1
|
Makarova O, Steinke D, Roesler U. Herbicide glyphosate efficiently inhibits growth of pathogenic Prototheca algae species, suggesting the presence of novel pathways for the development of anti-algal drugs. Microbiol Spectr 2025; 13:e0234324. [PMID: 39868990 PMCID: PMC11878087 DOI: 10.1128/spectrum.02343-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/27/2024] [Indexed: 01/28/2025] Open
Abstract
Prototheca are ubiquitous algae and occasional pathogens of humans and animals. While rare, the infection is often fatal and treatment options are limited to antifungals with low efficiency. Here, using growth curve assays, we demonstrate that five pathogenic species of Prototheca (P. blaschkeae, P. wickerhamii, P. cutis, P. ciferrii, P. bovis) were fully inhibited by 50-100 μg/mL of herbicide glyphosate, suggesting novel pathways that can be considered for anti-algal drug development.IMPORTANCEPrototheca are algae frequently found in the environment that occasionally cause infections in humans and animals. Although these infections are rare, they are often deadly for immunocompromised patients. Considering the rising ambient temperatures that promote algal bloom and a growing number of immunocompromised patients globally, such cases are likely to increase and will require efficient medications. Currently, the treatment is limited to antifungals that affect algal and animal membranes alike at concentrations close to toxic. Here, we hypothesized that targeting a pathway that is present in plants but not animals may be a new approach to the development of novel anti-algal compounds with high efficiency and lower toxicity. In this proof-of-principle study, we found that herbicide glyphosate, which targets the shikimate pathway found in plants but not in animals, efficiently inhibits all five tested pathogenic Prototheca, suggesting that the shikimate pathway may be a promising target for anti-algal drug development.
Collapse
Affiliation(s)
- Olga Makarova
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany
- Unit of Veterinary Public Health and Epidemiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Diana Steinke
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany
| | - Uwe Roesler
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
2
|
Li Z, Zhuang J, Cao J, Han Q, Luo Z, Wang B, Wang H, Dong C, Li A. Fine structural features of the free-living stages of Amyloodinium ocellatum (Dinoflagellata, Thoracosphaeraceae): A marine fish ectoparasite. J Eukaryot Microbiol 2025; 72:e13067. [PMID: 39555963 DOI: 10.1111/jeu.13067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/19/2024]
Abstract
Amyloodinium ocellatum is a protozoan parasite that causes amyloodiniosis in marine and brackish water fish, threatening global aquaculture. The present study investigates the morphology and ultrastructure of the free-living stages of A. ocellatum (tomont and dinospore) using light microscopy (LM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Dinospores measured 13.03-19.66 μm in length, 12.32-18.71 μm in width, and were laterally flattened. Dinospores had a transverse flagellum for propulsion and a longitudinal flagellum for direction control. The cyst wall had three distinct layers and included cellulose. The outer wall was coated with numerous bacteria. The orange-red speckled eyespot was observed all tomont developmental stages and in the dinospore of A. ocellatum. Tomonts proliferation required successive nuclear division, the formation of new cyst walls, and cytoplasmic segregation. The cytoplasm comprises mainly the matrix, organelles, and inclusions. The matrix was grainy and evenly distributed. In addition to organelles, including mitochondria with tubular cristae, Golgi apparatus, and endoplasmic reticulum, the cytoplasm had starch grains and lipid droplets as inclusions. The A. ocellatum cells lacked chloroplasts. This study provides the first ultrastructural view of the cytoplasmic structure of the free-living stages of A. ocellatum.
Collapse
Affiliation(s)
- Zhicheng Li
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jingyu Zhuang
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jizhen Cao
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Qing Han
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhi Luo
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Baotun Wang
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Hebing Wang
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Chuanfu Dong
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Anxing Li
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Maciszewski K, Wilga G, Jagielski T, Bakuła Z, Gawor J, Gromadka R, Karnkowska A. Reduced plastid genomes of colorless facultative pathogens Prototheca (Chlorophyta) are retained for membrane transport genes. BMC Biol 2024; 22:294. [PMID: 39696433 DOI: 10.1186/s12915-024-02089-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Plastids are usually involved in photosynthesis, but the secondary loss of this function is a widespread phenomenon in various lineages of algae and plants. In addition to the loss of genes associated with photosynthesis, the plastid genomes of colorless algae are frequently reduced further. To understand the pathways of reductive evolution associated with the loss of photosynthesis, it is necessary to study a number of closely related strains. Prototheca, a chlorophyte genus of facultative pathogens, provides an excellent opportunity to study this process with its well-sampled array of diverse colorless strains. RESULTS We have sequenced the plastid genomes of 13 Prototheca strains and reconstructed a comprehensive phylogeny that reveals evolutionary patterns within the genus and among its closest relatives. Our phylogenomic analysis revealed three independent losses of photosynthesis among the Prototheca strains and varied protein-coding gene content in their ptDNA. Despite this diversity, all Prototheca strains retain the same key plastid functions. These include processes related to gene expression, as well as crucial roles in fatty acid and cysteine biosynthesis, and membrane transport. CONCLUSIONS The retention of vestigial genomes in colorless plastids is typically associated with the biosynthesis of secondary metabolites. In contrast, the remarkable conservation of plastid membrane transport system components in the nonphotosynthetic genera Prototheca and Helicosporidium provides an additional constraint against the loss of ptDNA in this lineage. Furthermore, these genes can potentially serve as targets for therapeutic intervention, indicating their importance beyond the evolutionary context.
Collapse
Affiliation(s)
- Kacper Maciszewski
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Gabriela Wilga
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Tomasz Jagielski
- Department of Medical Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Zofia Bakuła
- Department of Medical Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Jan Gawor
- DNA Sequencing and Synthesis Facility, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Robert Gromadka
- DNA Sequencing and Synthesis Facility, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Karnkowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
4
|
Suzuki S, Matsuzaki R, Yamaguchi H, Kawachi M. What happened before losses of photosynthesis in cryptophyte algae? Mol Biol Evol 2022; 39:6513384. [PMID: 35079797 PMCID: PMC8829904 DOI: 10.1093/molbev/msac001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
In many lineages of algae and land plants, photosynthesis was lost multiple times independently. Comparative analyses of photosynthetic and secondary nonphotosynthetic relatives have revealed the essential functions of plastids, beyond photosynthesis. However, evolutionary triggers and processes that drive the loss of photosynthesis remain unknown. Cryptophytes are microalgae with complex plastids derived from a red alga. They include several secondary nonphotosynthetic species with closely related photosynthetic taxa. In this study, we found that a cryptophyte, Cryptomonas borealis, is in a stage just prior to the loss of photosynthesis. Cryptomonas borealis was mixotrophic, possessed photosynthetic activity, and grew independent of light. The plastid genome of C. borealis had distinct features, including increases of group II introns with mobility, frequent genome rearrangements, incomplete loss of inverted repeats, and abundant small/medium/large-sized structural variants. These features provide insight into the evolutionary process leading to the loss of photosynthesis.
