1
|
Little JI, Singh PK, Zhao J, Dunn S, Matz H, Donnenberg MS. Type IV pili of Enterobacteriaceae species. EcoSal Plus 2024; 12:eesp00032023. [PMID: 38294234 PMCID: PMC11636386 DOI: 10.1128/ecosalplus.esp-0003-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 12/01/2023] [Indexed: 02/01/2024]
Abstract
Type IV pili (T4Ps) are surface filaments widely distributed among bacteria and archaea. T4Ps are involved in many cellular functions and contribute to virulence in some species of bacteria. Due to the diversity of T4Ps, different properties have been observed for homologous proteins that make up T4Ps in various organisms. In this review, we highlight the essential components of T4Ps, their functions, and similarities to related systems. We emphasize the unique T4Ps of enteric pathogens within the Enterobacteriaceae family, which includes pathogenic strains of Escherichia coli and Salmonella. These include the bundle-forming pilus (BFP) of enteropathogenic E. coli (EPEC), longus (Lng) and colonization factor III (CFA/III) of enterotoxigenic E. coli (ETEC), T4P of Salmonella enterica serovar Typhi, Colonization Factor Citrobacter (CFC) of Citrobacter rodentium, T4P of Yersinia pseudotuberculosis, a ubiquitous T4P that was characterized in enterohemorrhagic E. coli (EHEC), and the R64 plasmid thin pilus. Finally, we highlight areas for further study.
Collapse
Affiliation(s)
- Janay I. Little
- School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Pradip K. Singh
- School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jinlei Zhao
- School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Shakeera Dunn
- Internal Medicine Residency, Bayhealth Medical Center, Dover, Delaware, USA
| | - Hanover Matz
- Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
2
|
Singh PK, Donnenberg MS. High throughput and targeted screens for prepilin peptidase inhibitors do not identify common inhibitors of eukaryotic gamma-secretase. Expert Opin Drug Discov 2023; 18:563-573. [PMID: 37073444 PMCID: PMC11558661 DOI: 10.1080/17460441.2023.2203480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/12/2023] [Indexed: 04/20/2023]
Abstract
INTRODUCTION Prepilin peptidases (PPP) are essential enzymes for the biogenesis of important virulence factors, such as type IV pili (T4P), type II secretion systems, and other T4P-related systems of bacteria and archaea. PPP inhibitors could be valuable pharmaceuticals, but only a few have been reported. Interestingly, PPP share similarities with presenilin enzymes from the gamma-secretase protease complex, which are linked to Alzheimer's disease. Numerous gamma-secretase inhibitors have been reported, and some have entered clinical trials, but none has been tested against PPP. OBJECTIVE The objective of this study is to develop a high-throughput screening (HTS) method to search for inhibitors of PPP from various chemical libraries and reported gamma-secretase inhibitors. METHOD More than 15,000 diverse compounds, including 13 reported gamma-secretase inhibitors and other reported peptidase inhibitors, were screened to identify potential PPP inhibitors. RESULTS The authors developed a novel screening method and screened 15,869 compounds. However, the screening did not identify a PPP inhibitor. Nevertheless, the study suggests that gamma-secretase is sufficiently different from PPP that specific inhibitors may exist in a larger chemical space. CONCLUSION The authors believe that the HTS method that they describe has numerous advantages and encourage others to consider its application in the search for PPP inhibitors.
