1
|
Du Y, Li G, Li X, Jian X, Wang X, Xie Y, Li Z, Zhang Z. Dietary Immunoglobulin Y by Targeting Both GbpB and GtfB Enhances the Anticaries Effect in Rats. Int Dent J 2024; 74:1298-1305. [PMID: 38797634 PMCID: PMC11551561 DOI: 10.1016/j.identj.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/15/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
OBJECTIVE The purpose of this work was to develop an anti-CAT-SYI immunoglobulin Y (IgY) antibody that targeted both GtfB (glucosyltransferase B) and GbpB (glucan-binding protein B) and test its anticaries properties in rats. METHODS A new CAT-SYI fusion gene was created utilising functional DNA fragments from the GtfB and GbpB genes. The recombinant antigens, comprising the fused CAT-SYI antigen, GtfB, and GbpB, were expressed and purified using a prokaryotic expression and purification system. The purified recombinant antigens were utilised to immunise laying hens against particular IgY production. The biological activities of these particular IgY antibodies were then assessed both in vitro and in vivo, including their capacity to suppress biofilm formation and tooth caries. RESULTS Results indicated that these produced IgY antibodies demonstrated a high antibody titer (>0.1 μg/mL) and could precisely recognise and bind to their respective antigens. Furthermore, it was discovered that these specific IgY antibodies successfully bind to Streptococcus mutans and significantly reduce biofilm development. After 8 weeks of ingesting antigen-specific IgY meals, comprising anti-GtfB IgY and anti-GbpB IgY, the severity of dental caries was dramatically reduced in S mutans-infected Sprague-Dawley rats (P < .01). Anti-CAT-SYI IgY therapy significantly reduced tooth cavities by 89.0% in vivo (P < .05) compared to other treatment groups. CONCLUSIONS The anti-CAT-SYI IgY, a multitarget antibody that targets both GtfB and GbpB, displayed excellent inhibitory effects against S mutans, making it a promising targeted method with improved anticaries efficacy and significant application opportunities.
Collapse
Affiliation(s)
- Yunxiao Du
- Department of Biological Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Guobin Li
- Department of Gastroenterology, FuShun People's Hospital, Zigong, China
| | - Xinglin Li
- Department of Biological Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Xiaohong Jian
- Department of Biological Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Xiaoling Wang
- Department of Gastroenterology, FuShun People's Hospital, Zigong, China
| | - Yongmei Xie
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University, Chengdu, China
| | - Zaixin Li
- Department of Biological Engineering, Sichuan University of Science & Engineering, Zigong, China.
| | - Zhi Zhang
- Department of Biological Engineering, Sichuan University of Science & Engineering, Zigong, China.
| |
Collapse
|
2
|
Harth-Chu EN, Alves LA, Theobaldo JD, Salomão MF, Höfling JF, King WF, Smith DJ, Mattos-Graner RO. PcsB Expression Diversity Influences on Streptococcus mitis Phenotypes Associated With Host Persistence and Virulence. Front Microbiol 2019; 10:2567. [PMID: 31798545 PMCID: PMC6861525 DOI: 10.3389/fmicb.2019.02567] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 10/23/2019] [Indexed: 12/31/2022] Open
Abstract
S. mitis is an abundant member of the commensal microbiota of the oral cavity and pharynx, which has the potential to promote systemic infections. By analyzing a collection of S. mitis strains isolated from the oral cavity at commensal states or from systemic infections (blood strains), we established that S. mitis ubiquitously express the surface immunodominant protein, PcsB (also called GbpB), required for binding to sucrose-derived exopolysaccharides (EPS). Immuno dot blot assays with anti-PcsB antibodies and RT-qPCR transcription analyses revealed strain-specific profiles of PcsB production associated with diversity in pcsB transcriptional activities. Additionally, blood strains showed significantly higher levels of PcsB expression compared to commensal isolates. Because Streptococcus mutans co-colonizes S. mitis dental biofilms, and secretes glucosyltransferases (GtfB/C/D) for the synthesis of highly insoluble EPS from sucrose, profiles of S. mitis binding to EPS, biofilm formation and evasion of the complement system were assessed in sucrose-containing BHI medium supplemented or not with filter-sterilized S. mutans culture supernatants. These analyses showed significant S. mitis binding to EPS and biofilm formation in the presence of S. mutans supernatants supplemented with sucrose, compared to BHI or BHI-sucrose medium. In addition, these phenotypes were abolished if strains were grown in culture supernatants of a gtfBCD-defective S. mutans mutant. Importantly, GtfB/C/D-associated phenotypes were enhanced in high PcsB-expressing strains, compared to low PcsB producers. Increased PcsB expression was further correlated with increased resistance to deposition of C3b/iC3b of the complement system after exposure to human serum, when strains were previously grown in the presence of S. mutans supernatants. Finally, analyses of PcsB polymorphisms and bioinformatic prediction of epitopes with significant binding to MHC class II alleles revealed that blood isolates harbor PcsB polymorphisms in its functionally conserved CHAP-domain, suggesting antigenic variation. These findings reveal important roles of PcsB in S. mitis-host interactions under commensal and pathogenic states, highlighting the need for studies to elucidate mechanisms regulating PcsB expression in this species.