Collapse
Affiliation(s)
- Shigekatsu Suzuki
- Biodiversity Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, 305-8506, Japan
| | - Ryo Matsuzaki
- Biodiversity Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, 305-8506, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Haruyo Yamaguchi
- Biodiversity Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, 305-8506, Japan
| | - Masanobu Kawachi
- Biodiversity Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, 305-8506, Japan
| |
Collapse
|
5
|
Kořený L, Oborník M, Horáková E, Waller RF, Lukeš J. The convoluted history of haem biosynthesis. Biol Rev Camb Philos Soc 2021; 97:141-162. [PMID: 34472688 DOI: 10.1111/brv.12794] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 01/14/2023]
Abstract
The capacity of haem to transfer electrons, bind diatomic gases, and catalyse various biochemical reactions makes it one of the essential biomolecules on Earth and one that was likely used by the earliest forms of cellular life. Since the description of haem biosynthesis, our understanding of this multi-step pathway has been almost exclusively derived from a handful of model organisms from narrow taxonomic contexts. Recent advances in genome sequencing and functional studies of diverse and previously neglected groups have led to discoveries of alternative routes of haem biosynthesis that deviate from the 'classical' pathway. In this review, we take an evolutionarily broad approach to illuminate the remarkable diversity and adaptability of haem synthesis, from prokaryotes to eukaryotes, showing the range of strategies that organisms employ to obtain and utilise haem. In particular, the complex evolutionary histories of eukaryotes that involve multiple endosymbioses and horizontal gene transfers are reflected in the mosaic origin of numerous metabolic pathways with haem biosynthesis being a striking case. We show how different evolutionary trajectories and distinct life strategies resulted in pronounced tensions and differences in the spatial organisation of the haem biosynthesis pathway, in some cases leading to a complete loss of a haem-synthesis capacity and, rarely, even loss of a requirement for haem altogether.
Collapse
Affiliation(s)
- Luděk Kořený
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, U.K
| | - Miroslav Oborník
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice (Budweis), 370 05, Czech Republic.,Faculty of Sciences, University of South Bohemia, Branišovská, České Budějovice (Budweis), 31, Czech Republic
| | - Eva Horáková
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice (Budweis), 370 05, Czech Republic
| | - Ross F Waller
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, U.K
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice (Budweis), 370 05, Czech Republic.,Faculty of Sciences, University of South Bohemia, Branišovská, České Budějovice (Budweis), 31, Czech Republic
| |
Collapse
|
6
|
Fuentes-Ramírez EO, Vázquez-Acevedo M, Cabrera-Orefice A, Guerrero-Castillo S, González-Halphen D. The plastid proteome of the nonphotosynthetic chlorophycean alga Polytomella parva. Microbiol Res 2020; 243:126649. [PMID: 33285428 DOI: 10.1016/j.micres.2020.126649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/23/2020] [Accepted: 11/13/2020] [Indexed: 11/19/2022]
Abstract
The unicellular, free-living, nonphotosynthetic chlorophycean alga Polytomella parva, closely related to Chlamydomonas reinhardtii and Volvox carteri, contains colorless, starch-storing plastids. The P. parva plastids lack all light-dependent processes but maintain crucial metabolic pathways. The colorless alga also lacks a plastid genome, meaning no transcription or translation should occur inside the organelle. Here, using an algal fraction enriched in plastids as well as publicly available transcriptome data, we provide a morphological and proteomic characterization of the P. parva plastid, ultimately identifying several plastid proteins, both by mass spectrometry and bioinformatic analyses. Data are available via ProteomeXchange with identifier PXD022051. Altogether these results led us to propose a plastid proteome for P. parva, i.e., a set of proteins that participate in carbohydrate metabolism; in the synthesis and degradation of starch, amino acids and lipids; in the biosynthesis of terpenoids and tetrapyrroles; in solute transport and protein translocation; and in redox homeostasis. This is the first detailed plastid proteome from a unicellular, free-living colorless alga.
Collapse
Affiliation(s)
- Emma O Fuentes-Ramírez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, CDMX, Mexico.
| | - Miriam Vázquez-Acevedo
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, CDMX, Mexico.
| | - Alfredo Cabrera-Orefice
- Radboud Institute for Molecular Life Sciences, Department of Pediatrics, Radboud University Medical Center, Geert Grooteplein-Zuid 10, 6525, GA, Nijmegen, the Netherlands.
| | - Sergio Guerrero-Castillo
- Radboud Institute for Molecular Life Sciences, Department of Pediatrics, Radboud University Medical Center, Geert Grooteplein-Zuid 10, 6525, GA, Nijmegen, the Netherlands; University Children's Research@Kinder-UKE, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| | - Diego González-Halphen
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, CDMX, Mexico.
| |
Collapse
|
7
|
Abstract
Most secondary nonphotosynthetic eukaryotes have retained residual plastids whose physiological role is often still unknown. One such example is Euglena longa, a close nonphotosynthetic relative of Euglena gracilis harboring a plastid organelle of enigmatic function. By mining transcriptome data from E. longa, we finally provide an overview of metabolic processes localized to its elusive plastid. The organelle plays no role in the biosynthesis of isoprenoid precursors and fatty acids and has a very limited repertoire of pathways concerning nitrogen-containing metabolites. In contrast, the synthesis of phospholipids and glycolipids has been preserved, curiously with the last step of sulfoquinovosyldiacylglycerol synthesis being catalyzed by the SqdX form of an enzyme so far known only from bacteria. Notably, we show that the E. longa plastid synthesizes tocopherols and a phylloquinone derivative, the first such report for nonphotosynthetic plastids studied so far. The most striking attribute of the organelle could be the presence of a linearized Calvin-Benson (CB) pathway, including RuBisCO yet lacking the gluconeogenetic part of the standard cycle, together with ferredoxin-NADP+ reductase (FNR) and the ferredoxin/thioredoxin system. We hypothesize that the ferredoxin/thioredoxin system activates the linear CB pathway in response to the redox status of the E. longa cell and speculate on the role of the pathway in keeping the redox balance of the cell. Altogether, the E. longa plastid defines a new class of relic plastids that is drastically different from the best-studied organelle of this category, the apicoplast.IMPORTANCE Colorless plastids incapable of photosynthesis evolved in many plant and algal groups, but what functions they perform is still unknown in many cases. Here, we study the elusive plastid of Euglena longa, a nonphotosynthetic cousin of the familiar green flagellate Euglena gracilis We document an unprecedented combination of metabolic functions that the E. longa plastid exhibits in comparison with previously characterized nonphotosynthetic plastids. For example, and truly surprisingly, it has retained the synthesis of tocopherols (vitamin E) and a phylloquinone (vitamin K) derivative. In addition, we offer a possible solution of the long-standing conundrum of the presence of the CO2-fixing enzyme RuBisCO in E. longa Our work provides a detailed account on a unique variant of relic plastids, the first among nonphotosynthetic plastids that evolved by secondary endosymbiosis from a green algal ancestor, and suggests that it has persisted for reasons not previously considered in relation to nonphotosynthetic plastids.
Collapse
|
8
|
Kim JI, Jeong M, Archibald JM, Shin W. Comparative Plastid Genomics of Non-Photosynthetic Chrysophytes: Genome Reduction and Compaction. FRONTIERS IN PLANT SCIENCE 2020; 11:572703. [PMID: 33013997 PMCID: PMC7511666 DOI: 10.3389/fpls.2020.572703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/24/2020] [Indexed: 05/11/2023]
Abstract
Spumella-like heterotrophic chrysophytes are important eukaryotic microorganisms that feed on bacteria in aquatic and soil environments. They are characterized by their lack of pigmentation, naked cell surface, and extremely small size. Although Spumella-like chrysophytes have lost their photosynthetic ability, they still possess a leucoplast and retain a plastid genome. We have sequenced the plastid genomes of three non-photosynthetic chrysophytes, Spumella sp. Baeckdong012018B8, Pedospumella sp. Jangsampo120217C5 and Poteriospumella lacustris Yongseonkyo072317C3, and compared them to the previously sequenced plastid genome of "Spumella" sp. NIES-1846 and photosynthetic chrysophytes. We found the plastid genomes of Spumella-like flagellates to be generally conserved with respect to genome structure and housekeeping gene content. We nevertheless also observed lineage-specific gene rearrangements and duplication of partial gene fragments at the boundary of the inverted repeat and single copy regions. Most gene losses correspond to genes for proteins involved in photosynthesis and carbon fixation, except in the case of petF. The newly sequenced plastid genomes range from ~55.7 kbp to ~62.9 kbp in size and share a core set of 45 protein-coding genes, 3 rRNAs, and 32 to 34 tRNAs. Our results provide insight into the evolutionary history of organelle genomes via genome reduction and gene loss related to loss of photosynthesis in chrysophyte evolution.
