1
|
Çapan İ, Al M, Gümüş M, Açik L, Aydin B, Çelik AB, Gülüm L, Sert Y, Yenilmez EN, Koca İ, Tutar Y. Design, Synthesis, and Evaluation of Benzimidazole-Carbazole Hybrids Targeting Heat Shock Proteins-Mediated Apoptosis in Breast and Colon Cancer Cells. Drug Dev Res 2025; 86:e70092. [PMID: 40344426 DOI: 10.1002/ddr.70092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/18/2025] [Accepted: 04/15/2025] [Indexed: 05/11/2025]
Abstract
Heat shock proteins (HSPs), particularly HSP70 and HSP90, are pivotal molecular chaperones implicated in cancer progression and resistance mechanisms. Dual inhibition of these chaperones represents a promising therapeutic approach. Here, we report the design and synthesis of a novel series of benzimidazole-carbazole hybrids aimed at targeting HSP70/90. Leveraging the kinase inhibitory properties of benzimidazole and the DNA interfering and apoptotic potential of carbazole, these hybrids were evaluated for their anticancer activity against breast (MCF-7) and colon (HCT-116) cancer cell lines. The most active compounds demonstrated submicromolar IC50 values and induced apoptosis through mitochondrial dysfunction and cytoskeletal disruption, confirmed via flow cytometry and fluorescence microscopy. Molecular docking revealed high binding affinities to HSP70 (PDB: 1S3X) and HSP90 (PDB: 1YC4), correlating with experimental outcomes. Furthermore, DNA interaction studies confirmed the compounds' ability to induce structural destabilization and fragmentation, providing insight into their mechanism of action. These findings highlight the potential of benzimidazole-carbazole hybrids as promising HSP inhibitors for overcoming cancer resistance.
Collapse
Affiliation(s)
- İrfan Çapan
- Department of Pharmaceutical Basic Sciences, Faculty of Pharmacy, Gazi University, Ankara, Turkey
- Sente Kimya Research and Development Inc, Ankara, Turkey
| | - Mervenur Al
- Department of Basic Medical Sciences, Division of Medicinal Biochemistry, University of Health Sciences, Istanbul, Turkey
| | - Mehmet Gümüş
- Akdağmadeni Health College, Yozgat Bozok University, Yozgat, Turkey
| | - Leyla Açik
- Department of Biology, Faculty of Science, Gazi University, Ankara, Turkey
| | - Betül Aydin
- Department of Biology, Faculty of Science, Gazi University, Ankara, Turkey
| | - Ayşe Büşranur Çelik
- Division of Molecular Biology and Genetics, Faculty of Hamidiye Institute of Health Sciences, University of Health Sciences, İstanbul, Turkey
| | - Levent Gülüm
- Department of Crop and Animal Production, Mudurnu Süreyya Astarcı Vocational School, Bolu Abant İzzet Baysal University, Bolu, Turkey
| | - Yusuf Sert
- Sorgun Vocational School, Yozgat Bozok University, Yozgat, Turkey
| | - Ezgi Nurdan Yenilmez
- Vocational School of Health Services, Division of Medical Techniques and Services, Demiroglu Science University, Istanbul, Turkey
| | - İrfan Koca
- Department of Chemistry, Faculty of Art & Sciences, Yozgat Bozok University, Yozgat, Turkey
| | - Yusuf Tutar
- Department of Basic Medical Sciences, Division of Biochemistry, Faculty of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey
| |
Collapse
|
2
|
Feng J, Osmekhina E, Timonen JVI, Linder MB. Effects of Sup35 overexpression on the formation, morphology, and physiological functions of intracellular Sup35 assemblies. Appl Environ Microbiol 2025; 91:e0170324. [PMID: 39912644 PMCID: PMC11921396 DOI: 10.1128/aem.01703-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/16/2025] [Indexed: 02/07/2025] Open
Abstract
The yeast prion protein Sup35 is aggregation-prone at high concentrations. De novo Sup35 prion formation occurs at a significantly increased rate after transient overexpression of Sup35 in the presence of another prion, [PIN+], but it is still a rare event. Recent studies uncovered an additional and seemingly more prevalent role of Sup35: at its physiological level, it undergoes phase separation to form reversible condensates in response to transient stress. Stress-induced reversible Sup35 condensation in the [psi-] strain enhances cellular fitness after stress ceases, whereas irreversible Sup35 aggregates in the [PSI+] strain do not confer this advantage. However, how Sup35 overexpression, which could potentially lead to irreversible aggregation, affects its condensation under stress conditions remains unclear. In this study, we used a combinatorial method to examine how different levels of Sup35 overproduction and cellular conditions affect the nature, formation, and physical properties of Sup35 assemblies in yeast cells, as well as their impacts on cellular growth. We observed notable morphological distinctions between irreversible Sup35 aggregates and reversible Sup35 condensates, possibly indicating different formation mechanisms. In addition, Sup35 aggregation caused by a very high overexpression level can strongly inhibit cell growth, diminish the formation of stress-induced condensates when Sup35 is completely aggregated, and impair cellular recovery from stress. Together, this study advances our fundamental understanding of the physical properties and formation mechanism of different Sup35 assemblies and their impacts on cellular growth. We conclude that in vivo studies are sensitive to overexpression and can lead to assembly routes that strongly affect functions. IMPORTANCE The role of condensates in living cells is often studied by overexpression. For understanding their physiological role, this can be problematic. Overexpression can shift cellular functions, thereby changing the system under study, and overexpression can also affect the phase behavior of condensates by shifting the position of the system in the underlying phase diagram. Our detailed study of overexpression of Sup35 in S. cerevisiae shows the interplay between these factors and highlights basic features of intracellular condensation such as the balance between condensation and aggregation as well as how cellular localization and responsiveness depend on protein levels. We also apply super-resolution microscopy to highlight details within the cells.
Collapse
Affiliation(s)
- Jianhui Feng
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Finland
- The Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Espoo, Finland
| | - Ekaterina Osmekhina
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Finland
- The Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Espoo, Finland
| | - Jaakko V. I. Timonen
- The Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Espoo, Finland
- Department of Applied Physics, School of Science, Aalto University, Espoo, Finland
| | - Markus B. Linder
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Finland
- The Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Espoo, Finland
| |
Collapse
|
3
|
Grizel AV, Gorsheneva NA, Stevenson JB, Pflaum J, Wilfling F, Rubel AA, Chernoff YO. Osmotic stress induces formation of both liquid condensates and amyloids by a yeast prion domain. J Biol Chem 2024; 300:107766. [PMID: 39276934 PMCID: PMC11736011 DOI: 10.1016/j.jbc.2024.107766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/30/2024] [Accepted: 08/21/2024] [Indexed: 09/17/2024] Open
Abstract
Liquid protein condensates produced by phase separation are involved in the spatiotemporal control of cellular functions, while solid fibrous aggregates (amyloids) are associated with diseases and/or manifest as infectious or heritable elements (prions). Relationships between these assemblies are poorly understood. The Saccharomyces cerevisiae release factor Sup35 can produce both fluid liquid-like condensates (e.g., at acidic pH) and amyloids (typically cross-seeded by other prions). We observed acidification-independent formation of Sup35-based liquid condensates in response to hyperosmotic shock in the absence of other prions, both at increased and physiological expression levels. The Sup35 prion domain, Sup35N, is both necessary and sufficient for condensate formation, while the middle domain, Sup35M antagonizes this process. Formation of liquid condensates in response to osmotic stress is conserved within yeast evolution. Notably, condensates of Sup35N/NM protein originated from the distantly related yeast Ogataea methanolica can directly convert to amyloids in osmotically stressed S. cerevisiae cells, providing a unique opportunity for real-time monitoring of condensate-to-fibril transition in vivo by fluorescence microscopy. Thus, cellular fate of stress-induced condensates depends on protein properties and/or intracellular environment.
Collapse
Affiliation(s)
- Anastasia V Grizel
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Natalia A Gorsheneva
- Laboratory of Amyloid Biology and Department of Genetics and Biotechnology, St Petersburg State University, St Petersburg, Russia
| | - Jonathan B Stevenson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Jeremy Pflaum
- Mechanisms of Cellular Quality Control, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Florian Wilfling
- Mechanisms of Cellular Quality Control, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Aleksandr A Rubel
- Laboratory of Amyloid Biology and Department of Genetics and Biotechnology, St Petersburg State University, St Petersburg, Russia
| | - Yury O Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA.
| |
Collapse
|
4
|
Norton J, Seah N, Santiago F, Sindi SS, Serio TR. Multiple aspects of amyloid dynamics in vivo integrate to establish prion variant dominance in yeast. Front Mol Neurosci 2024; 17:1439442. [PMID: 39139213 PMCID: PMC11319303 DOI: 10.3389/fnmol.2024.1439442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Prion variants are self-perpetuating conformers of a single protein that assemble into amyloid fibers and confer unique phenotypic states. Multiple prion variants can arise, particularly in response to changing environments, and interact within an organism. These interactions are often competitive, with one variant establishing phenotypic dominance over the others. This dominance has been linked to the competition for non-prion state protein, which must be converted to the prion state via a nucleated polymerization mechanism. However, the intrinsic rates of conversion, determined by the conformation of the variant, cannot explain prion variant dominance, suggesting a more complex interaction. Using the yeast prion system [PSI+ ], we have determined the mechanism of dominance of the [PSI+ ]Strong variant over the [PSI+ ]Weak variant in vivo. When mixed by mating, phenotypic dominance is established in zygotes, but the two variants persist and co-exist in the lineage descended from this cell. [PSI+ ]Strong propagons, the heritable unit, are amplified at the expense of [PSI+ ]Weak propagons, through the efficient conversion of soluble Sup35 protein, as revealed by fluorescence photobleaching experiments employing variant-specific mutants of Sup35. This competition, however, is highly sensitive to the fragmentation of [PSI+ ]Strong amyloid fibers, with even transient inhibition of the fragmentation catalyst Hsp104 promoting amplification of [PSI+ ]Weak propagons. Reducing the number of [PSI+ ]Strong propagons prior to mating, similarly promotes [PSI+ ]Weak amplification and conversion of soluble Sup35, indicating that template number and conversion efficiency combine to determine dominance. Thus, prion variant dominance is not an absolute hierarchy but rather an outcome arising from the dynamic interplay between unique protein conformations and their interactions with distinct cellular proteostatic niches.
Collapse
Affiliation(s)
- Jennifer Norton
- Department of Molecular and Cellular Biology, The University of Arizona, Tucson, AZ, United States
| | - Nicole Seah
- Department of Biochemistry, The University of Washington, Seattle, WA, United States
| | - Fabian Santiago
- Department of Applied Mathematics, The University of California, Merced, Merced, CA, United States
| | - Suzanne S. Sindi
- Department of Applied Mathematics, The University of California, Merced, Merced, CA, United States
| | - Tricia R. Serio
- Department of Biochemistry, The University of Washington, Seattle, WA, United States
| |
Collapse
|
5
|
Zhao X, Stanford K, Ahearn J, Masison DC, Greene LE. Hsp70 Binding to the N-terminal Domain of Hsp104 Regulates [ PSI+] Curing by Hsp104 Overexpression. Mol Cell Biol 2023; 43:157-173. [PMID: 37099734 PMCID: PMC10153015 DOI: 10.1080/10985549.2023.2198181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 04/28/2023] Open
Abstract
Hsp104 propagates the yeast prion [PSI+], the infectious form of Sup35, by severing the prion seeds, but when Hsp104 is overexpressed, it cures [PSI+] in a process that is not yet understood but may be caused by trimming, which removes monomers from the ends of the amyloid fibers. This curing was shown to depend on both the N-terminal domain of Hsp104 and the expression level of various members of the Hsp70 family, which raises the question as to whether these effects of Hsp70 are due to it binding to the Hsp70 binding site that was identified in the N-terminal domain of Hsp104, a site not involved in prion propagation. Investigating this question, we now find, first, that mutating this site prevents both the curing of [PSI+] by Hsp104 overexpression and the trimming activity of Hsp104. Second, we find that depending on the specific member of the Hsp70 family binding to the N-terminal domain of Hsp104, both trimming and the curing caused by Hsp104 overexpression are either increased or decreased in parallel. Therefore, the binding of Hsp70 to the N-terminal domain of Hsp104 regulates both the rate of [PSI+] trimming by Hsp104 and the rate of [PSI+] curing by Hsp104 overexpression.
