fungal lineage. N. ceranae has a strongly AT-biased genome (74% A+T) and a diversity of repetitive elements, complicating the assembly. Of 2,614 predicted protein-coding sequences, we conservatively estimate that 1,366 have homologs in the microsporidian Encephalitozoon cuniculi, the most closely related published genome sequence. We identify genes conserved among microsporidia that lack clear homology outside this group, which are of special interest as potential virulence factors in this group of obligate parasites. A substantial fraction of the diminutive N. ceranae proteome consists of novel and transposable-element proteins. For a majority of well-supported gene models, a conserved sense-strand motif can be found within 15 bases upstream of the start codon; a previously uncharacterized version of this motif is also present in E. cuniculi. These comparisons provide insight into the architecture, regulation, and evolution of microsporidian genomes, and will drive investigations into honey bee–Nosema interactions. Honey bee colonies are in decline in many parts of the world, in part due to pressures from a diverse assemblage of parasites and pathogens. The range and prevalence of the microsporidian pathogen Nosema ceranae has increased significantly in the past decade. Here we describe the N. ceranae genome, presenting genome traits, gene models and regulatory motifs. N. ceranae has an extremely reduced and AT-biased genome, yet one with substantial numbers of repetitive elements. We identify novel genes that appear to be conserved among microsporidia but undetected outside this phylum, which are of special interest as potential virulence factors for these obligate pathogens. A previously unrecognized motif is found upstream of many start codons and likely plays a role in gene regulation across the microsporidia. These and other comparisons provide insight into the architecture, regulation, and evolution of microsporidian genomes, and provide the first genetic tools for understanding how this pathogen interacts with honey bee hosts.
Collapse
Affiliation(s)
- R. Scott Cornman
- USDA-ARS Bee Research Lab, Beltsville, Maryland, United States of America
| | - Yan Ping Chen
- USDA-ARS Bee Research Lab, Beltsville, Maryland, United States of America
| | - Michael C. Schatz
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
| | - Craig Street
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Yan Zhao
- USDA-ARS Molecular Plant Pathology Laboratory, Beltsville, Maryland, United States of America
| | - Brian Desany
- 454 Life Sciences/Roche Applied Sciences, Branford, Connecticut, United States of America
| | - Michael Egholm
- 454 Life Sciences/Roche Applied Sciences, Branford, Connecticut, United States of America
| | - Stephen Hutchison
- 454 Life Sciences/Roche Applied Sciences, Branford, Connecticut, United States of America
| | - Jeffery S. Pettis
- USDA-ARS Bee Research Lab, Beltsville, Maryland, United States of America
| | - W. Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Jay D. Evans
- USDA-ARS Bee Research Lab, Beltsville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
35
|
Reedy JL, Bastidas RJ, Heitman J. The virulence of human pathogenic fungi: notes from the South of France. Cell Host Microbe 2007; 2:77-83. [PMID: 18005722 DOI: 10.1016/j.chom.2007.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The Second FEBS Advanced Lecture Course on Human Fungal Pathogens: Molecular Mechanisms of Host-Pathogen Interactions and Virulence, organized by Christophe d'Enfert (Institut Pasteur, France), Anita Sil (UCSF, USA), and Steffen Rupp (Fraunhofer, IGB, Germany), occurred May 2007 in La Colle sur Loup, France. Here we review the advances presented and the current state of knowledge in key areas of fungal pathogenesis.
Collapse
Affiliation(s)
- Jennifer L Reedy
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
36
|
Parfrey LW, Barbero E, Lasser E, Dunthorn M, Bhattacharya D, Patterson DJ, Katz LA. Evaluating support for the current classification of eukaryotic diversity. PLoS Genet 2006; 2:e220. [PMID: 17194223 PMCID: PMC1713255 DOI: 10.1371/journal.pgen.0020220] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Accepted: 11/09/2006] [Indexed: 11/19/2022] Open
Abstract
Perspectives on the classification of eukaryotic diversity have changed rapidly in recent years, as the four eukaryotic groups within the five-kingdom classification—plants, animals, fungi, and protists—have been transformed through numerous permutations into the current system of six “supergroups.” The intent of the supergroup classification system is to unite microbial and macroscopic eukaryotes based on phylogenetic inference. This supergroup approach is increasing in popularity in the literature and is appearing in introductory biology textbooks. We evaluate the stability and support for the current six-supergroup classification of eukaryotes based on molecular genealogies. We assess three aspects of each supergroup: (1) the stability of its taxonomy, (2) the support for monophyly (single evolutionary origin) in molecular analyses targeting a supergroup, and (3) the support for monophyly when a supergroup is included as an out-group in phylogenetic studies targeting other taxa. Our analysis demonstrates that supergroup taxonomies are unstable and that support for groups varies tremendously, indicating that the current classification scheme of eukaryotes is likely premature. We highlight several trends contributing to the instability and discuss the requirements for establishing robust clades within the eukaryotic tree of life. Evolutionary perspectives, including the classification of living organisms, provide the unifying scaffold on which biological knowledge is assembled. Researchers in many areas of biology use evolutionary classifications (taxonomy) in many ways, including as a means for interpreting the origin of evolutionary innovations, as a framework for comparative genetics/genomics, and as the basis for drawing broad conclusions about the diversity of living organisms. Thus, it is essential that taxonomy be robust. Here the authors evaluate the stability of and support for the current classification system of eukaryotic cells (cells with nuclei) in which eukaryotes are divided into six kingdom level categories, or supergroups. These six supergroups unite diverse microbial and macrobial eukaryotic lineages, including the well-known groups of plants, animals, and fungi. The authors assess the stability of supergroup classifications through time and reveal a rapidly changing taxonomic landscape that is difficult to navigate for the specialist and generalist alike. Additionally, the authors find variable support for each of the supergroups in published analyses based on DNA sequence variation. The support for supergroups differs according to the taxonomic area under study and the origin of the genes (e.g., nuclear, plastid) used in the analysis. Encouragingly, combining a conservative approach to taxonomy with increased sampling of microbial eukaryotes and the use of multiple types of data is likely to produce a robust scaffold for the eukaryotic tree of life.