Collapse
Affiliation(s)
- Jong Im Kim
- Department of Biology, Chungnam National University, Daejeon, South Korea
| | - Minseok Jeong
- Department of Biology, Chungnam National University, Daejeon, South Korea
| | - John M. Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Woongghi Shin
- Department of Biology, Chungnam National University, Daejeon, South Korea
- *Correspondence: Woongghi Shin,
| |
Collapse
|
9
|
Jagielski T, Bakuła Z, Gawor J, Maciszewski K, Kusber WH, Dyląg M, Nowakowska J, Gromadka R, Karnkowska A. The genus Prototheca (Trebouxiophyceae, Chlorophyta) revisited: Implications from molecular taxonomic studies. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101639] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Cenci U, Sibbald SJ, Curtis BA, Kamikawa R, Eme L, Moog D, Henrissat B, Maréchal E, Chabi M, Djemiel C, Roger AJ, Kim E, Archibald JM. Nuclear genome sequence of the plastid-lacking cryptomonad Goniomonas avonlea provides insights into the evolution of secondary plastids. BMC Biol 2018; 16:137. [PMID: 30482201 PMCID: PMC6260743 DOI: 10.1186/s12915-018-0593-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 10/12/2018] [Indexed: 11/21/2022] Open
Abstract
Background The evolution of photosynthesis has been a major driver in eukaryotic diversification. Eukaryotes have acquired plastids (chloroplasts) either directly via the engulfment and integration of a photosynthetic cyanobacterium (primary endosymbiosis) or indirectly by engulfing a photosynthetic eukaryote (secondary or tertiary endosymbiosis). The timing and frequency of secondary endosymbiosis during eukaryotic evolution is currently unclear but may be resolved in part by studying cryptomonads, a group of single-celled eukaryotes comprised of both photosynthetic and non-photosynthetic species. While cryptomonads such as Guillardia theta harbor a red algal-derived plastid of secondary endosymbiotic origin, members of the sister group Goniomonadea lack plastids. Here, we present the genome of Goniomonas avonlea—the first for any goniomonad—to address whether Goniomonadea are ancestrally non-photosynthetic or whether they lost a plastid secondarily. Results We sequenced the nuclear and mitochondrial genomes of Goniomonas avonlea and carried out a comparative analysis of Go. avonlea, Gu. theta, and other cryptomonads. The Go. avonlea genome assembly is ~ 92 Mbp in size, with 33,470 predicted protein-coding genes. Interestingly, some metabolic pathways (e.g., fatty acid biosynthesis) predicted to occur in the plastid and periplastidal compartment of Gu. theta appear to operate in the cytoplasm of Go. avonlea, suggesting that metabolic redundancies were generated during the course of secondary plastid integration. Other cytosolic pathways found in Go. avonlea are not found in Gu. theta, suggesting secondary loss in Gu. theta and other plastid-bearing cryptomonads. Phylogenetic analyses revealed no evidence for algal endosymbiont-derived genes in the Go. avonlea genome. Phylogenomic analyses point to a specific relationship between Cryptista (to which cryptomonads belong) and Archaeplastida. Conclusion We found no convincing genomic or phylogenomic evidence that Go. avonlea evolved from a secondary red algal plastid-bearing ancestor, consistent with goniomonads being ancestrally non-photosynthetic eukaryotes. The Go. avonlea genome sheds light on the physiology of heterotrophic cryptomonads and serves as an important reference point for studying the metabolic “rewiring” that took place during secondary plastid integration in the ancestor of modern-day Cryptophyceae. Electronic supplementary material The online version of this article (10.1186/s12915-018-0593-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ugo Cenci
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Shannon J Sibbald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Bruce A Curtis
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ryoma Kamikawa
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Kyoto, 606-8501, Japan
| | - Laura Eme
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada.,Present address: Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123, Uppsala, Sweden
| | - Daniel Moog
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada.,Present address: Laboratory for Cell Biology, Philipps University Marburg, Karl-von-Frisch-Str. 8, 35043, Marburg, Germany
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Université Aix-Marseille, 163 Avenue de Luminy, 13288, Marseille, France.,INRA, USC 1408 AFMB, 13288, Marseille, France.,Department of Biological Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, INRA, Université Grenoble Alpes, Institut de Biosciences et Biotechnologies de Grenoble, CEA-Grenoble, 17 rue des Martyrs, 38000, Grenoble, France
| | - Malika Chabi
- Present address: UMR 8576 - Unité de glycobiologie structurale et fonctionnelle, Université Lille 1, 59650, Villeneuve d'Ascq, France
| | - Christophe Djemiel
- Present address: UMR 8576 - Unité de glycobiologie structurale et fonctionnelle, Université Lille 1, 59650, Villeneuve d'Ascq, France
| | - Andrew J Roger
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada.,Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity, Toronto, Ontario, Canada
| | - Eunsoo Kim
- Division of Invertebrate Zoology & Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79 Street, New York, NY, 10024, USA
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada. .,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada. .,Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity, Toronto, Ontario, Canada.
| |
Collapse
|
11
|
Ng SM, Lee XW, Mat-Isa MN, Aizat-Juhari MA, Adam JH, Mohamed R, Wan KL, Firdaus-Raih M. Comparative analysis of nucleus-encoded plastid-targeting proteins in Rafflesia cantleyi against photosynthetic and non-photosynthetic representatives reveals orthologous systems with potentially divergent functions. Sci Rep 2018; 8:17258. [PMID: 30467394 PMCID: PMC6250676 DOI: 10.1038/s41598-018-35173-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/31/2018] [Indexed: 12/11/2022] Open
Abstract
Parasitic plants are known to discard photosynthesis thus leading to the deletion or loss of the plastid genes. Despite plastid genome reduction in non-photosynthetic plants, some nucleus-encoded proteins are transported back to the plastid to carry out specific functions. In this work, we study such proteins in Rafflesia cantleyi, a member of the holoparasitic genus well-known for producing the largest single flower in the world. Our analyses of three transcriptome datasets, two holoparasites (R. cantleyi and Phelipanche aegyptiaca) and one photosynthetic plant (Arabidopsis thaliana), suggest that holoparasites, such as R. cantleyi, retain some common plastid associated processes such as biosynthesis of amino acids and lipids, but are missing photosynthesis components that can be extensions of these pathways. The reconstruction of two selected biosynthetic pathways involving plastids correlates the trend of plastid retention to pathway complexity - transcriptome evidence for R. cantleyi suggests alternate mechanisms in regulating the plastidial heme and terpenoid backbone biosynthesis pathways. The evolution to holoparasitism from autotrophy trends towards devolving the plastid genes to the nuclear genome despite the functional sites remaining in the plastid, or maintaining non-photosynthetic processes in the plastid, before the eventual loss of the plastid and any site dependent functions.