Collapse
Affiliation(s)
- Erika N Harth-Chu
- Department of Oral Diagnosis, Piracicaba Dental School, UNICAMP, Piracicaba, Brazil
| | - Lívia A Alves
- Department of Oral Diagnosis, Piracicaba Dental School, UNICAMP, Piracicaba, Brazil
| | - Jéssica D Theobaldo
- Department of Oral Diagnosis, Piracicaba Dental School, UNICAMP, Piracicaba, Brazil
| | - Mariana F Salomão
- Department of Oral Diagnosis, Piracicaba Dental School, UNICAMP, Piracicaba, Brazil
| | - José F Höfling
- Department of Oral Diagnosis, Piracicaba Dental School, UNICAMP, Piracicaba, Brazil
| | - William F King
- Department of Immunology and Infectious Disease, The Forsyth Institute, Cambridge, MA, United States
| | - Daniel J Smith
- Department of Immunology and Infectious Disease, The Forsyth Institute, Cambridge, MA, United States
| | | |
Collapse
|
3
|
Reuschenbach M, Dörre J, Waterboer T, Kopitz J, Schneider M, Hoogerbrugge N, Jäger E, Kloor M, von Knebel Doeberitz M. A multiplex method for the detection of serum antibodies against in silico-predicted tumor antigens. Cancer Immunol Immunother 2014; 63:1251-9. [PMID: 25143232 PMCID: PMC11029127 DOI: 10.1007/s00262-014-1595-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 08/07/2014] [Indexed: 10/24/2022]
Abstract
Humoral immune responses against tumor antigens are studied as indirect markers of antigen exposure and in cancer vaccine studies. An increasing number of tumor antigens potentially translated from mutant genes is identified by advances in genomic sequencing. They represent an interesting source for yet unknown immunogenic epitopes. We here describe a multiplex method using the Luminex technology allowing for the detection of antibodies against multiple in silico-predicted linear neo-antigens in large sets of sera. The approach included 32 synthetic biotinylated peptides comprising a predicted set of frameshift mutation-induced neo-antigens. The antigens were fused to a FLAG epitope to ensure monitoring antigen binding to avidin-linked microspheres in the absence of monoclonal antibodies. Analytical specificity of measured serum antibody reactivity was proven by the detection of immune responses in immunized rabbits and a colorectal cancer patient vaccinated with peptides included in the assay. The measured antibody responses were comparable to peptide ELISA, and inter-assay reproducibility of the multiplex approach was excellent (R (2) > 0.98) for 20 sera tested against all antigens. Our methodic approach represents a valuable platform to monitor antibody responses against predicted antigens. It may be used in individualized cancer vaccine studies, thereby extending the relevance beyond the model system in the presented approach.
Collapse
Affiliation(s)
- Miriam Reuschenbach
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany,
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Fidalgo TKDS, Freitas-Fernandes LB, Ammari M, Mattos CT, de Souza IPR, Maia LC. The relationship between unspecific s-IgA and dental caries: a systematic review and meta-analysis. J Dent 2014; 42:1372-81. [PMID: 25042566 DOI: 10.1016/j.jdent.2014.07.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 07/02/2014] [Accepted: 07/10/2014] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVES This systematic review and meta-analysis is focused on evaluating the possible association of s-IgA levels and dental caries. DATA The inclusion criteria comprised the clinical investigations with case and control groups, a caries diagnostic method, and evaluation of unspecific s-IgA concentration by using tests for both groups in humans, healthy subjects, and with statistical analyses. Quality assessment and data extraction of the included articles were performed. Meta-analysis of pooled data was performed through RevMan software after a sensitivity analysis. SOURCES An electronic and manual search was performed in PubMed, ISI Web of Science, Scopus, Cochrane Library, and Lilacs, with a supplemental hand search of the references of retrieved articles. STUDY SELECTION From 314 abstracts, 14 fulfilled the inclusion criteria. After reading the full articles, one of them was excluded due to the lack of a control group. Seven studies were included in the meta-analysis, and the heterogeneity among the studies (I(2)) was 41%. The pooled meta-analysis demonstrated higher levels of s-IgA in the caries active group (p<0.00001) than in the control group with a mean difference and confidence interval of 0.27 [0.17-0.38]. CONCLUSIONS Based on these findings, there is evidence that supports the presence of increased s-IgA levels in caries-active subjects. CLINICAL SIGNIFICANCE Dental caries is a multifactorial disease that comprehends intrinsic and extrinsic factors. The risk factors and events related to dental caries are overlooked in the literature. Additionally, it is also important to understand the host response against this disorder. Since the studies are contradictory in this field, we conducted a systematic review followed by meta-analysis to present the immunological host response evidence-based.