Collapse
Affiliation(s)
- Laura Wegener Parfrey
- Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Erika Barbero
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
| | - Elyse Lasser
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
| | - Micah Dunthorn
- Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Debashish Bhattacharya
- Department of Biological Sciences, University of Iowa, Iowa City, Iowa, United States of America
- Roy J. Carver Center for Comparative Genomics, University of Iowa, Iowa City, Iowa, United States of America
| | - David J Patterson
- Bay Paul Center for Genomics, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Laura A Katz
- Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW Microsporidiosis is an emerging and opportunistic infection associated with a wide range of clinical syndromes in humans. This review highlights the research on microsporidiosis in humans during the previous 2 years. RECENT FINDINGS The reduced and compact microsporidian genome has generated much interest for better understanding the evolution of these parasites, and comparative molecular phylogenetic studies continue to support a relationship between the microsporidia and fungi. Through increased awareness and improved diagnostics, microsporidiosis has been identified in a broader range of human populations that, in addition to persons with HIV infection, includes travelers, children, organ transplant recipients, and the elderly. SUMMARY Effective commercial therapies for Enterocytozoon bieneusi, the most common microsporidian species identified in humans, are still lacking, making the need to develop tissue culture and small animal models increasingly urgent. Environmental transport modeling and disinfection strategies are being addressed for improving water safety. Questions still exist about whether microsporidia infections remain persistent in asymptomatic immune-competent individuals, reactivate during conditions of immune compromise, or may be transmitted to others at risk, such as during pregnancy or through organ donation. Reliable serological diagnostic methods are needed to supplement polymerase chain reaction or histochemistry when spore shedding may be sporadic.
Collapse
Affiliation(s)
- Elizabeth S Didier
- Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana 70433, USA.
| | | |
Collapse
|
38
|
Foth BJ, Goedecke MC, Soldati D. New insights into myosin evolution and classification. Proc Natl Acad Sci U S A 2006; 103:3681-6. [PMID: 16505385 PMCID: PMC1533776 DOI: 10.1073/pnas.0506307103] [Citation(s) in RCA: 347] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Myosins are eukaryotic actin-dependent molecular motors important for a broad range of functions like muscle contraction, vision, hearing, cell motility, and host cell invasion of apicomplexan parasites. Myosin heavy chains consist of distinct head, neck, and tail domains and have previously been categorized into 18 different classes based on phylogenetic analysis of their conserved heads. Here we describe a comprehensive phylogenetic examination of many previously unclassified myosins, with particular emphasis on sequences from apicomplexan and other chromalveolate protists including the model organism Toxoplasma, the malaria parasite Plasmodium, and the ciliate Tetrahymena. Using different phylogenetic inference methods and taking protein domain architectures, specific amino acid polymorphisms, and organismal distribution into account, we demonstrate a hitherto unrecognized common origin for ciliate and apicomplexan class XIV myosins. Our data also suggest common origins for some apicomplexan myosins and class VI, for classes II and XVIII, for classes XII and XV, and for some microsporidian myosins and class V, thereby reconciling evolutionary history and myosin structure in several cases and corroborating the common coevolution of myosin head, neck, and tail domains. Six novel myosin classes are established to accommodate sequences from chordate metazoans (class XIX), insects (class XX), kinetoplastids (class XXI), and apicomplexans and diatom algae (classes XXII, XXIII, and XXIV). These myosin (sub)classes include sequences with protein domains (FYVE, WW, UBA, ATS1-like, and WD40) previously unknown to be associated with myosin motors. Regarding the apicomplexan "myosome," we significantly update class XIV classification, propose a systematic naming convention, and discuss possible functions in these parasites.
Collapse
Affiliation(s)
- Bernardo J Foth
- Department of Microbiology and Molecular Medicine, Centre Médical Universitaire, University of Geneva, 1 Rue Michel-Servet, 1211 Geneva, Switzerland.
| | | | | |
Collapse
|