Collapse
Affiliation(s)
- Siuk-Mun Ng
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
- Codon Genomics SB, No 26, Jalan Dutamas 7, Taman Dutamas Balakong, 43200, Seri Kembangan, Selangor, Malaysia
| | - Xin-Wei Lee
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Mohd-Noor Mat-Isa
- Malaysia Genome Institute, Jalan Bangi, 43000, Kajang, Selangor, Malaysia
| | - Mohd Afiq Aizat-Juhari
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Jumaat Haji Adam
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Rahmah Mohamed
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Kiew-Lian Wan
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia.
| | - Mohd Firdaus-Raih
- Centre for Frontier Sciences, Faculty of Science and Technology and Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia.
| |
Collapse
|
12
|
Nowack ECM, Weber APM. Genomics-Informed Insights into Endosymbiotic Organelle Evolution in Photosynthetic Eukaryotes. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:51-84. [PMID: 29489396 DOI: 10.1146/annurev-arplant-042817-040209] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The conversion of free-living cyanobacteria to photosynthetic organelles of eukaryotic cells through endosymbiosis transformed the biosphere and eventually provided the basis for life on land. Despite the presumable advantage conferred by the acquisition of photoautotrophy through endosymbiosis, only two independent cases of primary endosymbiosis have been documented: one that gave rise to the Archaeplastida, and the other to photosynthetic species of the thecate, filose amoeba Paulinella. Here, we review recent genomics-informed insights into the primary endosymbiotic origins of cyanobacteria-derived organelles. Furthermore, we discuss the preconditions for the evolution of nitrogen-fixing organelles. Recent genomic data on previously undersampled cyanobacterial and protist taxa provide new clues to the origins of the host cell and endosymbiont, and proteomic approaches allow insights into the rearrangement of the endosymbiont proteome during organellogenesis. We conclude that in addition to endosymbiotic gene transfers, horizontal gene acquisitions from a broad variety of prokaryotic taxa were crucial to organelle evolution.
Collapse
Affiliation(s)
- Eva C M Nowack
- Microbial Symbiosis and Organelle Evolution Group, Biology Department, Heinrich Heine University, 40225 Düsseldorf, Germany;
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany;
| |
Collapse
|
13
|
Multiple losses of photosynthesis and convergent reductive genome evolution in the colourless green algae Prototheca. Sci Rep 2018; 8:940. [PMID: 29343788 PMCID: PMC5772498 DOI: 10.1038/s41598-017-18378-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/11/2017] [Indexed: 12/02/2022] Open
Abstract
Autotrophic eukaryotes have evolved by the endosymbiotic uptake of photosynthetic organisms. Interestingly, many algae and plants have secondarily lost the photosynthetic activity despite its great advantages. Prototheca and Helicosporidium are non-photosynthetic green algae possessing colourless plastids. The plastid genomes of Prototheca wickerhamii and Helicosporidium sp. are highly reduced owing to the elimination of genes related to photosynthesis. To gain further insight into the reductive genome evolution during the shift from a photosynthetic to a heterotrophic lifestyle, we sequenced the plastid and nuclear genomes of two Prototheca species, P. cutis JCM 15793 and P. stagnora JCM 9641, and performed comparative genome analyses among trebouxiophytes. Our phylogenetic analyses using plastid- and nucleus-encoded proteins strongly suggest that independent losses of photosynthesis have occurred at least three times in the clade of Prototheca and Helicosporidium. Conserved gene content among these non-photosynthetic lineages suggests that the plastid and nuclear genomes have convergently eliminated a similar set of photosynthesis-related genes. Other than the photosynthetic genes, significant gene loss and gain were not observed in Prototheca compared to its closest photosynthetic relative Auxenochlorella. Although it remains unclear why loss of photosynthesis occurred in Prototheca, the mixotrophic capability of trebouxiophytes likely made it possible to eliminate photosynthesis.
Collapse
|
14
|
Reductive evolution of chloroplasts in non-photosynthetic plants, algae and protists. Curr Genet 2017; 64:365-387. [DOI: 10.1007/s00294-017-0761-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/22/2017] [Accepted: 10/04/2017] [Indexed: 11/24/2022]
|
15
|
Kamikawa R, Moog D, Zauner S, Tanifuji G, Ishida KI, Miyashita H, Mayama S, Hashimoto T, Maier UG, Archibald JM, Inagaki Y. A Non-photosynthetic Diatom Reveals Early Steps of Reductive Evolution in Plastids. Mol Biol Evol 2017; 34:2355-2366. [DOI: 10.1093/molbev/msx172] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
16
|
Bodył A. Did some red alga-derived plastids evolveviakleptoplastidy? A hypothesis. Biol Rev Camb Philos Soc 2017; 93:201-222. [DOI: 10.1111/brv.12340] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Andrzej Bodył
- Laboratory of Evolutionary Protistology, Department of Invertebrate Biology, Evolution and Conservation, Institute of Environmental Biology; University of Wrocław, ul. Przybyszewskiego 65; 51-148 Wrocław Poland
| |
Collapse
|
17
|
Asmail SR, Smith DR. Retention, erosion, and loss of the carotenoid biosynthetic pathway in the nonphotosynthetic green algal genus Polytomella. THE NEW PHYTOLOGIST 2016; 209:899-903. [PMID: 26414876 DOI: 10.1111/nph.13682] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Affiliation(s)
- Sara Raad Asmail
- Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada
| | - David Roy Smith
- Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada
| |
Collapse
|
18
|
Auxenochlorella protothecoides and Prototheca wickerhamii plastid genome sequences give insight into the origins of non-photosynthetic algae. Sci Rep 2015; 5:14465. [PMID: 26403826 PMCID: PMC4585924 DOI: 10.1038/srep14465] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 08/28/2015] [Indexed: 01/16/2023] Open
Abstract
The forfeiting of photosynthetic capabilities has occurred independently many times throughout eukaryotic evolution. But almost all non-photosynthetic plants and algae still retain a colorless plastid and an associated genome, which performs fundamental processes apart from photosynthesis. Unfortunately, little is known about the forces leading to photosynthetic loss; this is largely because there is a lack of data from transitional species. Here, we compare the plastid genomes of two “transitional” green algae: the photosynthetic, mixotrophic Auxenochlorella protothecoides and the non-photosynthetic, obligate heterotroph Prototheca wickerhamii. Remarkably, the plastid genome of A. protothecoides is only slightly larger than that of P. wickerhamii, making it among the smallest plastid genomes yet observed from photosynthetic green algae. Even more surprising, both algae have almost identical plastid genomic architectures and gene compositions (with the exception of genes involved in photosynthesis), implying that they are closely related. This close relationship was further supported by phylogenetic and substitution rate analyses, which suggest that the lineages giving rise to A. protothecoides and P. wickerhamii diverged from one another around six million years ago.
Collapse
|
19
|
Kim JI, Yoon HS, Yi G, Kim HS, Yih W, Shin W. The Plastid Genome of the Cryptomonad Teleaulax amphioxeia. PLoS One 2015; 10:e0129284. [PMID: 26047475 PMCID: PMC4457928 DOI: 10.1371/journal.pone.0129284] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/06/2015] [Indexed: 12/24/2022] Open
Abstract
Teleaulax amphioxeia is a photosynthetic unicellular cryptophyte alga that is distributed throughout marine habitats worldwide. This alga is an important plastid donor to the dinoflagellate Dinophysis caudata through the ciliate Mesodinium rubrum in the marine food web. To better understand the genomic characteristics of T. amphioxeia, we have sequenced and analyzed its plastid genome. The plastid genome sequence of T. amphioxeia is similar to that of Rhodomonas salina, and they share significant synteny. This sequence exhibits less similarity to that of Guillardia theta, the representative plastid genome of photosynthetic cryptophytes. The gene content and order of the three photosynthetic cryptomonad plastid genomes studied is highly conserved. The plastid genome of T. amphioxeia is composed of 129,772 bp and includes 143 protein-coding genes, 2 rRNA operons and 30 tRNA sequences. The DNA polymerase III gene (dnaX) was most likely acquired via lateral gene transfer (LGT) from a firmicute bacterium, identical to what occurred in R. salina. On the other hand, the psbN gene was independently encoded by the plastid genome without a reverse transcriptase gene as an intron. To clarify the phylogenetic relationships of the algae with red-algal derived plastids, phylogenetic analyses of 32 taxa were performed, including three previously sequenced cryptophyte plastid genomes containing 93 protein-coding genes. The stramenopiles were found to have branched out from the Chromista taxa (cryptophytes, haptophytes, and stramenopiles), while the cryptophytes and haptophytes were consistently grouped into sister relationships with high resolution.