Collapse
Affiliation(s)
- Pradip Kumar Singh
- Department of Internal Medicine, Virginia Commonwealth University, Sanger Hall, Richmond, VA, USA
| | - Michael S Donnenberg
- Department of Internal Medicine, Virginia Commonwealth University, Sanger Hall, Richmond, VA, USA
| |
Collapse
|
3
|
BfpI, BfpJ, and BfpK Minor Pilins Are Important for the Function and Biogenesis of Bundle-Forming Pili Expressed by Enteropathogenic Escherichia coli. J Bacteriol 2015; 198:846-56. [PMID: 26712935 PMCID: PMC4810605 DOI: 10.1128/jb.00818-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/17/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Enteropathogenic Escherichia coli (EPEC) remains a significant cause of infant diarrheal illness and associated morbidity and mortality in developing countries. EPEC strains are characterized by their ability to colonize the small intestines of their hosts by a multistep program involving initial loose attachment to intestinal epithelial cells followed by an intimate adhesion phase. The initial loose interaction of typical EPEC with host intestinal cells is mediated by bundle-forming pili (BFP). BFP are type 4b pili (T4bP) based on structural and functional properties shared with T4bP expressed by other bacteria. The major structural subunit of BFP is called bundlin, a T4b pilin expressed from the bfpA gene in the BFP operon, which contains three additional genes that encode the pilin-like proteins BfpI, BfpJ, and BfpK. In this study, we show that, in the absence of the BFP retraction ATPase (BfpF), BfpI, BfpJ, and BfpK are dispensable for BFP biogenesis. We also demonstrate that these three minor pilins are incorporated along with bundlin into the BFP filament and contribute to its structural integrity and host cell adhesive properties. The results confirm that previous findings in T4aP systems can be extended to a model T4bP such as BFP. IMPORTANCE Bundle-forming pili contribute to the host colonization strategy of enteropathogenic Escherichia coli. The studies described here investigate the role for three minor pilin subunits in the structure and function of BFP in EPEC. The studies also suggest that these subunits could be antigens for vaccine development.
Collapse
|
4
|
Maldarelli GA, De Masi L, von Rosenvinge EC, Carter M, Donnenberg MS. Identification, immunogenicity, and cross-reactivity of type IV pilin and pilin-like proteins from Clostridium difficile. Pathog Dis 2014; 71:302-14. [PMID: 24550179 DOI: 10.1111/2049-632x.12137] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 12/13/2013] [Accepted: 01/08/2014] [Indexed: 11/30/2022] Open
Abstract
The Gram-positive anaerobe Clostridium difficile is the major cause of nosocomial diarrhea; manifestations of infection include diarrhea, pseudomembranous colitis, and death. Genes for type IV pili, a bacterial nanofiber often involved in colonization and until relatively recently described only in Gram-negatives, are present in all members of the Clostridiales. We hypothesized that any pilins encoded in the C. difficile genome would be immunogenic, as has been shown with pilins from Gram-negative organisms. We describe nine pilin or pilin-like protein genes, for which we introduce a coherent nomenclature, in the C. difficile R20291 genome. The nine predicted pilin or pilin-like proteins have relatively conserved N-terminal hydrophobic regions, but diverge at their C-termini. Analysis of synonymous and nonsynonymous substitutions revealed evidence of diversifying selective pressure in two pilin genes. Six of the nine identified proteins were purified and used to immunize mice. Immunization of mice with each individual protein generated antibody responses that varied in titer and cross-reactivity, a notable result given the low amino acid sequence identity among the pilins. Further studies in other small mammals mirrored our results in mice. Our results illuminate components of the C. difficile type IV pilus and help identify targets for an anti-C. difficile vaccine.
Collapse
Affiliation(s)
- Grace A Maldarelli
- Department of Medicine, Divisions of Infectious Disease, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
5
|
Abstract
Type IV pili (T4P) are multifunctional protein fibers produced on the surfaces of a wide variety of bacteria and archaea. The major subunit of T4P is the type IV pilin, and structurally related proteins are found as components of the type II secretion (T2S) system, where they are called pseudopilins; of DNA uptake/competence systems in both Gram-negative and Gram-positive species; and of flagella, pili, and sugar-binding systems in the archaea. This broad distribution of a single protein family implies both a common evolutionary origin and a highly adaptable functional plan. The type IV pilin is a remarkably versatile architectural module that has been adopted widely for a variety of functions, including motility, attachment to chemically diverse surfaces, electrical conductance, acquisition of DNA, and secretion of a broad range of structurally distinct protein substrates. In this review, we consider recent advances in this research area, from structural revelations to insights into diversity, posttranslational modifications, regulation, and function.
