1
|
Chen H, Cao S, Zhou Y, Wang T, Jiao Y, Tan Y, Wu Y, Ren Y, Song Y, Zhang JR, Du Z, Yang R. Molecular turn in Yersinia pestis pathogenesis: implications of the gppA frameshift for bacterial survival in human macrophage. Emerg Microbes Infect 2025; 14:2467778. [PMID: 39945756 PMCID: PMC11878169 DOI: 10.1080/22221751.2025.2467778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 03/04/2025]
Abstract
Yersinia pestis, the etiological agent of the devastating plague, has caused three pandemics in human history. While known for its fatality, it has long been intriguing that biovar microtus strains are highly attenuated to humans. The survival and replication within macrophages are critical in the early stages of the Y. pestis lifestyle within warm-blooded hosts. Here, we demonstrate that a frameshift truncation of gppA, a gene encoding the phosphohydrolase GppA that responsible for the conversion of stringent response alarmone pppGpp to ppGpp, significantly promotes Y. pestis to survive inside human macrophages. This frameshift mutation of gppA is present in all the evolutionary branches formed by the modern Y. pestis strains responsible for the plague pandemics, while the relative ancient microtus strains express a functional GppA showing high activity in catalyzing pppGpp to ppGpp conversion. This adaptive evolution potentially explains why microtus Y. pestis strains exhibit attenuated virulence in humans in contrast to the lethal pathogenicity of non-microtus strains. Transcriptome analysis suggests that the disturbed balance of the ratio of ppGpp to pppGpp caused by GppA inactivation results in an upregulation of genes involved in the synthesis of branched-chain amino acids, which are essential for bacterial growth. This enhanced survival ability within macrophages could be a key factor for the virulence of Y. pestis towards humans. Our work sheds light on the molecular mechanisms behind Y. pestis host-specific pathogenicity, offering significant implications for enhancing our ability to predict and counteract the emergence of new infectious diseases.
Collapse
Affiliation(s)
- Hongyan Chen
- Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, People’s Republic of China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Shiyang Cao
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Yazhou Zhou
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Tong Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Yang Jiao
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Yafang Tan
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Yarong Wu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Yifan Ren
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Jing-Ren Zhang
- Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, People’s Republic of China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, People’s Republic of China
| | - Zongmin Du
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Cai J, Zhou H, Liu M, Zhang D, Lv J, Xue H, Zhou H, Zhang W. Host immunity and intracellular bacteria evasion mechanisms: Enhancing host-directed therapies with drug delivery systems. Int J Antimicrob Agents 2025; 65:107492. [PMID: 40107461 DOI: 10.1016/j.ijantimicag.2025.107492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/04/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
Host-directed therapies (HDTs) have been investigated as a potential solution to combat intracellular and drug-resistant bacteria. HDTs stem from extensive research on the intricate interactions between the host and intracellular bacteria, leading to a treatment approach that relies on immunoregulation. To improve the bioavailability and safety of HDTs, researchers have utilized diverse drug delivery systems (DDS) to encapsulate and transport therapeutic agents to target cells. In this review, we first introduce the three mechanisms of bactericidal action and intracellular bacterial evasion: autophagy, reactive oxygen species (ROS), and inflammatory cytokines, with a particular focus on autophagy. Special attention is given to the detailed mechanism of xenophagy in clearing intracellular bacteria, a crucial selective autophagy process that specifically targets and degrades intracellular pathogens. Following this, we present the application of DDS to modulate these regulatory methods for intracellular bacteria elimination. By integrating insights from immunology and nanomedicine, this review highlights the emerging role of DDS in advancing HDTs for intracellular bacterial infections and paving the way for innovative therapeutic interventions.
Collapse
Affiliation(s)
- Jiayang Cai
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu, China
| | - Han Zhou
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu, China
| | - Mingwei Liu
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu, China
| | - Dingjian Zhang
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu, China
| | - Jingxuan Lv
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu, China
| | - Haokun Xue
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu, China
| | - Houcheng Zhou
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu, China
| | - Wenli Zhang
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu, China.
| |
Collapse
|
3
|
Chopra U, Bhansali P, Gangi Setty SR, Chakravortty D. Endoplasmic reticulum facilitates the coordinated division of Salmonella-containing vacuoles. mBio 2025; 16:e0011425. [PMID: 40272166 PMCID: PMC12077215 DOI: 10.1128/mbio.00114-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025] Open
Abstract
Salmonella Typhimurium (STM) resides in a membrane-bound compartment called the Salmonella-containing vacuole (SCV) in several infected cell types where bacterial and SCV division occur synchronously to maintain a single bacterium per vacuole. However, the mechanism behind this synchronous fission is not well understood. Fission of intracellular organelles is known to be regulated by the dynamic tubular endoplasmic reticulum (ER). In this study, we evaluated the role of ER in controlling SCV division. Interestingly, Salmonella-infected cells show activation of the unfolded protein response (UPR) and expansion of ER tubules. Altering the expression of ER morphology regulators, such as reticulon-4a (Rtn4a) and CLIMP63, significantly impacted bacterial proliferation, suggesting a potential role of tubular ER in facilitating SCV division. Live-cell imaging revealed the marking of tubular ER at the center of 78% of SCV division sites. This study also explored the role of SteA (a known Salmonella effector in modulating membrane dynamics) in coordinating the SCV division. SteA resides on the SCV membranes and helps form membrane contact between SCV and ER. The colocalization of ER with SCV enclosing STMΔsteA was significantly reduced, compared with SCV of STM WT or STMΔsteA:steA. STMΔsteA shows profound defects in SCV division, resulting in multiple bacteria in a single vacuole with proliferation defects. In vivo, the STMΔsteA shows a defect in colonization in the spleen and liver and affects the initial survival rate of mice. Overall, this study suggests a coordinated role of bacterial effector SteA in promoting ER contact/association with SCVs and regulating SCV division.IMPORTANCEThis study highlights the essential role of the host endoplasmic reticulum in facilitating SCV division and maintaining a single bacterium per vacuole. The Salmonella effector SteA helps maintain the single bacterium per vacuole state. In the absence of SteA, Salmonella resides as multiple bacteria within a single large vacuole. The STMΔsteA shows reduced proliferation under in vitro conditions and exhibits colonization defects in vivo, highlighting the importance of this effector in Salmonella pathogenesis. These findings suggest that targeting SteA could provide a novel therapeutic approach to inhibit Salmonella pathogenicity.
Collapse
Affiliation(s)
- Umesh Chopra
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Priyanka Bhansali
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Subba Rao Gangi Setty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, India
| |
Collapse
|
4
|
Pavlik P, Velecka E, Spidlova P. Breaking the cellular defense: the role of autophagy evasion in Francisella virulence. Front Cell Infect Microbiol 2024; 14:1523597. [PMID: 39776438 PMCID: PMC11703736 DOI: 10.3389/fcimb.2024.1523597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Many pathogens have evolved sophisticated strategies to evade autophagy, a crucial cellular defense mechanism that typically targets and degrades invading microorganisms. By subverting or inhibiting autophagy, these pathogens can create a more favorable environment for their replication and survival within the host. For instance, some bacteria secrete factors that block autophagosome formation, while others might escape from autophagosomes before degradation. These evasion tactics are critical for the pathogens' ability to establish and maintain infections. Understanding the mechanisms by which pathogens avoid autophagy is crucial for developing new therapeutic strategies, as enhancing autophagy could bolster the host's immune response and aid in the elimination of pathogenic bacteria. Francisella tularensis can manipulate host cell pathways to prevent its detection and destruction by autophagy, thereby enhancing its virulence. Given the potential for F. tularensis to be used as a bioterrorism agent due to its high infectivity and ability to cause severe disease, research into how this pathogen evades autophagy is of critical importance. By unraveling these mechanisms, new therapeutic approaches could be developed to enhance autophagic responses and strengthen host defense against this and other similarly evasive pathogens.
Collapse
Affiliation(s)
- Pavla Pavlik
- Department of Molecular Pathology and Biology, Military Faculty of Medicine, University of Defence, Hradec Kralove, Czechia
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - Eva Velecka
- Department of Molecular Pathology and Biology, Military Faculty of Medicine, University of Defence, Hradec Kralove, Czechia
| | - Petra Spidlova
- Department of Molecular Pathology and Biology, Military Faculty of Medicine, University of Defence, Hradec Kralove, Czechia
| |
Collapse
|
5
|
Seabaugh JA, Anderson DM. Pathogenicity and virulence of Yersinia. Virulence 2024; 15:2316439. [PMID: 38389313 PMCID: PMC10896167 DOI: 10.1080/21505594.2024.2316439] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/04/2024] [Indexed: 02/24/2024] Open
Abstract
The genus Yersinia includes human, animal, insect, and plant pathogens as well as many symbionts and harmless bacteria. Within this genus are Yersinia enterocolitica and the Yersinia pseudotuberculosis complex, with four human pathogenic species that are highly related at the genomic level including the causative agent of plague, Yersinia pestis. Extensive laboratory, field work, and clinical research have been conducted to understand the underlying pathogenesis and zoonotic transmission of these pathogens. There are presently more than 500 whole genome sequences from which an evolutionary footprint can be developed that details shared and unique virulence properties. Whereas the virulence of Y. pestis now seems in apparent homoeostasis within its flea transmission cycle, substantial evolutionary changes that affect transmission and disease severity continue to ndergo apparent selective pressure within the other Yersiniae that cause intestinal diseases. In this review, we will summarize the present understanding of the virulence and pathogenesis of Yersinia, highlighting shared mechanisms of virulence and the differences that determine the infection niche and disease severity.
Collapse
Affiliation(s)
- Jarett A. Seabaugh
- Department of Veterinary Pathobiology, University of Missouri, Columbia, USA
| | - Deborah M. Anderson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, USA
| |
Collapse
|
6
|
Venugopal G, Pechous RD. Yersinia pestis and pneumonic plague: Insight into how a lethal pathogen interfaces with innate immune populations in the lung to cause severe disease. Cell Immunol 2024; 403-404:104856. [PMID: 39002222 DOI: 10.1016/j.cellimm.2024.104856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/10/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024]
Abstract
Yersinia pestis is the causative agent of bubonic, septicemic and pneumonic plague. The historical importance and potential of plague to re-emerge as a threat worldwide are indisputable. The most severe manifestion of plague is pneumonic plague, which results in disease that is 100% lethal without treatment. Y. pestis suppresses host immune responses early in the lung to establish infection. The later stages of infection see the rapid onset of hyperinflammatory responses that prove lethal. The study of Y. pestis host/pathogen interactions have largely been investigated during bubonic plague and with attenuated strains in cell culture models. There remains a somewhat limited understanding of the interactions between virulent Y. pestis and immune populations in the lung that drive severe disease. In this review we give a broad overview of the progression of pneumonic plague and highlighting how Y. pestis interfaces with host innate immune populations in the lung to cause lethal disease.