Collapse
Affiliation(s)
- Tatiana Kelly da Silva Fidalgo
- Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Liana Bastos Freitas-Fernandes
- Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Michelle Ammari
- Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudia Trindade Mattos
- Dental Clinic Department, School of Dentistry, Universidade Federal Fluminense, Niteói, Brazil
| | - Ivete Pomarico Ribeiro de Souza
- Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Lucianne Cople Maia
- Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Guo L, Shi W. Salivary biomarkers for caries risk assessment. JOURNAL OF THE CALIFORNIA DENTAL ASSOCIATION 2013; 41:107-118. [PMID: 23505756 PMCID: PMC3825179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Saliva contains various microbes and host biological components that could be used for caries risk assessment. This review focuses on the research topics that connect dental caries with saliva, including both the microbial and host components within saliva.
Collapse
Affiliation(s)
- Lihong Guo
- University of California, Los Angeles, School of Dentistry, USA
| | | |
Collapse
|
6
|
Picco DC, Costa LF, Delbem AC, Sassaki KT, Sumida DH, Antoniali C. Spontaneously hypertensive rat as experimental model of salivary hypofunction. Arch Oral Biol 2012; 57:1320-6. [DOI: 10.1016/j.archoralbio.2012.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 07/19/2012] [Accepted: 07/22/2012] [Indexed: 02/05/2023]
|
7
|
Shi W, Li Y, Liu F, Yang J, Zhou D, Chen Y, Zhang Y, Yang Y, He B, Han C, Fan M, Yan H. Flagellin Enhances Saliva IgA Response and Protection of Anti-caries DNA Vaccine. J Dent Res 2011; 91:249-54. [DOI: 10.1177/0022034511424283] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We and others have shown that anti-caries DNA vaccines, including pGJA-P/VAX, are promising for preventing dental caries. However, challenges remain because of the low immunogenicity of DNA vaccines. In this study, we used recombinant flagellin protein derived from Salmonella (FliC) as a mucosal adjuvant for anti-caries DNA vaccine (pGJA-P/VAX) and analyzed the effects of FliC protein on the serum PAc-specific IgG and saliva PAc-specific IgA antibody responses, the colonization of Streptococcus mutans ( S. mutans) on rat teeth, and the formation of caries lesions. Our results showed that FliC promoted the production of PAc-specific IgG in serum and secretory IgA (S-IgA) in saliva of rats by intranasal immunization with pGJA-P/VAX plus FliC. Furthermore, we found that enhanced PAc-specific IgA responses in saliva were associated with the inhibition of S. mutans colonization of tooth surfaces and endowed better protection with significant fewer caries lesions. In conclusion, our study demonstrates that recombinant FliC could enhance specific IgA responses in saliva and protective ability of pGJA-P/VAX, providing an effective mucosal adjuvant candidate for intranasal immunization of an anti-caries DNA vaccine.
Collapse
Affiliation(s)
- W. Shi
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Y.H. Li
- Key Laboratory for Oral Biomedical Engineering of Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - F. Liu
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - J.Y. Yang
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - D.H. Zhou
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Y.Q. Chen
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Y. Zhang
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Y. Yang
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - B.X. He
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - C. Han
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - M.W. Fan
- Key Laboratory for Oral Biomedical Engineering of Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - H.M. Yan
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| |
Collapse
|
8
|
Parisotto T, King W, Duque C, Mattos-Graner R, Steiner-Oliveira C, Nobre-dos-Santos M, Smith D. Immunological and Microbiologic Changes during Caries Development in Young Children. Caries Res 2011; 45:377-85. [DOI: 10.1159/000330230] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 05/06/2011] [Indexed: 11/19/2022] Open
|