Collapse
Affiliation(s)
- Xiaohong Zhao
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Katherine Stanford
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Joseph Ahearn
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel C. Masison
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Lois E. Greene
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Dolder RE, Kumar J, Reidy M, Masison DC. Human J-Domain Protein DnaJB6 Protects Yeast from [ PSI+] Prion Toxicity. BIOLOGY 2022; 11:biology11121846. [PMID: 36552355 PMCID: PMC9776390 DOI: 10.3390/biology11121846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Human J-domain protein (JDP) DnaJB6 has a broad and potent activity that prevents formation of amyloid by polypeptides such as polyglutamine, A-beta, and alpha-synuclein, related to Huntington's, Alzheimer's, and Parkinson's diseases, respectively. In yeast, amyloid-based [PSI+] prions, which rely on the related JDP Sis1 for replication, have a latent toxicity that is exposed by reducing Sis1 function. Anti-amyloid activity of DnaJB6 is very effective against weak [PSI+] prions and the Sup35 amyloid that composes them, but ineffective against strong [PSI+] prions composed of structurally different amyloid of the same Sup35. This difference reveals limitations of DnaJB6 that have implications regarding its therapeutic use for amyloid disease. Here, we find that when Sis1 function is reduced, DnaJB6 represses toxicity of strong [PSI+] prions and inhibits their propagation. Both Sis1 and DnaJB6, which are regulators of protein chaperone Hsp70, counteract the toxicity by reducing excessive incorporation of the essential Sup35 into prion aggregates. However, while Sis1 apparently requires interaction with Hsp70 to detoxify [PSI+], DnaJB6 counteracts prion toxicity by a different, Hsp70-independent mechanism.
Collapse
Affiliation(s)
- Richard E. Dolder
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jyotsna Kumar
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | - Michael Reidy
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel C. Masison
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Correspondence:
| |
Collapse
|
7
|
Processing of Fluorescent Proteins May Prevent Detection of Prion Particles in [ PSI+] Cells. BIOLOGY 2022; 11:biology11121688. [PMID: 36552198 PMCID: PMC9774836 DOI: 10.3390/biology11121688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022]
Abstract
Yeast is a convenient model for studying protein aggregation as it is known to propagate amyloid prions. [PSI+] is the prion form of the release factor eRF3 (Sup35). Aggregated Sup35 causes defects in termination of translation, which results in nonsense suppression in strains carrying premature stop codons. N-terminal and middle (M) domains of Sup35 are necessary and sufficient for maintaining [PSI+] in cells while preserving the prion strain's properties. For this reason, Sup35NM fused to fluorescent proteins is often used for [PSI+] detection and investigation. However, we found that in such chimeric constructs, not all fluorescent proteins allow the reliable detection of Sup35 aggregates. Particularly, transient overproduction of Sup35NM-mCherry resulted in a diffuse fluorescent pattern in the [PSI+] cells, while no loss of prions and no effect on the Sup35NM prion properties could be observed. This effect was reproduced in various unrelated strain backgrounds and prion variants. In contrast, Sup35NM fused to another red fluorescent protein, TagRFP-T, allowed the detection of [PSI+] aggregates. Analysis of protein lysates showed that Sup35NM-mCherry is actively degraded in the cell. This degradation was not caused by vacuolar proteases and the ubiquitin-proteasomal system implicated in the Sup35 processing. Even though the intensity of this proteolysis was higher than that of Sup35NM-GFP, it was roughly the same as in the case of Sup35NM-TagRFP-T. Thus, it is possible that, in contrast to TagRFP-T, degradation products of Sup35NM-mCherry still preserve their fluorescent properties while losing the ability to decorate pre-existing Sup35 aggregates. This results in diffuse fluorescence despite the presence of the prion aggregates in the cell. Thus, tagging with fluorescent proteins should be used with caution, as such proteolysis may increase the rate of false-negative results when detecting prion-bearing cells.
Collapse
|
8
|
Naeimi WR, Serio TR. Beyond Amyloid Fibers: Accumulation, Biological Relevance, and Regulation of Higher-Order Prion Architectures. Viruses 2022; 14:v14081635. [PMID: 35893700 PMCID: PMC9332770 DOI: 10.3390/v14081635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/14/2022] [Accepted: 07/23/2022] [Indexed: 12/19/2022] Open
Abstract
The formation of amyloid fibers is associated with a diverse range of disease and phenotypic states. These amyloid fibers often assemble into multi-protofibril, high-order architectures in vivo and in vitro. Prion propagation in yeast, an amyloid-based process, represents an attractive model to explore the link between these aggregation states and the biological consequences of amyloid dynamics. Here, we integrate the current state of knowledge, highlight opportunities for further insight, and draw parallels to more complex systems in vitro. Evidence suggests that high-order fibril architectures are present ex vivo from disease relevant environments and under permissive conditions in vivo in yeast, including but not limited to those leading to prion formation or instability. The biological significance of these latter amyloid architectures or how they may be regulated is, however, complicated by inconsistent experimental conditions and analytical methods, although the Hsp70 chaperone Ssa1/2 is likely involved. Transition between assembly states could form a mechanistic basis to explain some confounding observations surrounding prion regulation but is limited by a lack of unified methodology to biophysically compare these assembly states. Future exciting experimental entryways may offer opportunities for further insight.
Collapse
|
9
|
Kumar J, Reidy M, Masison DC. Yeast J-protein Sis1 prevents prion toxicity by moderating depletion of prion protein. Genetics 2021; 219:iyab129. [PMID: 34849884 PMCID: PMC8633096 DOI: 10.1093/genetics/iyab129] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/28/2021] [Indexed: 11/13/2022] Open
Abstract
[PSI+] is a prion of Saccharomyces cerevisiae Sup35, an essential ribosome release factor. In [PSI+] cells, most Sup35 is sequestered into insoluble amyloid aggregates. Despite this depletion, [PSI+] prions typically affect viability only modestly, so [PSI+] must balance sequestering Sup35 into prions with keeping enough Sup35 functional for normal growth. Sis1 is an essential J-protein regulator of Hsp70 required for the propagation of amyloid-based yeast prions. C-terminally truncated Sis1 (Sis1JGF) supports cell growth in place of wild-type Sis1. Sis1JGF also supports [PSI+] propagation, yet [PSI+] is highly toxic to cells expressing only Sis1JGF. We searched extensively for factors that mitigate the toxicity and identified only Sis1, suggesting Sis1 is uniquely needed to protect from [PSI+] toxicity. We find the C-terminal substrate-binding domain of Sis1 has a critical and transferable activity needed for the protection. In [PSI+] cells that express Sis1JGF in place of Sis1, Sup35 was less soluble and formed visibly larger prion aggregates. Exogenous expression of a truncated Sup35 that cannot incorporate into prions relieved [PSI+] toxicity. Together our data suggest that Sis1 has separable roles in propagating Sup35 prions and in moderating Sup35 aggregation that are crucial to the balance needed for the propagation of what otherwise would be lethal [PSI+] prions.
Collapse
Affiliation(s)
- Jyotsna Kumar
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA
| | - Michael Reidy
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA
| | - Daniel C Masison
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA
| |
Collapse
|
10
|
Puri A, Singh P, Kumar N, Kumar R, Sharma D. Tah1, A Key Component of R2TP Complex that Regulates Assembly of snoRNP, is Involved in De Novo Generation and Maintenance of Yeast Prion [URE3]. J Mol Biol 2021; 433:166976. [PMID: 33811921 DOI: 10.1016/j.jmb.2021.166976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/02/2021] [Accepted: 03/25/2021] [Indexed: 10/21/2022]
Abstract
The cellular chaperone machinery plays key role in the de novo formation and propagation of yeast prions (infectious protein). Though the role of Hsp70s in the prion maintenance is well studied, how Hsp90 chaperone machinery affects yeast prions remains unclear. In the current study, we examined the role of Hsp90 and its co-chaperones on yeast prions [PSI+] and [URE3]. We show that the overproduction of Hsp90 co-chaperone Tah1, cures [URE3] which is a prion form of native protein Ure2 in yeast. The Hsp90 co-chaperone Tah1 is involved in the assembly of small nucleolar ribonucleoproteins (snoRNP) and chromatin remodelling complexes. We found that Tah1 deletion improves the frequency of de novo appearance of [URE3]. The Tah1 was found to interact with Hsp70. The lack of Tah1 not only represses antagonizing effect of Ssa1 Hsp70 on [URE3] but also improves the prion strength suggesting role of Tah1 in both fibril growth and replication. We show that the N-terminal tetratricopeptide repeat domain of Tah1 is indispensable for [URE3] curing. Tah1 interacts with Ure2, improves its solubility in [URE3] strains, and affects the kinetics of Ure2 fibrillation in vitro. Its inhibitory role on Ure2 fibrillation is proposed to influence [URE3] propagation. The present study shows a novel role of Tah1 in yeast prion propagation, and that Hsp90 not only promotes its role in ribosomal RNA processing but also in the prion maintenance. SUMMARY: Prions are self-perpetuating infectious proteins. What initiates the misfolding of a protein into its prion form is still not clear. The understanding of cellular factors that facilitate or antagonize prions is crucial to gain insight into the mechanism of prion formation and propagation. In the current study, we reveal that Tah1 is a novel modulator of yeast prion [URE3]. The Hsp90 co-chaperone Tah1, is required for the formation of small nucleolar ribonucleoprotein complex. We show that the absence of Tah1 improves the induction of [URE3] prion. The overexpressed Tah1 cures [URE3], and this function is promoted by Hsp90 chaperones. The current study thus provides a novel cellular factor and the underlying mechanism, involved in the prion formation and propagation.
Collapse
Affiliation(s)
- Anuradhika Puri
- Council of Scientific and Industrial Research-Institute of Microbial Technology, India
| | - Priyanka Singh
- Council of Scientific and Industrial Research-Institute of Microbial Technology, India
| | - Navinder Kumar
- Council of Scientific and Industrial Research-Institute of Microbial Technology, India
| | - Rajesh Kumar
- School of Basic and Applied Sciences, Central University of Punjab, Bhatinda, India
| | - Deepak Sharma
- Council of Scientific and Industrial Research-Institute of Microbial Technology, India; Academy of Scientific & Innovative Research, India.
| |
Collapse
|
11
|
Extracellular Vesicles-Encapsulated Yeast Prions and What They Can Tell Us about the Physical Nature of Propagons. Int J Mol Sci 2020; 22:ijms22010090. [PMID: 33374854 PMCID: PMC7794690 DOI: 10.3390/ijms22010090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/14/2020] [Accepted: 12/20/2020] [Indexed: 12/25/2022] Open
Abstract
The yeast Saccharomyces cerevisiae hosts an ensemble of protein-based heritable traits, most of which result from the conversion of structurally and functionally diverse cytoplasmic proteins into prion forms. Among these, [PSI+], [URE3] and [PIN+] are the most well-documented prions and arise from the assembly of Sup35p, Ure2p and Rnq1p, respectively, into insoluble fibrillar assemblies. Yeast prions propagate by molecular chaperone-mediated fragmentation of these aggregates, which generates small self-templating seeds, or propagons. The exact molecular nature of propagons and how they are faithfully transmitted from mother to daughter cells despite spatial protein quality control are not fully understood. In [PSI+] cells, Sup35p forms detergent-resistant assemblies detectable on agarose gels under semi-denaturant conditions and cytosolic fluorescent puncta when the protein is fused to green fluorescent protein (GFP); yet, these macroscopic manifestations of [PSI+] do not fully correlate with the infectivity measured during growth by the mean of protein infection assays. We also discovered that significant amounts of infectious Sup35p particles are exported via extracellular (EV) and periplasmic (PV) vesicles in a growth phase and glucose-dependent manner. In the present review, I discuss how these vesicles may be a source of actual propagons and a suitable vehicle for their transmission to the bud.