Collapse
Affiliation(s)
- Gopinath Venugopal
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Roger D Pechous
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
7
|
Zhang W, Bai J, Hang K, Xu J, Zhou C, Li L, Wang Z, Wang Y, Wang K, Xue D. Role of Lysosomal Acidification Dysfunction in Mesenchymal Stem Cell Senescence. Front Cell Dev Biol 2022; 10:817877. [PMID: 35198560 PMCID: PMC8858834 DOI: 10.3389/fcell.2022.817877] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/14/2022] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cell (MSC) transplantation has been widely used as a potential treatment for a variety of diseases. However, the contradiction between the low survival rate of transplanted cells and the beneficial therapeutic effects has affected its clinical use. Lysosomes as organelles at the center of cellular recycling and metabolic signaling, play essential roles in MSC homeostasis. In the first part of this review, we summarize the role of lysosomal acidification dysfunction in MSC senescence. In the second part, we summarize some of the potential strategies targeting lysosomal proteins to enhance the therapeutic effect of MSCs.
Collapse
Affiliation(s)
- Weijun Zhang
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Orthopaedics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jinwu Bai
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Orthopaedics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kai Hang
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Orthopaedics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianxiang Xu
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Orthopaedics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chengwei Zhou
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Orthopaedics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lijun Li
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Orthopaedics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhongxiang Wang
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Orthopaedics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yibo Wang
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Orthopaedics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kanbin Wang
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Orthopaedics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Deting Xue
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Orthopaedics, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Deting Xue,
| |
Collapse
|
8
|
Bekere I, Huang J, Schnapp M, Rudolph M, Berneking L, Ruckdeschel K, Grundhoff A, Günther T, Fischer N, Aepfelbacher M. Yersinia remodels epigenetic histone modifications in human macrophages. PLoS Pathog 2021; 17:e1010074. [PMID: 34793580 PMCID: PMC8639070 DOI: 10.1371/journal.ppat.1010074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/02/2021] [Accepted: 10/28/2021] [Indexed: 01/10/2023] Open
Abstract
Various pathogens systematically reprogram gene expression in macrophages, but the underlying mechanisms are largely unknown. We investigated whether the enteropathogen Yersinia enterocolitica alters chromatin states to reprogram gene expression in primary human macrophages. Genome-wide chromatin immunoprecipitation (ChIP) seq analyses showed that pathogen-associated molecular patterns (PAMPs) induced up- or down-regulation of histone modifications (HMod) at approximately 14500 loci in promoters and enhancers. Effectors of Y. enterocolitica reorganized about half of these dynamic HMod, with the effector YopP being responsible for about half of these modulatory activities. The reorganized HMod were associated with genes involved in immune response and metabolism. Remarkably, the altered HMod also associated with 61% of all 534 known Rho GTPase pathway genes, revealing a new level in Rho GTPase regulation and a new aspect of bacterial pathogenicity. Changes in HMod were associated to varying degrees with corresponding gene expression, e. g. depending on chromatin localization and cooperation of the HMod. In summary, infection with Y. enterocolitica remodels HMod in human macrophages to modulate key gene expression programs of the innate immune response. Human pathogenic bacteria can affect epigenetic histone modifications to modulate gene expression in host cells. However, a systems biology analysis of this bacterial virulence mechanism in immune cells has not been performed. Here we analyzed genome-wide epigenetic histone modifications and associated gene expression changes in primary human macrophages infected with enteropathogenic Yersinia enterocolitica. We demonstrate that Yersinia virulence factors extensively modulate histone modifications and associated gene expression triggered by the pathogen-associated molecular patterns (PAMPs) of the bacteria. The epigenetically modulated genes are involved in several key pathways of the macrophage immune response, including the Rho GTPase pathway, revealing a novel level of Rho GTPase regulation by a bacterial pathogen. Overall, our findings provide an in-depth view of epigenetic and gene expression changes during host-pathogen interaction and might have further implications for understanding of the innate immune memory in macrophages.
Collapse
Affiliation(s)
- Indra Bekere
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- * E-mail: (IB); (MA)
| | - Jiabin Huang
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Marie Schnapp
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Maren Rudolph
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Laura Berneking
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Klaus Ruckdeschel
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Adam Grundhoff
- Heinrich-Pette-Institute (HPI), Leibniz Institute for Experimental Virology, Research Group Virus Genomics, Hamburg, Germany
| | - Thomas Günther
- Heinrich-Pette-Institute (HPI), Leibniz Institute for Experimental Virology, Research Group Virus Genomics, Hamburg, Germany
| | - Nicole Fischer
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Martin Aepfelbacher
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- * E-mail: (IB); (MA)
| |
Collapse
|
9
|
Stranahan LW, Arenas-Gamboa AM. When the Going Gets Rough: The Significance of Brucella Lipopolysaccharide Phenotype in Host-Pathogen Interactions. Front Microbiol 2021; 12:713157. [PMID: 34335551 PMCID: PMC8319746 DOI: 10.3389/fmicb.2021.713157] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/22/2021] [Indexed: 01/18/2023] Open
Abstract
Brucella is a facultatively intracellular bacterial pathogen and the cause of worldwide zoonotic infections, infamous for its ability to evade the immune system and persist chronically within host cells. Despite the frequent association with attenuation in other Gram-negative bacteria, a rough lipopolysaccharide phenotype is retained by Brucella canis and Brucella ovis, which remain fully virulent in their natural canine and ovine hosts, respectively. While these natural rough strains lack the O-polysaccharide they, like their smooth counterparts, are able to evade and manipulate the host immune system by exhibiting low endotoxic activity, resisting destruction by complement and antimicrobial peptides, entering and trafficking within host cells along a similar pathway, and interfering with MHC-II antigen presentation. B. canis and B. ovis appear to have compensated for their roughness by alterations to their outer membrane, especially in regards to outer membrane proteins. B. canis, in particular, also shows evidence of being less proinflammatory in vivo, suggesting that the rough phenotype may be associated with an enhanced level of stealth that could allow these pathogens to persist for longer periods of time undetected. Nevertheless, much additional work is required to understand the correlates of immune protection against the natural rough Brucella spp., a critical step toward development of much-needed vaccines. This review will highlight the significance of rough lipopolysaccharide in the context of both natural disease and host–pathogen interactions with an emphasis on natural rough Brucella spp. and the implications for vaccine development.
Collapse
Affiliation(s)
- Lauren W Stranahan
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Angela M Arenas-Gamboa
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
10
|
Patterson LL, Byerly CD, McBride JW. Anaplasmataceae: Dichotomous Autophagic Interplay for Infection. Front Immunol 2021; 12:642771. [PMID: 33912170 PMCID: PMC8075259 DOI: 10.3389/fimmu.2021.642771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/15/2021] [Indexed: 12/19/2022] Open
Abstract
Autophagy is a vital conserved degradative process that maintains cellular homeostasis by recycling or eliminating dysfunctional cellular organelles and proteins. More recently, autophagy has become a well-recognized host defense mechanism against intracellular pathogens through a process known as xenophagy. On the host-microbe battlefield many intracellular bacterial pathogens have developed the ability to subvert xenophagy to establish infection. Obligately intracellular bacterial pathogens of the Anaplasmataceae family, including Ehrlichia chaffeensis, Anaplasma phaogocytophilium and Orientia tsutsugamushi have developed a dichotomous strategy to exploit the host autophagic pathway to obtain nutrients while escaping lysosomal destruction for intracellular survival within the host cell. In this review, the recent findings regarding how these master manipulators engage and inhibit autophagy for infection are explored. Future investigation to understand mechanisms used by Anaplasmataceae to exploit autophagy may advance novel antimicrobial therapies and provide new insights into how intracellular microbes exploit autophagy to survive.
Collapse
Affiliation(s)
- LaNisha L Patterson
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Caitlan D Byerly
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jere W McBride
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States.,Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States.,Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, United States.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
11
|
Voss OH, Rahman MS. Rickettsia-host interaction: strategies of intracytosolic host colonization. Pathog Dis 2021; 79:ftab015. [PMID: 33705517 PMCID: PMC8023194 DOI: 10.1093/femspd/ftab015] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/09/2021] [Indexed: 12/29/2022] Open
Abstract
Bacterial infection is a highly complex biological process involving a dynamic interaction between the invading microorganism and the host. Specifically, intracellular pathogens seize control over the host cellular processes including membrane dynamics, actin cytoskeleton, phosphoinositide metabolism, intracellular trafficking and immune defense mechanisms to promote their host colonization. To accomplish such challenging tasks, virulent bacteria deploy unique species-specific secreted effectors to evade and/or subvert cellular defense surveillance mechanisms to establish a replication niche. However, despite superficially similar infection strategies, diverse Rickettsia species utilize different effector repertoires to promote host colonization. This review will discuss our current understandings on how different Rickettsia species deploy their effector arsenal to manipulate host cellular processes to promote their intracytosolic life within the mammalian host.
Collapse
Affiliation(s)
- Oliver H Voss
- Department of Microbiology and Immunology, University of Maryland School of Medicine, HSF2, room 416, 20 Penn St, Baltimore, MD 21201, USA
| | - M Sayeedur Rahman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, HSF2, room 416, 20 Penn St, Baltimore, MD 21201, USA
| |
Collapse
|
12
|
Laopanupong T, Prombutara P, Kanjanasirirat P, Benjaskulluecha S, Boonmee A, Palaga T, Méresse S, Paha J, Siregar TAP, Khumpanied T, Borwornpinyo S, Chaiprasert A, Utaisincharoen P, Ponpuak M. Lysosome repositioning as an autophagy escape mechanism by Mycobacterium tuberculosis Beijing strain. Sci Rep 2021; 11:4342. [PMID: 33619301 PMCID: PMC7900199 DOI: 10.1038/s41598-021-83835-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 02/09/2021] [Indexed: 01/04/2023] Open
Abstract
Induction of host cell autophagy by starvation was shown to enhance lysosomal delivery to mycobacterial phagosomes, resulting in the restriction of Mycobacterium tuberculosis reference strain H37Rv. Our previous study showed that strains belonging to M. tuberculosis Beijing genotype resisted starvation-induced autophagic elimination but the factors involved remained unclear. Here, we conducted RNA-Seq of macrophages infected with the autophagy-resistant Beijing strain (BJN) compared to macrophages infected with H37Rv upon autophagy induction by starvation. Results identified several genes uniquely upregulated in BJN-infected macrophages but not in H37Rv-infected cells, including those encoding Kxd1 and Plekhm2, which function in lysosome positioning towards the cell periphery. Unlike H37Rv, BJN suppressed enhanced lysosome positioning towards the perinuclear region and lysosomal delivery to its phagosome upon autophagy induction by starvation, while depletion of Kxd1 and Plekhm2 reverted such effects, resulting in restriction of BJN intracellular survival upon autophagy induction by starvation. Taken together, these data indicated that Kxd1 and Plekhm2 are important for the BJN strain to suppress lysosome positioning towards the perinuclear region and lysosomal delivery into its phagosome during autophagy induction by starvation to evade starvation-induced autophagic restriction.