Collapse
|
6
|
De Masi L, Szmacinski H, Schreiber W, Donnenberg MS. BfpL is essential for type IV bundle-forming pilus biogenesis and interacts with the periplasmic face of BfpC. MICROBIOLOGY-SGM 2012; 158:2515-2526. [PMID: 22837303 DOI: 10.1099/mic.0.060889-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Enteropathogenic Escherichia coli (EPEC) causes diarrhoea among infants in developing countries. The bundle-forming pilus (BFP), a type IV pilus found on the surface of EPEC, is essential for full virulence of typical EPEC strains. The machinery for BFP assembly and function is encoded by an operon of 14 genes. Here we investigate the role in pilus biogenesis of BfpL, a small protein with a single N-terminal predicted transmembrane domain reminiscent of pilin-like proteins. We confirmed that a bfpL mutant lacks BFP, and associated auto-aggregation and localized adherence phenotypes. Furthermore, we found that a double mutant unable to express both the putative retraction ATPase BfpF and BfpL also lacks BFP and associated phenotypes, distinguishing BfpL from pilin-like proteins. Western blots of sheared pilus preparations did not suggest that BfpL is a component of BFP. Topology studies using C-terminal truncations and a dual reporter revealed that most of the BfpL protein resides in the periplasm. Further, we demonstrated through yeast two-hybrid assays and confirmed by fluorescence anisotropy that BfpL interacts with the periplasmic face of BfpC. Thus, BfpL has a function distinct from those of pilin-like proteins and is instead part of an inner-membrane subassembly complex that is believed to extract bundlin, the main pilus subunit, from the inner membrane to be incorporated into BFP.
Collapse
Affiliation(s)
- Leon De Masi
- Division of Infectious Diseases, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Henryk Szmacinski
- Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Wiebke Schreiber
- Division of Infectious Diseases, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Michael S Donnenberg
- Division of Infectious Diseases, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
7
|
Aroeti B, Friedman G, Zlotkin-Rivkin E, Donnenberg MS. Retraction of enteropathogenic E. coli type IV pili promotes efficient host cell colonization, effector translocation and tight junction disruption. Gut Microbes 2012; 3:267-71. [PMID: 22572833 PMCID: PMC3427219 DOI: 10.4161/gmic.19814] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Type IV pili (Tfp) play a primary role in mediating the adherence of pathogenic bacteria to their hosts. The pilus filament can retract with an immense force. However, the role of this activity in microbial pathogenesis has not been rigorously explored. Experiments performed on volunteers suggested that the retraction capacity of enteropathogenic Escherichia coli (EPEC) Tfp is required for full virulence. Here we review our recent study(1) in which we showed that the retraction capacity of the EPEC Tfp facilitates tight-junction disruption and actin-rich pedestal formation by promoting efficient bacterial protein effector translocation into epithelial host cells. We also present new data using live imaging confocal microscopy suggesting that EPEC adheres to monolayers in microcolonies and that Tfp retraction facilitates significant changes in the microcolony shape, which may be critical for efficient effector delivery. Our studies hence suggest novel insights into the role of pili retraction in EPEC pathogenesis.
Collapse
Affiliation(s)
- Benjamin Aroeti
- Department of Cell and Developmental Biology; Institute of Life Sciences; Hebrew University of Jerusalem; Jerusalem, Israel,Correspondence to: Benjamin Aroeti,
| | - Gil Friedman
- Department of Cell and Developmental Biology; Institute of Life Sciences; Hebrew University of Jerusalem; Jerusalem, Israel
| | - Efrat Zlotkin-Rivkin
- Department of Cell and Developmental Biology; Institute of Life Sciences; Hebrew University of Jerusalem; Jerusalem, Israel
| | - Michael S. Donnenberg
- Division of Infectious Diseases; University of Maryland School of Medicine; Baltimore, MD USA
| |
Collapse
|
8
|
Yamagata A, Milgotina E, Scanlon K, Craig L, Tainer JA, Donnenberg MS. Structure of an essential type IV pilus biogenesis protein provides insights into pilus and type II secretion systems. J Mol Biol 2012; 419:110-24. [PMID: 22387466 DOI: 10.1016/j.jmb.2012.02.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 02/22/2012] [Accepted: 02/24/2012] [Indexed: 01/08/2023]
Abstract