Collapse
|
12
|
Mechanisms for Curing Yeast Prions. Int J Mol Sci 2020; 21:ijms21186536. [PMID: 32906758 PMCID: PMC7555348 DOI: 10.3390/ijms21186536] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 11/24/2022] Open
Abstract
Prions are infectious proteins that self-propagate by changing from their normal folded conformation to a misfolded conformation. The misfolded conformation, which is typically rich in β-sheet, serves as a template to convert the prion protein into its misfolded conformation. In yeast, the misfolded prion proteins are assembled into amyloid fibers or seeds, which are constantly severed and transmitted to daughter cells. To cure prions in yeast, it is necessary to eliminate all the prion seeds. Multiple mechanisms of curing have been found including inhibiting severing of the prion seeds, gradual dissolution of the prion seeds, asymmetric segregation of the prion seeds between mother and daughter cells during cell division, and degradation of the prion seeds. These mechanisms, achieved by using different protein quality control machinery, are not mutually exclusive; depending on conditions, multiple mechanisms may work simultaneously to achieve curing. This review discusses the various methods that have been used to differentiate between these mechanisms of curing.
Collapse
|
13
|
Villali J, Dark J, Brechtel TM, Pei F, Sindi SS, Serio TR. Nucleation seed size determines amyloid clearance and establishes a barrier to prion appearance in yeast. Nat Struct Mol Biol 2020; 27:540-549. [PMID: 32367069 PMCID: PMC7293557 DOI: 10.1038/s41594-020-0416-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 03/18/2020] [Indexed: 12/14/2022]
Abstract
Amyloid appearance is a rare event that is promoted in the presence of
other aggregated proteins. These aggregates were thought to act by templating
the formation of an assembly-competent nucleation seed, but we find an
unanticipated role for them in enhancing the persistence of amyloid after it
arises. Specifically, Saccharoymyces cerevisiae Rnq1 amyloid
reduces chaperone-mediated disassembly of Sup35 amyloid, promoting its
persistence in yeast. Mathematical modeling and corresponding in
vivo experiments link amyloid persistence to the conformationally
defined size of the Sup35 nucleation seed and suggest that amyloid is actively
cleared by disassembly below this threshold to suppress appearance of the
[PSI+] prion in vivo.
Remarkably, this framework resolves multiple known inconsistencies in the
appearance and curing of yeast prions. Thus, our observations establish the size
of the nucleation seed as a previously unappreciated characteristic of prion
variants that is key to understanding transitions between prion states.
Collapse
Affiliation(s)
- Janice Villali
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA.,Relay Therapeutics, Cambridge, MA, USA
| | - Jason Dark
- Department of Applied Mathematics, University of California, Merced, Merced, CA, USA
| | - Teal M Brechtel
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Fen Pei
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA.,BioLegend, San Diego, CA, USA
| | - Suzanne S Sindi
- Department of Applied Mathematics, University of California, Merced, Merced, CA, USA.
| | - Tricia R Serio
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, USA.
| |
Collapse
|
14
|
Chakravarty AK, Smejkal T, Itakura AK, Garcia DM, Jarosz DF. A Non-amyloid Prion Particle that Activates a Heritable Gene Expression Program. Mol Cell 2019; 77:251-265.e9. [PMID: 31757755 PMCID: PMC6980676 DOI: 10.1016/j.molcel.2019.10.028] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/29/2019] [Accepted: 10/17/2019] [Indexed: 11/16/2022]
Abstract
Spatiotemporal gene regulation is often driven by RNA-binding proteins that harbor long intrinsically disordered regions in addition to folded RNA-binding domains. We report that the disordered region of the evolutionarily ancient developmental regulator Vts1/Smaug drives self-assembly into gel-like condensates. These proteinaceous particles are not composed of amyloid, yet they are infectious, allowing them to act as a protein-based epigenetic element: a prion [SMAUG+]. In contrast to many amyloid prions, condensation of Vts1 enhances its function in mRNA decay, and its self-assembly properties are conserved over large evolutionary distances. Yeast cells harboring [SMAUG+] downregulate a coherent network of mRNAs and exhibit improved growth under nutrient limitation. Vts1 condensates formed from purified protein can transform naive cells to acquire [SMAUG+]. Our data establish that non-amyloid self-assembly of RNA-binding proteins can drive a form of epigenetics beyond the chromosome, instilling adaptive gene expression programs that are heritable over long biological timescales.
Collapse
Affiliation(s)
- Anupam K Chakravarty
- Department of Chemical and Systems Biology, Stanford University, 269 Campus Drive, Stanford, CA 94305, USA
| | - Tina Smejkal
- Department of Chemical and Systems Biology, Stanford University, 269 Campus Drive, Stanford, CA 94305, USA
| | - Alan K Itakura
- Department of Biology, Stanford University, 269 Campus Drive, Stanford, CA 94305, USA
| | - David M Garcia
- Department of Chemical and Systems Biology, Stanford University, 269 Campus Drive, Stanford, CA 94305, USA
| | - Daniel F Jarosz
- Department of Chemical and Systems Biology, Stanford University, 269 Campus Drive, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, 269 Campus Drive, Stanford, CA 94305, USA.
| |
Collapse
|
15
|
Wang K, Melki R, Kabani M. Growth phase‐dependent changes in the size and infectivity of SDS‐resistant Sup35p assemblies associated with the [ PSI+] prion in yeast. Mol Microbiol 2019; 112:932-943. [DOI: 10.1111/mmi.14329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2019] [Indexed: 10/26/2022]
Abstract
SummaryThe translation termination factor Sup35p can form self‐replicating fibrillar aggregates responsible for the [PSI+] prion state. Sup35p aggregation yields detergent‐resistant assemblies detectable on agarose gels under semi‐denaturant conditions and fluorescent puncta within the yeast cytosol when the protein is fused to GFP. It is still unclear whether any of these manifestations of [PSI+] truly correspond to the Sup35p assemblies that faithfully transmit the [PSI+] prion from mother to daughter cells. The infectious titer of prions in cells can be indirectly assessed by the ability of [PSI+] cells lysates to induce the prion state when introduced into naïve cells. Here, we report that the dramatic changes in the size and amounts of SDS‐resistant Sup35p that occur during growth do not correlate with the infectious titer. Our results suggest that fluorescent Sup35‐GFP puncta and detergent‐resistant Sup35p assemblies are good indicators of Sup35p conversion to the prion state but not of infectious particles number.
Collapse
Affiliation(s)
| | - Ronald Melki
- Institut de Biologie François Jacob, Molecular Imaging Research Center (MIRCen), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Laboratoire des Maladies Neurodégénératives Centre National de la Recherche Scientifique (CNRS) Paris Fontenay‐aux‐Roses F‐92265 France
| | - Mehdi Kabani
- Institut de Biologie François Jacob, Molecular Imaging Research Center (MIRCen), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Laboratoire des Maladies Neurodégénératives Centre National de la Recherche Scientifique (CNRS) Paris Fontenay‐aux‐Roses F‐92265 France
| |
Collapse
|
16
|
Manjrekar J, Shah H. Protein-based inheritance. Semin Cell Dev Biol 2019; 97:138-155. [PMID: 31344459 DOI: 10.1016/j.semcdb.2019.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/08/2019] [Indexed: 01/17/2023]
Abstract
Epigenetic mechanisms of inheritance have come to occupy a prominent place in our understanding of living systems, primarily eukaryotes. There has been considerable and lively discussion of the possible evolutionary significance of transgenerational epigenetic inheritance. One particular type of epigenetic inheritance that has not figured much in general discussions is that based on conformational changes in proteins, where proteins with altered conformations can act as templates to propagate their own structure. An increasing number of such proteins - prions and prion-like - are being discovered. Phenotypes due to the structurally altered proteins are transmitted along with their structures. This review discusses the properties and implications of "classical" amyloid-forming prions, as well as the broader class of proteins with intrinsically disordered domains, which are proving to have fascinating properties that appear to play important roles in cell organisation and function, especially during stress responses.
Collapse
Affiliation(s)
- Johannes Manjrekar
- Microbiology Department and Biotechnology Centre, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, India.
| | - Hiral Shah
- Microbiology Department and Biotechnology Centre, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, India
| |
Collapse
|
17
|
Serio TR. [PIN+]ing down the mechanism of prion appearance. FEMS Yeast Res 2019; 18:4923032. [PMID: 29718197 PMCID: PMC5889010 DOI: 10.1093/femsyr/foy026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 03/03/2018] [Indexed: 11/13/2022] Open
Abstract
Prions are conformationally flexible proteins capable of adopting a native state and a spectrum of alternative states associated with a change in the function of the protein. These alternative states are prone to assemble into amyloid aggregates, which provide a structure for self-replication and transmission of the underlying conformer and thereby the emergence of a new phenotype. Amyloid appearance is a rare event in vivo, regulated by both the aggregation propensity of prion proteins and their cellular environment. How these forces normally intersect to suppress amyloid appearance and the ways in which these restrictions can be bypassed to create protein-only phenotypes remain poorly understood. The most widely studied and perhaps most experimentally tractable system to explore the mechanisms regulating amyloid appearance is the [PIN+] prion of Saccharomyces cerevisiae. [PIN+] is required for the appearance of the amyloid state for both native yeast proteins and for human proteins expressed in yeast. These observations suggest that [PIN+] facilitates the bypass of amyloid regulatory mechanisms by other proteins in vivo. Several models of prion appearance are compatible with current observations, highlighting the complexity of the process and the questions that must be resolved to gain greater insight into the mechanisms regulating these events.
Collapse
Affiliation(s)
- Tricia R Serio
- The University of Massachusetts-Amherst, Department of Biochemistry and Molecular Biology, 240 Thatcher Rd, N360, Amherst, MA 01003, USA
| |
Collapse
|
18
|
Astor MT, Kamiya E, Sporn ZA, Berger SE, Hines JK. Variant-specific and reciprocal Hsp40 functions in Hsp104-mediated prion elimination. Mol Microbiol 2018; 109:41-62. [PMID: 29633387 PMCID: PMC6099457 DOI: 10.1111/mmi.13966] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2018] [Indexed: 01/02/2023]
Abstract
The amyloid-based prions of Saccharomyces cerevisiae are heritable aggregates of misfolded proteins, passed to daughter cells following fragmentation by molecular chaperones including the J-protein Sis1, Hsp70 and Hsp104. Overexpression of Hsp104 efficiently cures cell populations of the prion [PSI+ ] by an alternative Sis1-dependent mechanism that is currently the subject of significant debate. Here, we broadly investigate the role of J-proteins in this process by determining the impact of amyloid polymorphisms (prion variants) on the ability of well-studied Sis1 constructs to compensate for Sis1 and ask whether any other S. cerevisiae cytosolic J-proteins are also required for this process. Our comprehensive screen, examining all 13 members of the yeast cytosolic/nuclear J-protein complement, uncovered significant variant-dependent genetic evidence for a role of Apj1 (antiprion DnaJ) in this process. For strong, but not weak [PSI+ ] variants, depletion of Apj1 inhibits Hsp104-mediated curing. Overexpression of either Apj1 or Sis1 enhances curing, while overexpression of Ydj1 completely blocks it. We also demonstrated that Sis1 was the only J-protein necessary for the propagation of at least two weak [PSI+ ] variants and no J-protein alteration, or even combination of alterations, affected the curing of weak [PSI+ ] variants, suggesting the possibility of biochemically distinct, variant-specific Hsp104-mediated curing mechanisms.