Collapse
Affiliation(s)
- Thanida Laopanupong
- Department of Microbiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Pinidphon Prombutara
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,Microbiome Research Unit for Probiotics in Food and Cosmetics, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Salisa Benjaskulluecha
- Inter-Disciplinary Graduate Program in Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Atsadang Boonmee
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Tanapat Palaga
- Inter-Disciplinary Graduate Program in Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok, Thailand.,Department of Microbiology, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | | | - Jiraporn Paha
- Department of Microbiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | | | - Tanawadee Khumpanied
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Suparerk Borwornpinyo
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Angkana Chaiprasert
- Drug-Resistance Tuberculosis Research Fund, Siriraj Foundation, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Office of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pongsak Utaisincharoen
- Department of Microbiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Marisa Ponpuak
- Department of Microbiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand. .,Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
13
|
Maphasa RE, Meyer M, Dube A. The Macrophage Response to Mycobacterium tuberculosis and Opportunities for Autophagy Inducing Nanomedicines for Tuberculosis Therapy. Front Cell Infect Microbiol 2021; 10:618414. [PMID: 33628745 PMCID: PMC7897680 DOI: 10.3389/fcimb.2020.618414] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/18/2020] [Indexed: 12/23/2022] Open
Abstract
The major causative agent of tuberculosis (TB), i.e., Mycobacterium tuberculosis (Mtb), has developed mechanisms to evade host defense responses and persist within host cells for prolonged periods of time. Mtb is also increasingly resistant to existing anti-TB drugs. There is therefore an urgent need to develop new therapeutics for TB and host directed therapies (HDTs) hold potential as effective therapeutics for TB. There is growing interest in the induction of autophagy in Mtb host cells using autophagy inducing compounds (AICs). Nanoparticles (NPs) can enhance the effect of AICs, thus improving stability, enabling cell targeting and providing opportunities for multimodal therapy. In this review, we focus on the macrophage responses to Mtb infection, in particular, the mechanistic aspects of autophagy and the evasion of autophagy by intracellular Mtb. Due to the overlap between the onset of autophagy and apoptosis; we also focus on the relationship between apoptosis and autophagy. We will also review known AICs in the context of Mtb infection. Finally, we discuss the applications of NPs in inducing autophagy with the intention of sharing insights to encourage further research and development of nanomedicine HDTs for TB therapy.
Collapse
Affiliation(s)
- Retsepile E Maphasa
- Infectious Disease Nanomedicine Research Group, School of Pharmacy, University of the Western Cape, Cape Town, South Africa
| | - Mervin Meyer
- DST/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, University of the Western Cape, Cape Town, South Africa
| | - Admire Dube
- Infectious Disease Nanomedicine Research Group, School of Pharmacy, University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
14
|
Autophagy-A Story of Bacteria Interfering with the Host Cell Degradation Machinery. Pathogens 2021; 10:pathogens10020110. [PMID: 33499114 PMCID: PMC7911818 DOI: 10.3390/pathogens10020110] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a highly conserved and fundamental cellular process to maintain cellular homeostasis through recycling of defective organelles or proteins. In a response to intracellular pathogens, autophagy further acts as an innate immune response mechanism to eliminate pathogens. This review will discuss recent findings on autophagy as a reaction to intracellular pathogens, such as Salmonella typhimurium, Listeria monocytogenes, Mycobacterium tuberculosis, Staphylococcus aureus, and pathogenic Escherichia coli. Interestingly, while some of these bacteria have developed methods to use autophagy for their own benefit within the cell, others have developed fascinating mechanisms to evade recognition, to subvert the autophagic pathway, or to escape from autophagy.
Collapse
|
15
|
Zhao YG, Codogno P, Zhang H. Machinery, regulation and pathophysiological implications of autophagosome maturation. Nat Rev Mol Cell Biol 2021; 22:733-750. [PMID: 34302147 PMCID: PMC8300085 DOI: 10.1038/s41580-021-00392-4] [Citation(s) in RCA: 319] [Impact Index Per Article: 79.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2021] [Indexed: 02/07/2023]
Abstract
Autophagy is a versatile degradation system for maintaining cellular homeostasis whereby cytosolic materials are sequestered in a double-membrane autophagosome and subsequently delivered to lysosomes, where they are broken down. In multicellular organisms, newly formed autophagosomes undergo a process called 'maturation', in which they fuse with vesicles originating from endolysosomal compartments, including early/late endosomes and lysosomes, to form amphisomes, which eventually become degradative autolysosomes. This fusion process requires the concerted actions of multiple regulators of membrane dynamics, including SNAREs, tethering proteins and RAB GTPases, and also transport of autophagosomes and late endosomes/lysosomes towards each other. Multiple mechanisms modulate autophagosome maturation, including post-translational modification of key components, spatial distribution of phosphoinositide lipid species on membranes, RAB protein dynamics, and biogenesis and function of lysosomes. Nutrient status and various stresses integrate into the autophagosome maturation machinery to coordinate the progression of autophagic flux. Impaired autophagosome maturation is linked to the pathogenesis of various human diseases, including neurodegenerative disorders, cancer and myopathies. Furthermore, invading pathogens exploit various strategies to block autophagosome maturation, thus evading destruction and even subverting autophagic vacuoles (autophagosomes, amphisomes and autolysosomes) for survival, growth and/or release. Here, we discuss the recent progress in our understanding of the machinery and regulation of autophagosome maturation, the relevance of these mechanisms to human pathophysiology and how they are harnessed by pathogens for their benefit. We also provide perspectives on targeting autophagosome maturation therapeutically.
Collapse
Affiliation(s)
- Yan G. Zhao
- grid.263817.90000 0004 1773 1790Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - Patrice Codogno
- grid.508487.60000 0004 7885 7602Institut Necker-Enfants Malades, INSERM U1151-CNRS UMR 8253, Université de Paris, Paris, France
| | - Hong Zhang
- grid.9227.e0000000119573309National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People’s Republic of China ,grid.410726.60000 0004 1797 8419College of Life Sciences, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| |
Collapse
|
16
|
The Diverse Roles of the Global Transcriptional Regulator PhoP in the Lifecycle of Yersinia pestis. Pathogens 2020; 9:pathogens9121039. [PMID: 33322274 PMCID: PMC7764729 DOI: 10.3390/pathogens9121039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 11/18/2022] Open
Abstract
Yersinia pestis, the causative agent of plague, has a complex infectious cycle that alternates between mammalian hosts (rodents and humans) and insect vectors (fleas). Consequently, it must adapt to a wide range of host environments to achieve successful propagation. Y. pestis PhoP is a response regulator of the PhoP/PhoQ two-component signal transduction system that plays a critical role in the pathogen’s adaptation to hostile conditions. PhoP is activated in response to various host-associated stress signals detected by the sensor kinase PhoQ and mediates changes in global gene expression profiles that lead to cellular responses. Y. pestis PhoP is required for resistance to antimicrobial peptides, as well as growth under low Mg2+ and other stress conditions, and controls a number of metabolic pathways, including an alternate carbon catabolism. Loss of phoP function in Y. pestis causes severe defects in survival inside mammalian macrophages and neutrophils in vitro, and a mild attenuation in murine plague models in vivo, suggesting its role in pathogenesis. A Y. pestisphoP mutant also exhibits reduced ability to form biofilm and to block fleas in vivo, indicating that the gene is also important for establishing a transmissible infection in this vector. Additionally, phoP promotes the survival of Y. pestis inside the soil-dwelling amoeba Acanthamoeba castellanii, a potential reservoir while the pathogen is quiescent. In this review, we summarize our current knowledge on the mechanisms of PhoP-mediated gene regulation in Y. pestis and examine the significance of the roles played by the PhoP regulon at each stage of the Y. pestis life cycle.
Collapse
|
17
|
Lemarignier M, Pizarro-Cerdá J. Autophagy and Intracellular Membrane Trafficking Subversion by Pathogenic Yersinia Species. Biomolecules 2020; 10:E1637. [PMID: 33291818 PMCID: PMC7762052 DOI: 10.3390/biom10121637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023] Open
Abstract
Yersinia pseudotuberculosis, Y. enterocolitica and Y. pestis are pathogenic bacteria capable of causing disease in humans by growing extracellularly in lymph nodes and during systemic infections. While the capacity of these bacteria to invade, replicate, and survive within host cells has been known for long, it is only in recent years that their intracellular stages have been explored in more detail. Current evidence suggests that pathogenic Yersinia are capable of activating autophagy in both phagocytic and epithelial cells, subverting autophagosome formation to create a niche supporting bacterial intracellular replication. In this review, we discuss recent results opening novel perspectives to the understanding of intimate host-pathogens interactions taking place during enteric yersiniosis and plague.
Collapse
Affiliation(s)
- Marion Lemarignier
- Yersinia Research Unit, Institut Pasteur, F-75015 Paris, France;
- Université de Paris, Sorbonne Paris Cité, F-75013 Paris, France
| | - Javier Pizarro-Cerdá
- Yersinia Research Unit, Institut Pasteur, F-75015 Paris, France;
- ‘Plague Maintenance, Spread and Evolution’ Pasteur International Unit, F-75015 Paris, France
- ‘Plague and Other Yersinioses’ National Reference Laboratory, F-75015 Paris, France
- WHO Collaborative Centre for Plague FRA-140, F-75015 Paris, France
| |
Collapse
|
18
|
Reggio A, Buonomo V, Grumati P. Eating the unknown: Xenophagy and ER-phagy are cytoprotective defenses against pathogens. Exp Cell Res 2020; 396:112276. [PMID: 32918896 PMCID: PMC7480532 DOI: 10.1016/j.yexcr.2020.112276] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 01/01/2023]
Abstract
Autophagy is an evolutionary conserved catabolic process devoted to the removal of unnecessary and harmful cellular components. In its general form, autophagy governs cellular lifecycle through the formation of double membrane vesicles, termed autophagosomes, that enwrap and deliver unwanted intracellular components to lysosomes. In addition to this omniscient role, forms of selective autophagy, relying on specialized receptors for cargo recognition, exert fine-tuned control over cellular homeostasis. In this regard, xenophagy plays a pivotal role in restricting the replication of intracellular pathogens, thus acting as an ancient innate defense system against infections. Recently, selective autophagy of the endoplasmic reticulum (ER), more simply ER-phagy, has been uncovered as a critical mechanism governing ER network shape and function. Six ER-resident proteins have been characterized as ER-phagy receptors and their orchestrated function enables ER homeostasis and turnover overtime. Unfortunately, ER is also the preferred site for viral replication and several viruses hijack ER machinery for their needs. Thus, it is not surprising that some ER-phagy receptors can act to counteract viral replication and minimize the spread of infection throughout the organism. On the other hand, evolutionary pressure has armed pathogens with strategies to evade and subvert xenophagy and ER-phagy. Although ER-phagy biology is still in its infancy, the present review aims to summarize recent ER-phagy literature, with a special focus on its role in counteracting viral infections. Moreover, we aim to offer some hints for future targeted approaches to counteract host-pathogen interactions by modulating xenophagy and ER-phagy pathways.