Type IV pili (T4Ps) are long cell surface filaments, essential for microcolony formation, tissue adherence, motility, transformation, and virulence by human pathogens. The enteropathogenic Escherichia coli bundle-forming pilus is a prototypic T4P assembled and powered by BfpD, a conserved GspE secretion superfamily ATPase held by inner-membrane proteins BfpC and BfpE, a GspF-family membrane protein. Although the T4P assembly machinery shares similarity with type II secretion (T2S) systems, the structural biochemistry of the T4P machine has been obscure. Here, we report the crystal structure of the two-domain BfpC cytoplasmic region (N-BfpC), responsible for binding to ATPase BfpD and membrane protein BfpE. The N-BfpC structure reveals a prominent central cleft between two α/β-domains. Despite negligible sequence similarity, N-BfpC resembles PilM, a cytoplasmic T4P biogenesis protein. Yet surprisingly, N-BfpC has far greater structural similarity to T2S component EpsL, with which it also shares virtually no sequence identity. The C-terminus of the cytoplasmic domain, which leads to the transmembrane segment not present in the crystal structure, exits N-BfpC at a positively charged surface that most likely interacts with the inner membrane, positioning its central cleft for interactions with other Bfp components. Point mutations in surface-exposed N-BfpC residues predicted to be critical for interactions among BfpC, BfpE, and BfpD disrupt pilus biogenesis without precluding interactions with BfpE and BfpD and without affecting BfpD ATPase activity. These results illuminate the relationships between T4P biogenesis and T2S systems, imply that subtle changes in component residue interactions can have profound effects on function and pathogenesis, and suggest that T4P systems may be disrupted by inhibitors that do not preclude component assembly.
Collapse
Affiliation(s)
- Atsushi Yamagata
- Department of Molecular Biology, MB4, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
9
|
Outer membrane targeting, ultrastructure, and single molecule localization of the enteropathogenic Escherichia coli type IV pilus secretin BfpB. J Bacteriol 2012; 194:1646-58. [PMID: 22247509 DOI: 10.1128/jb.06330-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type IV pili (T4P) are filamentous surface appendages required for tissue adherence, motility, aggregation, and transformation in a wide array of bacteria and archaea. The bundle-forming pilus (BFP) of enteropathogenic Escherichia coli (EPEC) is a prototypical T4P and confirmed virulence factor. T4P fibers are assembled by a complex biogenesis machine that extrudes pili through an outer membrane (OM) pore formed by the secretin protein. Secretins constitute a superfamily of proteins that assemble into multimers and support the transport of macromolecules by four evolutionarily ancient secretion systems: T4P, type II secretion, type III secretion, and phage assembly. Here, we determine that the lipoprotein transport pathway is not required for targeting the BfpB secretin protein of the EPEC T4P to the OM and describe the ultrastructure of the single particle averaged structures of the assembled complex by transmission electron microscopy. Furthermore, we use photoactivated localization microscopy to determine the distribution of single BfpB molecules fused to photoactivated mCherry. In contrast to findings in other T4P systems, we found that BFP components predominantly have an uneven distribution through the cell envelope and are only found at one or both poles in a minority of cells. In addition, we report that concurrent mutation of both the T4bP secretin and the retraction ATPase can result in viable cells and found that these cells display paradoxically low levels of cell envelope stress response activity. These results imply that secretins can direct their own targeting, have complex distributions and provide feedback information on the state of pilus biogenesis.
Collapse
|
10
|
Humphries RM, Armstrong GD. Sticky situation: localized adherence of enteropathogenic Escherichia coli to the small intestine epithelium. Future Microbiol 2011; 5:1645-61. [PMID: 21133687 DOI: 10.2217/fmb.10.124] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) primarily cause gastrointestinal illness in neonates. They accomplish this by a complex coordinated multistage strategy, whereby the organisms colonize the epithelial lining of the small intestine. This process can be divided into four stages: first, localized, nonintimate adherence; second, type III secretion-mediated injection of effector proteins, third effacement of microvilli and, finally, intimate adherence. In this article, we review the history and current state of knowledge, as well as present potential future directions for further investigating the fascinating processes by which EPEC and related organisms colonize the human intestine and cause disease.