Collapse
Affiliation(s)
| | - Erina Kamiya
- Department of ChemistryLafayette CollegeEastonPAUSA
| | - Zachary A. Sporn
- Department of ChemistryLafayette CollegeEastonPAUSA
- Present address:
Geisinger Commonwealth School of MedicineScrantonPAUSA
| | | | | |
Collapse
|
19
|
Xu L, Gong W, Cusack SA, Wu H, Loovers HM, Zhang H, Perrett S, Jones GW. The β6/β7 region of the Hsp70 substrate-binding domain mediates heat-shock response and prion propagation. Cell Mol Life Sci 2018; 75:1445-1459. [PMID: 29124308 PMCID: PMC5852193 DOI: 10.1007/s00018-017-2698-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/23/2017] [Accepted: 10/25/2017] [Indexed: 11/25/2022]
Abstract
Hsp70 is a highly conserved chaperone that in addition to providing essential cellular functions and aiding in cell survival following exposure to a variety of stresses is also a key modulator of prion propagation. Hsp70 is composed of a nucleotide-binding domain (NBD) and substrate-binding domain (SBD). The key functions of Hsp70 are tightly regulated through an allosteric communication network that coordinates ATPase activity with substrate-binding activity. How Hsp70 conformational changes relate to functional change that results in heat shock and prion-related phenotypes is poorly understood. Here, we utilised the yeast [PSI +] system, coupled with SBD-targeted mutagenesis, to investigate how allosteric changes within key structural regions of the Hsp70 SBD result in functional changes in the protein that translate to phenotypic defects in prion propagation and ability to grow at elevated temperatures. We find that variants mutated within the β6 and β7 region of the SBD are defective in prion propagation and heat-shock phenotypes, due to conformational changes within the SBD. Structural analysis of the mutants identifies a potential NBD:SBD interface and key residues that may play important roles in signal transduction between domains. As a consequence of disrupting the β6/β7 region and the SBD overall, Hsp70 exhibits a variety of functional changes including dysregulation of ATPase activity, reduction in ability to refold proteins and changes to interaction affinity with specific co-chaperones and protein substrates. Our findings relate specific structural changes in Hsp70 to specific changes in functional properties that underpin important phenotypic changes in vivo. A thorough understanding of the molecular mechanisms of Hsp70 regulation and how specific modifications result in phenotypic change is essential for the development of new drugs targeting Hsp70 for therapeutic purposes.
Collapse
Affiliation(s)
- Linan Xu
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Weibin Gong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Sarah A Cusack
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Huiwen Wu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Harriët M Loovers
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
- Department of Clinical Chemistry, Certe, Groningen, The Netherlands
| | - Hong Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Sarah Perrett
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Gary W Jones
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.
- Centre for Biomedical Science Research, School of Clinical and Applied, Leeds Beckett University, Portland Building, City Campus, Leeds, LS1 3HE, UK.
| |
Collapse
|
20
|
Zhao X, Lanz J, Steinberg D, Pease T, Ahearn JM, Bezsonov EE, Staguhn ED, Eisenberg E, Masison DC, Greene LE. Real-time imaging of yeast cells reveals several distinct mechanisms of curing of the [URE3] prion. J Biol Chem 2018; 293:3104-3117. [PMID: 29330300 DOI: 10.1074/jbc.m117.809079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 01/03/2018] [Indexed: 12/21/2022] Open
Abstract
The [URE3] yeast prion is the self-propagating amyloid form of the Ure2 protein. [URE3] is cured by overexpression of several yeast proteins, including Ydj1, Btn2, Cur1, Hsp42, and human DnaJB6. To better understand [URE3] curing, we used real-time imaging with a yeast strain expressing a GFP-labeled full-length Ure2 construct to monitor the curing of [URE3] over time. [URE3] yeast cells exhibited numerous fluorescent foci, and expression of the GFP-labeled Ure2 affected neither mitotic stability of [URE3] nor the rate of [URE3] curing by the curing proteins. Using guanidine to cure [URE3] via Hsp104 inactivation, we found that the fluorescent foci are progressively lost as the cells divide until they are cured; the fraction of cells that retained the foci was equivalent to the [URE3] cell fraction measured by a plating assay, indicating that the foci were the prion seeds. During the curing of [URE3] by Btn2, Cur1, Hsp42, or Ydj1 overexpression, the foci formed aggregates, many of which were 0.5 μm or greater in size, and [URE3] was cured by asymmetric segregation of the aggregated seeds. In contrast, DnaJB6 overexpression first caused a loss of detectable foci in cells that were still [URE3] before there was complete dissolution of the seeds, and the cells were cured. We conclude that GFP labeling of full-length Ure2 enables differentiation among the different [URE3]-curing mechanisms, including inhibition of severing followed by seed dilution, seed clumping followed by asymmetric segregation between mother and daughter cells, and seed dissolution.
Collapse
Affiliation(s)
| | - Jenna Lanz
- From the Laboratory of Cell Biology, NHLBI and
| | | | - Tyler Pease
- From the Laboratory of Cell Biology, NHLBI and
| | | | - Evgeny E Bezsonov
- the Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0301
| | | | | | - Daniel C Masison
- the Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0301
| | | |
Collapse
|
21
|
Wickner RB, Kryndushkin D, Shewmaker F, McGlinchey R, Edskes HK. Study of Amyloids Using Yeast. Methods Mol Biol 2018; 1779:313-339. [PMID: 29886541 PMCID: PMC7337124 DOI: 10.1007/978-1-4939-7816-8_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We detail some of the genetic, biochemical, and physical methods useful in studying amyloids in yeast, particularly the yeast prions. These methods include cytoduction (cytoplasmic mixing), infection of cells with prion amyloids, use of green fluorescent protein fusions with amyloid-forming proteins for cytology, protein purification and amyloid formation, and electron microscopy of filaments.
Collapse
Affiliation(s)
- Reed B. Wickner
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes Digestive and Kidney Diseases, National Insititutes of Health, Bethesda, MD 20892-0830
| | - Dmitry Kryndushkin
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes Digestive and Kidney Diseases, National Insititutes of Health, Bethesda, MD 20892-0830,Dept. of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Frank Shewmaker
- Dept. of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Ryan McGlinchey
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes Digestive and Kidney Diseases, National Insititutes of Health, Bethesda, MD 20892-0830
| | - Herman K. Edskes
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes Digestive and Kidney Diseases, National Insititutes of Health, Bethesda, MD 20892-0830
| |
Collapse
|
22
|
Moosavi B, Mousavi B, Yang GF. Actin, Membrane Trafficking and the Control of Prion Induction, Propagation and Transmission in Yeast. Traffic 2015; 17:5-20. [PMID: 26503767 DOI: 10.1111/tra.12344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/23/2015] [Accepted: 10/23/2015] [Indexed: 12/16/2022]
Abstract
The model eukaryotic yeast Saccharomyces cerevisiae has proven a useful model system in which prion biogenesis and elimination are studied. Several yeast prions exist in budding yeast and a number of studies now suggest that these alternate protein conformations may play important roles in the cell. During the last few years cellular factors affecting prion induction, propagation and elimination have been identified. Amongst these, proteins involved in the regulation of the actin cytoskeleton and dynamic membrane processes such as endocytosis have been found to play a critical role not only in facilitating de novo prion formation but also in prion propagation. Here we briefly review prion formation and maintenance with special attention given to the cellular processes that require the functionality of the actin cytoskeleton.
Collapse
Affiliation(s)
- Behrooz Moosavi
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| | - Bibimaryam Mousavi
- Laboratory of Organometallics, Catalysis and Ordered Materials, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, P.R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| |
Collapse
|
23
|
O'Driscoll J, Clare D, Saibil H. Prion aggregate structure in yeast cells is determined by the Hsp104-Hsp110 disaggregase machinery. J Cell Biol 2015; 211:145-58. [PMID: 26438827 PMCID: PMC4602031 DOI: 10.1083/jcb.201505104] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 09/08/2015] [Indexed: 12/31/2022] Open
Abstract
3D structural analysis of a yeast [PSI+] prion model by correlative fluorescence and electron tomography reveals that prion aggregate structure depends on the levels of Hsp70 chaperones, the protein remodeling ATPase Hsp104, and the Hsp70 nucleotide exchange factor/disaggregase Sse1 (yeast Hsp110). Prions consist of misfolded proteins that have adopted an infectious amyloid conformation. In vivo, prion biogenesis is intimately associated with the protein quality control machinery. Using electron tomography, we probed the effects of the heat shock protein Hsp70 chaperone system on the structure of a model yeast [PSI+] prion in situ. Individual Hsp70 deletions shift the balance between fibril assembly and disassembly, resulting in a variable shell of nonfibrillar, but still immobile, aggregates at the surface of the [PSI+] prion deposits. Both Hsp104 (an Hsp100 disaggregase) and Sse1 (the major yeast form of Hsp110) were localized to this surface shell of [PSI+] deposits in the deletion mutants. Elevation of Hsp104 expression promoted the appearance of this novel, nonfibrillar form of the prion aggregate. Moreover, Sse1 was found to regulate prion fibril length. Our studies reveal a key role for Sse1 (Hsp110), in cooperation with Hsp104, in regulating the length and assembly state of [PSI+] prion fibrils in vivo.
Collapse
Affiliation(s)
- Jonathan O'Driscoll
- Crystallography, Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, UK
| | - Daniel Clare
- Crystallography, Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, UK
| | - Helen Saibil
- Crystallography, Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, UK
| |
Collapse
|
24
|
Huang L, Liu X, Cheng B, Huang K. How our bodies fight amyloidosis: effects of physiological factors on pathogenic aggregation of amyloidogenic proteins. Arch Biochem Biophys 2015; 568:46-55. [PMID: 25615529 DOI: 10.1016/j.abb.2015.01.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/08/2015] [Accepted: 01/11/2015] [Indexed: 12/15/2022]
Abstract
The process of protein aggregation from soluble amyloidogenic proteins to insoluble amyloid fibrils plays significant roles in the onset of over 30 human amyloidogenic diseases, such as Prion disease, Alzheimer's disease and type 2 diabetes mellitus. Amyloid deposits are commonly found in patients suffered from amyloidosis; however, such deposits are rarely seen in healthy individuals, which may be largely attributed to the self-regulation in vivo. A vast number of physiological factors have been demonstrated to directly affect the process of amyloid formation in vivo. In this review, physiological factors that influence amyloidosis, including biological factors (chaperones, natural antibodies, enzymes, lipids and saccharides) and physicochemical factors (metal ions, pH environment, crowding and pressure, etc.), together with the mechanisms underlying these proteostasis effects, are summarized.