Collapse
Affiliation(s)
- Alessio Reggio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (NA), Italy
| | - Viviana Buonomo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (NA), Italy
| | - Paolo Grumati
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (NA), Italy.
| |
Collapse
|
19
|
Abstract
Rickettsia species are Gram-negative obligate intracellular bacteria that infect a wide range of eukaryotes and vertebrates. In particular, human body louse-borne Rickettsia prowazekii and flea-borne Rickettsia typhi have historically plagued humankind and continue to reemerge globally. The unavailability of vaccines and limited effectiveness of antibiotics late in infection place lethality rates up to 30%, highlighting the need to elucidate the mechanisms of Rickettsia pathogenicity in greater detail. Here, we characterize a new effector, Risk1, as a secreted phosphatidylinositol 3-kinase (PI3K) with unique dual class I and class III activities. Risk1 is required for host colonization, and its vacuolar phosphatidylinositol 3-phosphate generation modulates endosomal trafficking to arrest autophagosomal maturation. Collectively, Risk1 facilitates R. typhi growth by altering phosphoinositide metabolism and subverting intracellular trafficking. To establish a habitable intracellular niche, various pathogenic bacteria secrete effectors that target intracellular trafficking and modulate phosphoinositide (PI) metabolism. Murine typhus, caused by the obligate intracellular bacterium Rickettsia typhi, remains a severe disease in humans. However, the mechanisms by which R. typhi effector molecules contribute to internalization by induced phagocytosis and subsequent phagosomal escape into the cytosol to facilitate the intracellular growth of the bacteria remain ill-defined. Here, we characterize a new molecule, Risk1, as a phosphatidylinositol 3-kinase (PI3K) secreted effector and the first bacterial secretory kinase with both class I and III PI3K activities. Inactivation of Risk1 PI3K activities reduced the phosphorylation of phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 3,4,5-trisphosphate within the host, which consequently diminished host colonization by R. typhi. During infection, Risk1 targets the Rab5-EEA1-phosphatidylinositol 3-phosphate [PI(3)P] signaling axis to promote bacterial phagosomal escape. Subsequently, R. typhi undergoes ubiquitination and induces host autophagy; however, maturation to autolysosomes is subverted to support intracellular growth. Intriguingly, only enzymatically active Risk1 binds the Beclin-1 core complex and contributes to R. typhi-induced autophagosome formation. In sum, our data suggest that Risk1, with dual class I and class III PI3K activities, alters host PI metabolism and consequently subverts intracellular trafficking to facilitate intracellular growth of R. typhi.
Collapse
|
20
|
Whelan R, McVicker G, Leo JC. Staying out or Going in? The Interplay between Type 3 and Type 5 Secretion Systems in Adhesion and Invasion of Enterobacterial Pathogens. Int J Mol Sci 2020; 21:E4102. [PMID: 32521829 PMCID: PMC7312957 DOI: 10.3390/ijms21114102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
Enteric pathogens rely on a variety of toxins, adhesins and other virulence factors to cause infections. Some of the best studied pathogens belong to the Enterobacterales order; these include enteropathogenic and enterohemorrhagic Escherichia coli, Shigella spp., and the enteropathogenic Yersiniae. The pathogenesis of these organisms involves two different secretion systems, a type 3 secretion system (T3SS) and type 5 secretion systems (T5SSs). The T3SS forms a syringe-like structure spanning both bacterial membranes and the host cell plasma membrane that translocates toxic effector proteins into the cytoplasm of the host cell. T5SSs are also known as autotransporters, and they export part of their own polypeptide to the bacterial cell surface where it exerts its function, such as adhesion to host cell receptors. During infection with these enteropathogens, the T3SS and T5SS act in concert to bring about rearrangements of the host cell cytoskeleton, either to invade the cell, confer intracellular motility, evade phagocytosis or produce novel structures to shelter the bacteria. Thus, in these bacteria, not only the T3SS effectors but also T5SS proteins could be considered "cytoskeletoxins" that bring about profound alterations in host cell cytoskeletal dynamics and lead to pathogenic outcomes.
Collapse
Affiliation(s)
| | | | - Jack C. Leo
- Antimicrobial Resistance, Omics and Microbiota Group, Department of Biosciences, Nottingham Trent University, Nottingham NG1 4FQ, UK; (R.W.); (G.M.)
| |
Collapse
|
21
|
Lu P, Wang S, Lu Y, Neculai D, Sun Q, van der Veen S. A Subpopulation of Intracellular Neisseria gonorrhoeae Escapes Autophagy-Mediated Killing Inside Epithelial Cells. J Infect Dis 2019; 219:133-144. [PMID: 29688440 DOI: 10.1093/infdis/jiy237] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/19/2018] [Indexed: 11/13/2022] Open
Abstract
The bacterial pathogen Neisseria gonorrhoeae is able to transmigrate across the mucosal epithelia following the intracellular route and cause disseminated infections. It is currently unknown whether the autophagy pathway is able target intracellular N. gonorrhoeae for destruction in autolysosomes or whether this bacterium is able to escape autophagy-mediated killing. In this study, we demonstrate that during the early stage of epithelial cell invasion, N. gonorrhoeae is targeted by the autophagy pathway and sequestered into double-membrane autophagosomes that subsequently fuse with lysosomes for destruction. However, a subpopulation of the intracellular gonococci is able to escape early autophagy-mediated killing. N. gonorrhoeae is subsequently able to inhibit this pathway, allowing intracellular survival and exocytosis. During this stage, N. gonorrhoeae activates the autophagy repressor mammalian target of rapamycin complex 1 and inhibits autophagosome maturation and lysosome fusion. Thus, our results provide novel insight into the interactions between N. gonorrhoeae and the autophagy pathway during invasion and transcytosis of epithelial cells.
Collapse
Affiliation(s)
- Ping Lu
- Department of Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shuyi Wang
- Department of Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yan Lu
- Department of Cell Biology and Medical Genetics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dante Neculai
- Department of Cell Biology and Medical Genetics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qiming Sun
- Department of Biochemistry and Molecular Biology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Stijn van der Veen
- Department of Microbiology and Parasitology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
22
|
Xiong Q, Yang M, Li P, Wu C. Bacteria Exploit Autophagy For Their Own Benefit. Infect Drug Resist 2019; 12:3205-3215. [PMID: 31632106 PMCID: PMC6792943 DOI: 10.2147/idr.s220376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/25/2019] [Indexed: 01/18/2023] Open
Abstract
Autophagy is a lysosomal degradation pathway to clear long-lived proteins, protein aggregates, and damaged organelles. Certain microorganisms can be eliminated by an autophagic degradation process termed xenophagy. However, many pathogens deploy highly evolved mechanisms to evade autophagic degradation. What is more, series of pathogens have developed different strategies to exploit autophagy to ensure their survival. These bacteria could induce autophagy and/or prevent autophagosomes fusion with lysosomes through secreted effector proteins or utilizing host components, thereby maintaining the localization of the bacteria within the autophagosomes where they replicate. Here, we review the current knowledge of the mechanisms developed by the bacteria to benefit from autophagy for their survival.
Collapse
Affiliation(s)
- Qiuhong Xiong
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Min Yang
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Ping Li
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, People's Republic of China
| |
Collapse
|
23
|
Pu Q, Lin P, Wang Z, Gao P, Qin S, Cui L, Wu M. Interaction among inflammasome, autophagy and non-coding RNAs: new horizons for drug. PRECISION CLINICAL MEDICINE 2019; 2:166-182. [PMID: 31598387 PMCID: PMC6770284 DOI: 10.1093/pcmedi/pbz019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/22/2019] [Accepted: 08/25/2019] [Indexed: 02/07/2023] Open
Abstract
Autophagy and inflammasomes are shown to interact in various situations including
infectious disease, cancer, diabetes and neurodegeneration. Since multiple layers of
molecular regulators contribute to the interplay between autophagy and inflammasome
activation, the detail of such interplay remains largely unknown. Non-coding RNAs
(ncRNAs), which have been implicated in regulating an expanding list of cellular processes
including immune defense against pathogens and inflammatory response in cancer and
metabolic diseases, may join in the crosstalk between inflammasomes and autophagy in
physiological or disease conditions. In this review, we summarize the latest research on
the interlink among ncRNAs, inflammasomes and autophagy and discuss the emerging role of
these three in multiple signaling transduction pathways involved in clinical conditions.
By analyzing these intriguing interconnections, we hope to unveil the mechanism
inter-regulating these multiple processes and ultimately discover potential drug targets
for some refractory diseases.
Collapse
Affiliation(s)
- Qinqin Pu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA.,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ping Lin
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Zhihan Wang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Pan Gao
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shugang Qin
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Luqing Cui
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| |
Collapse
|
24
|
Valencia Lopez MJ, Schimmeck H, Gropengießer J, Middendorf L, Quitmann M, Schneider C, Holstermann B, Wacker R, Heussler V, Reimer R, Aepfelbacher M, Ruckdeschel K. Activation of the macroautophagy pathway by Yersinia enterocolitica promotes intracellular multiplication and egress of yersiniae from epithelial cells. Cell Microbiol 2019; 21:e13046. [PMID: 31099152 DOI: 10.1111/cmi.13046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 04/30/2019] [Accepted: 05/13/2019] [Indexed: 12/13/2022]
Abstract
The virulence strategy of pathogenic Yersinia spp. involves cell-invasive as well as phagocytosis-preventing tactics to enable efficient colonisation of the host organism. Enteropathogenic yersiniae display an invasive phenotype in early infection stages, which facilitates penetration of the intestinal mucosa. Here we show that invasion of epithelial cells by Yersinia enterocolitica is followed by intracellular survival and multiplication of a subset of ingested bacteria. The replicating bacteria were enclosed in vacuoles with autophagy-related characteristics, showing phagophore formation, xenophagy, and recruitment of cytoplasmic autophagosomes to the bacteria-containing compartments. The subsequent fusion of these vacuoles with lysosomes and concomitant vesicle acidification were actively blocked by Yersinia. This resulted in increased intracellular proliferation and detectable egress of yersiniae from infected cells. Notably, deficiency of the core autophagy machinery component FIP200 impaired the development of autophagic features at Yersinia-containing vacuoles as well as intracellular replication and release of bacteria to the extracellular environment. These results suggest that Y. enterocolitica may take advantage of the macroautophagy pathway in epithelial cells to create an autophagosomal niche that supports intracellular bacterial survival, replication, and, eventually, spread of the bacteria from infected cells.