Collapse
Affiliation(s)
- Jong Im Kim
- Department of Biology, Chungnam National University, Daejeon, Korea
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Gangman Yi
- Department of Computer Science, Gangneung-Wonju National University, Wonju, Korea
| | - Hyung Seop Kim
- Department of Marine Biotechnology, Kunsan National University, Kunsan, Korea
| | - Wonho Yih
- Department of Marine Biotechnology, Kunsan National University, Kunsan, Korea
- * E-mail: (WY); (WS)
| | - Woongghi Shin
- Department of Biology, Chungnam National University, Daejeon, Korea
- * E-mail: (WY); (WS)
| |
Collapse
|
20
|
Figueroa‐Martinez F, Nedelcu AM, Smith DR, Reyes‐Prieto A. When the lights go out: the evolutionary fate of free-living colorless green algae. THE NEW PHYTOLOGIST 2015; 206:972-82. [PMID: 26042246 PMCID: PMC5024002 DOI: 10.1111/nph.13279] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 12/10/2014] [Indexed: 05/22/2023]
Abstract
The endosymbiotic origin of plastids was a launching point for eukaryotic evolution. The autotrophic abilities bestowed by plastids are responsible for much of the eukaryotic diversity we observe today. But despite its many advantages, photosynthesis has been lost numerous times and in disparate lineages throughout eukaryote evolution. For example, among green algae, several groups have lost photosynthesis independently and in response to different selective pressures; these include the parasitic/pathogenic trebouxiophyte genera Helicosporidium and Prototheca, and the free-living chlamydomonadalean genera Polytomella and Polytoma. Here, we examine the published data on colorless green algae and argue that investigations into the different evolutionary routes leading to their current nonphotosynthetic lifestyles provide exceptional opportunities to understand the ecological and genomic factors involved in the loss of photosynthesis.
Collapse
Affiliation(s)
| | - Aurora M. Nedelcu
- Biology DepartmentUniversity of New BrunswickFrederictonNBE3B 5A3Canada
| | - David R. Smith
- Biology DepartmentUniversity of Western OntarioLondonONN6A 5B7Canada
| | - Adrian Reyes‐Prieto
- Biology DepartmentUniversity of New BrunswickFrederictonNBE3B 5A3Canada
- Integrated Microbiology ProgramCanadian Institute for Advanced ResearchTorontoON M5G 1Z8Canada
| |
Collapse
|
21
|
Salomaki ED, Nickles KR, Lane CE. The ghost plastid of Choreocolax polysiphoniae. JOURNAL OF PHYCOLOGY 2015; 51:217-21. [PMID: 26986516 DOI: 10.1111/jpy.12283] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 01/23/2015] [Indexed: 05/22/2023]
Abstract
Parasitism has evolved innumerable times among eukaryotes. Red algal parasites alone have independently evolved over 100 times. The accepted evolutionary paradigm proposes that red algal parasites arise by first infecting a close relative and over time diversifying and infecting more distantly related species. This provides a natural evolutionary gradient of relationships between hosts and parasites that share a photosynthetic common ancestor. Upon infection, the parasite deposits its organelles into the host cell and takes over, spreading through cell-cell connections. Microscopy and molecular studies have demonstrated that the parasites do not maintain their own plastid, but rather abscond with a dedifferentiated host plastid as they pack up spores for dispersal. We sequenced a ~90 kb plastid genome from the parasite Choreocolax polysiphoniae, which has lost genes for light harvesting and photosynthesis. Furthermore, the presence of a native C. polysiphoniae plastid indicates that not all red algal parasites follow the same evolutionary pathway to parasitism. Along with the 167 kb plastid genome of its host, Vertebrata lanosa, these plastids are the first to be sequenced from the Ceramiales.
Collapse
Affiliation(s)
- Eric D Salomaki
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Katie R Nickles
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Christopher E Lane
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| |
Collapse
|
22
|
Smith DR, Asmail SR. Next-generation sequencing data suggest that certain nonphotosynthetic green plants have lost their plastid genomes. THE NEW PHYTOLOGIST 2014; 204:7-11. [PMID: 24962290 DOI: 10.1111/nph.12919] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Affiliation(s)
- David Roy Smith
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Sara Raad Asmail
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada
| |
Collapse
|
23
|
Stiller JW. Toward an empirical framework for interpreting plastid evolution. JOURNAL OF PHYCOLOGY 2014; 50:462-471. [PMID: 26988319 DOI: 10.1111/jpy.12178] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 02/06/2014] [Indexed: 06/05/2023]
Abstract
The idea that evolutionary models should minimize plastid endosymbioses has dominated thinking about the history of eukaryotic photosynthesis. Although a reasonable starting point, this framework has not gained support from observed patterns of algal and plant evolution, and can be an obstacle to fully understanding the modern distribution of plastids. Empirical data indicate that plastid losses are extremely uncommon, that major changes in plastid biochemistry/architecture are evidence of an endosymbiotic event, and that comparable selection pressures can lead to remarkable convergences in algae with different endosymbiotic origins. Such empirically based generalizations can provide a more realistic philosophical framework for interpreting complex and often contradictory results from phylogenomic investigations of algal evolution.
Collapse
Affiliation(s)
- John W Stiller
- Department of Biology, East Carolina University, Greenville, North Carolina, 27858, USA
| |
Collapse
|
24
|
Gile GH, Slamovits CH. Transcriptomic analysis reveals evidence for a cryptic plastid in the colpodellid Voromonas pontica, a close relative of chromerids and apicomplexan parasites. PLoS One 2014; 9:e96258. [PMID: 24797661 PMCID: PMC4010437 DOI: 10.1371/journal.pone.0096258] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 04/06/2014] [Indexed: 12/20/2022] Open
Abstract
Colpodellids are free-living, predatory flagellates, but their close relationship to photosynthetic chromerids and plastid-bearing apicomplexan parasites suggests they were ancestrally photosynthetic. Colpodellids may therefore retain a cryptic plastid, or they may have lost their plastids entirely, like the apicomplexan Cryptosporidium. To find out, we generated transcriptomic data from Voromonas pontica ATCC 50640 and searched for homologs of genes encoding proteins known to function in the apicoplast, the non-photosynthetic plastid of apicomplexans. We found candidate genes from multiple plastid-associated pathways including iron-sulfur cluster assembly, isoprenoid biosynthesis, and tetrapyrrole biosynthesis, along with a plastid-type phosphate transporter gene. Four of these sequences include the 5' end of the coding region and are predicted to encode a signal peptide and a transit peptide-like region. This is highly suggestive of targeting to a cryptic plastid. We also performed a taxon-rich phylogenetic analysis of small subunit ribosomal RNA sequences from colpodellids and their relatives, which suggests that photosynthesis was lost more than once in colpodellids, and independently in V. pontica and apicomplexans. Colpodellids therefore represent a valuable source of comparative data for understanding the process of plastid reduction in humanity's most deadly parasite.