Collapse
Affiliation(s)
- Lianqi Huang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Xinran Liu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Biao Cheng
- Department of Pharmacy, Central Hospital of Wuhan, Wuhan, Hubei 430014, PR China
| | - Kun Huang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China; Centre for Biomedicine Research, Wuhan Institute of Biotechnology, Wuhan, Hubei 430075, PR China.
| |
Collapse
|
25
|
Arslan F, Hong JY, Kanneganti V, Park SK, Liebman SW. Heterologous aggregates promote de novo prion appearance via more than one mechanism. PLoS Genet 2015; 11:e1004814. [PMID: 25568955 PMCID: PMC4287349 DOI: 10.1371/journal.pgen.1004814] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 10/09/2014] [Indexed: 12/12/2022] Open
Abstract
Prions are self-perpetuating conformational variants of particular proteins. In yeast, prions cause heritable phenotypic traits. Most known yeast prions contain a glutamine (Q)/asparagine (N)-rich region in their prion domains. [PSI+], the prion form of Sup35, appears de novo at dramatically enhanced rates following transient overproduction of Sup35 in the presence of [PIN+], the prion form of Rnq1. Here, we establish the temporal de novo appearance of Sup35 aggregates during such overexpression in relation to other cellular proteins. Fluorescently-labeled Sup35 initially forms one or a few dots when overexpressed in [PIN+] cells. One of the dots is perivacuolar, colocalizes with the aggregated Rnq1 dot and grows into peripheral rings/lines, some of which also colocalize with Rnq1. Sup35 dots that are not near the vacuole do not always colocalize with Rnq1 and disappear by the time rings start to grow. Bimolecular fluorescence complementation failed to detect any interaction between Sup35-VN and Rnq1-VC in [PSI+][PIN+] cells. In contrast, all Sup35 aggregates, whether newly induced or in established [PSI+], completely colocalize with the molecular chaperones Hsp104, Sis1, Ssa1 and eukaryotic release factor Sup45. In the absence of [PIN+], overexpressed aggregating proteins such as the Q/N-rich Pin4C or the non-Q/N-rich Mod5 can also promote the de novo appearance of [PSI+]. Similar to Rnq1, overexpressed Pin4C transiently colocalizes with newly appearing Sup35 aggregates. However, no interaction was detected between Mod5 and Sup35 during [PSI+] induction in the absence of [PIN+]. While the colocalization of Sup35 and aggregates of Rnq1 or Pin4C are consistent with the model that the heterologous aggregates cross-seed the de novo appearance of [PSI+], the lack of interaction between Mod5 and Sup35 leaves open the possibility of other mechanisms. We also show that Hsp104 is required in the de novo appearance of [PSI+] aggregates in a [PIN+]-independent pathway. Certain proteins can misfold into β-sheet-rich, self-seeding aggregates. Such proteins appear to be associated with neurodegenerative diseases such as prion, Alzheimer's and Parkinson's. Yeast prions also misfold into self-seeding aggregates and provide a good model to study how these rogue polymers first appear. De novo prion appearance can be made very frequent in yeast by transient overexpression of the prion protein in the presence of heterologous prions or prion-like aggregates. Here, we show that the aggregates of one such newly induced prion are initially formed in a dot-like structure near the vacuole. These dots then grow into rings at the periphery of the cell prior to becoming smaller rings surrounding the vacuole and maturing into the characteristic heritable prion tiny dots found throughout the cytoplasm. We found considerable colocalization of two heterologous prion/prion-like aggregates with the newly appearing prion protein aggregates, which is consistent with the prevalent model that existing prion aggregates can cross-seed the de novo aggregation of a heterologous prion protein. However, we failed to find any physical interaction between another heterologous aggregating protein and the newly appearing prion aggregates it stimulated to appear, which is inconsistent with cross-seeding.
Collapse
Affiliation(s)
- Fatih Arslan
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, United States of America
| | - Joo Y. Hong
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, United States of America
| | - Vydehi Kanneganti
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, United States of America
| | - Sei-Kyoung Park
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, United States of America
| | - Susan W. Liebman
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, United States of America
- * E-mail:
| |
Collapse
|
26
|
Distinct amino acid compositional requirements for formation and maintenance of the [PSI⁺] prion in yeast. Mol Cell Biol 2014; 35:899-911. [PMID: 25547291 DOI: 10.1128/mcb.01020-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multiple yeast prions have been identified that result from the structural conversion of proteins into a self-propagating amyloid form. Amyloid-based prion activity in yeast requires a series of discrete steps. First, the prion protein must form an amyloid nucleus that can recruit and structurally convert additional soluble proteins. Subsequently, maintenance of the prion during cell division requires fragmentation of these aggregates to create new heritable propagons. For the Saccharomyces cerevisiae prion protein Sup35, these different activities are encoded by different regions of the Sup35 prion domain. An N-terminal glutamine/asparagine-rich nucleation domain is required for nucleation and fiber growth, while an adjacent oligopeptide repeat domain is largely dispensable for prion nucleation and fiber growth but is required for chaperone-dependent prion maintenance. Although prion activity of glutamine/asparagine-rich proteins is predominantly determined by amino acid composition, the nucleation and oligopeptide repeat domains of Sup35 have distinct compositional requirements. Here, we quantitatively define these compositional requirements in vivo. We show that aromatic residues strongly promote both prion formation and chaperone-dependent prion maintenance. In contrast, nonaromatic hydrophobic residues strongly promote prion formation but inhibit prion propagation. These results provide insight into why some aggregation-prone proteins are unable to propagate as prions.
Collapse
|
27
|
Odani W, Urata K, Okuda M, Okuma S, Koyama H, Pack CG, Fujiwara K, Nojima T, Kinjo M, Kawai-Noma S, Taguchi H. Peptide sequences converting polyglutamine into a prion in yeast. FEBS J 2014; 282:477-90. [PMID: 25406629 DOI: 10.1111/febs.13152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 11/09/2014] [Accepted: 11/17/2014] [Indexed: 11/29/2022]
Abstract
Amyloids are ordered protein aggregates composed of cross-β sheet structures. Amyloids include prions, defined as infectious proteins, which are responsible for mammalian transmissible spongiform encephalopathies, and fungal prions. Although the conventional view is that typical amyloids are associated with nontransmissible mammalian neurodegenerative diseases such as Alzheimer's disease, increasing evidence suggests that the boundary between transmissible and nontransmissible amyloids is ambiguous. To clarify the mechanism underlying the difference in transmissibility, we investigated the dynamics and the properties of polyglutamine (polyQ) amyloids in yeast cells, in which the polyQ aggregates are not transmissible but can be converted into transmissible amyloids. We found that polyQ had an increased tendency to form aggregates compared to the yeast prion Sup35. In addition, we screened dozens of peptides that converted the nontransmissible polyQ to transmissible aggregates when they flanked the polyQ stretch, and also investigated their cellular dynamics aiming to understand the mechanism of transmission.
Collapse
Affiliation(s)
- Wataru Odani
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Klaips CL, Hochstrasser ML, Langlois CR, Serio TR. Spatial quality control bypasses cell-based limitations on proteostasis to promote prion curing. eLife 2014; 3. [PMID: 25490068 PMCID: PMC4270096 DOI: 10.7554/elife.04288] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/23/2014] [Indexed: 01/16/2023] Open
Abstract
The proteostasis network has evolved to support protein folding under normal conditions and to expand this capacity in response to proteotoxic stresses. Nevertheless, many pathogenic states are associated with protein misfolding, revealing in vivo limitations on quality control mechanisms. One contributor to these limitations is the physical characteristics of misfolded proteins, as exemplified by amyloids, which are largely resistant to clearance. However, other limitations imposed by the cellular environment are poorly understood. To identify cell-based restrictions on proteostasis capacity, we determined the mechanism by which thermal stress cures the [PSI(+)]/Sup35 prion. Remarkably, Sup35 amyloid is disassembled at elevated temperatures by the molecular chaperone Hsp104. This process requires Hsp104 engagement with heat-induced non-prion aggregates in late cell-cycle stage cells, which promotes its asymmetric retention and thereby effective activity. Thus, cell division imposes a potent limitation on proteostasis capacity that can be bypassed by the spatial engagement of a quality control factor.
Collapse
Affiliation(s)
- Courtney L Klaips
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, United States
| | - Megan L Hochstrasser
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, United States
| | - Christine R Langlois
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, United States
| | - Tricia R Serio
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, United States
| |
Collapse
|
29
|
Functional diversification of hsp40: distinct j-protein functional requirements for two prions allow for chaperone-dependent prion selection. PLoS Genet 2014; 10:e1004510. [PMID: 25058638 PMCID: PMC4109904 DOI: 10.1371/journal.pgen.1004510] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/30/2014] [Indexed: 01/22/2023] Open
Abstract
Yeast prions are heritable amyloid aggregates of functional yeast proteins; their propagation to subsequent cell generations is dependent upon fragmentation of prion protein aggregates by molecular chaperone proteins. Mounting evidence indicates the J-protein Sis1 may act as an amyloid specificity factor, recognizing prion and other amyloid aggregates and enabling Ssa and Hsp104 to act in prion fragmentation. Chaperone interactions with prions, however, can be affected by variations in amyloid-core structure resulting in distinct prion variants or ‘strains’. Our genetic analysis revealed that Sis1 domain requirements by distinct variants of [PSI+] are strongly dependent upon overall variant stability. Notably, multiple strong [PSI+] variants can be maintained by a minimal construct of Sis1 consisting of only the J-domain and glycine/phenylalanine-rich (G/F) region that was previously shown to be sufficient for cell viability and [RNQ+] prion propagation. In contrast, weak [PSI+] variants are lost under the same conditions but maintained by the expression of an Sis1 construct that lacks only the G/F region and cannot support [RNQ+] propagation, revealing mutually exclusive requirements for Sis1 function between these two prions. Prion loss is not due to [PSI+]-dependent toxicity or dependent upon a particular yeast genetic background. These observations necessitate that Sis1 must have at least two distinct functional roles that individual prions differentially require for propagation and which are localized to the glycine-rich domains of the Sis1. Based on these distinctions, Sis1 plasmid-shuffling in a [PSI+]/[RNQ+] strain permitted J-protein-dependent prion selection for either prion. We also found that, despite an initial report to the contrary, the human homolog of Sis1, Hdj1, is capable of [PSI+] prion propagation in place of Sis1. This conservation of function is also prion-variant dependent, indicating that only one of the two Sis1-prion functions may have been maintained in eukaryotic chaperone evolution. Multiple neurodegenerative disorders such as Alzheimer's, Parkinson's and Creutzfeldt-Jakob disease are associated with the accumulation of fibrous protein aggregates collectively termed ‘amyloid.’ In the baker's yeast Saccharomyces cerevisiae, multiple proteins form intracellular amyloid aggregates known as yeast prions. Yeast prions minimally require a core set of chaperone proteins for stable propagation in yeast, including the J-protein Sis1, which appears to be required for the propagation of all yeast prions and functioning similarly in each case. Here we present evidence which challenges the notion of a universal function for Sis1 in prion propagation and asserts instead that Sis1's function in the maintenance of at least two prions, [RNQ+] and [PSI+], is distinct and mutually exclusive for some prion variants. We also find that the human homolog of Sis1, called Hdj1, has retained the ability to support some, but not all yeast prions, indicating a partial conservation of function. Because yeast chaperones have the ability to both bind and fragment amyloids in vivo, further investigations into these prion-specific properties of Sis1 and Hdj1 will likely lead to new insights into the biological management of protein misfolding.
Collapse
|
30
|
Hsp104 overexpression cures Saccharomyces cerevisiae [PSI+] by causing dissolution of the prion seeds. EUKARYOTIC CELL 2014; 13:635-47. [PMID: 24632242 DOI: 10.1128/ec.00300-13] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The [PSI(+)] yeast prion is formed when Sup35 misfolds into amyloid aggregates. [PSI(+)], like other yeast prions, is dependent on the molecular chaperone Hsp104, which severs the prion seeds so that they pass on as the yeast cells divide. Surprisingly, however, overexpression of Hsp104 also cures [PSI(+)]. Several models have been proposed to explain this effect: inhibition of severing, asymmetric segregation of the seeds between mother and daughter cells, and dissolution of the prion seeds. First, we found that neither the kinetics of curing nor the heterogeneity in the distribution of the green fluorescent protein (GFP)-labeled Sup35 foci in partially cured yeast cells is compatible with Hsp104 overexpression curing [PSI(+)] by inhibiting severing. Second, we ruled out the asymmetric segregation model by showing that the extent of curing was essentially the same in mother and daughter cells and that the fluorescent foci did not distribute asymmetrically, but rather, there was marked loss of foci in both mother and daughter cells. These results suggest that Hsp104 overexpression cures [PSI(+)] by dissolution of the prion seeds in a two-step process. First, trimming of the prion seeds by Hsp104 reduces their size, and second, their amyloid core is eliminated, most likely by proteolysis.