Collapse
Affiliation(s)
- Maria Jose Valencia Lopez
- Institute for Medical Microbiology, Virology and Hygiene, University, Medical Center Eppendorf, Hamburg, Germany
| | - Hanna Schimmeck
- Institute for Medical Microbiology, Virology and Hygiene, University, Medical Center Eppendorf, Hamburg, Germany
| | - Julia Gropengießer
- Institute for Medical Microbiology, Virology and Hygiene, University, Medical Center Eppendorf, Hamburg, Germany
| | - Lukas Middendorf
- Institute for Medical Microbiology, Virology and Hygiene, University, Medical Center Eppendorf, Hamburg, Germany
| | - Melanie Quitmann
- Institute for Medical Microbiology, Virology and Hygiene, University, Medical Center Eppendorf, Hamburg, Germany
| | - Carola Schneider
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Barbara Holstermann
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Rahel Wacker
- Institute for Cell Biology, University of Bern, Bern, Switzerland
| | - Volker Heussler
- Institute for Cell Biology, University of Bern, Bern, Switzerland
| | - Rudolph Reimer
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Martin Aepfelbacher
- Institute for Medical Microbiology, Virology and Hygiene, University, Medical Center Eppendorf, Hamburg, Germany
| | - Klaus Ruckdeschel
- Institute for Medical Microbiology, Virology and Hygiene, University, Medical Center Eppendorf, Hamburg, Germany
| |
Collapse
|
25
|
Demeure C, Dussurget O, Fiol GM, Le Guern AS, Savin C, Pizarro-Cerdá J. Yersinia pestis and plague: an updated view on evolution, virulence determinants, immune subversion, vaccination and diagnostics. Microbes Infect 2019; 21:202-212. [DOI: 10.1016/j.micinf.2019.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/18/2019] [Indexed: 01/08/2023]
|
26
|
Demeure CE, Dussurget O, Mas Fiol G, Le Guern AS, Savin C, Pizarro-Cerdá J. Yersinia pestis and plague: an updated view on evolution, virulence determinants, immune subversion, vaccination, and diagnostics. Genes Immun 2019; 20:357-370. [PMID: 30940874 PMCID: PMC6760536 DOI: 10.1038/s41435-019-0065-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/18/2019] [Indexed: 12/30/2022]
Abstract
Plague is a vector-borne disease caused by Yersinia pestis. Transmitted by fleas from rodent reservoirs, Y. pestis emerged <6000 years ago from an enteric bacterial ancestor through events of gene gain and genome reduction. It is a highly remarkable model for the understanding of pathogenic bacteria evolution, and a major concern for public health as highlighted by recent human outbreaks. A complex set of virulence determinants, including the Yersinia outer-membrane proteins (Yops), the broad-range protease Pla, pathogen-associated molecular patterns (PAMPs), and iron capture systems play critical roles in the molecular strategies that Y. pestis employs to subvert the human immune system, allowing unrestricted bacterial replication in lymph nodes (bubonic plague) and in lungs (pneumonic plague). Some of these immunogenic proteins as well as the capsular antigen F1 are exploited for diagnostic purposes, which are critical in the context of the rapid onset of death in the absence of antibiotic treatment (less than a week for bubonic plague and <48 h for pneumonic plague). Here, we review recent research advances on Y. pestis evolution, virulence factor function, bacterial strategies to subvert mammalian innate immune responses, vaccination, and problems associated with pneumonic plague diagnosis.
Collapse
Affiliation(s)
| | - Olivier Dussurget
- Yersinia Research Unit, Institut Pasteur, F-75724, Paris, France
- Université Paris-Diderot, Sorbonne Paris Cité, F-75013, Paris, France
| | - Guillem Mas Fiol
- Yersinia Research Unit, Institut Pasteur, F-75724, Paris, France
- Université Paris-Diderot, Sorbonne Paris Cité, F-75013, Paris, France
| | - Anne-Sophie Le Guern
- Yersinia Research Unit, Institut Pasteur, F-75724, Paris, France
- National Reference Laboratory 'Plague & Other Yersiniosis', Institut Pasteur, F-75724, Paris, France
- World Health Organization Collaborating Research & Reference Centre for Yersinia, Institut Pasteur, F-75724, Paris, France
| | - Cyril Savin
- Yersinia Research Unit, Institut Pasteur, F-75724, Paris, France
- National Reference Laboratory 'Plague & Other Yersiniosis', Institut Pasteur, F-75724, Paris, France
- World Health Organization Collaborating Research & Reference Centre for Yersinia, Institut Pasteur, F-75724, Paris, France
| | - Javier Pizarro-Cerdá
- Yersinia Research Unit, Institut Pasteur, F-75724, Paris, France.
- National Reference Laboratory 'Plague & Other Yersiniosis', Institut Pasteur, F-75724, Paris, France.
- World Health Organization Collaborating Research & Reference Centre for Yersinia, Institut Pasteur, F-75724, Paris, France.
| |
Collapse
|
27
|
Zhang Q, Xin Y, Zhao H, Liu R, Xu X, Yan Y, Kong Z, Wang T, Qi Z, Zhang Q, You Y, Song Y, Cui Y, Yang R, Zhang X, Du Z. Human Macrophages Clear the Biovar Microtus Strain of Yersinia pestis More Efficiently Than Murine Macrophages. Front Cell Infect Microbiol 2019; 9:111. [PMID: 31069175 PMCID: PMC6491462 DOI: 10.3389/fcimb.2019.00111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/29/2019] [Indexed: 12/20/2022] Open
Abstract
Yersinia pestis is the etiological agent of the notorious plague that has claimed millions of deaths in history. Of the four known Y. pestis biovars (Antiqua, Medievalis, Orientalis, and Microtus), Microtus strains are unique for being highly virulent in mice but avirulent in humans. Here, human peripheral lymphocytes were infected with the fully virulent 141 strain or the Microtus strain 201, and their transcriptomes were determined and compared. The most notable finding was that robust responses in the pathways for cytokine-cytokine receptor interaction, chemokine signaling pathway, Toll-like receptor signaling and Jak-STAT signaling were induced at 2 h post infection (hpi) in the 201- but not the 141-infected lymphocytes, suggesting that human lymphocytes might be able to constrain infections caused by strain 201 but not 141. Consistent with the transcriptome results, much higher IFN-γ and IL-1β were present in the supernatants from the 201-infected lymphocytes, while inflammatory inhibitory IL-10 levels were higher in the 141-infected lymphocytes. The expressions of CSTD and SLC11A1, both of which are functional components of the lysosome, increased in the 201-infected human macrophage-like U937 cells. Further assessment of the survival rate of the 201 bacilli in the U937 cells and murine macrophage RAW 264.7 cells revealed no viable bacteria in the U937 cells at 32 hpi.; however, about 5–10% of the bacteria were still alive in the RAW264.7 cells. Our results indicate that human macrophages can clear the intracellular Y. pestis 201 bacilli more efficiently than murine macrophages, probably by interfering with critical host immune responses, and this could partially account for the host-specific pathogenicity of Y. pestis Microtus strains.
Collapse
Affiliation(s)
- Qingwen Zhang
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, China
| | - Youquan Xin
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, China
| | - Haihong Zhao
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, China
| | - Rongjiao Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaoqing Xu
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, China
| | - Yanfeng Yan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhipeng Kong
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, China
| | - Tong Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhizhen Qi
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, China
| | - Qi Zhang
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, China
| | - Yang You
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xuefei Zhang
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, China
| | - Zongmin Du
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
28
|
Crother TR, Porritt RA, Dagvadorj J, Tumurkhuu G, Slepenkin AV, Peterson EM, Chen S, Shimada K, Arditi M. Autophagy Limits Inflammasome During Chlamydia pneumoniae Infection. Front Immunol 2019; 10:754. [PMID: 31031755 PMCID: PMC6473188 DOI: 10.3389/fimmu.2019.00754] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/21/2019] [Indexed: 12/23/2022] Open
Abstract
Autophagy can either antagonize or promote intracellular bacterial growth, depending on the pathogen. Here, we investigated the role of autophagy during a pulmonary infection with the obligate intracellular pathogen, Chlamydia pneumoniae (CP). In mouse embryonic fibroblasts (MEFs) or macrophages, deficiency of autophagy pathway components led to enhanced CP replication, suggesting that autophagy exerts a bactericidal role. However, in vivo, mice with myeloid-specific deletion of the autophagic protein ATG16L1 suffered increased mortality during CP infection, neutrophilia, and increased inflammasome activation despite no change in bacterial burden. Induction of autophagy led to reduced CP replication in vitro, but impaired survival in CP-infected mice, associated with an initial reduction in IL-1β production, followed by enhanced neutrophil recruitment, defective CP clearance, and later inflammasome activation and IL-1β production, which drove the resulting mortality. Taken together, our data suggest that a delicate interplay exists between autophagy and inflammasome activation in determining the outcome of CP infection, perturbation of which can result in inflammatory pathology or unrestricted bacterial growth.
Collapse
Affiliation(s)
- Timothy R Crother
- Division of Pediatric Infectious Diseases and Immunology, Department of Pediatrics, and Infectious and Immunological Diseases Research Center, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Rebecca A Porritt
- Division of Pediatric Infectious Diseases and Immunology, Department of Pediatrics, and Infectious and Immunological Diseases Research Center, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Jargalsaikhan Dagvadorj
- Division of Pediatric Infectious Diseases and Immunology, Department of Pediatrics, and Infectious and Immunological Diseases Research Center, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Gantsetseg Tumurkhuu
- Division of Pediatric Infectious Diseases and Immunology, Department of Pediatrics, and Infectious and Immunological Diseases Research Center, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Anatoly V Slepenkin
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, United States
| | - Ellena M Peterson
- Department of Pathology, University of California, Irvine, Irvine, CA, United States
| | - Shuang Chen
- Division of Pediatric Infectious Diseases and Immunology, Department of Pediatrics, and Infectious and Immunological Diseases Research Center, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Kenichi Shimada
- Division of Pediatric Infectious Diseases and Immunology, Department of Pediatrics, and Infectious and Immunological Diseases Research Center, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Moshe Arditi
- Division of Pediatric Infectious Diseases and Immunology, Department of Pediatrics, and Infectious and Immunological Diseases Research Center, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
29
|
Acinetobacter baumannii outer membrane protein A induces HeLa cell autophagy via MAPK/JNK signaling pathway. Int J Med Microbiol 2019; 309:97-107. [DOI: 10.1016/j.ijmm.2018.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 12/14/2018] [Accepted: 12/28/2018] [Indexed: 12/13/2022] Open
|
30
|
Arifuzzaman M, Ang WXG, Choi HW, Nilles ML, St John AL, Abraham SN. Necroptosis of infiltrated macrophages drives Yersinia pestis dispersal within buboes. JCI Insight 2018; 3:122188. [PMID: 30232285 DOI: 10.1172/jci.insight.122188] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/07/2018] [Indexed: 12/18/2022] Open
Abstract
When draining lymph nodes become infected by Yersinia pestis (Y. pestis), a massive influx of phagocytic cells occurs, resulting in distended and necrotic structures known as buboes. The bubonic stage of the Y. pestis life cycle precedes septicemia, which is facilitated by trafficking of infected mononuclear phagocytes through these buboes. However, how Y. pestis convert these immunocytes recruited by host to contain the pathogen into vehicles for bacterial dispersal and the role of immune cell death in this context are unknown. We show that the lymphatic spread requires Yersinia outer protein J (YopJ), which triggers death of infected macrophages by downregulating a suppressor of receptor-interacting protein kinase 1-mediated (RIPK1-mediated) cell death programs. The YopJ-triggered cell death was identified as necroptotic, which released intracellular bacteria, allowing them to infect new neighboring cell targets. Dying macrophages also produced chemotactic sphingosine 1-phosphate, enhancing cell-to-cell contact, further promoting infection. This necroptosis-driven expansion of infected macrophages in buboes maximized the number of bacteria-bearing macrophages reaching secondary lymph nodes, leading to sepsis. In support, necrostatins confined bacteria within macrophages and protected mice from lethal infection. These findings define necrotization of buboes as a mechanism for bacterial spread and a potential target for therapeutic intervention.