Collapse
Affiliation(s)
- Romney M Humphries
- University of Calgary, Department of Microbiology and Infectious Diseases, Calgary, Alberta, Canada
| | | |
Collapse
|
11
|
Iida M, Okamura N, Yamazaki M, Yatsuyanagi J, Kurazono T, Suzuki R, Hiruta N, Isobe J, Seto K, Kawano K, Narimatsu H, Ratchtrachenchai OA, Okabe N, Ito K. Classification of perA sequences and their correlation with autoaggregation in typical enteropathogenic Escherichia coli isolates collected in Japan and Thailand. Microbiol Immunol 2010; 54:184-95. [PMID: 20377747 DOI: 10.1111/j.1348-0421.2010.00212.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Enteropathogenic Escherichia coli (EPEC) strains produce a bundle-forming pilus (BFP) that mediates localized adherence (LA) to intestinal epithelial cells. The major structural subunit of the BFP is bundlin, which is encoded by the bfpA gene located on a large EAF plasmid. The perA gene has been shown to activate genes within the bfp operon. We analyzed perA gene polymorphism among typical (eae- and bfpA-positive) EPEC strains isolated from healthy and diarrheal persons in Japan (n=27) and Thailand (n=26) during the period 1995 to 2007 and compared this with virulence and phenotypic characteristics. Eight genotypes of perA were identified by heteroduplex mobility assay (HMA). The strains isolated in Thailand showed strong autoaggregation and had an intact perA, while most of those isolated in Japan showed weak or no autoaggregation, and had a truncated perA due to frameshift mutation. The degree of autoaggregation was well correlated with adherence to HEp-2 cells, contact hemolysis and BFP expression. Our results showed that functional deficiency due to frameshift mutation and subsequent nonsense mutation in perA reduced BFP expression in typical EPEC strains isolated in Japan.
Collapse
Affiliation(s)
- Mariko Iida
- Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Humphries RM, Griener TP, Vogt SL, Mulvey GL, Raivio T, Donnenberg MS, Kitov PI, Surette M, Armstrong GD. N-acetyllactosamine-induced retraction of bundle-forming pili regulates virulence-associated gene expression in enteropathogenic Escherichia coli. Mol Microbiol 2010; 76:1111-26. [PMID: 20487271 DOI: 10.1111/j.1365-2958.2010.07192.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Enteropathogenic Escherichia coli (EPEC) are a major cause of infant morbidity and mortality due to diarrhoea in developing countries. The pathogenesis of EPEC is dependent on a coordinated multi-step process culminating in the intimate adherence of the organisms to the host's intestinal mucosa. During the initial stages of the EPEC colonization process, the fimbrial adhesin, bundle-forming pili (BFP), plays an integral role. We previously reported that the major BFP structural subunit, bundlin, displays lectin-like properties, which enables BFP to initially tether EPEC to N-acetyllactosamine (LacNAc) glycan receptors on host cell surfaces. We also reported that incubating EPEC with synthetic LacNAc-bearing neoglycoconjugates not only inhibits their adherence to host cells, but also induces BFP retraction and subsequent degradation of the bundlin subunits. Herein, we demonstrate that the periplasmic serine protease, DegP, is required for degrading bundlin during this process. We also show that DegP appears to act as a bundlin chaperone during BFP assembly and that LacNAc-BSA-induced BFP retraction is followed by transcriptional upregulation of the BFP operon and downregulation of the locus of enterocyte effacement operons in EPEC.