Collapse
Affiliation(s)
- Gillian H. Gile
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Claudio H. Slamovits
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
25
|
Smith DR, Lee RW. A plastid without a genome: evidence from the nonphotosynthetic green algal genus Polytomella. PLANT PHYSIOLOGY 2014; 164:1812-9. [PMID: 24563281 PMCID: PMC3982744 DOI: 10.1104/pp.113.233718] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Polytomella spp. are free-living, nonphotosynthetic green algae closely related to the model organism Chlamydomonas reinhardtii. Although colorless, Polytomella spp. have a plastid, but it is still unknown whether they harbor a plastid genome. We took a next generation sequencing approach, along with transcriptome sequencing, to search for a plastid genome and an associated gene expression system in Polytomella spp. Illumina sequencing of total DNA from four Polytomella spp. did not produce any recognizable plastid-derived reads but did generate a large number of mitochondrial DNA sequences. Transcriptomic analysis of Polytomella parva uncovered hundreds of putative nuclear-encoded, plastid-targeted proteins, which support the presence of plastid-based metabolic functions, similar to those observed in the plastids of other nonphotosynthetic algae. Conspicuously absent, however, were any plastid-targeted proteins involved in the expression, replication, or repair of plastid DNA. Based on these findings and earlier findings, we argue that the Polytomella genus represents the first well-supported example, to our knowledge, of a primary plastid-bearing lineage without a plastid genome.
Collapse
|
26
|
Fawcett RC, Parrow MW. Mixotrophy and loss of phototrophy among geographic isolates of freshwater Esoptrodinium/Bernardinium sp. (Dinophyceae). JOURNAL OF PHYCOLOGY 2014; 50:55-70. [PMID: 26988008 DOI: 10.1111/jpy.12144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 10/13/2013] [Indexed: 06/05/2023]
Abstract
The genus Esoptrodinium Javornický consists of freshwater, athecate dinoflagellates with an incomplete cingulum. Strains isolated thus far feed on microalgae and most possess obvious pigmented chloroplasts, suggesting mixotrophy. However, some geographic isolates lack obvious pigmented chloroplasts. The purpose of this study was to comparatively examine this difference and the associated potential for mixotrophy among different isolates of Esoptrodinium. All isolates phagocytized prey cells through an unusual hatch-like peduncle located on the ventral episome, and were capable of ingesting various protist taxa. All Esoptrodinium isolates required both food and light to grow. However, only the tested strain with visible pigmented chloroplasts benefited from light in terms of increased biomass (phototrophy). Isolates lacking obvious chloroplasts received no biomass benefit from light, but nevertheless required light for sustained growth (i.e., photoobligate, but not phototrophic). Isolates with visible chloroplasts exhibited chlorophyll autofluorescence and formed a monophyletic psbA gene clade that suggested Esoptrodinium possesses inherited, peridinoid-type plastids. One isolate with cryptic, barely visible plastids lacked detectable chlorophyll and exhibited an apparent loss-of-function mutation in psbA, indicating the presence of nonphotosynthetic plastids. The other isolate that lacked visible chloroplasts lacked both detectable chlorophyll and an amplifiable psbA sequence. The results demonstrate mixotrophy quantitatively for the first time in a freshwater dinoflagellate, as well as apparent within-clade loss of phototrophy along with a correlated mutation sufficient to explain that phenotype. Phototrophy is a variable trait in Esoptrodinium; further study is required to determine if this represents an inter- or intraspecific (allelic) characteristic in this taxon.
Collapse
Affiliation(s)
- Ryan C Fawcett
- Department of Biology, University of North Carolina at Charlotte, Charlotte, North Carolina, 28223, USA
| | - Matthew W Parrow
- Department of Biology, University of North Carolina at Charlotte, Charlotte, North Carolina, 28223, USA
| |
Collapse
|
27
|
|
28
|
Keeling PJ. The endosymbiotic origin, diversification and fate of plastids. Philos Trans R Soc Lond B Biol Sci 2010; 365:729-48. [PMID: 20124341 DOI: 10.1098/rstb.2009.0103] [Citation(s) in RCA: 398] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Plastids and mitochondria each arose from a single endosymbiotic event and share many similarities in how they were reduced and integrated with their host. However, the subsequent evolution of the two organelles could hardly be more different: mitochondria are a stable fixture of eukaryotic cells that are neither lost nor shuffled between lineages, whereas plastid evolution has been a complex mix of movement, loss and replacement. Molecular data from the past decade have substantially untangled this complex history, and we now know that plastids are derived from a single endosymbiotic event in the ancestor of glaucophytes, red algae and green algae (including plants). The plastids of both red algae and green algae were subsequently transferred to other lineages by secondary endosymbiosis. Green algal plastids were taken up by euglenids and chlorarachniophytes, as well as one small group of dinoflagellates. Red algae appear to have been taken up only once, giving rise to a diverse group called chromalveolates. Additional layers of complexity come from plastid loss, which has happened at least once and probably many times, and replacement. Plastid loss is difficult to prove, and cryptic, non-photosynthetic plastids are being found in many non-photosynthetic lineages. In other cases, photosynthetic lineages are now understood to have evolved from ancestors with a plastid of different origin, so an ancestral plastid has been replaced with a new one. Such replacement has taken place in several dinoflagellates (by tertiary endosymbiosis with other chromalveolates or serial secondary endosymbiosis with a green alga), and apparently also in two rhizarian lineages: chlorarachniophytes and Paulinella (which appear to have evolved from chromalveolate ancestors). The many twists and turns of plastid evolution each represent major evolutionary transitions, and each offers a glimpse into how genomes evolve and how cells integrate through gene transfers and protein trafficking.
Collapse
Affiliation(s)
- Patrick J Keeling
- Botany Department, Canadian Institute for Advanced Research, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC, Canada V6T 1Z4.
| |
Collapse
|
29
|
Donaher N, Tanifuji G, Onodera NT, Malfatti SA, Chain PSG, Hara Y, Archibald JM. The complete plastid genome sequence of the secondarily nonphotosynthetic alga Cryptomonas paramecium: reduction, compaction, and accelerated evolutionary rate. Genome Biol Evol 2009; 1:439-48. [PMID: 20333213 PMCID: PMC2839278 DOI: 10.1093/gbe/evp047] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2009] [Indexed: 12/23/2022] Open
Abstract
The cryptomonads are a group of unicellular algae that acquired photosynthesis through the engulfment of a red algal cell, a process called secondary endosymbiosis. Here, we present the complete plastid genome sequence of the secondarily nonphotosynthetic species Cryptomonas paramecium CCAP977/2a. The ∼78 kilobase pair (Kbp) C. paramecium genome contains 82 predicted protein genes, 29 transfer RNA genes, and a single pseudogene (atpF). The C. paramecium plastid genome is approximately 50 Kbp smaller than those of the photosynthetic cryptomonads Guillardia theta and Rhodomonas salina; 71 genes present in the G. theta and/or R. salina plastid genomes are missing in C. paramecium. The pet, psa, and psb photosynthetic gene families are almost entirely absent. Interestingly, the ribosomal RNA operon, present as inverted repeats in most plastid genomes (including G. theta and R. salina), exists as a single copy in C. paramecium. The G + C content (38%) is higher in C. paramecium than in other cryptomonad plastid genomes, and C. paramecium plastid genes are characterized by significantly different codon usage patterns and increased evolutionary rates. The content and structure of the C. paramecium plastid genome provides insight into the changes associated with recent loss of photosynthesis in a predominantly photosynthetic group of algae and reveals features shared with the plastid genomes of other secondarily nonphotosynthetic eukaryotes.