Collapse
Affiliation(s)
| | | | - Hae Woong Choi
- Department of Pathology, Duke University, Durham, North Carolina, USA
| | - Matthew L Nilles
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Ashley L St John
- Department of Pathology, Duke University, Durham, North Carolina, USA.,Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore, Singapore
| | - Soman N Abraham
- Department of Molecular Genetics and Microbiology and.,Department of Pathology, Duke University, Durham, North Carolina, USA.,Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore, Singapore.,Department of Immunology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
31
|
Bobrov AG, Kirillina O, Fosso MY, Fetherston JD, Miller MC, VanCleave TT, Burlison JA, Arnold WK, Lawrenz MB, Garneau-Tsodikova S, Perry RD. Zinc transporters YbtX and ZnuABC are required for the virulence of Yersinia pestis in bubonic and pneumonic plague in mice. Metallomics 2018; 9:757-772. [PMID: 28540946 DOI: 10.1039/c7mt00126f] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A number of bacterial pathogens require the ZnuABC Zinc (Zn2+) transporter and/or a second Zn2+ transport system to overcome Zn2+ sequestration by mammalian hosts. Previously we have shown that in addition to ZnuABC, Yersinia pestis possesses a second Zn2+ transporter that involves components of the yersiniabactin (Ybt), siderophore-dependent iron transport system. Synthesis of the Ybt siderophore and YbtX, a member of the major facilitator superfamily, are both critical components of the second Zn2+ transport system. Here we demonstrate that a ybtX znu double mutant is essentially avirulent in mouse models of bubonic and pneumonic plague while a ybtX mutant retains high virulence in both plague models. While sequestration of host Zn is a key nutritional immunity factor, excess Zn appears to have a significant antimicrobial role in controlling intracellular bacterial survival. Here, we demonstrate that ZntA, a Zn2+ exporter, plays a role in resistance to Zn toxicity in vitro, but that a zntA zur double mutant retains high virulence in both pneumonic and bubonic plague models and survival in macrophages. We also confirm that Ybt does not directly bind Zn2+in vitro under the conditions tested. However, we detect a significant increase in Zn2+-binding ability of filtered supernatants from a Ybt+ strain compared to those from a strain unable to produce the siderophore, supporting our previously published data that Ybt biosynthetic genes are involved in the production of a secreted Zn-binding molecule (zincophore). Our data suggest that Ybt or a modified Ybt participate in or promote Zn-binding activity in culture supernatants and is involved in Zn acquisition in Y. pestis.
Collapse
Affiliation(s)
- Alexander G Bobrov
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kamaladevi A, Marudhupandiyan S, Balamurugan K. Model system based proteomics to understand the host response during bacterial infections. MOLECULAR BIOSYSTEMS 2018; 13:2489-2497. [PMID: 29082410 DOI: 10.1039/c7mb00372b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Infectious diseases caused by bacterial pathogens pose a major concern to public health and, thus, greater attention must be given to providing insightful knowledge on host-pathogen interactions. There are several theories addressing the dynamics of complex mechanisms of host-pathogen interactions. The availability of an ample number of universally accepted model systems, including vertebrates, invertebrates, and mammalian cells, provides in-depth transcriptomics data to evaluate these complex mechanisms during host-pathogen interactions. Recent model system based proteomic studies have addressed the issues related to human diseases by establishing the protein profile of model animals that closely resemble the environment. As a result, model system based proteomics has been widely accepted as a powerful and effective approach to understand the highly complex host-pathogen interfaces at their protein levels. This review offers a snapshot of the contributions of selective model systems on host-bacterial pathogen interactions through proteomic approaches.
Collapse
Affiliation(s)
- Arumugam Kamaladevi
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India.
| | | | | |
Collapse
|
33
|
Kang E, Crouse A, Chevallier L, Pontier SM, Alzahrani A, Silué N, Campbell-Valois FX, Montagutelli X, Gruenheid S, Malo D. Enterobacteria and host resistance to infection. Mamm Genome 2018; 29:558-576. [PMID: 29785663 DOI: 10.1007/s00335-018-9749-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/14/2018] [Indexed: 02/06/2023]
Abstract
Enterobacteriaceae are a large family of Gram-negative, non-spore-forming bacteria. Although many species exist as part of the natural flora of animals including humans, some members are associated with both intestinal and extraintestinal diseases. In this review, we focus on members of this family that have important roles in human disease: Salmonella, Escherichia, Shigella, and Yersinia, providing a brief overview of the disease caused by these bacteria, highlighting the contribution of animal models to our understanding of their pathogenesis and of host genetic determinants involved in susceptibility or resistance to infection.
Collapse
Affiliation(s)
- Eugene Kang
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- McGill Research Center on Complex Traits, McGill University, Montreal, QC, Canada
| | - Alanna Crouse
- McGill Research Center on Complex Traits, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Lucie Chevallier
- U955 - IMRB, Team 10 - Biology of the neuromuscular system, Inserm, École Nationale Vétérinaire d'Alfort, UPEC, Maisons-Alfort, France
- Mouse Genetics Laboratory, Department of Genomes and Genetics, Institut Pasteur, Paris, France
| | - Stéphanie M Pontier
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, Ottawa, ON, Canada
| | - Ashwag Alzahrani
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, Ottawa, ON, Canada
| | - Navoun Silué
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, Ottawa, ON, Canada
| | - François-Xavier Campbell-Valois
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Xavier Montagutelli
- U955 - IMRB, Team 10 - Biology of the neuromuscular system, Inserm, École Nationale Vétérinaire d'Alfort, UPEC, Maisons-Alfort, France
| | - Samantha Gruenheid
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- McGill Research Center on Complex Traits, McGill University, Montreal, QC, Canada
| | - Danielle Malo
- McGill Research Center on Complex Traits, McGill University, Montreal, QC, Canada.
- Department of Human Genetics, McGill University, Montreal, QC, Canada.
- Department of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
34
|
Yersinia pestis Targets the Host Endosome Recycling Pathway during the Biogenesis of the Yersinia-Containing Vacuole To Avoid Killing by Macrophages. mBio 2018; 9:mBio.01800-17. [PMID: 29463656 PMCID: PMC5821078 DOI: 10.1128/mbio.01800-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Yersinia pestis has evolved many strategies to evade the innate immune system. One of these strategies is the ability to survive within macrophages. Upon phagocytosis, Y. pestis prevents phagolysosome maturation and establishes a modified compartment termed the Yersinia-containing vacuole (YCV). Y. pestis actively inhibits the acidification of this compartment, and eventually, the YCV transitions from a tight-fitting vacuole into a spacious replicative vacuole. The mechanisms to generate the YCV have not been defined. However, we hypothesized that YCV biogenesis requires Y. pestis interactions with specific host factors to subvert normal vesicular trafficking. In order to identify these factors, we performed a genome-wide RNA interference (RNAi) screen to identify host factors required for Y. pestis survival in macrophages. This screen revealed that 71 host proteins are required for intracellular survival of Y. pestis. Of particular interest was the enrichment for genes involved in endosome recycling. Moreover, we demonstrated that Y. pestis actively recruits Rab4a and Rab11b to the YCV in a type three secretion system-independent manner, indicating remodeling of the YCV by Y. pestis to resemble a recycling endosome. While recruitment of Rab4a was necessary to inhibit YCV acidification and lysosomal fusion early during infection, Rab11b appeared to contribute to later stages of YCV biogenesis. We also discovered that Y. pestis disrupts global host endocytic recycling in macrophages, possibly through sequestration of Rab11b, and this process is required for bacterial replication. These data provide the first evidence that Y. pestis targets the host endocytic recycling pathway to avoid phagolysosomal maturation and generate the YCV. Yersinia pestis can infect and survive within macrophages. However, the mechanisms that the bacterium use to subvert killing by these phagocytes have not been defined. To provide a better understanding of these mechanisms, we used an RNAi approach to identify host factors required for intracellular Y. pestis survival. This approach revealed that the host endocytic recycling pathway is essential for Y. pestis to avoid clearance by the macrophage. We further demonstrate that Y. pestis remodels the phagosome to resemble a recycling endosome, allowing the bacterium to avoid the normal phagolysosomal maturation pathway. Moreover, we show that infection with Y. pestis disrupts normal recycling in the macrophage and that disruption is required for bacterial replication. These findings provide the first evidence that Y. pestis targets the host endocytic recycling pathway in order to evade killing by macrophages.
Collapse
|
35
|
Markman DW, Antolin MF, Bowen RA, Wheat WH, Woods M, Gonzalez-Juarrero M, Jackson M. Yersinia pestis Survival and Replication in Potential Ameba Reservoir. Emerg Infect Dis 2018; 24:294-302. [PMID: 29350155 PMCID: PMC5782900 DOI: 10.3201/eid2402.171065] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Plague ecology is characterized by sporadic epizootics, then periods of dormancy. Building evidence suggests environmentally ubiquitous amebae act as feral macrophages and hosts to many intracellular pathogens. We conducted environmental genetic surveys and laboratory co-culture infection experiments to assess whether plague bacteria were resistant to digestion by 5 environmental ameba species. First, we demonstrated that Yersinia pestis is resistant or transiently resistant to various ameba species. Second, we showed that Y. pestis survives and replicates intracellularly within Dictyostelium discoideum amebae for ˃48 hours postinfection, whereas control bacteria were destroyed in <1 hour. Finally, we found that Y. pestis resides within ameba structures synonymous with those found in infected human macrophages, for which Y. pestis is a competent pathogen. Evidence supporting amebae as potential plague reservoirs stresses the importance of recognizing pathogen-harboring amebae as threats to public health, agriculture, conservation, and biodefense.
Collapse
|
36
|
VanCleave TT, Pulsifer AR, Connor MG, Warawa JM, Lawrenz MB. Impact of Gentamicin Concentration and Exposure Time on Intracellular Yersinia pestis. Front Cell Infect Microbiol 2017; 7:505. [PMID: 29312891 PMCID: PMC5732358 DOI: 10.3389/fcimb.2017.00505] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/22/2017] [Indexed: 11/27/2022] Open
Abstract
The study of intracellular bacterial pathogens in cell culture hinges on inhibiting extracellular growth of the bacteria in cell culture media. Aminoglycosides, like gentamicin, were originally thought to poorly penetrate eukaryotic cells, and thus, while inhibiting extracellular bacteria, these antibiotics had limited effect on inhibiting the growth of intracellular bacteria. This property led to the development of the antibiotic protection assay to study intracellular pathogens in vitro. More recent studies have demonstrated that aminoglycosides slowly penetrate eukaryotic cells and can even reach intracellular concentrations that inhibit intracellular bacteria. Therefore, important considerations, such as antibiotic concentration, incubation time, and cell type need to be made when designing the antibiotic protection assay to avoid potential false positive/negative observations. Yersinia pestis, which causes the human disease known as the plague, is a facultative intracellular pathogen that can infect and replicate in macrophages. Y. pestis is sensitive to gentamicin and this antibiotic is often employed in the antibiotic protection assay to study the Y. pestis intracellular life cycle. However, a large variety of gentamicin concentrations and incubation periods have been reported in the Y. pestis literature without a clear characterization of the potential influences that variations in the gentamicin protection assay could have on intracellular growth of this pathogen. This raised concerns that variations in the gentamicin protection assay could influence phenotypes and reproducibility of data. To provide a better understanding of the potential consequences that variations in the gentamicin protection assay could have on Y. pestis, we systematically examined the impact of multiple variables of the gentamicin protection assay on Y. pestis intracellular survival in macrophages. We found that prolonged incubation periods with low concentrations of gentamicin, or short incubation periods with higher concentrations of the antibiotic, have a dramatic impact on intracellular growth. Furthermore, the degree of sensitivity of intracellular Y. pestis to gentamicin was also cell type dependent. These data highlight the importance to empirically establish cell type specific gentamicin protection assays to avoid potential artificial data in Y. pestis intracellular studies.