Collapse
|
31
|
Abstract
Prion formation involves the conversion of proteins from a soluble form into an infectious amyloid form. Most yeast prion proteins contain glutamine/asparagine-rich regions that are responsible for prion aggregation. Prion formation by these domains is driven primarily by amino acid composition, not primary sequence, yet there is a surprising disconnect between the amino acids thought to have the highest aggregation propensity and those that are actually found in yeast prion domains. Specifically, a recent mutagenic screen suggested that both aromatic and non-aromatic hydrophobic residues strongly promote prion formation. However, while aromatic residues are common in yeast prion domains, non-aromatic hydrophobic residues are strongly under-represented. Here, we directly test the effects of hydrophobic and aromatic residues on prion formation. Remarkably, we found that insertion of as few as two hydrophobic residues resulted in a multiple orders-of-magnitude increase in prion formation, and significant acceleration of in vitro amyloid formation. Thus, insertion or deletion of hydrophobic residues provides a simple tool to control the prion activity of a protein. These data, combined with bioinformatics analysis, suggest a limit on the number of strongly prion-promoting residues tolerated in glutamine/asparagine-rich domains. This limit may explain the under-representation of non-aromatic hydrophobic residues in yeast prion domains. Prion activity requires not only that a protein be able to form prion fibers, but also that these fibers be cleaved to generate new independently-segregating aggregates to offset dilution by cell division. Recent studies suggest that aromatic residues, but not non-aromatic hydrophobic residues, support the fiber cleavage step. Therefore, we propose that while both aromatic and non-aromatic hydrophobic residues promote prion formation, aromatic residues are favored in yeast prion domains because they serve a dual function, promoting both prion formation and chaperone-dependent prion propagation.
Collapse
|
32
|
Na I, Reddy KD, Breydo L, Xue B, Uversky VN. A putative role of the Sup35p C-terminal domain in the cytoskeleton organization during yeast mitosis. ACTA ACUST UNITED AC 2014; 10:925-40. [DOI: 10.1039/c3mb70515c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on structural analysis of several effectors and partners, Sup35pC is proposed to serve as actin modulator during mitosis.
Collapse
Affiliation(s)
- Insung Na
- Department of Molecular Medicine
- Morsani College of Medicine
- University of South Florida
- Tampa, USA
| | - Krishna D. Reddy
- Department of Molecular Medicine
- Morsani College of Medicine
- University of South Florida
- Tampa, USA
| | - Leonid Breydo
- Department of Molecular Medicine
- Morsani College of Medicine
- University of South Florida
- Tampa, USA
| | - Bin Xue
- Department of Cell Biology
- Microbiology, and Molecular Biology
- College of Arts and Science
- University of South Florida
- Tampa, USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine
- Morsani College of Medicine
- University of South Florida
- Tampa, USA
- USF Health Byrd Alzheimer's Research Institute
| |
Collapse
|
33
|
Kim HJ, Kim NC, Wang YD, Scarborough EA, Moore J, Diaz Z, MacLea KS, Freibaum B, Li S, Molliex A, Kanagaraj AP, Carter R, Boylan KB, Wojtas AM, Rademakers R, Pinkus JL, Greenberg SA, Trojanowski JQ, Traynor BJ, Smith BN, Topp S, Gkazi AS, Miller J, Shaw CE, Kottlors M, Kirschner J, Pestronk A, Li YR, Ford AF, Gitler AD, Benatar M, King OD, Kimonis VE, Ross ED, Weihl CC, Shorter J, Taylor JP. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 2013; 495:467-73. [PMID: 23455423 PMCID: PMC3756911 DOI: 10.1038/nature11922] [Citation(s) in RCA: 1160] [Impact Index Per Article: 96.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 01/17/2013] [Indexed: 01/18/2023]
Abstract
Algorithms designed to identify canonical yeast prions predict that around 250 human proteins, including several RNA-binding proteins associated with neurodegenerative disease, harbour a distinctive prion-like domain (PrLD) enriched in uncharged polar amino acids and glycine. PrLDs in RNA-binding proteins are essential for the assembly of ribonucleoprotein granules. However, the interplay between human PrLD function and disease is not understood. Here we define pathogenic mutations in PrLDs of heterogeneous nuclear ribonucleoproteins (hnRNPs) A2B1 and A1 in families with inherited degeneration affecting muscle, brain, motor neuron and bone, and in one case of familial amyotrophic lateral sclerosis. Wild-type hnRNPA2 (the most abundant isoform of hnRNPA2B1) and hnRNPA1 show an intrinsic tendency to assemble into self-seeding fibrils, which is exacerbated by the disease mutations. Indeed, the pathogenic mutations strengthen a 'steric zipper' motif in the PrLD, which accelerates the formation of self-seeding fibrils that cross-seed polymerization of wild-type hnRNP. Notably, the disease mutations promote excess incorporation of hnRNPA2 and hnRNPA1 into stress granules and drive the formation of cytoplasmic inclusions in animal models that recapitulate the human pathology. Thus, dysregulated polymerization caused by a potent mutant steric zipper motif in a PrLD can initiate degenerative disease. Related proteins with PrLDs should therefore be considered candidates for initiating and perhaps propagating proteinopathies of muscle, brain, motor neuron and bone.
Collapse
Affiliation(s)
- Hong Joo Kim
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38120, USA
| | - Nam Chul Kim
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38120, USA
| | - Yong-Dong Wang
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children’s Research Hospital, Memphis, TN 38120, USA
| | - Emily A. Scarborough
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennifer Moore
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38120, USA
| | - Zamia Diaz
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kyle S. MacLea
- Department of Biochemistry and Molecular Biology, Colorado State University; Fort Collins, CO 80523, USA
| | - Brian Freibaum
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38120, USA
| | - Songqing Li
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38120, USA
| | - Amandine Molliex
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38120, USA
| | - Anderson P. Kanagaraj
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38120, USA
| | - Robert Carter
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38120, USA
| | - Kevin B. Boylan
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Jack L. Pinkus
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Steven A. Greenberg
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - John Q. Trojanowski
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Bryan J. Traynor
- Neuromuscular Diseases Research Group, Laboratory of Neurogenetics, Porter Neuroscience Building, NIA, NIH, Bethesda, MD 20892, USA
| | - Bradley N. Smith
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Simon Topp
- King’s College London Centre for Neurodegeneration Research, Department of Clinical Neuroscience, Institute of Psychiatry, London SE5 8AF, UK
| | - Athina-Soragia Gkazi
- King’s College London Centre for Neurodegeneration Research, Department of Clinical Neuroscience, Institute of Psychiatry, London SE5 8AF, UK
| | - Jack Miller
- King’s College London Centre for Neurodegeneration Research, Department of Clinical Neuroscience, Institute of Psychiatry, London SE5 8AF, UK
| | - Christopher E. Shaw
- King’s College London Centre for Neurodegeneration Research, Department of Clinical Neuroscience, Institute of Psychiatry, London SE5 8AF, UK
| | - Michael Kottlors
- Division of Neuropediatrics and Muscle Disorders, University Children's Hospital Freiburg, Freiburg, Germany
| | - Janbernd Kirschner
- Division of Neuropediatrics and Muscle Disorders, University Children's Hospital Freiburg, Freiburg, Germany
| | - Alan Pestronk
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Yun R. Li
- Medical Scientist Training Program, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alice Flynn Ford
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aaron D. Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael Benatar
- Neurology Department, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Oliver D. King
- Boston Biomedical Research Institute, Watertown, MA 02472, USA
| | - Virginia E. Kimonis
- Department of Pediatrics, Division of Genetics and Metabolism, University of California-Irvine, 2501 Hewitt Hall, Irvine, CA, 92696, USA
| | - Eric D. Ross
- Department of Biochemistry and Molecular Biology, Colorado State University; Fort Collins, CO 80523, USA
| | - Conrad C. Weihl
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - J. Paul Taylor
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38120, USA
| |
Collapse
|
34
|
Using steered molecular dynamics to predict and assess Hsp70 substrate-binding domain mutants that alter prion propagation. PLoS Comput Biol 2013; 9:e1002896. [PMID: 23382668 PMCID: PMC3561046 DOI: 10.1371/journal.pcbi.1002896] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 12/08/2012] [Indexed: 11/19/2022] Open
Abstract
Genetic screens using Saccharomyces cerevisiae have identified an array of cytosolic Hsp70 mutants that are impaired in the ability to propagate the yeast [PSI+] prion. The best characterized of these mutants is the Ssa1 L483W mutant (so-called SSA1-21), which is located in the substrate-binding domain of the protein. However, biochemical analysis of some of these Hsp70 mutants has so far failed to provide major insight into the specific functional changes in Hsp70 that cause prion impairment. In order to gain a better understanding of the mechanism of Hsp70 impairment of prions we have taken an in silico approach and focused on the Escherichia coli Hsp70 ortholog DnaK. Using steered molecular dynamics simulations (SMD) we demonstrate that DnaK variant L484W (analogous to SSA1-21) is predicted to bind substrate more avidly than wild-type DnaK due to an increase in numbers of hydrogen bonds and hydrophobic interactions between chaperone and peptide. Additionally the presence of the larger tryptophan side chain is predicted to cause a conformational change in the peptide-binding domain that physically impairs substrate dissociation. The DnaK L484W variant in combination with some SSA1-21 phenotypic second-site suppressor mutations exhibits chaperone-substrate interactions that are similar to wild-type protein and this provides a rationale for the phenotypic suppression that is observed. Our computational analysis fits well with previous yeast genetics studies regarding the functionality of the Ssa1-21 protein and provides further evidence suggesting that manipulation of the Hsp70 ATPase cycle to favor the ADP/substrate-bound form impairs prion propagation. Furthermore, we demonstrate how SMD can be used as a computational tool for predicting Hsp70 peptide-binding domain mutants that impair prion propagation. Direct non-covalent interactions between protein substrates and molecular chaperones play crucial roles in the protein folding process. [PSI+] is a prion of the yeast Saccharomyces cerevisiae, which is formed by mis-folding of the native Sup35 protein in a process analogous to formation of prions in mammals. While much genetic data exists showing a clear role for Hsp70 in prion propagation, biochemical data has yet to provide a clear link to how Hsp70 functions in prion propagation or how some Hsp70 mutants successfully impair in vivo propagation of prions. This paper employs a novel simulation method termed “steered molecular dynamics” to explore the different types and amounts of non-covalent interactions between wild type and mutated Hsp70, with a model substrate. Extrapolating the in silico data allowed us to decipher how a mutant Hsp70 impairs yeast prion propagation and allows us to predict other Hsp70 mutants that should behave in the same manner and to test these predictions in a yeast-based system. Our computational data shows that increasing the binding affinity of Hsp70 for substrate is one way of impairing prion propagation, a proposal that correlates very well with previous experimental genetic data.
Collapse
|
35
|
Jinwal UK, Akoury E, Abisambra JF, O'Leary JC, Thompson AD, Blair LJ, Jin Y, Bacon J, Nordhues BA, Cockman M, Zhang J, Li P, Zhang B, Borysov S, Uversky VN, Biernat J, Mandelkow E, Gestwicki JE, Zweckstetter M, Dickey CA. Imbalance of Hsp70 family variants fosters tau accumulation. FASEB J 2012; 27:1450-9. [PMID: 23271055 DOI: 10.1096/fj.12-220889] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Dysfunctional tau accumulation is a major contributing factor in tauopathies, and the heat-shock protein 70 (Hsp70) seems to play an important role in this accumulation. Several reports suggest that Hsp70 proteins can cause tau degradation to be accelerated or slowed, but how these opposing activities are controlled is unclear. Here we demonstrate that highly homologous variants in the Hsp70 family can have opposing effects on tau clearance kinetics. When overexpressed in a tetracycline (Tet)-based protein chase model, constitutive heat shock cognate 70 (Hsc70) and inducible Hsp72 slowed or accelerated tau clearance, respectively. Tau synergized with Hsc70, but not Hsp72, to promote microtubule assembly at nearly twice the rate of either Hsp70 homologue in reconstituted, ATP-regenerating Xenopus extracts supplemented with rhodamine-labeled tubulin and human recombinant Hsp72 and Hsc70. Nuclear magnetic resonance spectroscopy with human recombinant protein revealed that Hsp72 had greater affinity for tau than Hsc70 (I/I0 ratio difference of 0.3), but Hsc70 was 30 times more abundant than Hsp72 in human and mouse brain tissue. This indicates that the predominant Hsp70 variant in the brain is Hsc70, suggesting that the brain environment primarily supports slower tau clearance. Despite its capacity to clear tau, Hsp72 was not induced in the Alzheimer's disease brain, suggesting a mechanism for age-associated onset of the disease. Through the use of chimeras that blended the domains of Hsp72 and Hsc70, we determined that the reason for these differences between Hsc70 and Hsp72 with regard to tau clearance kinetics lies within their C-terminal domains, which are essential for their interactions with substrates and cochaperones. Hsp72 but not Hsc70 in the presence of tau was able to recruit the cochaperone ubiquitin ligase CHIP, which is known to facilitate the ubiquitination of tau, describing a possible mechanism of how the C-termini of these homologous Hsp70 variants can differentially regulate tau triage. Thus, efforts to promote Hsp72 expression and inhibit Hsc70 could be therapeutically relevant for tauopathies.