Collapse
Affiliation(s)
- Romney M Humphries
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Vogt SL, Nevesinjac AZ, Humphries RM, Donnenberg MS, Armstrong GD, Raivio TL. The Cpx envelope stress response both facilitates and inhibits elaboration of the enteropathogenic Escherichia coli bundle-forming pilus. Mol Microbiol 2010; 76:1095-110. [PMID: 20444097 PMCID: PMC2904494 DOI: 10.1111/j.1365-2958.2010.07145.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The Cpx envelope stress response is induced by the misfolding of periplasmic proteins and restores envelope homeostasis by upregulating several periplasmic protein folding and degrading factors. The Cpx response also regulates the expression of a variety of envelope-spanning protein complexes, including flagella, secretion systems and pili, which play an important role in pathogenesis. In a previous study, we inactivated the Cpx response in enteropathogenic Escherichia coli (EPEC), a causative agent of infant diarrhoea, and observed decreased expression of its major adhesin, the bundle-forming pilus (BFP). Here, we examined the mechanism underlying this BFP expression defect, and found that this phenotype can be attributed to insufficient expression of periplasmic folding factors, such as DsbA, DegP and CpxP. Hence, a low level of Cpx pathway activity promotes BFP synthesis by upregulating factors important for folding of BFP component proteins. Conversely, we found that full induction of the Cpx response inhibits BFP expression, mainly by repressing transcription of the bfp gene cluster. In combination with a previous report examining EPEC type III secretion, our results demonstrate that the Cpx response co-ordinates the repression of cell-surface structures during periods of envelope stress.
Collapse
Affiliation(s)
- Stefanie L Vogt
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
14
|
Interactions of enteropathogenic Escherichia coli with pediatric and adult intestinal biopsy specimens during early adherence. Infect Immun 2009; 77:4463-8. [PMID: 19635829 DOI: 10.1128/iai.00686-09] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) strains cause watery diarrhea almost exclusively in young children. The basis for this age discrimination has never been determined, but it may be related to host cell receptors. During infection, EPEC strains express type IV bundle-forming pili composed of repeating subunits of the protein called bundlin. The very first interaction between EPEC and in vitro-cultured epithelial cells is mediated by the binding of alpha-bundlin to a carbohydrate receptor that contains, at a minimum, the N-acetyllactosamine (LacNAc) glycan sequence. However, bundlins expressed from the beta-bundlin allele do not bind LacNAc glycan sequences. Herein, we investigated whether EPEC strains use alpha-bundlin to mediate early adherence to human intestinal biopsy specimens cultured in vitro by assessing the ability of isogenic EPEC mutants expressing either the alpha(1)- or beta(1)-bundlin allele or a bundlin-deficient EPEC strain to bind to these specimens. Furthermore, we directly compared the abilities of a wild-type EPEC strain to bind to the epithelial surfaces of both human adult and pediatric biopsy specimens. Our results demonstrate that beta-bundlin does not act as an adhesin during early EPEC adherence to adult duodenal biopsy specimens. The results also indicate that EPEC binds equally well to adult and pediatric biopsy specimens in an early adherence assay. This result is supported by the finding that the early adherence of EPEC to both adult and pediatric biopsy specimens was inhibited by LacNAc neoglycoconjugates, suggesting that organisms expressing alpha-bundlin-type bundle-forming pili initially bind to related glycan receptors in both age groups.
Collapse
|
15
|
Sharma M, Ingram DT, Patel JR, Millner PD, Wang X, Hull AE, Donnenberg MS. A novel approach to investigate the uptake and internalization of Escherichia coli O157:H7 in spinach cultivated in soil and hydroponic medium. J Food Prot 2009; 72:1513-20. [PMID: 19681280 DOI: 10.4315/0362-028x-72.7.1513] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Internalization of Escherichia coli O157:H7 into spinach plants through root uptake is a potential route of contamination. A Tn7-based plasmid vector was used to insert a green fluorescent protein gene into the attTn7 site in the E. coli chromosome. Three green fluorescent protein-labeled E. coli inocula were used: produce outbreak O157:H7 strains RM4407 and RM5279 (inoculum 1), ground beef outbreak O157:H7 strain 86-24h11 (inoculum 2), and commensal strain HS (inoculum 3). These strains were cultivated in fecal slurries and applied at ca. 10(3) or 10(7) CFU/g to pasteurized soils in which baby spinach seedlings were planted. No E. coli was recovered by spiral plating from surface-sanitized internal tissues of spinach plants on days 0, 7, 14, 21, and 28. Inoculum 1 survived at significantly higher populations (P < 0.05) in the soil than did inoculum 3 after 14, 21, and 28 days, indicating that produce outbreak strains of E. coli O157:H7 may be less physiologically stressed in soils than are nonpathogenic E. coli isolates. Inoculum 2 applied at ca. 10(7) CFU/ml to hydroponic medium was consistently recovered by spiral plating from the shoot tissues of spinach plants after 14 days (3.73 log CFU per shoot) and 21 days (4.35 log CFU per shoot). Fluorescent E. coli cells were microscopically observed in root tissues in 23 (21%) of 108 spinach plants grown in inoculated soils. No internalized E. coli was microscopically observed in shoot tissue of plants grown in inoculated soil. These studies do not provide evidence for efficient uptake of E. coli O157:H7 from soil to internal plant tissue.