Collapse
Affiliation(s)
- Natalie Donaher
- Integrated Microbial Biodiversity Program, Canadian Institute for Advanced Research, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | | | | | |
Collapse
|
30
|
Bodył A, Mackiewicz P, Stiller JW. Early steps in plastid evolution: current ideas and controversies. Bioessays 2009; 31:1219-32. [DOI: 10.1002/bies.200900073] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
On the origin of chloroplasts, import mechanisms of chloroplast-targeted proteins, and loss of photosynthetic ability — review. Folia Microbiol (Praha) 2009; 54:303-21. [DOI: 10.1007/s12223-009-0048-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 03/31/2009] [Indexed: 10/20/2022]
|
32
|
Ramsden NL, Buetow L, Dawson A, Kemp LA, Ulaganathan V, Brenk R, Klebe G, Hunter WN. A structure-based approach to ligand discovery for 2C-methyl-D-erythritol-2,4-cyclodiphosphate synthase: a target for antimicrobial therapy. J Med Chem 2009; 52:2531-42. [PMID: 19320487 PMCID: PMC2669732 DOI: 10.1021/jm801475n] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The nonmevalonate route to isoprenoid biosynthesis is essential in Gram-negative bacteria and apicomplexan parasites. The enzymes of this pathway are absent from mammals, contributing to their appeal as chemotherapeutic targets. One enzyme, 2C-methyl-d-erythritol-2,4-cyclodiphosphate synthase (IspF), has been validated as a target by genetic approaches in bacteria. Virtual screening against Escherichia coli IspF (EcIspF) was performed by combining a hierarchical filtering methodology with molecular docking. Docked compounds were inspected and 10 selected for experimental validation. A surface plasmon resonance assay was developed and two weak ligands identified. Crystal structures of EcIspF complexes were determined to support rational ligand development. Cytosine analogues and Zn2+-binding moieties were characterized. One of the putative Zn2+-binding compounds gave the lowest measured KD to date (1.92 ± 0.18 μM). These data provide a framework for the development of IspF inhibitors to generate lead compounds of therapeutic potential against microbial pathogens.
Collapse
Affiliation(s)
- Nicola L Ramsden
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, Scotland, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Bodył A, Stiller JW, Mackiewicz P. Chromalveolate plastids: direct descent or multiple endosymbioses? Trends Ecol Evol 2009; 24:119-21; author reply 121-2. [DOI: 10.1016/j.tree.2008.11.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 11/03/2008] [Accepted: 11/04/2008] [Indexed: 10/21/2022]
|
34
|
Krause K. From chloroplasts to “cryptic” plastids: evolution of plastid genomes in parasitic plants. Curr Genet 2008; 54:111-21. [DOI: 10.1007/s00294-008-0208-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 07/21/2008] [Accepted: 07/22/2008] [Indexed: 10/21/2022]
|
35
|
Barsanti L, Coltelli P, Evangelista V, Frassanito AM, Passarelli V, Vesentini N, Gualtieri P. Oddities and Curiosities in the Algal World. ALGAL TOXINS: NATURE, OCCURRENCE, EFFECT AND DETECTION 2008. [DOI: 10.1007/978-1-4020-8480-5_17] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
36
|
|
37
|
McNeal JR, Kuehl JV, Boore JL, de Pamphilis CW. Complete plastid genome sequences suggest strong selection for retention of photosynthetic genes in the parasitic plant genus Cuscuta. BMC PLANT BIOLOGY 2007; 7:57. [PMID: 17956636 PMCID: PMC2216012 DOI: 10.1186/1471-2229-7-57] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Accepted: 10/24/2007] [Indexed: 05/03/2023]
Abstract
BACKGROUND Plastid genome content and protein sequence are highly conserved across land plants and their closest algal relatives. Parasitic plants, which obtain some or all of their nutrition through an attachment to a host plant, are often a striking exception. Heterotrophy can lead to relaxed constraint on some plastid genes or even total gene loss. We sequenced plastid genomes of two species in the parasitic genus Cuscuta along with a non-parasitic relative, Ipomoea purpurea, to investigate changes in the plastid genome that may result from transition to the parasitic lifestyle. RESULTS Aside from loss of all ndh genes, Cuscuta exaltata retains photosynthetic and photorespiratory genes that evolve under strong selective constraint. Cuscuta obtusiflora has incurred substantially more change to its plastid genome, including loss of all genes for the plastid-encoded RNA polymerase. Despite extensive change in gene content and greatly increased rate of overall nucleotide substitution, C. obtusiflora also retains all photosynthetic and photorespiratory genes with only one minor exception. CONCLUSION Although Epifagus virginiana, the only other parasitic plant with its plastid genome sequenced to date, has lost a largely overlapping set of transfer-RNA and ribosomal genes as Cuscuta, it has lost all genes related to photosynthesis and maintains a set of genes which are among the most divergent in Cuscuta. Analyses demonstrate photosynthetic genes are under the highest constraint of any genes within the plastid genomes of Cuscuta, indicating a function involving RuBisCo and electron transport through photosystems is still the primary reason for retention of the plastid genome in these species.
Collapse
Affiliation(s)
- Joel R McNeal
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
- Department of Biology, Huck Institutes of the Life Sciences, and Institute of Molecular Evolutionary Genetics, The Pennsylvania State University, University Park, Pennsylvania 16802-5301, USA
| | - Jennifer V Kuehl
- DOE Joint Genome Institute and Lawrence Berkeley National Laboratory, Walnut Creek, California 94598, USA
| | - Jeffrey L Boore
- DOE Joint Genome Institute and Lawrence Berkeley National Laboratory, Walnut Creek, California 94598, USA
- Genome Project Solutions, Hercules, CA 94547, USA
| | - Claude W de Pamphilis
- Department of Biology, Huck Institutes of the Life Sciences, and Institute of Molecular Evolutionary Genetics, The Pennsylvania State University, University Park, Pennsylvania 16802-5301, USA
| |
Collapse
|
38
|
Levy MG, Litaker RW, Goldstein RJ, Dykstra MJ, Vandersea MW, Noga EJ. PISCINOODINIUM, A FISH-ECTOPARASITIC DINOFLAGELLATE, IS A MEMBER OF THE CLASS DINOPHYCEAE, SUBCLASS GYMNODINIPHYCIDAE: CONVERGENT EVOLUTION WITH AMYLOODINIUM. J Parasitol 2007; 93:1006-15. [DOI: 10.1645/ge-3585.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
39
|
Stelter K, El-Sayed NM, Seeber F. The Expression of a Plant-type Ferredoxin Redox System provides Molecular Evidence for a Plastid in the Early Dinoflagellate Perkinsus marinus. Protist 2007; 158:119-30. [PMID: 17123864 DOI: 10.1016/j.protis.2006.09.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Accepted: 09/29/2006] [Indexed: 11/18/2022]
Abstract
Perkinsus marinus is a parasitic protozoan with a phylogenetic positioning between Apicomplexa and dinoflagellates. It is thus of interest for reconstructing the early evolution of eukaryotes, especially with regard to the acquisition of secondary plastids in these organisms. It is also an important pathogen of oysters, and the definition of parasite-specific metabolic pathways would be beneficial for the identification of efficient treatments for infected mollusks. Although these different scientific interests have resulted in the start of a genome project for this organism, it is still unknown whether P. marinus contains a plastid or plastid-like organelle like the related dinoflagellates and Apicomplexa. Here, we show that in vitro-cultivated parasites contain transcripts of the plant-type ferredoxin and its associated reductase. Both proteins are nuclear-encoded and possess N-terminal targeting sequences similar to those characterized in dinoflagellates. Since this redox pair is exclusively found in cyanobacteria and plastid-harboring organisms its presence also in P. marinus is highly indicative of a plastid. We also provide additional evidence for such an organelle by demonstrating pharmacological sensitivity to inhibitors of plastid-localized enzymes involved in fatty acid biosynthesis (e.g. acetyl-CoA carboxylase) and by detection of genes for three enzymes of plastid-localized isoprenoid biosynthesis (1-deoxy-D-xylulose 5-phosphate reductoisomerase, (E)-4-hydroxy-3-methyl-but-2-enyl diphosphate reductase, and (E)-4-hydroxy-3-methyl-but-2-enyl diphosphate synthase).