Collapse
Affiliation(s)
- Tiva T VanCleave
- Department of Microbiology and Immunology and Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville School of Medicine, Louisville, KY, United States
| | - Amanda R Pulsifer
- Department of Microbiology and Immunology and Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville School of Medicine, Louisville, KY, United States
| | - Michael G Connor
- Department of Microbiology and Immunology and Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville School of Medicine, Louisville, KY, United States
| | - Jonathan M Warawa
- Department of Microbiology and Immunology and Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville School of Medicine, Louisville, KY, United States
| | - Matthew B Lawrenz
- Department of Microbiology and Immunology and Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville School of Medicine, Louisville, KY, United States
| |
Collapse
|
37
|
Kim J, Fukuto HS, Brown DA, Bliska JB, London E. Effects of host cell sterol composition upon internalization of Yersinia pseudotuberculosis and clustered β1 integrin. J Biol Chem 2017; 293:1466-1479. [PMID: 29197826 DOI: 10.1074/jbc.m117.811224] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/29/2017] [Indexed: 11/06/2022] Open
Abstract
Yersinia pseudotuberculosis is a foodborne pathogenic bacterium that causes acute gastrointestinal illness, but its mechanisms of infection are incompletely described. We examined how host cell sterol composition affected Y. pseudotuberculosis uptake. To do this, we depleted or substituted cholesterol in human MDA-MB-231 epithelial cells with various alternative sterols. Decreasing host cell cholesterol significantly reduced pathogen internalization. When host cell cholesterol was substituted with various sterols, only desmosterol and 7-dehydrocholesterol supported internalization. This specificity was not due to sterol dependence of bacterial attachment to host cells, which was similar with all sterols studied. Because a key step in Y. pseudotuberculosis internalization is interaction of the bacterial adhesins invasin and YadA with host cell β1 integrin, we compared the sterol dependence of wildtype Y. pseudotuberculosis internalization with that of Δinv, ΔyadA, and ΔinvΔyadA mutant strains. YadA deletion decreased bacterial adherence to host cells, whereas invasin deletion had no effect. Nevertheless, host cell sterol substitution had a similar effect on internalization of these bacterial deletion strains as on the wildtype bacteria. The ΔinvΔyadA double mutant adhered least to cells and so was not significantly internalized. The sterol structure dependence of Y. pseudotuberculosis internalization differed from that of endocytosis, as monitored using antibody-clustered β1 integrin and previous studies on other proteins, which had a more permissive sterol dependence. This study suggests that agents could be designed to interfere with internalization of Yersinia without disturbing endocytosis.
Collapse
Affiliation(s)
- JiHyun Kim
- From the Departments of Biochemistry and Cell Biology and
| | - Hana S Fukuto
- Molecular Genetics and Microbiology and.,Center for Infectious Diseases, Stony Brook University, Stony Brook, New York 11794
| | | | - James B Bliska
- Molecular Genetics and Microbiology and.,Center for Infectious Diseases, Stony Brook University, Stony Brook, New York 11794
| | - Erwin London
- From the Departments of Biochemistry and Cell Biology and
| |
Collapse
|
38
|
Sil P, Muse G, Martinez J. A ravenous defense: canonical and non-canonical autophagy in immunity. Curr Opin Immunol 2017; 50:21-31. [PMID: 29125936 DOI: 10.1016/j.coi.2017.10.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/04/2017] [Indexed: 12/29/2022]
Abstract
While classically considered a survival mechanism employed during nutrient scarcity, the autophagy pathway operates in multiple scenarios wherein a return to homeostasis or degradative removal of an invader is required. Now recognized as a pathway with vast immunoregulatory power, autophagy can no longer serve as a 'one size fits all' term, as its machinery can be recruited to different pathogens, at different times, with different outcomes. Both canonical autophagy and the molecularly related, yet divergent pathways non-canonical autophagy are key players in proper host defense and allow us an opportunity to tailor infectious disease intervention and treatment to its specific pathway.
Collapse
Affiliation(s)
- Payel Sil
- Immunity, Inflammation, and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Ginger Muse
- Immunity, Inflammation, and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Jennifer Martinez
- Immunity, Inflammation, and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
39
|
Bah A, Vergne I. Macrophage Autophagy and Bacterial Infections. Front Immunol 2017; 8:1483. [PMID: 29163544 PMCID: PMC5681717 DOI: 10.3389/fimmu.2017.01483] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 10/23/2017] [Indexed: 12/25/2022] Open
Abstract
Autophagy is a well-conserved lysosomal degradation pathway that plays key roles in bacterial infections. One of the most studied is probably xenophagy, the selective capture and degradation of intracellular bacteria by lysosomes. However, the impact of autophagy goes beyond xenophagy and involves intensive cross-talks with other host defense mechanisms. In addition, autophagy machinery can have non-canonical functions such as LC3-associated phagocytosis. In this review, we intend to summarize the current knowledge on the many functions of autophagy proteins in cell defenses with a focus on bacteria–macrophage interaction. We also present the strategies developed by pathogens to evade or to exploit this machinery in order to establish a successful infection. Finally, we discuss the opportunities and challenges of autophagy manipulation in improving therapeutics and vaccines against bacterial pathogens.
Collapse
Affiliation(s)
- Aïcha Bah
- Institut de Pharmacologie et de Biologie Structurale, UMR 5089 CNRS-Université de Toulouse, Toulouse, France
| | - Isabelle Vergne
- Institut de Pharmacologie et de Biologie Structurale, UMR 5089 CNRS-Université de Toulouse, Toulouse, France
| |
Collapse
|
40
|
Uribe-Querol E, Rosales C. Control of Phagocytosis by Microbial Pathogens. Front Immunol 2017; 8:1368. [PMID: 29114249 PMCID: PMC5660709 DOI: 10.3389/fimmu.2017.01368] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 10/05/2017] [Indexed: 12/17/2022] Open
Abstract
Phagocytosis is a fundamental process of cells to capture and ingest foreign particles. Small unicellular organisms such as free-living amoeba use this process to acquire food. In pluricellular organisms, phagocytosis is a universal phenomenon that all cells are able to perform (including epithelial, endothelial, fibroblasts, etc.), but some specialized cells (such as neutrophils and macrophages) perform this very efficiently and were therefore named professional phagocytes by Rabinovitch. Cells use phagocytosis to capture and clear all particles larger than 0.5 µm, including pathogenic microorganisms and cellular debris. Phagocytosis involves a series of steps from recognition of the target particle, ingestion of it in a phagosome (phagocytic vacuole), maturation of this phagosome into a phagolysosome, to the final destruction of the ingested particle in the robust antimicrobial environment of the phagolysosome. For the most part, phagocytosis is an efficient process that eliminates invading pathogens and helps maintaining homeostasis. However, several pathogens have also evolved different strategies to prevent phagocytosis from proceeding in a normal way. These pathogens have a clear advantage to perpetuate the infection and continue their replication. Here, we present an overview of the phagocytic process with emphasis on the antimicrobial elements professional phagocytes use. We also summarize the current knowledge on the microbial strategies different pathogens use to prevent phagocytosis either at the level of ingestion, phagosome formation, and maturation, and even complete escape from phagosomes.
Collapse
Affiliation(s)
- Eileen Uribe-Querol
- División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
41
|
O'Connor L, Fetherston JD, Perry RD. The feoABC Locus of Yersinia pestis Likely Has Two Promoters Causing Unique Iron Regulation. Front Cell Infect Microbiol 2017; 7:331. [PMID: 28785546 PMCID: PMC5519574 DOI: 10.3389/fcimb.2017.00331] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/05/2017] [Indexed: 12/23/2022] Open
Abstract
The FeoABC ferrous transporter is a wide-spread bacterial system. While the feoABC locus is regulated by a number of factors in the bacteria studied, we have previously found that regulation of feoABC in Yersinia pestis appears to be unique. None of the non-iron responsive transcriptional regulators that control expression of feoABC in other bacteria do so in Y. pestis. Another unique factor is the iron and Fur regulation of the Y. pestis feoABC locus occurs during microaerobic but not aerobic growth. Here we show that this unique iron-regulation is not due to a unique aspect of the Y. pestis Fur protein but to DNA sequences that regulate transcription. We have used truncations, alterations, and deletions of the feoA::lacZ reporter to assess the mechanism behind the failure of iron to repress transcription under aerobic conditions. These studies plus EMSAs and DNA sequence analysis have led to our proposal that the feoABC locus has two promoters: an upstream P1 promoter whose expression is relatively iron-independent but repressed under microaerobic conditions and the known downstream Fur-regulated P2 promoter. In addition, we have identified two regions that bind Y. pestis protein(s), although we have not identified these protein(s) or their function. Finally we used iron uptake assays to demonstrate that both FeoABC and YfeABCD transport ferrous iron in an energy-dependent manner and also use ferric iron as a substrate for uptake.
Collapse
Affiliation(s)
- Lauren O'Connor
- Department of Microbiology, Immunology, and Molecular Genetics, University of KentuckyLexington, KY, United States
| | - Jacqueline D Fetherston
- Department of Microbiology, Immunology, and Molecular Genetics, University of KentuckyLexington, KY, United States
| | - Robert D Perry
- Department of Microbiology, Immunology, and Molecular Genetics, University of KentuckyLexington, KY, United States
| |
Collapse
|
42
|
Yersinia pestis Resists Predation by Acanthamoeba castellanii and Exhibits Prolonged Intracellular Survival. Appl Environ Microbiol 2017; 83:AEM.00593-17. [PMID: 28455335 DOI: 10.1128/aem.00593-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 04/10/2017] [Indexed: 12/13/2022] Open
Abstract
Plague is a flea-borne rodent-associated zoonotic disease caused by Yersinia pestis The disease is characterized by epizootics with high rodent mortalities, punctuated by interepizootic periods when the bacterium persists in an unknown reservoir. This study investigates the interaction between Y. pestis and the ubiquitous soil free-living amoeba (FLA) Acanthamoeba castellanii to assess if the bacterium can survive within soil amoebae and whether intracellular mechanisms are conserved between infection of mammalian macrophages and soil amoebae. The results demonstrate that during coculture with amoebae, representative Y. pestis strains of epidemic biovars Medievalis, Orientalis, and Antiqua are phagocytized and able to survive within amoebae for at least 5 days. Key Y. pestis determinants of the intracellular interaction of Y. pestis and phagocytic macrophages, PhoP and the type three secretion system (T3SS), were then tested for their roles in the Y. pestis-amoeba interaction. Consistent with a requirement for the PhoP transcriptional activator in the intracellular survival of Y. pestis in macrophages, a PhoP mutant is unable to survive when cocultured with amoebae. Additionally, induction of the T3SS blocks phagocytic uptake of Y. pestis by amoebae, similar to that which occurs during macrophage infection. Electron microscopy revealed that in A. castellanii, Y. pestis resides intact within spacious vacuoles which were characterized using lysosomal trackers as being separated from the lysosomal compartment. This evidence for prolonged survival and subversion of intracellular digestion of Y. pestis within FLA suggests that protozoa may serve as a protective soil reservoir for Y. pestisIMPORTANCEYersinia pestis is a reemerging flea-borne zoonotic disease. Sylvatic plague cycles are characterized by an epizootic period during which the disease spreads rapidly, causing high rodent mortality, and an interepizootic period when the bacterium quiescently persists in an unknown reservoir. An understanding of the ecology of Y. pestis in the context of its persistence in the environment and its reactivation to initiate a new epizootic cycle is key to implementing novel surveillance strategies to more effectively predict and prevent new disease outbreaks. Here, we demonstrate prolonged survival and subversion of intracellular digestion of Y. pestis within a soil free-living amoeba. This suggests the potential role for protozoa as a protective soil reservoir for Y. pestis, which may help explain the recrudescence of plague epizootics.