Collapse
Affiliation(s)
- Umesh K Jinwal
- Department of Pharmaceutical Sciences, University of South Florida Health Byrd Alzheimer's Institute, University of South Florida, Tampa, Florida 33613, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Saibil HR, Seybert A, Habermann A, Winkler J, Eltsov M, Perkovic M, Castaño-Diez D, Scheffer MP, Haselmann U, Chlanda P, Lindquist S, Tyedmers J, Frangakis AS. Heritable yeast prions have a highly organized three-dimensional architecture with interfiber structures. Proc Natl Acad Sci U S A 2012; 109:14906-14911. [PMID: 22927413 PMCID: PMC3443181 DOI: 10.1073/pnas.1211976109] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024] Open
Abstract
Yeast prions constitute a "protein-only" mechanism of inheritance that is widely deployed by wild yeast to create diverse phenotypes. One of the best-characterized prions, [PSI(+)], is governed by a conformational change in the prion domain of Sup35, a translation-termination factor. When this domain switches from its normal soluble form to an insoluble amyloid, the ensuing change in protein synthesis creates new traits. Two factors make these traits heritable: (i) the amyloid conformation is self-templating; and (ii) the protein-remodeling factor heat-shock protein (Hsp)104 (acting together with Hsp70 chaperones) partitions the template to daughter cells with high fidelity. Prions formed by several other yeast proteins create their own phenotypes but share the same mechanistic basis of inheritance. Except for the amyloid fibril itself, the cellular architecture underlying these protein-based elements of inheritance is unknown. To study the 3D arrangement of prion assemblies in their cellular context, we examined yeast [PSI(+)] prions in the native, hydrated state in situ, taking advantage of recently developed methods for cryosectioning of vitrified cells. Cryo-electron tomography of the vitrified sections revealed the prion assemblies as aligned bundles of regularly spaced fibrils in the cytoplasm with no bounding structures. Although the fibers were widely spaced, other cellular complexes, such as ribosomes, were excluded from the fibril arrays. Subtomogram image averaging, made possible by the organized nature of the assemblies, uncovered the presence of an additional array of densities between the fibers. We suggest these structures constitute a self-organizing mechanism that coordinates fiber deposition and the regulation of prion inheritance.
Collapse
Affiliation(s)
- Helen R. Saibil
- Crystallography and Institute for Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, United Kingdom
| | - Anja Seybert
- Institut für Biophysik and Frankfurt Institute for Molecular Life Sciences (FMLS), Johann Wolfgang Goethe Universität, D-60438 Frankfurt, Germany
| | - Anja Habermann
- Institut für Biophysik and Frankfurt Institute for Molecular Life Sciences (FMLS), Johann Wolfgang Goethe Universität, D-60438 Frankfurt, Germany
| | - Juliane Winkler
- Center for Molecular Biology of the University of Heidelberg and German Cancer Research Center, DKFZ-ZMBH Alliance, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Mikhail Eltsov
- Institut für Biophysik and Frankfurt Institute for Molecular Life Sciences (FMLS), Johann Wolfgang Goethe Universität, D-60438 Frankfurt, Germany
- European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany; and
| | - Mario Perkovic
- Institut für Biophysik and Frankfurt Institute for Molecular Life Sciences (FMLS), Johann Wolfgang Goethe Universität, D-60438 Frankfurt, Germany
| | - Daniel Castaño-Diez
- European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany; and
| | - Margot P. Scheffer
- Institut für Biophysik and Frankfurt Institute for Molecular Life Sciences (FMLS), Johann Wolfgang Goethe Universität, D-60438 Frankfurt, Germany
- European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany; and
| | - Uta Haselmann
- European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany; and
| | - Petr Chlanda
- European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany; and
| | - Susan Lindquist
- Whitehead Institute and Howard Hughes Medical Institute (HHMI), Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Jens Tyedmers
- Center for Molecular Biology of the University of Heidelberg and German Cancer Research Center, DKFZ-ZMBH Alliance, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Achilleas S. Frangakis
- Institut für Biophysik and Frankfurt Institute for Molecular Life Sciences (FMLS), Johann Wolfgang Goethe Universität, D-60438 Frankfurt, Germany
- European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany; and
| |
Collapse
|
37
|
Tyedmers J. Patterns of [PSI (+) ] aggregation allow insights into cellular organization of yeast prion aggregates. Prion 2012; 6:191-200. [PMID: 22449721 DOI: 10.4161/pri.18986] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The yeast prion phenomenon is very widespread and mounting evidence suggests that it has an impact on cellular regulatory mechanisms related to phenotypic responses to changing environments. Studying the aggregation patterns of prion amyloids during different stages of the prion life cycle is a first key step to understand major principles of how and where cells generate, organize and turn-over prion aggregates. The induction of the [PSI (+) ] state involves the actin cytoskeleton and quality control compartments such as the Insoluble Protein Deposit (IPOD). An initially unstable transitional induction state can be visualized by overexpression of the prion determinant and displays characteristic large ring- and ribbon-shaped aggregates consisting of poorly fragmented bundles of very long prion fibrils. In the mature prion state, the aggregation pattern is characterized by highly fragmented, shorter prion fibrils that form aggregates, which can be visualized through tagging with fluorescent proteins. The number of aggregates formed varies, ranging from a single large aggregate at the IPOD to multiple smaller ones, depending on several parameters discussed. Aggregate units below the resolution of light microscopy that are detectable by fluorescence correlation spectroscopy are in equilibrium with larger aggregates in this stage and can mediate faithful inheritance of the prion state. Loss of the prion state is often characterized by reduced fragmentation of prion fibrils and fewer, larger aggregates.
Collapse
Affiliation(s)
- Jens Tyedmers
- Center for Molecular Biology of the University of Heidelberg (ZMBH, Heidelberg, Germany.
| |
Collapse
|
38
|
Park YN, Morales D, Rubinson EH, Masison D, Eisenberg E, Greene LE. Differences in the curing of [PSI+] prion by various methods of Hsp104 inactivation. PLoS One 2012; 7:e37692. [PMID: 22719845 PMCID: PMC3377701 DOI: 10.1371/journal.pone.0037692] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 04/27/2012] [Indexed: 11/25/2022] Open
Abstract
[PSI+] yeast, containing the misfolded amyloid conformation of Sup35 prion, is cured by inactivation of Hsp104. There has been controversy as to whether inactivation of Hsp104 by guanidine treatment or by overexpression of the dominant negative Hsp104 mutant, Hsp104-2KT, cures [PSI+] by the same mechanism– inhibition of the severing of the prion seeds. Using live cell imaging of Sup35-GFP, overexpression of Hsp104-2KT caused the foci to increase in size, then decrease in number, and finally disappear when the cells were cured, similar to that observed in cells cured by depletion of Hsp104. In contrast, guanidine initially caused an increase in foci size but then the foci disappeared before the cells were cured. By starving the yeast to make the foci visible in cells grown with guanidine, the number of cells with foci was found to correlate exactly with the number of [PSI+] cells, regardless of the curing method. Therefore, the fluorescent foci are the prion seeds required for maintenance of [PSI+] and inactivation of Hsp104 cures [PSI+] by preventing severing of the prion seeds. During curing with guanidine, the reduction in seed size is an Hsp104-dependent effect that cannot be explained by limited severing of the seeds. Instead, in the presence of guanidine, Hsp104 retains an activity that trims or reduces the size of the prion seeds by releasing Sup35 molecules that are unable to form new prion seeds. This Hsp104 activity may also occur in propagating yeast.
Collapse
Affiliation(s)
- Yang-Nim Park
- Laboratory of Cell Biology, National Heart Lung Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David Morales
- Laboratory of Cell Biology, National Heart Lung Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Emily H. Rubinson
- Laboratory of Cell Biology, National Heart Lung Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Daniel Masison
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institute of Health, Bethesda, Maryland, United States of America
| | - Evan Eisenberg
- Laboratory of Cell Biology, National Heart Lung Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lois E. Greene
- Laboratory of Cell Biology, National Heart Lung Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
39
|
Winkler J, Tyedmers J, Bukau B, Mogk A. Chaperone networks in protein disaggregation and prion propagation. J Struct Biol 2012; 179:152-60. [PMID: 22580344 DOI: 10.1016/j.jsb.2012.05.002] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 04/27/2012] [Accepted: 05/01/2012] [Indexed: 11/30/2022]
Abstract
The oligomeric AAA+ chaperones Escherichia coli ClpB and Saccharomyces cerevisiae Hsp104 cooperate with cognate Hsp70/Hsp40 chaperone machineries in the reactivation of aggregated proteins in E. coli and S. cerevisiae. In addition, Hsp104 and Hsp70/Hsp40 are crucial for the maintenance of prion aggregates in yeast cells. While the bichaperone system efficiently solubilizes stress-generated amorphous aggregates, structurally highly ordered prion fibrils are only partially processed, resulting in the generation of fragmented prion seeds that can be transmitted to daughter cells for stable inheritance. Here, we describe and discuss the most recent mechanistic findings on yeast Hsp104 and Hsp70/Hsp40 cooperation in the remodeling of both types of aggregates, emphasizing similarities in the mechanism but also differences in the sensitivities towards chaperone activities.
Collapse
Affiliation(s)
- Juliane Winkler
- Center for Molecular Biology of the University of Heidelberg and German Cancer Research Center, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, Heidelberg D-69120, Germany
| | | | | | | |
Collapse
|
40
|
Abstract
Prions are important disease agents and epigenetic regulatory elements. Prion formation involves the structural conversion of proteins from a soluble form into an insoluble amyloid form. In many cases, this structural conversion is driven by a glutamine/asparagine (Q/N)-rich prion-forming domain. However, our understanding of the sequence requirements for prion formation and propagation by Q/N-rich domains has been insufficient for accurate prion propensity prediction or prion domain design. By focusing exclusively on amino acid composition, we have developed a prion aggregation prediction algorithm (PAPA), specifically designed to predict prion propensity of Q/N-rich proteins. Here, we show not only that this algorithm is far more effective than traditional amyloid prediction algorithms at predicting prion propensity of Q/N-rich proteins, but remarkably, also that PAPA is capable of rationally designing protein domains that function as prions in vivo.
Collapse
|
41
|
Halfmann R, Jarosz DF, Jones SK, Chang A, Lancaster AK, Lindquist S. Prions are a common mechanism for phenotypic inheritance in wild yeasts. Nature 2012; 482:363-8. [PMID: 22337056 PMCID: PMC3319070 DOI: 10.1038/nature10875] [Citation(s) in RCA: 324] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Accepted: 01/20/2012] [Indexed: 12/19/2022]
Abstract
The self-templating conformations of yeast prion proteins act as epigenetic elements of inheritance. Yeast prions might provide a mechanism for generating heritable phenotypic diversity that promotes survival in fluctuating environments and the evolution of new traits. However, this hypothesis is highly controversial. Prions that create new traits have not been found in wild strains, leading to the perception that they are rare 'diseases' of laboratory cultivation. Here we biochemically test approximately 700 wild strains of Saccharomyces for [PSI(+)] or [MOT3(+)], and find these prions in many. They conferred diverse phenotypes that were frequently beneficial under selective conditions. Simple meiotic re-assortment of the variation harboured within a strain readily fixed one such trait, making it robust and prion-independent. Finally, we genetically screened for unknown prion elements. Fully one-third of wild strains harboured them. These, too, created diverse, often beneficial phenotypes. Thus, prions broadly govern heritable traits in nature, in a manner that could profoundly expand adaptive opportunities.