Collapse
Affiliation(s)
- Kathrin Stelter
- FB Biologie/Parasitologie, Philipps-Universität Marburg, 35032 Marburg, Germany
| | | | | |
Collapse
|
40
|
O'Brien EA, Koski LB, Zhang Y, Yang L, Wang E, Gray MW, Burger G, Lang BF. TBestDB: a taxonomically broad database of expressed sequence tags (ESTs). Nucleic Acids Res 2007; 35:D445-51. [PMID: 17202165 PMCID: PMC1899108 DOI: 10.1093/nar/gkl770] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 09/11/2006] [Accepted: 10/01/2006] [Indexed: 11/29/2022] Open
Abstract
The TBestDB database contains approximately 370,000 clustered expressed sequence tag (EST) sequences from 49 organisms, covering a taxonomically broad range of poorly studied, mainly unicellular eukaryotes, and includes experimental information, consensus sequences, gene annotations and metabolic pathway predictions. Most of these ESTs have been generated by the Protist EST Program, a collaboration among six Canadian research groups. EST sequences are read from trace files up to a minimum quality cut-off, vector and linker sequence is masked, and the ESTs are clustered using phrap. The resulting consensus sequences are automatically annotated by using the AutoFACT program. The datasets are automatically checked for clustering errors due to chimerism and potential cross-contamination between organisms, and suspect data are flagged in or removed from the database. Access to data deposited in TBestDB by individual users can be restricted to those users for a limited period. With this first report on TBestDB, we open the database to the research community for free processing, annotation, interspecies comparisons and GenBank submission of EST data generated in individual laboratories. For instructions on submission to TBestDB, contact tbestdb@bch.umontreal.ca. The database can be queried at http://tbestdb.bcm.umontreal.ca/.
Collapse
Affiliation(s)
- Emmet A O'Brien
- Département de Biochimie, Canadian Institute for Advanced Research, Robert-Cedergren Centre for Research in Bioinformatics and Genomics, Université de Montréal, 2900 Edouard-Montpetit, Montréal, QC, Canada H3T 1J4.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Sanchez-Puerta MV, Lippmeier JC, Apt KE, Delwiche CF. Plastid genes in a non-photosynthetic dinoflagellate. Protist 2006; 158:105-17. [PMID: 17150410 DOI: 10.1016/j.protis.2006.09.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2006] [Accepted: 09/19/2006] [Indexed: 11/29/2022]
Abstract
Dinoflagellates are a diverse group of protists, comprising photosynthetic and heterotrophic free-living species, as well as parasitic ones. About half of them are photosynthetic with peridinin-containing plastids being the most common. It is uncertain whether non-photosynthetic dinoflagellates are primitively so, or have lost photosynthesis. Studies of heterotrophic species from this lineage may increase our understanding of plastid evolution. We analyzed an EST project of the early-diverging heterotrophic dinoflagellate Crypthecodinium cohnii looking for evidence of past endosymbiosis. A large number of putative genes of cyanobacterial or algal origin were identified using BLAST, and later screened by metabolic function. Phylogenetic analyses suggest that several proteins could have been acquired from a photosynthetic endosymbiont, arguing for an earlier plastid acquisition in dinoflagellates. In addition, intact N-terminal plastid-targeting peptides were detected, indicating that C. cohnii may contain a reduced plastid and that some of these proteins are imported into this organelle. A number of metabolic pathways, such as heme and isoprenoid biosynthesis, seem to take place in the plastid. Overall, these data indicate that C. cohnii is derived from a photosynthetic ancestor and provide a model for loss of photosynthesis in dinoflagellates and their relatives. This represents the first extensive genomic analysis of a heterotrophic dinoflagellate.
Collapse
Affiliation(s)
- M Virginia Sanchez-Puerta
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, MD 20742-5815, USA
| | | | | | | |
Collapse
|
42
|
Bläske-Lietze VU, Shapiro AM, Denton JS, Botts M, Becnel JJ, Boucias DG. Development of the insect pathogenic alga Helicosporidium. J Eukaryot Microbiol 2006; 53:165-76. [PMID: 16677338 DOI: 10.1111/j.1550-7408.2006.00090.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study examined the morphogenesis and replication dynamics of the different life stages (cysts, filamentous cells, vegetative cells) of Helicosporidium sp., a non-photosynthetic, entomopathogenic alga. The isolate (SjHe) used originated from an infected black fly larva. Filamentous cell transformation into vegetative cells and autosporulation during vegetative cell replication were observed under controlled in vitro conditions. The transformation process was initiated by a partial swelling of the filamentous cell along with the reorganization of the nuclear material. Two subsequent nuclear and cell divisions resulted in the release of 4 rod-shaped daughter cells, which divided into oval to spherical vegetative cells. These underwent several cycles of autosporogenic cell division. Multiple-passaged vegetative cell cultures formed non-motile, adherent cell clusters (palmelloid colonies). Vegetative replication dynamics were also observed in 2 experimental noctuid hosts, Spodoptera exigua and Helicoverpa zea. The average density of helicosporidial cells produced per microliter hemolymph exceeded cell concentrations obtained in vitro by 15- and 46-fold in S. exigua and H. zea, respectively. Cyst morphogenesis was only observed in the hemolymph, whereas no cysts differentiated at various in vitro conditions.
Collapse
|
43
|
Abstract
Complete or partial genome sequences have recently become available for several medically and evolutionarily important parasitic protozoa. Through the application of bioinformatics complete metabolic repertoires for these parasites can be predicted. For experimentally intractable parasites insight provided by metabolic maps generated in silico has been startling. At its more extreme end, such bioinformatics reckoning facilitated the discovery in some parasites of mitochondria remodelled beyond previous recognition, and the identification of a non-photosynthetic chloroplast relic in malarial parasites. However, for experimentally tractable parasites, mapping of the general metabolic terrain is only a first step in understanding how the parasite modulates its streamlined, yet still often puzzlingly complex, metabolism in order to complete life cycles within host, vector, or environment. This review provides a comparative overview and discussion of metabolic strategies used by several different parasitic protozoa in order to subvert and survive host defences, and illustrates how genomic data contribute to the elucidation of parasite metabolism.
Collapse
Affiliation(s)
- Michael L Ginger
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
44
|
Atteia A, van Lis R, Beale SI. Enzymes of the heme biosynthetic pathway in the nonphotosynthetic alga Polytomella sp. EUKARYOTIC CELL 2005; 4:2087-97. [PMID: 16339726 PMCID: PMC1317499 DOI: 10.1128/ec.4.12.2087-2097.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Accepted: 09/25/2005] [Indexed: 11/20/2022]
Abstract
Heme biosynthesis involves a number of enzymatic steps which in eukaryotes take place in different cell compartments. Enzyme compartmentalization differs between photosynthetic and nonphotosynthetic eukaryotes. Here we investigated the structures and subcellular localizations of three enzymes involved in the heme pathway in Polytomella sp., a colorless alga evolutionarily related to the green alga Chlamydomonas reinhardtii. Functional complementation of Escherichia coli mutant strains was used to isolate cDNAs encoding three heme biosynthetic enzymes, glutamate-1-semialdehyde aminotransferase, protoporphyrinogen IX oxidase, and ferrochelatase. All three proteins show highest similarity to their counterparts in photosynthetic organisms, including C. reinhardtii. All three proteins have N-terminal extensions suggestive of intracellular targeting, and immunoblot studies indicate their enrichment in a dense cell fraction that is enriched in amyloplasts. These results suggest that even though the plastids of Polytomella sp. are not photosynthetically active, they are the major site of heme biosynthesis. The presence of a gene for glutamate-1-semialdehyde aminotransferase suggests that Polytomella sp. uses the five-carbon pathway for synthesis of the heme precursor 5-aminolevulinic acid.
Collapse
Affiliation(s)
- Ariane Atteia
- Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | | | | |
Collapse
|