Collapse
|
43
|
Casanova JE. Bacterial Autophagy: Offense and Defense at the Host-Pathogen Interface. Cell Mol Gastroenterol Hepatol 2017; 4:237-243. [PMID: 28660242 PMCID: PMC5480303 DOI: 10.1016/j.jcmgh.2017.05.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/02/2017] [Indexed: 02/02/2023]
Abstract
Autophagy is a fundamental cellular process used for the turnover and recycling of cytosolic components and damaged organelles. Originally characterized as a response to cellular stress, it now is well established that autophagy also is used as a defensive mechanism to combat the infection of host cells by intracellular pathogens. However, although this defensive strategy does limit the proliferation of most pathogens within their host cells, successful pathogens have evolved countermeasures that subvert or circumvent the autophagic response. In this review, we discuss the mechanisms used by a number of these pathogens to escape autophagy, with a particular focus on Salmonella enterica serovar Typhimurium, which has been the most extensively studied example. We also discuss the consequences of bacterial autophagy for the broader innate immune response.
Collapse
Affiliation(s)
- James E. Casanova
- Correspondence Address correspondence to: James E. Casanova, PhD, University of Virginia Health System, 3014 Pinn Hall, Charlottesville, Virginia 22908.University of Virginia Health System3014 Pinn HallCharlottesvilleVirginia 22908
| |
Collapse
|
44
|
Awuh JA, Flo TH. Molecular basis of mycobacterial survival in macrophages. Cell Mol Life Sci 2017; 74:1625-1648. [PMID: 27866220 PMCID: PMC11107535 DOI: 10.1007/s00018-016-2422-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 11/06/2016] [Accepted: 11/14/2016] [Indexed: 12/31/2022]
Abstract
Macrophages play an essential role in the immune system by ingesting and degrading invading pathogens, initiating an inflammatory response and instructing adaptive immune cells, and resolving inflammation to restore homeostasis. More interesting is the fact that some bacteria have evolved to use macrophages as a natural habitat and tools of spread in the host, e.g., Mycobacterium tuberculosis (Mtb) and some non-tuberculous mycobacteria (NTM). Mtb is considered one of humanity's most successful pathogens and is the causal agent of tuberculosis, while NTMs cause opportunistic infections all of which are of significant public health concern. Here, we describe mechanisms by which intracellular pathogens, with an emphasis on mycobacteria, manipulate macrophage functions to circumvent killing and live inside these cells even under considerable immunological pressure. Such macrophage functions include the selective evasion or engagement of pattern recognition receptors, production of cytokines, reactive oxygen and nitrogen species, phagosome maturation, as well as other killing mechanisms like autophagy and cell death. A clear understanding of host responses elicited by a specific pathogen and strategies employed by the microbe to evade or exploit these is of significant importance for the development of effective vaccines and targeted immunotherapy against persistent intracellular infections like tuberculosis.
Collapse
Affiliation(s)
- Jane Atesoh Awuh
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, PB 8905, 7491, Trondheim, Norway
| | - Trude Helen Flo
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, PB 8905, 7491, Trondheim, Norway.
| |
Collapse
|
45
|
Mycobacterium marinum antagonistically induces an autophagic response while repressing the autophagic flux in a TORC1- and ESX-1-dependent manner. PLoS Pathog 2017; 13:e1006344. [PMID: 28414774 PMCID: PMC5407849 DOI: 10.1371/journal.ppat.1006344] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 04/27/2017] [Accepted: 04/11/2017] [Indexed: 12/18/2022] Open
Abstract
Autophagy is a eukaryotic catabolic process also participating in cell-autonomous defence. Infected host cells generate double-membrane autophagosomes that mature in autolysosomes to engulf, kill and digest cytoplasmic pathogens. However, several bacteria subvert autophagy and benefit from its machinery and functions. Monitoring infection stages by genetics, pharmacology and microscopy, we demonstrate that the ESX-1 secretion system of Mycobacterium marinum, a close relative to M. tuberculosis, upregulates the transcription of autophagy genes, and stimulates autophagosome formation and recruitment to the mycobacteria-containing vacuole (MCV) in the host model organism Dictyostelium. Antagonistically, ESX-1 is also essential to block the autophagic flux and deplete the MCV of proteolytic activity. Activators of the TORC1 complex localize to the MCV in an ESX-1-dependent manner, suggesting an important role in the manipulation of autophagy by mycobacteria. Our findings suggest that the infection by M. marinum activates an autophagic response that is simultaneously repressed and exploited by the bacterium to support its survival inside the MCV. One of the cell-autonomous defence pathways against intracellular pathogens is autophagy, an ancestral eukaryotic process surprisingly conserved throughout evolution. Recent studies have highlighted contradictory roles for autophagy during mycobacterial infection. Whereas some studies revealed a role for autophagy to control intracellular bacterial growth, others brought evidence that mycobacteria somehow inhibit autophagic killing. Here, we demonstrate for the first time that Mycobacterium marinum induces both an early autophagic response and its simultaneous repression by blocking the autophagic digestion. This antagonistic manipulation of autophagy is dependent on a functional ESX-1-secretion system, which secretes the membrane-damaging factor ESAT-6, proposed to participate in the perforation of the M. marinum-containing vacuole (MCV). We show here that these membrane damages activate the formation of autophagosomes and their recruitment to the MCV. However, M. marinum also utilizes its ESX-1 secretion system to avoid killing inside autolysosomes by blocking the autophagic flux. In addition, we bring evidence that this manipulation of autophagy is orchestrated via the regulation of TORC1, the major eukaryotic kinase complex controlling nutrient-sensing and cell metabolism.
Collapse
|
46
|
Cao Y, Guan K, He X, Wei C, Zheng Z, Zhang Y, Ma S, Zhong H, Shi W. Yersinia YopJ negatively regulates IRF3-mediated antibacterial response through disruption of STING-mediated cytosolic DNA signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:3148-3159. [DOI: 10.1016/j.bbamcr.2016.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/30/2016] [Accepted: 10/07/2016] [Indexed: 10/20/2022]
|
47
|
Zhao C, Liu T, Zhou T, Fu Y, Zheng H, Ding Y, Zhang K, Xu W. The rodent malaria liver stage survives in the rapamycin-induced autophagosome of infected Hepa1-6 cells. Sci Rep 2016; 6:38170. [PMID: 27901110 PMCID: PMC5128998 DOI: 10.1038/srep38170] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 11/07/2016] [Indexed: 12/20/2022] Open
Abstract
It has been reported that non-selective autophagy of infected hepatocytes could facilitate the development of malaria in the liver stage, but the fate of parasites following selective autophagy of infected hepatocytes is still not very clear. Here, we confirmed that sporozoite infection can induce a selective autophagy-like process targeting EEFs (exo-erythrocytic forms) in Hepa1–6. Rapamycin treatment greatly enhanced this process in EEFs and non-selective autophagy of infected Hepa1-6 cells and enhanced the development of the malaria liver stage in vivo. Although rapamycin promoted the fusion of autophagosomes containing the malaria parasite with lysosomes, some parasites inside the autophagosome survived and replicated normally. Further study showed that the maturation of affected autolysosomes was greatly inhibited. Therefore, in addition to the previously described positive role of rapamycin-induced nonselective autophagy of hepatocytes, we provide evidence that the survival of EEFs in the autophagosome of the infected hepatocytes also contributes to rapamycin-enhanced development of the malaria liver stage, possibly due to the suppression of autolysosome maturation by EEFs. These data suggest that the inhibition of autolysosome maturation might be a novel escape strategy used by the malaria liver stage.
Collapse
Affiliation(s)
- Chenghao Zhao
- Department of Pathogenic Biology, Third Military Medical University, Chongqing, 400038, P. R. China.,Department of Microbiology, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Taiping Liu
- Department of Pathogenic Biology, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Taoli Zhou
- Department of Pathogenic Biology, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Yong Fu
- Department of Pathogenic Biology, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Hong Zheng
- Department of Pathogenic Biology, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Yan Ding
- Department of Pathogenic Biology, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Kun Zhang
- Department of Pathogenic Biology, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Wenyue Xu
- Department of Pathogenic Biology, Third Military Medical University, Chongqing, 400038, P. R. China
| |
Collapse
|
48
|
Kimmey JM, Stallings CL. Bacterial Pathogens versus Autophagy: Implications for Therapeutic Interventions. Trends Mol Med 2016; 22:1060-1076. [PMID: 27866924 DOI: 10.1016/j.molmed.2016.10.008] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 10/18/2016] [Accepted: 10/18/2016] [Indexed: 12/19/2022]
Abstract
Research in recent years has focused significantly on the role of selective macroautophagy in targeting intracellular pathogens for lysosomal degradation, a process termed xenophagy. In this review we evaluate the proposed roles for xenophagy in controlling bacterial infection, highlighting the concept that successful pathogens have evolved ways to subvert or exploit this defense, minimizing the actual effectiveness of xenophagy in innate immunity. Instead, studies in animal models have revealed that autophagy-associated proteins often function outside of xenophagy to influence bacterial pathogenesis. In light of current efforts to manipulate autophagy and the development of host-directed therapies to fight bacterial infections, we also discuss the implications stemming from the complicated relationship that exists between autophagy and bacterial pathogens.
Collapse
Affiliation(s)
- Jacqueline M Kimmey
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Christina L Stallings
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
49
|
Du Z, Wang X. Pathology and Pathogenesis of Yersinia pestis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 918:193-222. [DOI: 10.1007/978-94-024-0890-4_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
50
|
Manipulation of host membranes by the bacterial pathogens Listeria, Francisella, Shigella and Yersinia. Semin Cell Dev Biol 2016; 60:155-167. [PMID: 27448494 PMCID: PMC7082150 DOI: 10.1016/j.semcdb.2016.07.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/15/2016] [Accepted: 07/18/2016] [Indexed: 01/07/2023]
Abstract
Bacterial pathogens display an impressive arsenal of molecular mechanisms that allow survival in diverse host niches. Subversion of plasma membrane and cytoskeletal functions are common themes associated to infection by both extracellular and intracellular pathogens. Moreover, intracellular pathogens modify the structure/stability of their membrane-bound compartments and escape degradation from phagocytic or autophagic pathways. Here, we review the manipulation of host membranes by Listeria monocytogenes, Francisella tularensis, Shigella flexneri and Yersinia spp. These four bacterial model pathogens exemplify generalized strategies as well as specific features observed during bacterial infection processes.
Collapse
|