Collapse
Affiliation(s)
- Manan Sharma
- Environmental Microbial and Food Safety Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Animal and Natural Resources Institute, 10300 Baltimore Avenue, Beltsville, Maryland 20705, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Humphries RM, Donnenberg MS, Strecker J, Kitova E, Klassen JS, Cui L, Griener TP, Mulvey GL, Armstrong GD. From alpha to beta: identification of amino acids required for the N-acetyllactosamine-specific lectin-like activity of bundlin. Mol Microbiol 2009; 72:859-68. [PMID: 19400799 DOI: 10.1111/j.1365-2958.2009.06679.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Bundle-forming pili (BFP) promote the adherence of typical enteropathogenic Escherichia coli (EPEC) to human intestinal epithelial cells. BFP are polymers of bundlin and nine bundlin alleles have been identified in EPEC isolated from diverse sources. These alleles are divided into two main groups, alpha and beta, based on their amino acid sequences. Alpha bundlins are also N-acetyllactosamine- (LacNAc) specific lectins and bind to HEp-2 cells, whereas beta bundlins do not display these characteristics. The four surface-exposed regions of amino acid sequence heterogeneity between alpha and beta bundlin were therefore investigated as potential LacNAc-specific carbohydrate-binding domains in a bundlin. Mutation of one of these domains, 137-GENNI-141, in alpha(1) bundlin to that of beta bundlin (136-SPDST-140) resulted in BFP that no longer bound to LacNAc or HEp-2 cells. Conversely, mutating the beta3 bundlin gene to encode the alpha bundlin sequence at this domain resulted in the gain of HEp-2 cell adherence. The importance of this domain in carbohydrate binding is supported by the finding that introducing the mutation GENNI-->GENNT altered the alpha1 bundlin carbohydrate-binding specificity from LacNAc to the Lewis X glycan sequence.
Collapse
|
17
|
Hyland RM, Sun J, Griener TP, Mulvey GL, Klassen JS, Donnenberg MS, Armstrong GD. The bundlin pilin protein of enteropathogenic Escherichia coli is an N-acetyllactosamine-specific lectin. Cell Microbiol 2007; 10:177-87. [PMID: 17697132 PMCID: PMC3809902 DOI: 10.1111/j.1462-5822.2007.01028.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Synthetic N-acetyllactosamine (LacNAc) glycoside sequences coupled to BSA competitively inhibit enteropathogenic Escherichia coli (EPEC) localized adherence (LA) to human intestinal biopsy specimens and tissue culture cell monolayers. The LacNAc-specific adhesin appears to be associated with the bundle-forming pili (BFP) expressed by EPEC during the early stages of colonization. Herein, we report that recombinant bundlin inhibits EPEC LA to HEp-2 cells and binds to HEp-2 cells. Recombinant bundlin also binds, with millimolar association constants (K(assoc)), to synthetic LacNAc-Benzene and LacNAc-O(CH(2))(8)CONH(2) glycosides as assessed in the gas phase by nanoelectrospray ionization mass spectrometry. Furthermore, LacNAc-BSA inhibits LA only of EPEC strains that express alpha bundlin alleles, suggesting putative locations for the LacNAc-binding pocket in the alpha bundlin monomer. Collectively, these results suggest that alpha bundlin possesses lectin-like properties that are responsible for LacNAc-specific initial adherence of alpha bundlin-expressing EPEC strains to host intestinal epithelial cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Glen D. Armstrong
- University of Calgary, Calgary AB, Canada, T2N 4N1
- For correspondence: ; Tel. (+1) 403 220 6885; Fax (+1) 403 272 2772
| |
Collapse
|