Collapse
Affiliation(s)
- Randal Halfmann
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
We detail some of the genetic, biochemical, and physical methods useful in studying amyloids in yeast, particularly the yeast prions. These methods include cytoduction (cytoplasmic mixing), infection of cells with prion amyloids, use of green fluorescent protein fusions with amyloid-forming proteins for cytology, protein purification and amyloid formation, and electron microscopy of filaments.
Collapse
|
43
|
Tutar Y, Okan Ş. Heat shock protein 70 purification and characterization from Cyprinion macrastomus macrastomus and Garra rufa obtusa. J Therm Biol 2012; 37:95-99. [DOI: 10.1016/j.jtherbio.2011.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Helsen CW, Glover JR. Insight into molecular basis of curing of [PSI+] prion by overexpression of 104-kDa heat shock protein (Hsp104). J Biol Chem 2011; 287:542-556. [PMID: 22081611 DOI: 10.1074/jbc.m111.302869] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yeast prions are a powerful model for understanding the dynamics of protein aggregation associated with a number of human neurodegenerative disorders. The AAA+ protein disaggregase Hsp104 can sever the amyloid fibrils produced by yeast prions. This action results in the propagation of "seeds" that are transmitted to daughter cells during budding. Overexpression of Hsp104 eliminates the [PSI+] prion but not other prions. Using biochemical methods we identified Hsp104 binding sites in the highly charged middle domain of Sup35, the protein determinant of [PSI+]. Deletion of a short segment of the middle domain (amino acids 129-148) diminishes Hsp104 binding and strongly affects the ability of the middle domain to stimulate the ATPase activity of Hsp104. In yeast, [PSI+] maintained by Sup35 lacking this segment, like other prions, is propagated by Hsp104 but cannot be cured by Hsp104 overexpression. These results provide new insight into the enigmatic specificity of Hsp104-mediated curing of yeast prions and sheds light on the limitations of the ability of Hsp104 to eliminate aggregates produced by other aggregation-prone proteins.
Collapse
Affiliation(s)
- Christopher W Helsen
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - John R Glover
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
45
|
Hines JK, Higurashi T, Srinivasan M, Craig EA. Influence of prion variant and yeast strain variation on prion-molecular chaperone requirements. Prion 2011; 5:238-44. [PMID: 22156732 DOI: 10.4161/pri.17818] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Prions of budding yeast serve as a tractable model of amyloid behavior. Here we address the issue of the effect of yeast strain variation on prion stability, focusing also on the effect of amyloid conformation and the involvement of the co-chaperone Sis1, an essential J-protein partner of Hsp70. We found, despite an initial report to the contrary, that yeast strain background has little effect on the requirement for particular Sis1 domains for stable propagation of the prion [RNQ+], if the level of Sis1 expression is controlled. On the other hand, some variation in prion behavior was observed between yeast strains, in particular, the stability of certain [PSI+] variants. Future examination of such yeast strain-specific phenomena may provide useful insights into the basis of prion/chaperone dynamics.
Collapse
Affiliation(s)
- Justin K Hines
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | | |
Collapse
|
46
|
Hines JK, Higurashi T, Srinivasan M, Craig EA. Influence of prion variant and yeast strain variation on prion-molecular chaperone requirements. Prion 2011. [PMID: 22156732 DOI: 10.4161/pri.5.4.17818] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Prions of budding yeast serve as a tractable model of amyloid behavior. Here we address the issue of the effect of yeast strain variation on prion stability, focusing also on the effect of amyloid conformation and the involvement of the co-chaperone Sis1, an essential J-protein partner of Hsp70. We found, despite an initial report to the contrary, that yeast strain background has little effect on the requirement for particular Sis1 domains for stable propagation of the prion [RNQ+], if the level of Sis1 expression is controlled. On the other hand, some variation in prion behavior was observed between yeast strains, in particular, the stability of certain [PSI+] variants. Future examination of such yeast strain-specific phenomena may provide useful insights into the basis of prion/chaperone dynamics.
Collapse
Affiliation(s)
- Justin K Hines
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | | |
Collapse
|
47
|
Toombs JA, Liss NM, Cobble KR, Ben-Musa Z, Ross ED. [PSI+] maintenance is dependent on the composition, not primary sequence, of the oligopeptide repeat domain. PLoS One 2011; 6:e21953. [PMID: 21760933 PMCID: PMC3132755 DOI: 10.1371/journal.pone.0021953] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 06/14/2011] [Indexed: 01/29/2023] Open
Abstract
[PSI+], the prion form of the yeast Sup35 protein, results from the structural conversion of Sup35 from a soluble form into an infectious amyloid form. The infectivity of prions is thought to result from chaperone-dependent fiber cleavage that breaks large prion fibers into smaller, inheritable propagons. Like the mammalian prion protein PrP, Sup35 contains an oligopeptide repeat domain. Deletion analysis indicates that the oligopeptide repeat domain is critical for [PSI+] propagation, while a distinct region of the prion domain is responsible for prion nucleation. The PrP oligopeptide repeat domain can substitute for the Sup35 oligopeptide repeat domain in supporting [PSI+] propagation, suggesting a common role for repeats in supporting prion maintenance. However, randomizing the order of the amino acids in the Sup35 prion domain does not block prion formation or propagation, suggesting that amino acid composition is the primary determinant of Sup35's prion propensity. Thus, it is unclear what role the oligopeptide repeats play in [PSI+] propagation: the repeats could simply act as a non-specific spacer separating the prion nucleation domain from the rest of the protein; the repeats could contain specific compositional elements that promote prion propagation; or the repeats, while not essential for prion propagation, might explain some unique features of [PSI+]. Here, we test these three hypotheses and show that the ability of the Sup35 and PrP repeats to support [PSI+] propagation stems from their amino acid composition, not their primary sequences. Furthermore, we demonstrate that compositional requirements for the repeat domain are distinct from those of the nucleation domain, indicating that prion nucleation and propagation are driven by distinct compositional features.
Collapse
Affiliation(s)
- James A. Toombs
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Nathan M. Liss
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Kacy R. Cobble
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Zobaida Ben-Musa
- Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Eric D. Ross
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
- Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
48
|
Nevzglyadova OV, Kuznetsova IM, Mikhailova EV, Artamonova TO, Artemov AV, Mittenberg AG, Kostyleva EI, Turoverov KK, Khodorkovskii MA, Soidla TR. The effect of red pigment on the amyloidization of yeast proteins. Yeast 2011; 28:505-26. [DOI: 10.1002/yea.1854] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 03/15/2011] [Indexed: 11/11/2022] Open
|
49
|
Hines JK, Li X, Du Z, Higurashi T, Li L, Craig EA. [SWI], the prion formed by the chromatin remodeling factor Swi1, is highly sensitive to alterations in Hsp70 chaperone system activity. PLoS Genet 2011; 7:e1001309. [PMID: 21379326 PMCID: PMC3040656 DOI: 10.1371/journal.pgen.1001309] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 01/12/2011] [Indexed: 11/24/2022] Open
Abstract
The yeast prion [SWI+], formed of heritable amyloid aggregates of the Swi1 protein, results in a partial loss of function of the SWI/SNF chromatin-remodeling complex, required for the regulation of a diverse set of genes. Our genetic analysis revealed that [SWI+] propagation is highly dependent upon the action of members of the Hsp70 molecular chaperone system, specifically the Hsp70 Ssa, two of its J-protein co-chaperones, Sis1 and Ydj1, and the nucleotide exchange factors of the Hsp110 family (Sse1/2). Notably, while all yeast prions tested thus far require Sis1, [SWI+] is the only one known to require the activity of Ydj1, the most abundant J-protein in yeast. The C-terminal region of Ydj1, which contains the client protein interaction domain, is required for [SWI+] propagation. However, Ydj1 is not unique in this regard, as another, closely related J-protein, Apj1, can substitute for it when expressed at a level approaching that of Ydj1. While dependent upon Ydj1 and Sis1 for propagation, [SWI+] is also highly sensitive to overexpression of both J-proteins. However, this increased prion-loss requires only the highly conserved 70 amino acid J-domain, which serves to stimulate the ATPase activity of Hsp70 and thus to stabilize its interaction with client protein. Overexpression of the J-domain from Sis1, Ydj1, or Apj1 is sufficient to destabilize [SWI+]. In addition, [SWI+] is lost upon overexpression of Sse nucleotide exchange factors, which act to destabilize Hsp70's interaction with client proteins. Given the plethora of genes affected by the activity of the SWI/SNF chromatin-remodeling complex, it is possible that this sensitivity of [SWI+] to the activity of Hsp70 chaperone machinery may serve a regulatory role, keeping this prion in an easily-lost, meta-stable state. Such sensitivity may provide a means to reach an optimal balance of phenotypic diversity within a cell population to better adapt to stressful environments. Yeast prions are heritable genetic elements, formed spontaneously by aggregation of a single protein. Prions can thus generate diverse phenotypes in a dominant, non-Mendelian fashion, without a corresponding change in chromosomal gene structure. Since the phenotypes caused by the presence of a prion are thought to affect the ability of cells to survive under different environmental conditions, those that have global effects on cell physiology are of particular interest. Here we report the results of a study of one such prion, [SWI+], formed by a component of the SWI/SNF chromatin-remodeling complex, which is required for the regulation of a diverse set of genes. We found that, compared to previously well-studied prions, [SWI+] is highly sensitive to changes in the activities of molecular chaperones, particularly components of the Hsp70 machinery. Both under- and over-expression of components of this system initiated rapid loss of the prion from the cell population. Since expression of molecular chaperones, often known as heat shock proteins, are known to vary under diverse environmental conditions, such “chaperone sensitivity” may allow alteration of traits that under particular environmental conditions convey a selective advantage and may be a common characteristic of prions formed from proteins involved in global gene regulation.
Collapse
Affiliation(s)
- Justin K. Hines
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Xiaomo Li
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Zhiqiang Du
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Takashi Higurashi
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Liming Li
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- * E-mail: (EAC); (LL)
| | - Elizabeth A. Craig
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- * E-mail: (EAC); (LL)
| |
Collapse
|
50
|
Kawai-Noma S, Pack CG, Kojidani T, Asakawa H, Hiraoka Y, Kinjo M, Haraguchi T, Taguchi H, Hirata A. In vivo evidence for the fibrillar structures of Sup35 prions in yeast cells. ACTA ACUST UNITED AC 2010; 190:223-31. [PMID: 20643880 PMCID: PMC2930275 DOI: 10.1083/jcb.201002149] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Correlative light and electron microscopy provides support for the linear amalgamation of yeast prion proteins. Yeast prion [PSI+] is caused by aggregated structures of the Sup35 protein. Although Sup35 forms typical amyloid fibrils in vitro, there is no direct evidence for the fibrillar structures of Sup35 in vivo. We analyzed [PSI+] cells in which Sup35 fused with green fluorescent protein (GFP) formed aggregates visible by fluorescence microscopy using thin-section electron microscopy (EM). Rapid-freeze EM combined with an immunogold-labeling technique as well as correlative light EM, which allows high-resolution imaging by EM of the same structure observed by light (fluorescence) microscopy, shows that the aggregates contain bundled fibrillar structures of Sup35-GFP. Additional biochemical and fluorescent correlation spectroscopy results suggest that the Sup35 oligomers diffused in the [PSI+] lysates adopt fibril-like shapes. Our findings demonstrate that [PSI+] cells contain Sup35 fibrillar structures closely related to those formed in vitro and provide insight into the molecular mechanism by which Sup35 aggregates are assembled and remodeled in [PSI+] cells.
Collapse
Affiliation(s)
- Shigeko Kawai-Noma
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|